JP2016117418A - 回生発電制御装置 - Google Patents

回生発電制御装置 Download PDF

Info

Publication number
JP2016117418A
JP2016117418A JP2014258834A JP2014258834A JP2016117418A JP 2016117418 A JP2016117418 A JP 2016117418A JP 2014258834 A JP2014258834 A JP 2014258834A JP 2014258834 A JP2014258834 A JP 2014258834A JP 2016117418 A JP2016117418 A JP 2016117418A
Authority
JP
Japan
Prior art keywords
battery
power generation
amount
generator
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014258834A
Other languages
English (en)
Inventor
健司 矢口
Kenji Yaguchi
健司 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2014258834A priority Critical patent/JP2016117418A/ja
Publication of JP2016117418A publication Critical patent/JP2016117418A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

【課題】回生時の充電電流よるバッテリ劣化を低減可能な回生発電制御装置を提供する。【解決手段】回生発電制御装置1は、内燃機関2で駆動されバッテリ6に蓄積又は電気負荷5に電力を供給する発電機3と、前方の道路情報を取得する道路情報取得部82と、道路情報に基づき回生発電時量を推定する最大発電量推定部と電気負荷の消費電力量を推定する消費電力量推定部と、推定消費電力量が最大発電量よりも小さい場合に、バッテリに充電できる最大充電量を算出する充電量算出部と、発電機からバッテリへ供給される充電量が最大充電量となるように回生発電量を制御する発電機制御部7と、最大充電量によりバッテリを充電した場合にバッテリの負荷が許容範囲内か否か判定するバッテリ負荷判定部と、充電時のバッテリ負荷が許容範囲外となる場合、バッテリ負荷が許容範囲内となるように発電機の発電量を制限する発電量制限部とを備える。【選択図】図1

