JP2016134971A - モータ冷却構造 - Google Patents

モータ冷却構造 Download PDF

Info

Publication number
JP2016134971A
JP2016134971A JP2015007172A JP2015007172A JP2016134971A JP 2016134971 A JP2016134971 A JP 2016134971A JP 2015007172 A JP2015007172 A JP 2015007172A JP 2015007172 A JP2015007172 A JP 2015007172A JP 2016134971 A JP2016134971 A JP 2016134971A
Authority
JP
Japan
Prior art keywords
refrigerant
coil end
flange portion
motor
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015007172A
Other languages
English (en)
Inventor
村上 聡
Satoshi Murakami
聡 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2015007172A priority Critical patent/JP2016134971A/ja
Publication of JP2016134971A publication Critical patent/JP2016134971A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】重量の増加を抑制しつつ、コイルエンドを効率的に冷却できるモータ冷却構造の提供。【解決手段】モータ冷却構造は、モータのステータコアと、ステータコアに設けられ、ステータコアの軸方向の両端部で突出する第1コイルエンド及び第2コイルエンドを備えるコイルと、ステータコアの外周面に対して径方向に距離をおいて設けられ、モータの軸方向に沿って延在し、冷媒流路を内部に形成する管部材と、管部材に形成され、第1コイルエンドに向けて開口する第1冷媒噴出穴と、管部材の外周面に、第1冷媒噴出穴に対して冷媒流れ方向下流側に設けられ、管部材の外周面から突出し、第1冷媒噴出穴から噴出される冷媒の噴出方向を、第1コイルエンドに向かう方向へと矯正する第1フランジ部とを含む。【選択図】図1

