JP2016113347A - Si3nN4-BASED CERAMIC LESS IN HEAT RELEASING PROPERTY, AND TIP EXCHANGE TYPE CUTTING TIP, END MILL AND ANTIFRICTION TOOL USING THE SAME - Google Patents

Si3nN4-BASED CERAMIC LESS IN HEAT RELEASING PROPERTY, AND TIP EXCHANGE TYPE CUTTING TIP, END MILL AND ANTIFRICTION TOOL USING THE SAME Download PDF

Info

Publication number
JP2016113347A
JP2016113347A JP2014255407A JP2014255407A JP2016113347A JP 2016113347 A JP2016113347 A JP 2016113347A JP 2014255407 A JP2014255407 A JP 2014255407A JP 2014255407 A JP2014255407 A JP 2014255407A JP 2016113347 A JP2016113347 A JP 2016113347A
Authority
JP
Japan
Prior art keywords
mass
less
sintering
aln
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255407A
Other languages
Japanese (ja)
Other versions
JP5909804B1 (en
Inventor
裕一 福田
Yuichi Fukuda
裕一 福田
右貴 大野
Yuki Ono
右貴 大野
鈴木 大
Masaru Suzuki
大 鈴木
北村 幸三
Kozo Kitamura
幸三 北村
一彦 土屋
Kazuhiko Tsuchiya
一彦 土屋
斉藤 実
Minoru Saito
実 斉藤
理彦 千葉
Masahiko Chiba
理彦 千葉
宏爾 林
Koji Hayashi
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Moldino Tool Engineering Ltd
Original Assignee
Fuji Die Co Ltd
Mitsubishi Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd, Mitsubishi Hitachi Tool Engineering Ltd filed Critical Fuji Die Co Ltd
Priority to JP2014255407A priority Critical patent/JP5909804B1/en
Application granted granted Critical
Publication of JP5909804B1 publication Critical patent/JP5909804B1/en
Publication of JP2016113347A publication Critical patent/JP2016113347A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide SiNceramic less in heat releasing property and excellent in abrasion resistance at high temperature, a tip exchange type cutting tip and an end mill containing the same and a roll for plastic processing.SOLUTION: In a SiNceramic, WOof 1 mass% to 7.9 mass% is blended with a raw material powder, set in a carbon case and filled in a vacuum sintering furnace using a carbon heater and sintered under nitrogen atmosphere. WOis reduced and carbonated to W, WC and WC by sintering, and a cutting tool for Inconel processing excellent in durability can be made by setting WC at 50 mass% in the same, WC amount in the sintered body at 0.44 mass% to 3.85 mass%.SELECTED DRAWING: Figure 5

Description

本発明は、インコネル(登録商標、以下同じ)で作製された、航空機部品等を切削加工で作製する場合の、刃先交換式切削チップ、エンドミル、および一般切削工具、一般耐摩耗工具、およびその素材のSi系セラミックスに関する。 The present invention relates to a cutting edge replaceable cutting tip, an end mill, a general cutting tool, a general wear-resistant tool, and a material thereof, which are manufactured by Inconel (registered trademark, the same shall apply hereinafter) by cutting an aircraft part or the like. This relates to the Si 3 N 4 ceramics.

航空機のエンジン部分等にはインコネル製の部品が多用されている。しかし、インコネルは難切削材料であり、部品の成形に用いる切削加工用の工具には、通常高価なcBN焼結体で作製された刃先交換式切削チップ、エンドミルが用いられている。よって、より安価で高性能な工具材料が望まれている。   Inconel parts are often used for aircraft engine parts. However, Inconel is a difficult-to-cut material, and a cutting tool used for forming a part usually uses an exchangeable cutting tip or end mill made of an expensive cBN sintered body. Therefore, a cheaper and higher performance tool material is desired.

特開昭61−091065号公報JP 61-091065 A 特開平05−105518号公報JP 05-105518 A

B.D.Cullity(松村源太郎訳):X線回折要論、株式会社アグネ、1961年B. D. Cullity (translated by Gentaro Matsumura): X-ray diffraction theory, Agne Inc., 1961 International Centre for Diffraction Data:Powder Diffraction File (TM),Alphabetical Indexes for Experimental Patterns,Inorganic Phases,Sets 1−60,2010International Center for Diffraction Data: Powder Diffraction File (TM), Alphabetic Index for Experimental Patterns, Organic Phases, Sets 1-60, 2010 大同スペシャルメタル株式会社カタログ:INCONEL(登録商標) alloy 718Daido Special Metal Co., Ltd. Catalog: INCONEL (registered trademark) alloy 718

この技術分野では、cBN焼結体に代わるものとして、Siセラミックスがある。最近のSiセラミックス製刃先交換式切削チップやエンドミルによるインコネルの切削加工は、切削速度を500m/min〜1100m/minという高速で加工することにより、切削温度を高くし、インコネルの引張り強さなどを低下させた状態で切削することにより、高能率の加工が狙われている。しかし、これに使用できる満足な寿命のSiセラミックスは今だ得られておらず、改良が望まれている。そこで本発明者らは、インコネルの切削加工に適したSiセラミックスの開発を行うこととした。 In this technical field, there is Si 3 N 4 ceramics as an alternative to the cBN sintered body. Inconel cutting with recent Si 3 N 4 ceramic cutting edge-changing cutting tips and end mills increases the cutting temperature by increasing the cutting speed from 500 m / min to 1100 m / min, and increases the tensile strength of Inconel. High-efficiency machining is aimed at by cutting in a state where the thickness is reduced. However, satisfactory life Si 3 N 4 ceramics that can be used for this purpose have not yet been obtained, and improvements are desired. Therefore, the present inventors decided to develop Si 3 N 4 ceramics suitable for Inconel cutting.

なお、SiセラミックスはAl、Y、AlN、および/又はMgO等が添加されているものがほとんどである。さらに、通称Siと呼ばれているものにはαまたはβ−サイアロン(SiAlON。但し各元素の割合は1:1:1:1ではない)となっているものも含まれ、その逆もあることから、以下、断りのない限り、αまたはβ−Siと記載してもαまたはβ−サイアロンも含まれるものとする。 Most Si 3 N 4 ceramics are added with Al 2 O 3 , Y 2 O 3 , AlN, and / or MgO. Furthermore, what is commonly called Si 3 N 4 includes those that are α or β-sialon (SiAlON, where the ratio of each element is not 1: 1: 1: 1), and vice versa. Therefore, unless otherwise specified, α or β-Si 3 N 4 is also included in the description below.