Description

本開示は、エンジンの動力の一部を用いて発電可能なオルタネータのような発電機の回生発電制御装置に関する。
一般的に、減速時に車両の運動エネルギーを利用してオルタネータ(発電機)を回生駆動することにより、運動エネルギーを電気エネルギーに変換し、車内の各種電気負荷に供給することが行われている。オルタネータで回生発電される電力量は、走行状態に応じていわば成り行きで変化する。そして、オルタネータで発電された電力は、電気負荷に直接供給され、あるいは、バッテリに蓄電された後にそれぞれの電気負荷における電力需要に応じて供給される。
一方で、各電気負荷における電力需要もまた、走行状態に応じて成り行きで変化する。そのため、車内で発電した限りある電力を、各電気負荷の電力需要に応じて効率的に配分することが求められる。このような要求に対し、例えば特許文献1では、ナピゲーション装置などを利用して将来の電力需要を推定し、該推定結果に応じてバッテリ等に蓄電された電力を各電気負荷に配分することで、各電気負荷の電力需要にマッチした電力供給が可能になるとしている。
特開2014−117957号公報
このような回生発電装置に用いられる二次電池等のバッテリは、充電電流が劣化進行に影響を与えることが知られており、一般的に充電電流が大きいほどバッテリの劣化が進行しやすい傾向がある。上記特許文献1では、充電電流によるバッテリ劣化の影響を考慮することなく成り行きで、オルタネータの回生発電を行っているため、走行状態によっては大きな充電電流が流れることによってバッテリの劣化が進んでしまうおそれがある。
本発明は上記問題点に鑑みなされたもので、本発明の少なくとも一実施形態は、回生時の良好なエネルギー回収効率を確保しつつ、バッテリ劣化を低減可能な回生発電制御装置を提供することを目的とする。
本発明の少なくとも一実施形態に係る回生発電制御装置は、
内燃機関の回転数に応じて駆動され、バッテリに蓄積又は電気負荷に電力を供給する発電機と、
車両前方の道路情報を取得する道路情報取得部と、
前記道路情報に基づき、前記発電機の回生発電時における最大発電量を推定する最大発電量推定部と、
前記道路情報に基づき、前記電気負荷の消費電力量を推定する消費電力量推定部と、
前記推定された消費電力量が前記推定された最大発電量よりも小さい場合に、前記発電機で回生発電された電力により前記バッテリに充電することができる最大充電量を算出する充電量算出部と、
前記発電機の回生発電時、前記発電機から前記バッテリへ供給される充電量が前記最大充電量となるように、前記発電機の回生発電量を制御する発電機制御部と、
前記最大充電量により前記バッテリを充電した場合に、前記バッテリに発生する負荷が許容範囲内か否か判定するバッテリ負荷判定部と、
前記バッテリ負荷判定部により、充電時に前記バッテリに発生する前記負荷が許容範囲外となる場合、前記バッテリに発生する前記負荷が許容範囲内となるように前記発電機の発電量を制限する発電量制限部と、を備える。
上記の構成によれば、道路情報に基づいて推定された最大発電量及び消費発電量から、回生時に発電余力があると判定された場合には、バッテリへの充電量が最大充電量となるように回生発電量を制御することによって、良好な回生効率が得られる。一方、発電量制限部は、このようにバッテリ充電量を最大充電量とした際にバッテリ負荷が許容範囲外になった場合に発電量を制限することによって、バッテリへの充電電流が過大になることに起因するバッテリの劣化を抑制できる。このようにして、本構成では、良好なエネルギー回収効率をさせつつ、バッテリの劣化抑制を図ることができる。
本発明の少なくとも一実施形態によれば、回生時の良好なエネルギー回収効率を確保しつつ、バッテリ劣化を低減可能な回生発電制御装置が提供される。
本発明の一実施形態に係る回生発電制御装置を概略的に示す図である。 本発明の一実施形態に係る回生発電制御装置のブロック図である。 発電機の性能マップの一例を示す図である。 充電量マップの一例を説明するための図である。 本発明の一実施形態に係る回生発電制御フローを示す図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、本発明の一実施形態に係る回生発電制御装置1を概略的に示す図である。図1に示されるように、回生発電制御装置1は、発電機3と、ECU(電子制御ユニット)などからなる制御装置7(道路情報取得部71と、最大発電量推定部72と、発電機制御部73と、消費電力量推定部75と、充電量算出部76と、バッテリ負荷判定部77と、発電量制限部78を備える)とを備え、例えばトラックやバスなどを含む商用車及び乗用車を含む各種車両に搭載される。
この回生発電制御装置1を備える車両は走行用動力源として内燃機関(エンジン2)を搭載しており、エンジン2からの出力を不図示の動力伝達機構(例えばクラッチ装置、トランスミッション装置等)を介して駆動輪に伝達することにより走行する。また、エンジン2からの出力はベルト等を介して発電機3にも伝えられており、発電機3は、このエンジン2によって駆動されると共に、制御装置7によって制御される。
発電機3(オルタネータ)は、内燃機関の回転数に応じて駆動され、バッテリ6に蓄積又は電気負荷5に電力を供給する。より詳細には、発電機3は、交流発電機と整流器からなる。また、交流発電機は、ステータおよびステータの内側で回転するロータから構成される。そして、フィールド電流Ifにより励磁されることでロータからは磁束を発生しており、ステータの内側でエンジン2の回転数に応じてこのロータが回転することで、ロータからの磁束がステータコイルと交差し、電磁誘導によって電流が発生する。このようにして発生する交流電流は、上記の整流器によって直流に整流された後に、車内の電源ライン4を介して接続される各種の電気負荷5に発電電流Igとして供給される。これと共に、発電機3の発電電力が全ての電気負荷5による消費電力よりも大きい場合には、この余剰分の電力はバッテリ6の充電に使用される。