Description

本開示は、モータ冷却構造に関する。
コイルエンド上方の冷却パイプの外壁と内壁との間の肉厚部は、ステータコア上方の冷却パイプの外壁と内壁との間の肉厚部より厚く、コイルエンド上方の肉厚部には、冷却液流路内の冷却液をコイルエンドに供給する冷却液供給口が設けられている回転電機が知られている(例えば、特許文献1参照)。
特開2013‐038875号公報
しかしながら、上記の特許文献1に記載の構成では、冷却パイプの肉厚部がコイルエンド上方の全体に亘って(即ち冷却液供給口の上流側及び下流側の双方で)厚く形成されるので、重量の観点で改善の余地がある。
そこで、本開示は、重量の増加を抑制しつつ、コイルエンドを効率的に冷却できるモータ冷却構造の提供を目的とする。
本開示の一局面によれば、モータのステータコア(20)と、
ステータコア(20)に設けられ、ステータコア(20)の軸方向の両端部で突出する第1コイルエンド(32L;32R)及び第2コイルエンド(32R;32L)を備えるコイル(30)と、
ステータコア(20)の外周面に対して径方向に距離をおいて設けられ、モータの軸方向に沿って延在し、冷媒流路を内部に形成する管部材(10)と、
管部材(10)に形成され、第1コイルエンド(32L;32R)に向けて開口する第1冷媒噴出穴(70;80)と、
前記管部材(10)の外周面に、前記第1冷媒噴出穴(70;80)に対して冷媒流れ方向下流側に設けられ、前記管部材(10)の外周面から突出し、第1冷媒噴出穴(70;80)から噴出される冷媒の噴出方向を、第1コイルエンド(32L;32R)に向かう方向へと矯正する第1フランジ部(50;60)とを含む、モータ冷却構造(1)が提供される。
本開示によれば、重量の増加を抑制しつつ、コイルエンドを効率的に冷却できるモータ冷却構造が得られる。
一実施例によるモータ冷却構造1を示す斜視図である。 モータ冷却構造1の断面図である。 図2のラインB−Bに沿った断面図である。 図2のラインC−Cに沿った断面図である。 上流側フランジ部50の冷媒噴射方向矯正機能の説明図である。 上流側フランジ部50(又は下流側フランジ部60)の代替構成を示す図である。
以下、添付図面を参照しながら各実施例について詳細に説明する。
図1は、一実施例によるモータ冷却構造1を示す斜視図である。図2は、管部材10の断面中心及びモータの軸方向を含む平面で切断したときモータ冷却構造1の断面図である。図3は、図2のラインB−Bに沿った断面図である。図4は、図2のラインC−Cに沿った断面図である。
尚、図1及び図2等においては、図の見易さのため、モータのロータの図示は省略されており、また、コイル30の詳細構成の図示も省略されている。また、尚、図1等においては、模式的に示される冷媒の軌跡が符合90にて指示されている。
モータ冷却構造1は、モータのステータ2に適用される。図1及び図2は、モータのステータ2の一部(鉛直方向上側)のみを切り出して示す。以下では、径方向及び軸方向は、特に言及しない限り、ステータ2の中心軸(=モータの回転軸)を基準とする。以下では、前提として、モータは、ステータコア20の軸方向が水平になる向きで搭載されているものとする。また、図1に示すY方向が鉛直方向下向き(重力方向)であるとする。また、下流側及び上流側とは、冷媒の流れ方向を基準とする。
ステータ2は、インナロータ型の任意のモータで使用されてもよい。例えば、ステータ2は、ハイブリッド車又は電気自動車で使用される走行用モータで使用されてもよい。走行用モータは、例えば永久磁石モータであってもよいし、電磁石と永久磁石とを併用するハイブリッド型のモータであってもよい。
ステータ2は、ステータコア20と、コイル30とを含む。
ステータコア20は、例えば積層鋼板から形成される。ステータコア20は、複数の分割コアから形成されてもよい。尚、図1に示す例では、ステータコア20の外周面には、フランジ22が形成される。フランジ22は、ステータコア20をモータケース(図示せず)等に固定(締結)するために形成される。
コイル30は、ステータコア20のスロット(図示せず)に設けられる。コイル30は、円形断面のコイル線により形成されてもよいし、カセットコイルのような平角断面のコイル線により形成されてもよい。コイル30は、任意の態様でステータコア20に巻回されてもよい。コイル30は、軸方向の両端部で突出するコイルエンド32L,32Rを含む。コイル30の詳細な構造は任意である。ここでは、一例として、コイル30は、分布巻でステータコア20に装着されるものとする。尚、分布巻とは、コイル30の各相が複数のスロットに分散して装着される形態である。
コイルエンド32Rは、コイルエンド32Lよりも軸方向の長さ(突出長さ)が長い。これは、コイルエンド32Rには、リード端子(図示せず)が形成されるためである。尚、一般的に、分布巻の場合、リード端子が形成される側のコイルエンド32Rは、図2に示すように、コイルエンド32Lよりも軸方向の長さ(突出長さ)が長くなる。また、コイルエンド32Rは、コイルエンド32Lよりも外径が長くなる。