Siセラミックスについては、古くから近年まで種々の焼結技術が開示されている。本発明者らが調べた結果、特許文献1によると、好ましい焼結温度は1700℃〜1850℃で、好ましい焼結時間は1h〜2hとされているが、実際には、ほとんどが1800℃以上で焼結されていることが分かった。また特許文献2によると、低温焼結が開示されているものの、1550℃で6h焼結してさらに1650℃で3h焼結するなどの長時間の焼結が実施されている。 For Si 3 N 4 ceramics, various sintering techniques have been disclosed from old times to recent years. As a result of investigations by the present inventors, according to Patent Document 1, a preferable sintering temperature is 1700 ° C. to 1850 ° C., and a preferable sintering time is 1 h to 2 h. It was found that it was sintered. According to Patent Document 2, although low-temperature sintering is disclosed, long-time sintering such as sintering at 1550 ° C. for 6 hours and further sintering at 1650 ° C. for 3 hours is performed.

よく知られているように、Siは、共有結合型の結晶であり、Si原子とN原子の結合力が強いことから、各原子が容易に拡散できないことに基づいてSi、N両原子の拡散速度が遅いため、容易に焼結しない。そのため、焼結助剤として、1mass%〜5mass%のAl、Y、MgO、AlNなどを添加して相互に化学反応させてSiの融点1900℃よりも低融点の物質を作り、焼結温度で液相を生成させ、いわゆる「液相存在下の焼結法」により焼結緻密化を促進することが広く行われている。 As is well known, Si 3 N 4 is a covalently-bonded crystal, and since the bonding force between Si atoms and N atoms is strong, both Si and N are based on the fact that each atom cannot easily diffuse. Since the diffusion rate of atoms is slow, it does not sinter easily. Therefore, 1 mass% to 5 mass% of Al 2 O 3 , Y 2 O 3 , MgO, AlN or the like is added as a sintering aid to cause a chemical reaction with each other to lower the melting point of Si 3 N 4 lower than 1900 ° C. It is widely practiced to make the above material, generate a liquid phase at a sintering temperature, and promote sintering densification by a so-called “sintering method in the presence of a liquid phase”.

そこで、始めに本発明者らは代表的なSiセラミックスであるSi−2mass%Al−5mass%Y−3mass%MgO−1mass%AlNセラミックスを、原料粉末として、宇部興産株式会社製の平均粒度(Microtrack社製MT3300EXIIによるレーザー回折・散乱法による粒度分布測定値のD50値、以下同じ)0.6μmのSi(Siが98%で残りがSiO、Siの95%以上がα−Siで残りがβ−Si。形状は粒状。これは原料なのでサイアロンは含まない)、電気化学工業株式会社製の平均粒度1μmのAl、信越化学工業株式会社製の平均粒度5μmのY、純正化学株式会社製の平均粒度1μmのMgO、電気化学工業株式会社製の平均粒度1.0μmのAlNを用いて、所定の組成に配合して24hの湿式粉砕後、乾燥した粉末を、圧力98MPaで冷間圧縮成形し、真空焼結炉(6.5Pa以下に排気した後、1MPa未満まで窒素雰囲気とできるタイプ、以下同様)を用いて、真空排気(6.5Pa以下)した後、0.5MPaの窒素雰囲気として、焼結温度を1650℃、1700℃または1750℃とし、各3h保持する焼結を行うことにより焼結体を得て、その焼結体の組織を調べ、図1を得た。 Therefore, the Si 3 N 4 -2mass% Al 2 O 3 -5mass% Y 2 O 3 -3mass% MgO-1mass% AlN ceramic is present inventors have typical Si 3 N 4 ceramics First, raw material powder As an average particle size manufactured by Ube Industries, Ltd. (D50 value of particle size distribution measured by laser diffraction / scattering method using MT3300EXII manufactured by Microtrack, the same applies hereinafter) 0.6 μm Si 3 N 4 (Si 3 N 4 is 98%) remainder SiO 2, Si 3 95% or more of N 4 is alpha-Si 3 N 4 in rest beta-Si 3 N 4. shapes particulate. This sialon does not include so raw materials), Denki Kagaku Kogyo Co., Ltd. the average particle size of 1μm of Al 2 O 3, and an average particle size of 5μm manufactured by Shin-Etsu chemical Co., Ltd. Y 2 O 3, an average particle size of 1μm manufactured by Junsei chemical Co., Ltd. MgO, AlN having an average particle size of 1.0 μm manufactured by Denki Kagaku Kogyo Co., Ltd., blended into a predetermined composition, wet-ground for 24 h, dried powder was cold compression molded at a pressure of 98 MPa, and vacuum sintered After evacuating (less than 6.5 Pa) using a furnace (a type that can be made into a nitrogen atmosphere to less than 1 MPa after evacuating to 6.5 Pa or less, the same applies below), the sintering temperature is set as a nitrogen atmosphere of 0.5 MPa. A sintered body was obtained by sintering at 1650 ° C., 1700 ° C. or 1750 ° C. for 3 hours, and the structure of the sintered body was examined to obtain FIG.

図1は、鏡面をSEMで観察した結果である。比較的低温で焼結したのは、その方が焼結後の組織を微粒としやすく(微粒とすることでより高強度にすることができる)、かつ焼結コストも低いからである。   FIG. 1 shows the result of observing the mirror surface with an SEM. The reason why sintering was performed at a relatively low temperature is that the structure after sintering is more likely to be fine particles (higher strength can be obtained by making fine particles) and the sintering cost is low.

X線回折をした結果、α−Siは検出されず全てβ−Siであった。従って、図1で柱状に見えるのは、微細粒と同様にβ−Siである。すなわち、焼結により原料粉末のα−Siの全てがβ−Siに相変態したことになる。これは、言うまでも無くα→β変態温度が約1400〜1550℃であることから、用いた三種の焼結温度のいずれでもβ相が安定相であることによる。 As a result of X-ray diffraction, α-Si 3 N 4 was not detected and was all β-Si 3 N 4 . Therefore, what appears to be columnar in FIG. 1 is β-Si 3 N 4 like the fine grains. That is, all of α-Si 3 N 4 raw material powder is that it has a phase transformation to β-Si 3 N 4 by sintering. Needless to say, since the α → β transformation temperature is about 1400 to 1550 ° C., the β phase is a stable phase at any of the three types of sintering temperatures used.