また、発電機3には回生発電制御(回生ブレーキ)がなされており、車両の減速時には、動力伝達機構を介して伝達される駆動輪からの運動エネルギーによって回転駆動されることで発電する。すなわち、減速時には、燃料の供給がなくても回転する駆動輪によってエンジン2は回転され、このエンジン2の回転によって発電機3も回転される。そして、燃費を向上させるべく、回生発電時(減速時)には発電量(回生発電)を多くし、逆に、回生発電時以外では発電量を抑えるよう発電機3は制御されている。具体的には、回生発電時には、上記のフィールド電流Ifが高く設定され、回生発電時以外ではフィールド電流Ifが小さく設定されることで発電電力を制御しても良い。このように回生発電された電力はバッテリ6に蓄積される。そして、発電機3の発電による電圧がバッテリ6の電圧より低い場合に、バッテリ6の電力が電気負荷5に供給されることで、発電機3の発電のための燃料を低減し、燃費を向上している。
なお、上述の電気負荷5は、電気駆動によって電力を消費する車載部品(電装部品)である。例えば、点火制御などの車両走行などに用いられ電子制御ユニット(ECU)、やセンサ、エアバック、エアコン、ブロア、ヘッドライト、ブレーキランプ、ワイパー、ウインカー、シガーソケット、オーディオ、カーナビなど、様々な電気負荷が車両に搭載される。図1の例示では、簡略化のために、対象となる全ての電気負荷5が合成されたものとして電気負荷5が1つ例示されている。
バッテリ6は、車両に搭載されるシステムの電源として用いられる2次電池(例えば鉛蓄電池)であり、上述した電気負荷5の電気駆動や、エンジン2を始動させるためのスタータモータの電気駆動に用いられる。また、エンジン2の運転時において、発電機3による発電電力が電気負荷5の消費電力以下の場合に、バッテリ6からの電気負荷5への電力供給が、発電機3からの電気負荷5への電力供給と共に行われる。図1の例示では、バッテリ6は、電気負荷5と共に、電源ライン4を介して発電機3に並列に接続される。そして、バッテリ6の充電量や発電機3は、下記に説明する制御装置7によって制御される。
制御装置7は、図2に示されるように、道路情報取得部71と、最大発電量推定部72と、発電機制御部73と、消費電力量推定部75と、充電量算出部76と、バッテリ負荷判定部77と、発電量制限部78とを備える。また、図2の例示のように、制御装置7は、バッテリ情報取得部74を備えても良い。
道路情報取得部71は、車両前方の道路情報Deを取得する。この道路情報Deは、例えば、道路線形情報や道路交通情報(渋滞情報、交通規制情報)、制限速度、施設情報、車間距離、車速、天候情報などが含まれても良い。この道路線形情報は道路形状に関する情報であり、平面的な道路の形状がどのような直線と曲線の組み合わせであるか、上り坂や下り坂などの勾配がどのように構成されているかなどの情報である。施設情報は、例えば、交差点、踏切、駐車場、有料道路の料金所等の情報である。
また、道路情報Deの取得タイミングは、一定時間毎(周期的)であっても良い。あるいは、車両前方の状況が変わると判断される場合に道路情報Deの取得が行われても良い。これら両方のタイミングであっても良い。例えば、道路を曲がった場合、停車した場合、エンジン2の回転数Neの予測値が大きく変わるほど変化した場合、道路交通情報が変更された場合などには、車両前方の状況が変わり得る。
また、図1に例示されるように、道路線形情報や道路交通情報はナビゲーション装置81から取得しても良い。車速や車間距離、天候情報は、車両に設けられるセンサやカメラになどの車両状況取得手段82によって取得しても良い。図1の例示では、ナビゲーション装置81や車両状況取得手段82は、CAN(Controller Area Network)やLIN(Local Interconnect Network)などからなる車載ネットワーク9を介して制御装置7に接続されている。なお、ナビゲーション装置81(カーナビ)は、周知のように、例えばGPSから得られる位置情報と地図情報とに基づいて、車両の走行位置が特定できるようになっている。この地図情報には道路線形情報(例えば、道路の形状、分岐の有無、標高等)や、施設情報(例えば、交差点、踏切、駐車場、有料道路の料金所等)が座標データと関連付けられて規定されている。また、周知のように、ナビゲーション装置81は、例えばVICS(登録商標)(Vehicle Information and Communication System)から渋滞や交通規制などの道路交通情報の受信が可能となっている。
そして、取得される道路情報Deは、取得される度に、下記に説明する最大発電量推定部72および消費電力量推定部75に入力される。
最大発電量推定部72は、道路情報Deに基づき、回生発電時における発電機の最大発電量Wgを推定する。このため、最大発電量推定部72は上述の道路情報取得部71に接続されることで、道路情報取得部71から道路情報Deの入力を受けるよう構成されている。そして、道路情報Deに基づいて発電機3による最大の発電量の推定値(最大発電量Wg)を算出するよう構成されている。より詳細には、最大発電量推定部72は、道路情報Deに含まれる道路線形情報や道路交通情報、施設情報等を解析することにより、発電機3による回生発電のタイミング(例えば、開始と終了を含む区間や時間からなる回生タイミング)を抽出する。そして、道路情報Deに少なくとも1つの回生タイミングが含まれる場合には、回生タイミング毎の回生発電量を推定し、各回生タイミングにおける発電量を合計することで最大発電量Wgを推定する。