モータ冷却構造1は、管部材(パイプ)10と、上流側フランジ部50と、下流側フランジ部60とを含む。
管部材10は、軸方向に沿って延在し、冷媒流路11(図2参照)を内部に形成する。尚、管部材10の断面形状は任意であるが、本例では、円形である。管部材10は、等断面であってよく、肉厚についても、曲げ成形(湾曲部14参照)に伴う肉厚の増減を除いて、実質的に一定であってよい。
管部材10は、ステータコア20の外周面に対して径方向に距離D(図2参照)をおいて設けられる。ステータコア20の外周面に対する距離Dは、軸方向全体にわたって一定であってよい。管部材10は、ブラケット(後述の締結部52を備える上流側フランジ部50参照)等によりモータケース(図示せず)等に固定されてよい。尚、管部材10は、金属等の任意の材料で形成されてよい。管部材10は、典型的には、可撓性の無い部材であるが、可撓性があってもよい。
図示の例では、管部材10は、軸方向に平行に延在する直線部12と、略直角に曲げられた湾曲部14と、接続部16とを含む。管部材10は、1本のパイプを曲げ成形することにより形成されてよい。直線部12の端部(湾曲部14と接続する端部とは反対側の端部)は閉塞される(冷媒を塞き止めれる)。但し、直線部12の端部には、更なる冷媒流路を形成する管部材が接続されてもよいし、最終的にドレイン(タンク)に接続されてもよい。
管部材10は、内部に冷媒が流される。冷媒は、油等であってよい。冷媒は、他の構成要素(例えば、トランスミッション)の潤滑や冷却に用いられる冷媒と共通であってもよい。図示の例では、冷媒は、接続部16から湾曲部14を介して直線部12へと向かう方向に流される。冷媒は、ポンプ(図示せず)により圧送されてよい。また、冷媒の流量は、モータ等の動作状態に応じて可変されてよい。
管部材10には、上流冷媒噴出穴70と、下流冷媒噴出穴80とが形成される。図示の例では、上流冷媒噴出穴70及び下流冷媒噴出穴80は、管部材10の直線部12に形成される。
上流冷媒噴出穴70は、コイルエンド32Rに向けて開口する。上流冷媒噴出穴70は、軸方向のコイルエンド32Rの延在範囲に対応する軸方向の位置に設けられる。図示の例では、上流冷媒噴出穴70は、図2に示すように、コイルエンド32Rの軸方向の中心付近に形成される。図示の例では、上流冷媒噴出穴70は、2つ、同一の軸方向の位置に形成される。尚、それぞれの上流冷媒噴出穴70の周方向の位置(管部材10まわりの周位置)は、任意であるが、噴射方向がコイルエンド32Rの外周面に交わる範囲内で設定される。
下流冷媒噴出穴80は、コイルエンド32Lに向けて開口する。下流冷媒噴出穴80は、軸方向のコイルエンド32Lの延在範囲に対応する軸方向の位置に設けられる。図示の例では、下流冷媒噴出穴80は、図2に示すように、コイルエンド32Lの軸方向の中心付近(中心よりも若干上流側)に形成される。図示の例では、下流冷媒噴出穴80は、2つ、同一の軸方向の位置に形成される。尚、それぞれの下流冷媒噴出穴80の周方向の位置(管部材10まわりの周位置)は、任意であるが、噴射方向がコイルエンド32Lの外周面に交わる範囲内で設定される。
上流側フランジ部50は、管部材10の外周面に設けられる。上流側フランジ部50は、上流冷媒噴出穴70の上流側と下流側のうちの、下流側に設けられる。上流側フランジ部50は、管部材10の外周面から突出する。上流側フランジ部50は、上流冷媒噴出穴70から噴出される冷媒の噴出方向を、管部材10の冷媒流路11の延在方向に対して垂直方向に矯正する機能を有する。以下、この機能を「冷媒噴射方向矯正機能」とも称する。この冷媒噴射方向矯正機能は後述する。
図示の例では、上流側フランジ部50は、図3に示すように、管部材10の外周まわりに全周に亘って設けられる円環状の部材により形成される。この場合、上流側フランジ部50は、その中心穴に管部材10が圧入されることで、管部材10に組み付けられてよい。上流側フランジ部50は、任意の材料により形成されてよく、例えば金属より形成されてもよい。また、図示の例では、上流側フランジ部50の高さH(管部材10の外周面からの管部材10の径方向に沿った長さ)は、2つの上流冷媒噴出穴70のそれぞれの位置に対応する周範囲において、所定値以上に設定される。所定値は、後述する上流側フランジ部50の冷媒噴射方向矯正機能が適切に発揮されるように適合される。尚、上流側フランジ部50の高さHは、重量やスペースの観点や、コイルエンド32Rとの絶縁距離の観点(上流側フランジ部50が金属等の導体である場合)から、可能な限り小さく設定されてよい。このため、図示の例では、上流側フランジ部50の高さHは、一定でなく、2つの上流冷媒噴出穴70のそれぞれの位置に対応する周範囲において、他の範囲(但し、締結部52の範囲を除く)よりも高く設定されている。