焼結温度が高くなるほどβ−Si粒子の寸法が大となった。これは、小粒子ほど液相中への溶解度が大きいことに基づいて、小粒子の液相中への溶解→同溶質の液相中拡散→溶質の大粒子上への析出の過程により、β−Si粒子が粒成長(いわゆる、オストワルド成長)するが、液相中における原子の拡散が高温ほど活発となるため粒成長速度が大となることによる。なお、この析出の段階でα−Siはβ−Siとなる。 The higher the sintering temperature, the larger the size of β-Si 3 N 4 particles. This is because, based on the fact that the smaller particles have higher solubility in the liquid phase, the dissolution of small particles into the liquid phase → diffusion of the same solute into the liquid phase → precipitation of the solute onto the large particles results in β -Si 3 N 4 grains grow (so-called Ostwald growth), because the diffusion of atoms in the liquid phase becomes more active as the temperature increases, so that the grain growth rate increases. In this precipitation stage, α-Si 3 N 4 becomes β-Si 3 N 4 .

図1の矢印部分はポアで、いずれの温度でもポアが発生し、しかも焼結温度が高くなるほどポアの数と寸法が大となった。これは、前記のように添加したMgOが他成分と反応して局所的に低融点物質を生じ、後記のように炉内が浸炭性であるために、その一部が還元されて、COガスなどが発生しセラミックス内部に残留するためと思われる。これは第一の知見である。   The arrows in FIG. 1 are pores, and pores were generated at any temperature, and the number and size of pores increased as the sintering temperature increased. This is because MgO added as described above reacts with other components to locally produce a low-melting-point material, and the inside of the furnace is carburizing as described later, so that part of it is reduced and CO gas is reduced. This is thought to be due to the occurrence of residual impurities in the ceramics. This is the first finding.

前記したように最初の組成では焼結助剤が多すぎると思われたので、主なガラス成分と思われるMgOを少なくすると共に焼結温度は低温にすることとした。MgOについては、当初の3mass%から2mass%〜0mass%へ減少させると共に、焼結温度は三種の中では最低の1650℃とした。   As described above, in the first composition, it was thought that there was too much sintering aid, so MgO, which is considered to be the main glass component, was reduced and the sintering temperature was lowered. Regarding MgO, the initial mass was reduced from 3 mass% to 2 mass% to 0 mass%, and the sintering temperature was set to 1650 ° C., the lowest among the three types.

しかし、0mass%MgOでは、1650℃−3hで緻密化不十分となった。そして、1mass%MgOでも1650℃−3h焼結では、かなり緻密化したが若干ポアが発生した。それぞれの焼結体の組織を図2に示す。MgOは1mass%必要であるが、焼結性の改善が必要であることが分かった。   However, with 0 mass% MgO, densification was insufficient at 1650 ° C. for 3 h. Even at 1% by mass MgO, 1650 ° C. for 3 h sintering resulted in considerable densification but slight pores. The structure of each sintered body is shown in FIG. Although 1 mass% of MgO is necessary, it has been found that improvement in sinterability is necessary.

そこで、熟慮した結果、AlNの添加量の増加を考えた。AlNは、原料としたα−Siおよび同粉末粒子の表面酸化物であるSiOと結合してα−サイアロンを形成することで、β−Siの生成・成長を抑えつつα−サイアロン化が焼結駆動力として作用し、結果として低温で焼結緻密化することから、より微細な組織が得られることがよく知られているからである。ここで、Alはα−サイアロンの形成には逆に作用するので、添加しないこととした。 Therefore, as a result of careful consideration, an increase in the amount of AlN added was considered. AlN combines with α-Si 3 N 4 as a raw material and SiO 2 which is the surface oxide of the powder particles to form α-sialon, thereby suppressing generation and growth of β-Si 3 N 4. It is well known that α-sialonization acts as a driving force for sintering and, as a result, sintering densification at a low temperature results in a finer structure. Here, since Al 2 O 3 acts on the formation of α-sialon in the reverse direction, it was not added.

以上から、Si−5mass%Y−1mass%MgO−0mass%〜6mass%AlNセラミックスを1650℃−3h焼結で作製した。こうして得られたセラミックスについてX線回折を行った。得られたX線回折図から、α−SiのICDD(International Centre for Diffraction Data)データをα−サイアロンのデータと等価とみなしてα−サイアロン({210}面のピーク、2θ=35.3°)およびβ−Si({200}面のピーク、27.0°)の基準のピーク(以後基準のピークをSPと記す)面積をICDDデータのI/Ic(試料にα−Al(Corundum)を50mass%混入した時のα−Alの{113}の強度Icと試料の最強線の強度Iとの比)で補正したものを設定して、それぞれの強度(面積)から、α−サイアロンのSP/(α−サイアロンのSP+β−SiのSP)×100をα率とすると、図3が得られた。 From the above, Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-0 mass% to 6 mass% AlN ceramics were produced by sintering at 1650 ° C. for 3 h. The ceramics thus obtained were subjected to X-ray diffraction. From the obtained X-ray diffraction pattern, α-Si 3 N 4 ICDD (International Center for Diffraction Data) data is regarded as equivalent to α-sialon data, and α-sialon ({210} plane peak, 2θ = 35 .3 °) and β-Si 3 N 4 ({200} plane peak, 27.0 °) reference peak (reference peak hereinafter referred to as SP) area is defined as I / Ic of the ICDD data (α -Al 2 O 3 (Corundum) 50 mass% mixed α α-Al 2 O 3 {113} intensity Ic and the ratio of the intensity I of the strongest line of the sample) was corrected, respectively, From the intensity (area), α-sialon SP / (SP of α-sialon + SP of β-Si 3 N 4 ) × 100 was taken as α rate, and FIG. 3 was obtained.

観察組織写真は略すが、AlN添加量が増加するに従って粒状のα−サイアロンが増加し、β−Siの生成・成長が抑えられ、ポアは認められなくなった。そして、6mass%まで添加したところ、α−サイアロンが粗粒化したので、AlN添加量としては4mass%がよいと思われた。 Although the observation structure photograph is omitted, as the amount of AlN added increases, the granular α-sialon increases, the formation and growth of β-Si 3 N 4 is suppressed, and pores are not recognized. And when it added to 6 mass%, since alpha-sialon coarsened, 4 mass% seemed to be good as an AlN addition amount.

以上により1650℃で3h焼結したSi−5mass%Y−1mass%MgO−4mass%AlNセラミックスが、試験片レベルで、組織的に優れたセラミックスであることを発見した。これは第二の知見である。 From the above, it was discovered that Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-4 mass% AlN ceramics sintered at 1650 ° C. for 3 h is a structurally excellent ceramic at the test piece level. This is the second finding.