また、各回生タイミングにおける発電機3による発電量は、発電機3の回転数Nがエンジン2の回転数Neによって決まることから、フィールド電流Ifとエンジン2の回転数Neの情報を得ることで推定できる。このため、回生発電時(回生タイミング)のエンジン2の回転数Neを予測することで発電機3による発電量を推定しても良い。図1に示される実施形態では、最大発電量推定部72は、道路情報Deに基づいて回生タイミングを特定すると共に、各回生タイミングにおけるエンジン2の回転数Neを道路情報Deに基づいて予測し、予測されるエンジン2の回転数Neから発電機3の回転数Nを求めている。具体的には、予測されるエンジン2の回転数Neに発電機3における減速比を乗算することで発電機3の回転数Nを算出している。そして、フィールド電流If(例えば最大値)における発電機3の性能マップ(図3参照)を参照し、発電機3の回転数Nに対応する発電電流を取得する。この発電電流Igと回生発電時間Trとを演算することで最大発電量Wgが推定される。この演算は、推定する精度に応じて様々な方法が採用できる。例えば、道路情報Deに含まれる全区間における平均回生電流と全回生発電時間の乗算することで推定しても良いし、回生タイミング毎の平均の発電電流と回生発電時間を乗算することで推定しても良い。あるいは、発電電流Igを回生発電時間Trで積分して推定しても良い。なお、発電機3の性能マップは、図3に示されるように、発電機3の回転数Nに従って発電電流Igが大きくなっている。そして、上記の回生タイミングは、発電機制御部73に入力されても良い。
発電機制御部73は、回生発電時、発電機3からバッテリ6へ供給される充電量が最大充電量Wbとなるように、発電機3の回生発電量を制御する。図1に示される実施形態では、発電機制御部73は最大発電量推定部72に接続されており、最大発電量推定部72から回生タイミングの入力を受けるよう構成されている。そして、回生タイミングにおいては、フィールド電流Ifを大きくすることで発電量を増加させ、それ以外のタイミングでは、可能であればフィールド電流Ifを小さくすることで発電量を低下させる。他の幾つかの実施形態では、発電機制御部73は、周知のように、リアルタイムに計測したバッテリ6の電圧や実際の回路に流れている電流量など、様々なセンサから取得する情報に基づいて最適なフィールド電流Ifを算出しても良い。この場合には、最大発電量推定部72、このように算出されるフィールド電流Ifを推定しながら最大発電量Wgが算出される。
また、発電機制御部73は、充電時にはバッテリ6のSOCを確認し、所定のSOC閾値内でSOCが推移するように充電量を制御しても良い。例えば、図1に示される実施形態のように、制御装置7はバッテリ情報取得部74を備えることで、バッテリ6の状態(SOCなど)を取得しても良い。このバッテリ情報取得部74はバッテリ6と接続されており、バッテリ6のSOCなどのバッテリ6の状態を取得するよう構成されている。
このような発電機3の制御によって減速時の運動エネルギーによって効率よくバッテリ6の充電を行うことで、発電機3の回転のために用いる燃料消費は低減される。
ところが、バッテリ6は、充電電圧が過剰に印加されることや、充電電流が過剰に流れことで劣化の進行が早くなるという特質を有している。このため、燃費向上のために発電機3による回生発電量を無制限に許容すると、バッテリ6の劣化の進行を早め、バッテリ6の寿命が短くなるおそれがある。そこで、制御装置7は、発電機3によってバッテリ6が過充電されると予測される場合には、一定の条件下で回生発電量の抑制制御を実行することで、バッテリ6の長寿命化を行う。具体的には、回生発電量の抑制制御は、以下に説明する消費電力量推定部75と、最大発電量推定部72、充電量算出部76と、発電機制御部73と、バッテリ負荷判定部77と、発電量制限部78とによって主に行われる。
消費電力量推定部75は、道路情報Deに基づき、電気負荷5の消費電力量Wcを推定する。このため、消費電力量推定部75は上述の道路情報取得部71に接続されることで、道路情報取得部71から道路情報Deの入力を受けるよう構成される。そして、電気負荷5を構成する電気負荷5の個々の消費電力は予め規定されており、予め規定された電気負荷5の消費電力に関するデータに基づいて、電気負荷5の消費電力は予測される。例えばヘッドライトやウインカーのように運転者の操作によってON/OFFされる電気負荷の場合であっても、スイッチON時の消費電力とOFF時の消費電力も予め規定されている。
また、消費電力量Wcの推定のタイミングは、道路情報取得部71から道路情報Deが入力された場合であっても良い。また、個々の電気負荷5の使用状態が変わり電気負荷5を再度推定する必要があると判断される場合であっても良い。これら両方のタイミングであっても良い。
ただし、バッテリ6の充電量は、最大発電量Wgと等しくないのが一般的なことから、下記に説明する充電量算出部76によってバッテリ6の充電量が算出される。
充電量算出部76は、推定された消費電力量Wcが最大発電量Wgよりも小さい場合に、発電機3で回生発電された電力によりバッテリ6に充電することができる最大充電量Wbを算出する。このため、充電量算出部76は上述の消費電力量推定部75と最大発電量推定部72に接続されることで、道路情報Deに含まれる区間における消費電力量Wcと最大発電量Wgや、その区間における回生タイミング毎の発電電流Igと回生発電時間Trとからなる少なくとも1つのセット(発電電流Igと回生発電時間Trのセット)の入力を受けるよう構成されている。
また、消費電力量Wcが最大発電量Wgより小さい場合(消費電力量Wc<最大発電量Wg)には、電気負荷5によって消費される推定電力量よりも発電機3による発電量が多く、発電量に余剰が生じることになる。この場合には、この余剰分によって、道路情報Deに基づく推定期間(回生発電時間Tr)の経過後にはバッテリ6のSOC(State of charge:充電量)が増えることが想定される。そこで、充電量算出部76は、この推定期間における最大発電量Wgによるバッテリ6の充電量の最大値(最大充電量Wb)を算出する。
例えば、図1に示される実施形態では、充電量算出部76による最大充電量Wbの算出は充電量マップ(図4参照)に基づいて行われている。充電量マップは、バッテリ6のSOCとバッテリ6の温度に対する充電電流Ir依存性を示すマップである。すなわち、発電機3から流れ出る発電電流Igによって充電されるバッテリ6の実際の充電電流Irは、バッテリ6の状態(SOC、温度など)に依存する。例えば、図4に示されるように、充電電流Irは、同一の温度においてはSOCが低いほど大きくなり、また、同一のSOCにおいては温度が高いほど大きくなる。そこで、充電量算出部76は、発電電流Igと充電量マップに基づいて充電電流Irの時間推移を取得し、充電電流Irと回生発電時間Trとを演算(例えば、積分など)することで最大充電量Wbを算出している。