また、図示の例では、上流側フランジ部50は、モータケースに締結される締結部52を備える。締結部52は、締結ボルト40(図1参照)によりモータケースに締結される。従って、図示の例では、上流側フランジ部50は、管部材10をモータケースに固定するためのブラケットとしても機能する。
下流側フランジ部60は、管部材10の外周面に設けられる。下流側フランジ部60は、下流冷媒噴出穴80の上流側と下流側のうちの、下流側に設けられる。下流側フランジ部60は、管部材10の外周面から突出する。下流側フランジ部60は、下流冷媒噴出穴80から噴出される冷媒の噴出方向を、管部材10の冷媒流路11の延在方向に対して垂直方向に矯正する機能(冷媒噴射方向矯正機能)を有する。この冷媒噴射方向矯正機能は後述する。
図示の例では、下流側フランジ部60は、図4に示すように、管部材10の外周まわりに全周に亘って設けられる円環状の部材により形成される。この場合、下流側フランジ部60は、その中心穴に管部材10が圧入されることで、管部材10に組み付けられてよい。下流側フランジ部60は、任意の材料により形成されてよく、例えば金属より形成されてもよい。また、図示の例では、下流側フランジ部60の高さHは、2つの下流冷媒噴出穴80のそれぞれの位置に対応する周範囲において、所定値以上に設定される。所定値は、後述する下流側フランジ部60の冷媒噴射方向矯正機能が適切に発揮されるように適合される。尚、下流側フランジ部60の高さHは、重量やスペースの観点や、コイルエンド32Lとの絶縁距離の観点(下流側フランジ部60が金属等の導体である場合)から、可能な限り小さく設定されてよい。このため、図示の例では、下流側フランジ部60の高さHは、一定でなく、2つの下流冷媒噴出穴80のそれぞれの位置に対応する周範囲において、他の範囲よりも高く設定されている。
図5は、上流側フランジ部50の冷媒噴射方向矯正機能の説明図である。尚、以下では、主に上流側フランジ部50の冷媒噴射方向矯正機能について説明するが、下流側フランジ部60についても同様である。
管部材10の冷媒流路11内の冷媒は、下流側に向かう軸方向の速度成分を有する。従って、上流冷媒噴出穴70から噴出される冷媒は、下流側に向かう速度成分を持つため、図5に矢印P1にて模式的に示すように、上流冷媒噴出穴70から、管部材10の径方向に対して下流側に向かう方向に噴出される。かかる方向に噴出された冷媒は、上流側フランジ部50の表面(上流側の表面)の存在に起因して、管部材10の冷媒流路11の延在方向に対して垂直方向(即ち、管部材10の径方向)に向かう(図5に矢印P2を参照)。即ち、上流側フランジ部50の表面は、上流冷媒噴出穴70から噴出される冷媒の噴出方向(図5に矢印P1を参照)を、管部材10の径方向(図5に矢印P2を参照)へと矯正する。
従って、上流冷媒噴出穴70から噴出される冷媒が当たるコイルエンド32Rの軸方向の位置(範囲)は、上流側フランジ部50の表面(上流側の表面)の軸方向の位置に略対応することになる。従って、設計上、コイルエンド32Rの軸方向の中心を最も冷却させたい場合には、上流側フランジ部50の表面(上流側の表面)は、コイルエンド32Rの軸方向の中心に対応する軸方向の位置に配置される。例えば、図2に示す例では、上流側フランジ部50の表面(上流側の表面)は、コイルエンド32Rの軸方向の中心に対応する軸方向の位置(コイルエンド32Rの軸方向の中心よりも若干下流側の位置)に配置される。また、図2に示す例では、下流側フランジ部60の表面(上流側の表面)も、コイルエンド32Lの軸方向の中心に対応する軸方向の位置(コイルエンド32Lの軸方向の中心よりも若干下流側の位置)に配置される。
ここで、上流側フランジ部50が存在しない比較構成では、上流冷媒噴出穴70から噴出される冷媒は、下流側に向かう速度成分を持つため、上流冷媒噴出穴70の軸方向の位置と、コイルエンド32Rに当たる軸方向の位置との間にずれ(軸方向のずれ)が発生する。以下、このようなずれ及びその量を、単に「ずれ」及び「ずれ量」とも称する。ずれ量は、上流冷媒噴出穴70から噴出される冷媒が持つ下流側に向かう速度成分の大きさが大きいほど大きくなる。従って、冷媒流路11内の冷媒の流速によっては、コイルエンド32Rの所望の軸方向の位置(範囲)に、上流冷媒噴出穴70から噴出される冷媒を当てることができない虞があり、更には、コイルエンド32Rに当たらない虞もある。
この点、本実施例によれば、上述の如く、上流冷媒噴出穴70から噴出される冷媒は、上流側フランジ部50によって、下流側に向かう速度成分が低減又は無くされる。これにより、下流側に向かう速度成分に起因したずれを低減できる。このようにして、本実施例によれば、噴射された冷媒が、下流側に向かう速度成分に起因してコイルエンド32L,32Rに当たらなくなる可能性を、低減して、コイルエンド32L,32Rを効率的に冷却できる。