このSi−5mass%Y−1mass%MgO−4mass%AlNセラミックスを量産実験したところ、灰白色の外観色を示したが、セラミックスの一部の色が薄くなったり濃くなったりした部分を生じた。この原因は原料段階から灰白色の外観を持つため、熱すなわち電磁波(主として赤外線)の吸収が不十分で、均一加熱されにくい上、Siセラミックスとしては比較的低温短時間である1650℃で3hの焼結であることから、Siと焼結助剤との化学反応によって生じる液相の組成と量にバラツキを生じるためと考えられた。 When this Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-4 mass% AlN ceramic was mass-produced, it showed an off-white appearance color, but a part of the ceramic color became lighter or darker. Produced part. This is because the material has a grayish white appearance from the raw material stage, so heat, that is, electromagnetic waves (mainly infrared rays) are not sufficiently absorbed, it is difficult to uniformly heat, and Si 3 N 4 ceramics has a relatively low temperature and short time at 1650 ° C. Since the sintering was performed for 3 hours, it was considered that the composition and amount of the liquid phase generated by the chemical reaction between Si 3 N 4 and the sintering aid varied.

そこで、低温短時間での本セラミックスの量産は困難に思えた。しかし、本発明者らは灰白色を全体的に黒くすることを考えた。黒色は、電磁波を吸収しやすく、均一に加熱されやすいからである。   Therefore, mass production of this ceramic in a short time at a low temperature seemed difficult. However, the present inventors considered to make the grayish white overall black. This is because black easily absorbs electromagnetic waves and is easily heated uniformly.

黒色化の手法として初めにWCなどの市販の炭化物粉末を試みたが、炭化物の凝集粒子は比較的粉砕されにくく、焼結性が悪いので、炭化物粉末の添加は中止した。次に、黄色ではあるが比較的粉砕されやすいWOを添加することで、ある程度着色出来る(例えば黄灰色)と共に均一微細分散できると考えて、Si−5mass%Y−1mass%MgO−4mass%AlNに日本新金属株式会社製の平均粒度0.6μmのWO(SEMで観察した結果、ほぼ0.2μm〜1.0μmの粒子であった)を5mass%まで添加した。 At first, a commercially available carbide powder such as WC was tried as a blackening method, but the addition of the carbide powder was stopped because the aggregated particles of the carbide were relatively difficult to grind and the sinterability was poor. Next, by adding WO 3 which is yellow but relatively easily pulverized, it can be colored to some extent (for example, yellow gray) and can be uniformly finely dispersed, so that Si 3 N 4 -5 mass% Y 2 O 3 -1 mass To 3% MgO-4 mass% AlN, WO 3 having an average particle size of 0.6 μm manufactured by Nippon Shin Metals Co., Ltd. (as observed by SEM, the particles were approximately 0.2 μm to 1.0 μm) was added up to 5 mass%.

すると、予想に反して0.2mass%WOの添加から外観は灰色から、黄灰色ではなく濃灰色となりはじめ、1mass%WO添加から外観および内部まで均一に黒くなった。この原因を調べる為、鏡面のSEM組織すなわち可視光の反射率に依存して生じる光学像ではなく入射電子線によって叩き出される二次電子(Secondary Electron)の量に依存して生じる像すなわち二次電子像を観察した結果、図4が得られた。 Then, contrary to expectation, the appearance from addition of 0.2 mass% WO 3 started from gray to dark gray instead of yellow-gray, and became uniform black from the addition of 1 mass% WO 3 to the appearance and the inside. In order to investigate this cause, not an optical image generated depending on the SEM texture of the mirror surface, that is, the reflectance of visible light, but an image generated depending on the amount of secondary electrons knocked out by the incident electron beam (secondary electron). As a result of observing the electronic image, FIG. 4 was obtained.

1mass%WO添加から白く見える粒子が認められ、WO添加が増加するほど増加したこと、ならびに二次電子像の明暗を決める平均原子番号(これが、大きくなるほど二次電子像は、より白色となる)は、WOは他の構成相よりも平均原子番号が大きいことを考慮すると、当初これがWOと思われた。なお、同粒子の寸法は、最大でも約1μmで、ほとんどは0.2μm以下と小さい。これは、予想通りWOが粉砕されたためと考えられる。 Particles that appear white from 1 mass% WO 3 addition were observed, and increased as WO 3 addition increased, as well as the average atomic number that determines the brightness of the secondary electron image (the higher this is, the more In view of the fact that WO 3 has a higher average atomic number than other constituent phases, this was initially thought to be WO 3 . The size of the particles is at most about 1 μm, and most are as small as 0.2 μm or less. This is probably because WO 3 was crushed as expected.

念のため、X線回折で分かり易くなるよう5mass%までWO添加したセラミックスを作製し、X線回折した結果、図5が得られた。なお、10mass%までWO添加しても、SEM組織下ではポアがほとんど認められなかった。図5の上段に、ICDDデータを用いて同定した結果を、α−サイアロンのピークをα、β−Siのピークをβとして矢印で示した。 As a precaution, ceramics added with WO 3 up to 5 mass% so as to be easily understood by X-ray diffraction were produced, and as a result of X-ray diffraction, FIG. 5 was obtained. Even when WO 3 was added up to 10 mass%, almost no pore was observed under the SEM structure. In the upper part of FIG. 5, the results of identification using ICDD data are indicated by arrows with α-sialon peak as α and β-Si 3 N 4 peak as β.

図中には図の角度範囲内で最も高いα−サイアロンのピークにαmax、同β−Siのピークにβmaxと表示した。ここで、詳しく調べたが、WOのピークは認められなかった。破線で示したピークは、WCないし、WC+α−サイアロンまたはWC+β−Siのピークであった。すなわち、添加したWOはWCに変化していた。 In the figure, the highest α-sialon peak in the angle range of the figure is indicated by αmax, and the same β-Si 3 N 4 peak is indicated by βmax. Here, it was investigated in detail, but the peak of WO 3 was observed. The peak indicated by a broken line was a peak of W 2 C, W 2 C + α-sialon or W 2 C + β-Si 3 N 4 . That is, the added WO 3 was changed to W 2 C.

このことは次のようなWO添加量とピークの変化から裏付けられる。破線で示した左から1番目のピークは、WO添加量が増加しても、他のα−サイアロンのピークと比べてピーク高さの低下が少ないが、これはWCのピークが増加しているためである。破線で示した右から1番目と2番目のピークも同様である。さらに、破線で示した左から2番目のピークは、WCの単独ピークで、WO添加量が増加するに従って高くなっている。 This is supported by the following WO 3 addition amount and peak change. The first peak from the left shown by the broken line shows a decrease in peak height less than other α-sialon peaks even when the amount of WO 3 added is increased, but this is an increase in the W 2 C peak. It is because it is doing. The same applies to the first and second peaks from the right indicated by broken lines. Furthermore, the second peak from the left indicated by a broken line is a single peak of W 2 C, and becomes higher as the amount of addition of WO 3 increases.