バッテリ負荷判定部77は、最大充電量Wbによりバッテリ6を充電する場合に、バッテリ6に発生する負荷が許容範囲内か否か判定する。つまり、上述の回生発電量の抑制制御の実行の判定を行う。このため、バッテリ負荷判定部77は充電量算出部76に接続されることで、充電量算出部76から道路情報Deに含まれる区間での最大充電量Wbや、その区間に含まれる少なくとも1つの回生タイミング毎の最大充電量Wbの入力を受けるよう構成されている。
詳述すると、最大充電量Wbが消費電力量Wcよりも大きい場合には、回生タイミングにおいてその差分(最大充電量Wb>消費電力量Wc)だけバッテリ6は充電されることが予測される。すなわち、道路情報Deに含まれる区間の終わりにおいてバッテリ6の充電量は上記の差分だけ増加することが予想される。このような場合には、発電量を抑制(減少)することで、バッテリ6に発生する負荷を低減し、バッテリ6の長寿命化を実現することができる。また、この場合には、もともとバッテリ6の充電量は増える場合なので、このような抑制制御をしてもバッテリの充電量が足りない状態(バッテリ上がり)とならない。
具体的には、バッテリ6の過充電による劣化の危険性の判定は、単位当たりの充電量が所定の閾値(充電量閾値Tp)以上となるかで判断しても良い。例えば、単位当たりの充電量は、道路情報Deを単位とした最大充電量Wbであっても良いし、単位時間当たり充電量となる充電電流Irであっても良い。この充電量閾値Tpは、単位時間にバッテリ6に流れる充電量(電流量)が一定値以上だとバッテリ6にダメージを与えるとして規定される値となる。
そして、バッテリ負荷判定部77によって発電量の抑制制御が必要と判断されると、発電量制限部78によって上述の発電機制御部73が制御される。すなわち、発電量制限部78は、バッテリ負荷判定部77により、充電時にバッテリ6に発生する負荷が許容範囲外となる場合、バッテリ6に発生する負荷が許容範囲内となるように発電機3の発電量を制限する。具体的には、発電量の制限(発電量の抑制制御)は、発電機3のロータを励磁するための上述のフィールド電流Ifが小さくなるように制御することで発電量を抑制しても良い。すなわち、発電機制御部73によって算出される最適なフィールド電流Ifが、発電量の抑制制御によって下げられることになる。
上記の構成によれば、回生時の充電によってバッテリ6に発生すると予測される負荷が許容範囲外となる場合には発電機3による発電量が制限(抑制)される。このため発電機3からの充電電流Irによるバッテリ6の劣化の進行を抑制することができ、バッテリ6の長寿命化を実現することができる。
また、上記に説明した幾つかの実施形態では、バッテリ6に発生する負荷が許容範囲外となる場合に発電機3の発電量が制限されている。他の幾つかの実施形態では、発電機3による発電量の抑制制御の実行判定は、さらに他の条件を付加しても良い。例えば、幾つかの実施形態では、図5に示されるように、前記負荷が許容範囲外となる場合であって、前記バッテリの充電量が所定の閾値以上の場合に前記発電量を制限するよう構成される。なお、下記に説明する図5では、上記に説明した幾つかの実施形態における制御に図5のステップS57が追加されている点が異なっており、他のステップは同じとなる。
図5は、幾つかの実施形態における制御装置7によるバッテリ6の回生発電制御フローを示す図である。
図5のステップS51において道路情報Deが取得され、この道路情報Deに基づいて、発電機3による最大発電量Wgおよび電気負荷5による消費電力量Wcが推定される(ステップS52〜ステップS53)。そして、ステップS54において、最大発電量Wg>消費電力量Wcの場合にはバッテリ6が充電される状況にあると判断されてステップS55に進む。逆に、最大発電量Wg≦消費電力量Wcの場合には、バッテリ6が充電される状況ではないと判断されてフローを終える。
ステップS55では、バッテリ6の状態(SOC、温度)と最大発電量Wgに基づいてバッテリ6の最大充電量Wbが算出される。引き続き、ステップS56において、最大充電量Wbが充電量閾値Tp以上であるか判断される。そして、最大充電量Wbが充電量閾値Tp以上と判断される場合には、ステップS57においてバッテリ6の充電レベルが十分であるか判断される。具体的には、バッテリ6の現在のSOCがSOC閾値より大きいと判断される場合には充電レベルは十分と判断され、過充電によるバッテリ6の劣化が進行しないようにステップS59において回生発電量の抑制制御が行われる。
逆に、ステップS56において最大充電量Wbが充電量閾値Tpより小さいと判断される場合には、過充電でないと判断されるので、発電量の抑制制御は行われない。また。ステップS58において、現在のSOCがSOC閾値以下の場合には、バッテリ6の充電レベルが充電量閾値Tp以上であることによりバッテリ6の劣化の進行が懸念されるとしても、バッテリ6の充電レベルの不足によって車両が走行不能状態に陥るなどの問題(バッテリ上がり)を回避するために発電量の抑制制御は行われない。
上記の構成によれば、バッテリ上がりを確実に回避しながら、バッテリ6の長寿命化を実現することができる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
1 回生発電制御装置
2 エンジン
3 発電機
4 電源ライン
5 電気負荷
6 バッテリ
7 回生発電制御装置
71 道路情報取得部
72 最大発電量推定部
73 発電機制御部
74 バッテリ情報取得部
75 消費電力量推定部
76 充電量算出部
77 バッテリ負荷判定部
78 発電量制限部
81 ナビゲーション装置
82 車両状況取得手段
9 車載ネットワーク
De 道路情報
If フィールド電流
Ig 発電電流
Ir 充電電流
N 発電機の回転数
Ne エンジンの回転数
Tp 充電量閾値
Tr 回生発電時間
Wb 最大充電量
Wc 消費電力量
Wg 最大発電量