また、上流側フランジ部50が存在しない比較構成では、管部材10の冷媒流路11を流れる冷媒の流速が変化すると、それに伴いずれ量が変化する。このずれ量の変化は、噴出される冷媒が当たるコイルエンド32Rの軸方向の位置が変化することを意味する。従って、かかる比較構成では、冷媒の流速が変化する場合に、コイルエンド32Rの所望の軸方向の位置(範囲)に、上流冷媒噴出穴70から噴出される冷媒を安定的に当てることができない虞がある。
この点、本実施例によれば、上述の如く、上流冷媒噴出穴70から噴出される冷媒は、管部材10の冷媒流路11を流れる冷媒の流速の如何に拘らず、上流側フランジ部50によって、下流側に向かう速度成分が低減又は無くされる。従って、本実施例によれば、冷媒の流速が変化する場合であっても、コイルエンド32Rの所望の軸方向の位置(範囲)に、上流冷媒噴出穴70から噴出される冷媒を安定的に当てることができる。
また、本実施例では、上流側フランジ部50(下流側フランジ部60についても同様)は、上流冷媒噴出穴70に対して下流側のみに設けられる。従って、本実施例によれば、例えば上流冷媒噴出穴70まわりの全周に亘ってフランジ部(又は厚肉部)を設ける比較構成に比べて、重量の観点から有利となる。また、上流側フランジ部50がブラケットとして機能するので、ブラケットを別途設ける構成に比べて、重量を低減できる。
このようにして、本実施例によれば、重量の増加を抑制しつつ、コイルエンド32L,32Rを効率的に冷却できる。
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
例えば、上述した実施例では、管部材10に上流側フランジ部50及び下流側フランジ部60が設けられるが、上流側フランジ部50及び下流側フランジ部60の任意の一方のみが設けられてもよい。例えば、上流側の方が冷媒の流速が高いことを考慮して、上流側フランジ部50のみを設けて、下流側フランジ部60の分の重量の低減を図ることとしてもよい。
また、上述した実施例では、管部材10に上流冷媒噴出穴70及び下流冷媒噴出穴80の双方が形成されているが、いずれか一方のみが形成されてもよい。また、2本の管部材を設け、一方の管部材に上流冷媒噴出穴70を形成し、他方の管部材に下流冷媒噴出穴80を形成してもよい。この場合も、上流側フランジ部50及び下流側フランジ部60の任意の一方のみが設けられてもよい。
また、上述した実施例では、上流側フランジ部50は、締結部52を有しているが、締結部52は省略されてもよい。この場合、上流側フランジ部50は、下流側フランジ部60と同様の構成を有してよい。或いは、上流側フランジ部50及び/又は下流側フランジ部60は、図6に示すように、管部材10まわりの全周にわたって一定の高さHを有する形態であってもよい。
また、上述した実施例では、上流側フランジ部50は、上流冷媒噴出穴70に隣接して設けられるが、上流冷媒噴出穴70に対して、軸方向に僅かな距離だけ離間して設けられてもよい。
また、上述した実施例では、上流側フランジ部50は、上流側の表面が平面であるが、曲面を含んでもよい。
また、上述した実施例では、上流冷媒噴出穴70は、2つ形成されているが、1つであってもよいし、3つ以上形成されてもよい。これは、下流冷媒噴出穴80についても同様である。
また、上述した実施例では、上流冷媒噴出穴70は、軸方向の1つの位置にしか形成されていないが、軸方向の2つ以上の位置に形成されてもよい。この場合、上流側フランジ部50は、各軸方向の位置の上流冷媒噴出穴70に対してそれぞれ設けられてもよいし、最下流の軸方向の位置の上流冷媒噴出穴70に対してのみ設けられてもよい。これは、下流冷媒噴出穴80についても同様である。
また、上述した実施例では、前提として、モータは、ステータコア20の軸方向が水平になる向きで搭載されているが、モータの搭載の向きは任意である。
また、上述した実施例では、管部材10は、冷媒の流れ方向がコイルエンド32Rの方がコイルエンド32Lよりも上流側になるように構成されるが、逆であってもよい。即ち、管部材10は、冷媒の流れ方向がコイルエンド32Lの方がコイルエンド32Rよりも上流側になるように構成されてもよい。
また、上述した実施例では、上流側フランジ部50は、円環状の部材(管部材10とは別部材)により形成されているが、管部材10と一体的に形成されてもよい。この場合、上流側フランジ部50は、管部材10の全周にわたって形成される必要はなく、上流冷媒噴出穴70の存在する周範囲のみに形成されてもよい。これは、下流側フランジ部60についても同様である。
なお、以上の実施例に関し、さらに以下を開示する。
(1)
モータのステータコア(20)と、
ステータコア(20)に設けられ、ステータコア(20)の軸方向の両端部で突出する第1コイルエンド(32L;32R)及び第2コイルエンド(32R;32L)を備えるコイル(30)と、