そして、X線回折結果は略すが、10mass%WO添加により、焼結後では、WCだけでなくWを多く含んでいることが分かった。WO添加量とWおよびその炭化物全体に対するW、WC、WCのそれぞれの重量比率の関係は、図6のようになった。 Then, the X-ray diffraction results are abbreviated by 10 mass% WO 3 is added, after the sintering, was found to contain a large amount of W as well as W 2 C. FIG. 6 shows the relationship between the added amount of WO 3 and the weight ratios of W, W 2 C, and WC with respect to W and the entire carbide thereof.

これより、本発明者らの炭化範囲では、WC(後記X2も含む)のみでなく、WC+WCないしW+WCとなる場合のあることが分かる。これは、WOが焼結中に還元・炭化されるので、炭化の強さによってWOは、WO→W→WC→WCという順で還元・炭化されたことを示し、Siの焼結中におけるこの現象は本発明者らが初めて発見した。以下、詳しく説明する。 From this, it is understood that in the carbonization range of the present inventors, not only W 2 C (including X2 described later) but also W 2 C + WC or W + W 2 C may be obtained. This is because WO 3 is reduced and carbonized during sintering, WO 3 by the strength of the carbonization, WO 3 → W → W 2 C → indicates that it has been reduced and carbonized in the order of WC, Si 3 This phenomenon was first discovered by the present inventors during the sintering of N 4 . This will be described in detail below.

WC、WC、W中の各相の比率の定量方法は、以下の方法によった。WCについては、独立したピークがないので、まず、WC{101}(2θ=48.3°)とβ−Si{220}(47.8°)および{211}(48.0°)のピークの重なりの面積を求め、次いでβ−Si{200}(27.0°)の面積を求めた。ICDDデータによると、β−Si{220}および{211}の面積の和は、β−Si{200}の面積の11.8/100倍であることから、β−Si{220}および{211}の面積の和を計算し、WC{101}とβ−Si{220}および{211}のピークの重なりの面積と、β−Si{220}および{211}の面積の和との差から、WC{101}の面積を求めた。ICDDデータによると、WC{101}の面積はWC{100}の面積の83/100倍であることから、WC{100}の面積を計算して求めた。 The quantification method of the ratio of each phase in WC, W 2 C, and W was based on the following method. Since there is no independent peak for WC, first, WC {101} (2θ = 48.3 °), β-Si 3 N 4 {220} (47.8 °) and {211} (48.0 °) ) And the area of β-Si 3 N 4 {200} (27.0 °). According to the ICDD data, the sum of the areas of β-Si 3 N 4 {220} and {211} is 11.8 / 100 times the area of β-Si 3 N 4 {200}. the sum of the areas of 3 N 4 {220} and {211} was calculated, and the area of overlap of the peak of WC {101} and β-Si 3 N 4 {220 } and {211}, β-Si 3 N 4 The area of WC {101} was determined from the difference from the sum of the areas of {220} and {211}. According to the ICDD data, since the area of WC {101} is 83/100 times the area of WC {100}, the area of WC {100} was calculated.

Cについては、WC{002}(38.0°)が唯一の独立したピークであるので、この面積を求めた。ICDDデータによると、WC{002}の面積はWC{101}の面積の22/100倍であることから、WC{101}の面積を計算して求めた。 For W 2 C, this area was determined because W 2 C {002} (38.0 °) is the only independent peak. According to the ICDD data, since the area of W 2 C {002} is 22/100 times the area of W 2 C {101}, the area of W 2 C {101} was calculated.

Wについては、W{110}(40.3°)が唯一の大きなピークであり、またこれはα−サイアロン{300}と重なっていることから、このピークの面積を求め、次いでα−サイアロン{101}(20.6°)の面積を求めた。ICDDデータによると、α−サイアロン{300}の面積は、α−サイアロン{101}の面積の2.4/88.7倍であることから、α−サイアロン{300}の面積を計算し、W{110}とα−サイアロン{300}のピーク重なりの面積と、α−サイアロン{300}の面積との差から、W{110}の面積を計算して求めた。   For W, since W {110} (40.3 °) is the only large peak and this overlaps with α-sialon {300}, the area of this peak is determined, and then α-sialon { 101} (20.6 °) was determined. According to the ICDD data, the area of α-sialon {300} is 2.4 / 88.7 times the area of α-sialon {101}, so the area of α-sialon {300} is calculated and W The area of W {110} was calculated from the difference between the peak overlap area of {110} and α-sialon {300} and the area of α-sialon {300}.

このようにして求められた、WC{100}、WC{101}、W{110}の各ピークの面積の値から、数1により各相の体積分率を計算し、これと比重から重量分率を計算した。数1は、非特許文献1のp.396より引用したものである。 From the area values of the peaks of WC {100}, W 2 C {101}, and W {110} obtained in this way, the volume fraction of each phase is calculated according to Equation 1, and from this and the specific gravity. The weight fraction was calculated. Equation 1 is the p. It is quoted from 396.

なお、1、3、5mass%WO添加の各セラミックス全体の炭素分析(高周波燃焼−赤外線吸収法)を行い、焼結体全体がWCおよびWCに相当する炭素量を含むことを確認した。 In addition, the carbon analysis (high frequency combustion-infrared absorption method) of each ceramics added with 1, 3 , 5 mass% WO 3 was performed, and it was confirmed that the entire sintered body contained a carbon amount corresponding to W 2 C and WC. .

ところで、窒素雰囲気下でWOを還元し炭化することは熱力学的に不可能である。それにも係わらずWCおよびWCを生じたのは、真空焼結炉を用いる場合、カーボンケース、カーボン断熱材、カーボンヒータ等炭素製の備品(以下カーボンケース等と記す)を用いていることと、Nガス中の微量の水分があるためと思われた。すなわち、WOは、何らかの理由で還元雰囲気にさらされて、還元されWとなり、その後カーボンケース等の炭素が前記水分と反応してCOガス等になり、これらがWを炭化するものと思われた。 By the way, it is thermodynamically impossible to reduce and carbonize WO 3 in a nitrogen atmosphere. Nevertheless, W 2 C and WC were produced when using a vacuum sintering furnace, using carbon equipment such as a carbon case, carbon insulation, carbon heater (hereinafter referred to as carbon case). It was thought that there was a trace amount of water in the N 2 gas. That is, WO 3 is exposed to a reducing atmosphere for some reason and is reduced to W, and then carbon such as a carbon case reacts with the moisture to become CO gas and the like, and these carbonize W. It was.