Claims (1)

  1. 内燃機関の回転数に応じて駆動され、バッテリに蓄積又は電気負荷に電力を供給する発電機と、
    車両前方の道路情報を取得する道路情報取得部と、
    前記道路情報に基づき、前記発電機の回生発電時における最大発電量を推定する最大発電量推定部と、
    前記道路情報に基づき、前記電気負荷の消費電力量を推定する消費電力量推定部と、
    前記推定された消費電力量が前記推定された最大発電量よりも小さい場合に、前記発電機で回生発電された電力により前記バッテリに充電することができる最大充電量を算出する充電量算出部と、
    前記発電機の回生発電時、前記発電機から前記バッテリへ供給される充電量が前記最大充電量となるように、前記発電機の回生発電量を制御する発電機制御部と、
    前記最大充電量により前記バッテリを充電した場合に、前記バッテリに発生する負荷が許容範囲内か否か判定するバッテリ負荷判定部と、
    前記バッテリ負荷判定部により、充電時に前記バッテリに発生する前記負荷が許容範囲外となる場合、前記バッテリに発生する前記負荷が許容範囲内となるように前記発電機の発電量を制限する発電量制限部と、を備えることを特徴とする回生発電制御装置。
JP2014258834A 2014-12-22 2014-12-22 回生発電制御装置 Pending JP2016117418A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258834A JP2016117418A (ja) 2014-12-22 2014-12-22 回生発電制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258834A JP2016117418A (ja) 2014-12-22 2014-12-22 回生発電制御装置