ステータコア(20)の外周面に対して径方向に距離をおいて設けられ、モータの軸方向に沿って延在し、冷媒流路を内部に形成する管部材(10)と、
管部材(10)に形成され、第1コイルエンド(32L;32R)に向けて開口する第1冷媒噴出穴(70;80)と、
前記管部材(10)の外周面に、前記第1冷媒噴出穴(70;80)に対して冷媒流れ方向下流側に設けられ、前記管部材(10)の外周面から突出し、第1冷媒噴出穴(70;80)から噴出される冷媒の噴出方向を、第1コイルエンド(32L;32R)に向かう方向へと矯正する第1フランジ部(50;60)とを含む、モータ冷却構造(1)。
(1)に記載の構成によれば、第1冷媒噴出穴(70;80)から噴射された冷媒は、その軸方向の速度成分が第1フランジ部(50;60)により低減又は無くされるので、第1冷媒噴出穴(70;80)から噴射された冷媒が、その軸方向の速度成分に起因して第1コイルエンド(32L;32R)に掛からなくなる可能性を、低減できる。この結果、第1コイルエンド(32L;32R)を効率的に冷却できる。また、第1フランジ部(50;60)は、第1冷媒噴出穴(70;80)に対して冷媒流れ方向上流側及び下流側のうちの下流側のみ設けられるので、同様のフランジ部を冷媒流れ方向上流側及び下流側の双方に設ける場合に比べて、重量の増加を抑制できる。
(2)
第1フランジ部(50;60)は、第1冷媒噴出穴(70;80)から噴出される冷媒の噴出方向を、管部材(10)の冷媒流路の延在方向に対して垂直方向へと矯正する、(1)に記載のモータ冷却構造(1)。
(2)に記載の構成によれば、第1フランジ部(50;60)が、第1冷媒噴出穴(70;80)から噴出される冷媒の噴出方向を、管部材(10)の冷媒流路の延在方向に対して垂直方向へと矯正するので、第1コイルエンド(32L;32R)を効率的に冷却できる。
(3)
第1フランジ部(50;60)は、第1冷媒噴出穴(70;80)から噴出される冷媒を受ける側の表面が、モータの軸方向で第1コイルエンド(32L;32R)の中心に対応する位置に形成される、(1)又は(2)に記載のモータ冷却構造(1)。
(3)に記載の構成によれば、モータの軸方向で第1コイルエンド(32L;32R)の中心付近を安定的に冷却できる。
(4)
第1フランジ部(50;60)は、管部材(10)の外周まわりに全周に亘って設けられる円環状の部材により形成される、(1)〜(3)のうちのいずれか1項に記載のモータ冷却構造(1)。
(4)に記載の構成によれば、第1フランジ部(50;60)を、管部材(10)とは別部材により形成でき、管部材(10)を簡易な構成にでき、管部材(10)の製造を容易化できる。
(5)
円環状の部材は、モータケースに締結される締結部(52)を備える、(4)に記載のモータ冷却構造(1)。
(5)に記載の構成によれば、第1フランジ部(50;60)がブラケットを兼ねることができ、ブラケットを別途設ける構成に比べて、重量面や部品点数等の観点から有利となる。
(6)
管部材(10)の外周面からの管部材(10)の径方向に沿った第1フランジ部(50;60)の高さは、第1冷媒噴出穴(70;80)の位置に対応する周範囲において、他の周範囲の少なくとも一部においてよりも高い、(4)に記載のモータ冷却構造(1)。
(6)に記載の構成によれば、第1フランジ部(50;60)の高さを最適化することで、第1フランジ部(50;60)の機能(第1冷媒噴出穴(70;80)から噴射された冷媒の軸方向の速度成分を低減する機能)を維持しつつ、第1フランジ部(50;60)自体の重量を低減できる。
(7)
管部材(10)に形成され、第2コイルエンド(32R;32L)に向けて開口する第2冷媒噴出穴(80;70)と、
管部材(10)の外周面に、第2冷媒噴出穴(80;70)に対して冷媒流れ方向上流側及び下流側のうちの下流側のみ設けられ、管部材(10)の外周面から突出する第2フランジ部(60;50)とを更に含む、(1)〜(6)のうちのいずれか1項に記載のモータ冷却構造(1)。
(7)に記載の構成によれば、共通の管部材(10)を用いて、(1)に記載の構成による上記の効果を、第2コイルエンド(32R;32L)に対しても得ることができる。
(8)
第2冷媒噴出穴(80)は、第1冷媒噴出穴(70)よりも冷媒流れ方向下流側に設けられ、
第1コイルエンド(32L)は、第2コイルエンド(32R)よりもモータの軸方向の長さが長い、(1)〜(7)のうちのいずれか1項に記載のモータ冷却構造(1)。
1 モータ冷却構造
2 ステータ
10 管部材
11 冷媒流路
20 ステータコア
22 フランジ
30 コイル
32L、32R コイルエンド
50 上流側フランジ部
52 締結部
60 下流側フランジ部
70 上流冷媒噴出穴
80 下流冷媒噴出穴
90 冷媒の軌跡