なお、WCおよびWCがSEM組織において白く見えたのは、前記したWOと同様に、他の成分よりも平均原子番号が大きいであるため二次電子の放出量が多いためで、WCおよびWCが光学(肉眼)的に白いわけではない。WCおよびWCは、光学的に灰黒色の外観を有しているため、SiセラミックスはWCおよびWCを所定量含有することで黒色化する。 The reason why W 2 C and WC looked white in the SEM structure is that, like WO 3 described above, the average atomic number is larger than that of the other components, so that the amount of secondary electrons emitted is large. 2 C and WC are not optically (white) optically white. Since W 2 C and WC have an optically gray-black appearance, Si 3 N 4 ceramics are blackened by containing a predetermined amount of W 2 C and WC.

以上のようにして、予めWOを添加し、カーボンケース等を用いて0.5MPaの窒素雰囲気下で焼結し、含有させたWOを還元・炭化することで、Si系セラミックス中に、微細(最大でも約1μmで、ほとんどは0.2μm以下)のWC(およびWC、W)を分散させることに成功した。これは、本発明者らが始めてである。これは第三の知見である。 As described above, WO 3 is added in advance, sintered in a nitrogen atmosphere of 0.5 MPa using a carbon case or the like, and the contained WO 3 is reduced and carbonized, whereby Si 3 N 4 -based ceramics We succeeded in dispersing fine W 2 C (and WC, W) in the inside (maximum of about 1 μm and most of 0.2 μm or less). This is the first time for the inventors. This is the third finding.

なお、WO添加により、AlNのα−サイアロン生成によるβ−Siの粒成長抑制効果および焼結性改善効果がやや失われるが、焼結性は10mass%WO添加で僅かに低下(若干のポアを生じた)しただけであった。この原因は次の二つにある。 In addition, the addition of WO 3 slightly loses the effect of suppressing the grain growth of β-Si 3 N 4 and the improvement of the sinterability due to the formation of α-sialon of AlN, but the sinterability is slightly reduced by the addition of 10 mass% WO 3 (It produced some pores). There are two reasons for this.

(1)WOは、還元雰囲気では、まず500℃〜800℃でWに還元される。このときは吸熱反応であり、緻密化とは強く関係しない。次にWは、浸炭雰囲気では、800℃からCと反応してWCとなり十分なCと時間があれば1400℃でWCとなる(本発明条件下ではCが少ないので主としてWCを生じている)が、これらは発熱反応である。このことから、Wの炭化による新たな焼結駆動力が発生し、より強固な焼結がなされたと考える。 (1) WO 3 is first reduced to W at 500 ° C. to 800 ° C. in a reducing atmosphere. This is an endothermic reaction and is not strongly related to densification. Next, in a carburizing atmosphere, W reacts with C from 800 ° C. to become W 2 C, and if there is sufficient C and time, it becomes WC at 1400 ° C. (Because there is little C under the conditions of the present invention, W 2 C is mainly used. These are exothermic reactions. From this, it is considered that a new sintering driving force is generated by the carbonization of W, and that stronger sintering is performed.

(2)図6に示す様に、WO添加量がおおよそ7.9mass%を越すと、単体のWが多く生成し、結果として、焼結時、低温での吸熱反応が多くなり、高温での発熱反応が減少し、これなどから焼結性が劣化しはじめる。 (2) As shown in FIG. 6, when the amount of added WO 3 exceeds approximately 7.9 mass%, a large amount of simple W is formed, and as a result, endothermic reaction at low temperature increases during sintering, and at high temperature. This reduces the exothermic reaction, and sinterability begins to deteriorate.

これら焼結性の視点から、前記の焼結条件(本発明における浸炭雰囲気)でのWO添加は1mass%以上7.9mass%以下がよいと言える。これは第四の知見である。 From these viewpoints of sinterability, it can be said that the addition of WO 3 under the sintering conditions (the carburizing atmosphere in the present invention) is preferably 1 mass% or more and 7.9 mass% or less. This is the fourth finding.

なお、図5には、2つのXと記載した矢印のピークがあるが、これらについて、X1はWO無添加でも見られるので、サイアロンの一種と思われるが独立したピークが一つしかないので同定できなかった。X2は、非特許文献2に記載されている、Si、SiAlON、Y−SiAlON、Mg−SiAlON、WO、Mg−Y−Al−O、Mg−Y−Al−W−Oの総て(Xは多種類ある)について比較したが、該当するものを見いだせなかった。このことと、WOの増加と共にピークが増加することから、X2はWCを基本とした未知の相と推定される。よって、WCとほぼ同じ効果をもつ物質と考えられ、上記のWCに含めて考えてよい。 In addition, in FIG. 5, there are two arrow peaks indicated as X. However, since X1 can be seen even without addition of WO 3 , it seems to be a kind of sialon, but there is only one independent peak. Could not be identified. X2 is the total of Si 3 N 4 , SiAlON, Y—SiAlON, Mg—SiAlON, WO X , Mg—Y—Al—O, and Mg—Y—Al—W—O described in Non-Patent Document 2. (There are many types of X). From this and the increase in the peak with increasing WO 3 , X2 is presumed to be an unknown phase based on W 2 C. Therefore, thought to substances having substantially the same effect as W 2 C, it may be considered included in the above W 2 C.

以上のようにして、ポアをほとんど生じない状態で、組織ムラがないWCをWO換算で1mass%〜7.9mass%含有したSi−5mass%Y−1mass%MgO−4mass%AlNに配合したSi系セラミックスの大量生産が可能となったので、切削チップに供したところ、WCが50mass%以上で、焼結体中のWC量が0.46mass%以上3.85mass%以下であれば、従来のSiセラミックスより優れた切削寿命を示した。切削性能が優れた原因として以下の2つがある。 As described above, Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO containing 1 mass% to 7.9 mass% of W 2 C in terms of WO 3 in a state in which pores are hardly generated and having no structure unevenness. Since mass production of Si 3 N 4 -based ceramics blended with -4 mass% AlN became possible, when applied to a cutting tip, W 2 C was 50 mass% or more and the amount of W 2 C in the sintered body was 0 if .46Mass% or more 3.85Mass% or less, exhibited a more excellent cutting life prior the Si 3 N 4 ceramics. There are two reasons why cutting performance is excellent.