Publications (1)

Publication Number Publication Date
JP2016117418A true JP2016117418A (ja) 2016-06-30

Family

ID=56242798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258834A Pending JP2016117418A (ja) 2014-12-22 2014-12-22 回生発電制御装置

Country Status (1)

Country Link
JP (1) JP2016117418A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990968B2 (ja) 2016-08-04 2022-01-12 日産自動車株式会社 無段変速機及び無段変速機の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6990968B2 (ja) 2016-08-04 2022-01-12 日産自動車株式会社 無段変速機及び無段変速機の制御方法

Similar Documents

Publication Publication Date Title
US10718630B2 (en) Electric vehicle cloud-based optimal charge route estimation
JP4450087B2 (ja) ハイブリッド車両およびその制御方法
KR101836250B1 (ko) 구동 모터를 구비한 차량의 dc 컨버터의 출력 전압을 제어하는 방법 및 장치
JP7035681B2 (ja) 制御装置
JP2009137340A (ja) 電力マネージメントシステム及び電力マネージメント方法
JP2002171603A (ja) ハイブリッド自動車の制御装置
KR20150026914A (ko) 에너지 저장 장치의 전기 재생 방법
CN107532528B (zh) 交流发电机的控制单元、交流发电机的驱动控制方法、以及发动机车辆的电源管理系统
JP2016119792A (ja) 発電制御装置
US20210402976A1 (en) Method of Controlling Generator for Vehicle
WO2017047171A1 (ja) 走行計画生成装置、車両、走行計画生成システム及びコンピュータプログラム
JP2017114312A (ja) ハイブリッド車両及びその制御方法
WO2013121541A1 (ja) ハイブリッド車両の制御装置
JP6435789B2 (ja) ハイブリッド駆動車両の出力制御装置
KR102406065B1 (ko) 마일드 하이브리드 차량의 에너지 회생 제어 방법
US10604144B2 (en) Method and apparatus for controlling power of mild hybrid electric vehicle
JP6813430B2 (ja) 車両制御装置
JP2015136987A (ja) 電気自動車制御システム
GB2561409A (en) Methods and systems for managing range of a vehicle
JP2015073420A (ja) 車載バッテリの充電制御装置
JP2019047687A (ja) 電動車両及びその制御方法
CN111587196B (zh) 充放电控制装置
JP2016117418A (ja) 回生発電制御装置
KR20190081379A (ko) 하이브리드 차량의 배터리 soc 관리 방법
JP2015058818A (ja) 車両のバッテリ制御装置