Claims (8)

  1. モータのステータコアと、
    前記ステータコアに設けられ、前記ステータコアの軸方向の両端部で突出する第1コイルエンド及び第2コイルエンドを備えるコイルと、
    前記ステータコアの外周面に対して径方向に距離をおいて設けられ、前記モータの軸方向に沿って延在し、冷媒流路を内部に形成する管部材と、
    前記管部材に形成され、前記第1コイルエンドに向けて開口する第1冷媒噴出穴と、
    前記管部材の外周面に、前記第1冷媒噴出穴に対して冷媒流れ方向下流側に設けられ、前記管部材の外周面から突出し、前記第1冷媒噴出穴から噴出される冷媒の噴出方向を、前記第1コイルエンドに向かう方向へと矯正する第1フランジ部とを含む、モータ冷却構造。
  2. 前記第1フランジ部は、前記第1冷媒噴出穴から噴出される冷媒の噴出方向を、前記管部材の冷媒流路の延在方向に対して垂直方向へと矯正する、請求項1に記載のモータ冷却構造。
  3. 前記第1フランジ部は、前記第1冷媒噴出穴から噴出される冷媒を受ける側の表面が、前記モータの軸方向で前記第1コイルエンドの中心に対応する位置に形成される、請求項1又は2に記載のモータ冷却構造。
  4. 前記第1フランジ部は、前記管部材の外周まわりに全周に亘って設けられる円環状の部材により形成される、請求項1〜3のうちのいずれか1項に記載のモータ冷却構造。
  5. 前記円環状の部材は、モータケースに締結される締結部を備える、請求項4に記載のモータ冷却構造。
  6. 前記管部材の外周面からの前記管部材の径方向に沿った前記第1フランジ部の高さは、前記第1冷媒噴出穴の位置に対応する周範囲において、他の周範囲の少なくとも一部においてよりも高い、請求項4に記載のモータ冷却構造。
  7. 前記管部材に形成され、前記第2コイルエンドに向けて開口する第2冷媒噴出穴と、
    前記管部材の外周面に、前記第2冷媒噴出穴に対して冷媒流れ方向上流側及び下流側のうちの下流側のみ設けられ、前記管部材の外周面から突出する第2フランジ部とを更に含む、請求項1〜6のうちのいずれか1項に記載のモータ冷却構造。
  8. 前記第2冷媒噴出穴は、前記第1冷媒噴出穴よりも冷媒流れ方向下流側に設けられ、
    前記第1コイルエンドは、前記第2コイルエンドよりも前記モータの軸方向の長さが長い、請求項1〜7のうちのいずれか1項に記載のモータ冷却構造。
JP2015007172A 2015-01-16 2015-01-16 モータ冷却構造 Pending JP2016134971A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015007172A JP2016134971A (ja) 2015-01-16 2015-01-16 モータ冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015007172A JP2016134971A (ja) 2015-01-16 2015-01-16 モータ冷却構造