(1)ポアをほとんど生じない組織としたことに加えてWOを1mass%〜7.9mass%添加(配合)し、そのうち50mass%以上WCとし、焼結体中のWC量が0.46mass%以上3.85mass%以下生じさせて黒色化することで、焼結性が高められたと共に均一に焼結することができ、本質的に高強度とすることができた。 (1) In addition to having a structure that hardly generates pores, WO 3 is added (mixed) in an amount of 1 mass% to 7.9 mass%, of which 50 mass% or more is set to W 2 C, and the amount of W 2 C in the sintered body is By producing 0.46 mass% or more and 3.85 mass% or less to blacken, the sinterability was enhanced and uniform sintering was possible, and essentially high strength was achieved.

(2)ここで、図4の各焼結体の熱伝導率を調べた結果、表1の通りになり、WO添加しても熱伝導率は僅かに上昇するだけで低熱伝導率であった。このことにより、切削時の温度上昇が一定となりやすい。また、焼結性も改善されていることから均一なセラミックスとなっている為、安定した切削をし易い。前記したように、インコネルの切削加工では切削温度を高くし、インコネルの引張り強度が低下した状態で切削することで高能率生産を狙う。図7は、非特許文献3によるインコネル718(登録商標、以下同じ)の高温引張り強さである。800℃以上では、常温と比べて1/2から1/8以下に低下する。よって、1)切削時の温度を高温に保ち、2)安定した切削をすることが肝要で、そのためには、1)熱放散をさせないことと、2)セラミックスが均一に焼結されていることが重要で、本発明Siセラミックスはこれらを共に満たす。 (2) Here, as a result of examining the thermal conductivity of each sintered body of FIG. 4, it is as shown in Table 1. Even when WO 3 is added, the thermal conductivity is only slightly increased and the thermal conductivity is low. It was. As a result, the temperature rise during cutting tends to be constant. In addition, since the sinterability is improved, it is a uniform ceramic, so that stable cutting is easy. As described above, in the cutting of Inconel, the cutting temperature is increased, and cutting is performed in a state where the tensile strength of Inconel is reduced, thereby aiming at high-efficiency production. FIG. 7 shows the high-temperature tensile strength of Inconel 718 (registered trademark, the same applies hereinafter) according to Non-Patent Document 3. When the temperature is 800 ° C. or higher, the temperature is reduced from ½ to 1/8 compared with normal temperature. Therefore, it is important to 1) keep the temperature at the time of cutting high, 2) to perform stable cutting, and for that purpose, 1) heat dissipation is not required, and 2) ceramics are sintered uniformly. Is important, and the Si 3 N 4 ceramic of the present invention satisfies both of them.

以上の様にして、本発明のSi系セラミックスは、インコネルに対する良好な切削性能を得ることが出来た。これらは第五の知見である。以上は1650℃−3hという焼結条件を基礎とした研究成果である。 As described above, the Si 3 N 4 based ceramic of the present invention was able to obtain good cutting performance for Inconel. These are the fifth findings. The above are the research results based on the sintering condition of 1650 ° C.-3 h.

本セラミックスの硬さは、高温硬さを含めてインコネルに対する切削性能と強く関係しなかった。また、1400HV以上でねずみ鋳鉄に対する切削性能が優れた。普通は1900HV以上を必要とするが、後記するように高硬度のWCが微細分散しているためと思われた。 The hardness of this ceramic, including the high temperature hardness, was not strongly related to the cutting performance for Inconel. Moreover, the cutting performance with respect to gray cast iron was excellent at 1400 HV or more. Normally, 1900HV or higher is required, but it seems that high hardness W 2 C is finely dispersed as described later.

このことから、新しい発見である、WOを1mass%〜7.9mass%添加し、そのうち50mass%以上がWCになり、焼結体中のWC量が0.46mass%以上3.85mass%以下とする場合の、1)黒色化、2)発熱反応による焼結駆動力、3)高硬度のWCが微細分散することの三点は、上記のインコネルの切削性能が優れた組成に留まらず、より広範囲なSi系セラミックス組成に応用できることは自明である。 From this, 1 mass% to 7.9 mass% of WO 3 which is a new discovery is added, of which 50 mass% or more becomes W 2 C, and the amount of W 2 C in the sintered body is 0.46 mass% or more. In the case of 85 mass% or less, three points of 1) blackening, 2) sintering driving force due to exothermic reaction, and 3) fine dispersion of W 2 C with high hardness are excellent in cutting performance of the above-mentioned Inconel. It is obvious that the present invention can be applied not only to the composition but also to a wider range of Si 3 N 4 based ceramic compositions.

すなわち、上記の、WO添加Si−5mass%Y−1mass%MgO−4mass%AlNセラミックス以外の、Alが0mass%以上15mass%以下、Yが0mass%以上15mass%以下、AlNが0mass%以上20mass%以下、MgOが0mass%以上1mass%以下、AlのAlN換算分(原料粉末でのAlN配合分)とYをY換算分の合計が5mass%以上であり、WOが1mass%以上7.9mass%以下、残部がSiとして配合、焼結し、焼結後のWおよびその炭化物の50mass%以上がWCで、焼結体中のWC量が0.46mass%以上3.85mass%以下のSi系セラミックスも同様のWO添加効果が期待できる。 That is, other than the above-mentioned WO 3 -added Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-4 mass% AlN ceramics, Al 2 O 3 is 0 mass% to 15 mass% and Y 2 O 3 is 0 mass%. above 15 mass% or less, AlN is less 0Mass% or more 20 mass%, MgO is less 0Mass% or more 1 mass%, the sum and the Y of the Y 2 O 3 in terms of content (AlN compounded amount of the raw material powder) AlN converted content of Al 5mass % And above, WO 3 is 1 mass% or more and 7.9 mass% or less, the remainder is compounded and sintered as Si 3 N 4 , and 50 mass% or more of W after sintering and its carbide is W 2 C, sintering Si 3 N 4 ceramic W 2 C amount is less 0.46Mass% or more 3.85Mass% of the body a similar WO 3 added Results can be expected.

この作製は次のようにする。Si、Al、Y、AlN、MgO、WOの各粉末を所定の量調合し、湿式混合粉砕して、必要によりパラフィン等の粉末用成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース等を用いて真空焼結炉に充填し、0.2MPa以上1MPa未満の窒素雰囲気下で1600℃以上1800℃以下の温度で3h以上6h以下の保持により焼結し、WOを還元・炭化してWまたはその炭化物としたSi系セラミックスを作製する。 This production is performed as follows. Each powder of Si 3 N 4 , Al 2 O 3 , Y 2 O 3 , AlN, MgO, and WO 3 is prepared in a predetermined amount, wet mixed and pulverized, and if necessary, powder molding aids such as paraffin are added. Then, after being dried, cold compression molded and if necessary molded into a predetermined shape is filled into a vacuum sintering furnace using a carbon case or the like, and 1600 ° C. in a nitrogen atmosphere of 0.2 MPa or more and less than 1 MPa. above 1800 ° C. to sinter the holding of the following temperatures below 3h more at 6h, making Si 3 N 4 ceramic having a W or a carbide by reducing and carbonization of WO 3.