Publications (1)

Publication Number Publication Date
JP2016134971A true JP2016134971A (ja) 2016-07-25

Family

ID=56434752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015007172A Pending JP2016134971A (ja) 2015-01-16 2015-01-16 モータ冷却構造

Country Status (1)

Country Link
JP (1) JP2016134971A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019453A (ja) * 2019-07-22 2021-02-15 日本電産株式会社 モータユニットおよびモータユニットの製造方法
CN113206578A (zh) * 2020-01-31 2021-08-03 日本电产株式会社 驱动装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019453A (ja) * 2019-07-22 2021-02-15 日本電産株式会社 モータユニットおよびモータユニットの製造方法
JP7363154B2 (ja) 2019-07-22 2023-10-18 ニデック株式会社 モータユニットおよびモータユニットの製造方法
CN113206578A (zh) * 2020-01-31 2021-08-03 日本电产株式会社 驱动装置

Similar Documents

Publication Publication Date Title
US10320247B2 (en) Embedded permanent magnet rotary electric machine
US10103602B2 (en) Rotary electric machine
JP5505275B2 (ja) ステータ冷却装置
US10415586B2 (en) Axial fan
US10673302B2 (en) Outer-rotor motor and stator assembly thereof
US10404140B2 (en) Cooling structure of drive motor
JP5858001B2 (ja) モータ、及び、それを用いた燃料ポンプ
US20190145429A1 (en) Axial fan
WO2020105467A1 (ja) モータ油冷構造
US20170288507A1 (en) Fan motor
CN102374192B (zh) 风扇
JP2019060320A (ja) 軸流ファン
US11824426B2 (en) Motor cooling member
US8109743B2 (en) Axial flow fan unit
US20190093662A1 (en) Axial fan
JP2016134971A (ja) モータ冷却構造
JP2016134972A (ja) モータ冷却構造
WO2014157555A1 (ja) モータ冷却構造
US20190093668A1 (en) Axial fan
WO2016117374A1 (ja) 送風機
JP2015116101A (ja) モータ冷却構造
JP6148208B2 (ja) 回転電機用ロータ
JP2010115001A (ja) ブラシレスモータ
JP2015119595A (ja) モータ冷却構造
JP2013017334A (ja) 回転電機