ここで、Alを0mass%以上15mass%以下としたのは、15mass%を越えると酸素含有量が上昇し、ガラス相中の成分にムラを生じて特性が不安定となるためである。また、Yを0mass%以上15mass%以下としたのは、15mass%を越えるとガラス相が過量となって強度低下するためである。AlNを0mass%以上20mass%以下としたのは、20mass%を越えるとα−サイアロンが粗粒化し硬さが下がるためである。MgOが0mass%以上1mass%以下としたのは、0mass%でもよいが、ガラス相が少ない場合に焼結性を改善するために1mass%まで添加する。しかし、1mass%を越えるとポアが発生するためである。 Here, the reason why Al 2 O 3 is set to 0 mass% or more and 15 mass% or less is that when the content exceeds 15 mass%, the oxygen content increases, causing unevenness in the components in the glass phase and unstable characteristics. . The reason why Y 2 O 3 is set to 0 mass% or more and 15 mass% or less is that if it exceeds 15 mass%, the glass phase becomes excessive and the strength decreases. The reason why AlN is set to 0 mass% or more and 20 mass% or less is that when it exceeds 20 mass%, α-sialon becomes coarse and the hardness decreases. MgO may be 0 mass% or more and 1 mass% or less, but may be 0 mass%, but is added up to 1 mass% in order to improve sinterability when the glass phase is small. However, pores are generated when it exceeds 1 mass%.

AlのAlN換算分(原料粉末でのAlN配合分)とYのY換算分の合計が5mass%以上としたのは、これより少ないと焼結が困難になるためである。Wまたはその炭化物をWO換算で1mass%以上7.9mass%以下としたのは、1mass%未満では黒色化が不十分となりかつ耐摩耗性が高くならず、7.9mass%を越えると図6に示すように添加したWOが完全に炭化せずWCが50mass%未満となり、かつ、Wが多く生成して軟化するため耐摩耗性が十分高くならないことおよび焼結性が低下して低強度となるためである。 The reason why the total amount of Al in terms of AlN (the amount of AlN in the raw material powder) and Y in terms of Y 2 O 3 is set to 5 mass% or more is that if it is less than this, sintering becomes difficult. The reason why W or its carbide is set to 1 mass% or more and 7.9 mass% or less in terms of WO 3 is that if it is less than 1 mass%, the blackening becomes insufficient and the wear resistance does not increase, and if it exceeds 7.9 mass%, FIG. The added WO 3 is not completely carbonized, W 2 C is less than 50 mass%, and a large amount of W is generated and softens, so the wear resistance is not sufficiently increased and the sinterability is reduced. This is because the strength becomes low.

焼結体中のWC量を0.46mass%以上3.85mass%以下としたのは、WC量が0.46mass%未満では黒色化せず、3.85mass%より多くするためには焼結雰囲気の制御が必要になり経済的ではないためである。 The reason why the amount of W 2 C in the sintered body is set to 0.46 mass% or more and 3.85 mass% or less is that when the W 2 C amount is less than 0.46 mass%, the W 2 C amount is not blackened and is increased to more than 3.85 mass%. This is because it is not economical because the sintering atmosphere needs to be controlled.

焼結温度を1600℃以上1800℃以下としたのは、1600℃未満では十分に焼結せず、1800℃を越えると粗粒になり硬さが低下するためである。焼結の保持時間を3h以上6h以下としたのは、3h未満では十分に焼結せず、6hを越えると粗粒になり硬さおよび/または強度が低下しすぎるためである。焼結時の窒素の圧力を0.2MPa以上1MPa未満としたのは、0.2MPa未満では焼結体からの窒素の蒸発が多くなり緻密な焼結体にならず、1MPa以上では特別な仕様の炉となり不経済であるためである。   The reason why the sintering temperature is set to 1600 ° C. or more and 1800 ° C. or less is that the sintering is not sufficiently performed at a temperature lower than 1600 ° C., and if the temperature exceeds 1800 ° C., coarse grains are formed and the hardness is reduced. The reason why the holding time of sintering is set to 3 h or more and 6 h or less is that when the sintering time is less than 3 h, the sintering is not sufficiently performed, and when it exceeds 6 h, coarse particles are formed and the hardness and / or strength is excessively lowered. The reason why the pressure of nitrogen during sintering is set to 0.2 MPa or more and less than 1 MPa is that if the pressure is less than 0.2 MPa, evaporation of nitrogen from the sintered body increases and a dense sintered body is not obtained. This is because it is an uneconomical furnace.

焼結温度をより高くするか、および/または焼結時間を長時間とすれば、ガラス成分をより少なくした組成としてもよく、Al、Y、AlN、MgOを一種類ないし複数種類以上をより少なく添加することで有用なセラミックスを作ることができる。 If the sintering temperature is increased and / or the sintering time is long, the composition may be such that the glass component is reduced, and one kind of Al 2 O 3 , Y 2 O 3 , AlN, and MgO may be used. Useful ceramics can be made by adding more than a plurality of types.

焼結温度をより低くするか、および/または焼結時間を短時間とすれば、Al、Y、AlN、MgOを一種類ないし複数種類以上をより多く添加することで有用なセラミックスを作ることができる。 If the sintering temperature is lowered and / or the sintering time is shortened, it is useful to add more than one kind or more kinds of Al 2 O 3 , Y 2 O 3 , AlN, MgO. Ceramics can be made.

焼結時にWOが還元・炭化してWCなどになることについては、成形体をカーボンケース内に充填し、カーボンケース等を用いる真空焼結炉を用いて一度真空(6.5Pa以下)に排気した後、0.2MPa以上1MPa未満の窒素雰囲気として、焼結温度を1600℃以上1800℃以下とし、3h以上6h以下の保持することでできる。 Regarding the reduction and carbonization of WO 3 during sintering to W 2 C or the like, the compact is filled in a carbon case and once vacuumed (6.5 Pa or less using a vacuum sintering furnace using the carbon case) ), The sintering temperature is set to 1600 ° C. or higher and 1800 ° C. or lower and held for 3 hours or longer and 6 hours or shorter as a nitrogen atmosphere of 0.2 MPa or higher and lower than 1 MPa.

これらの条件の中でも、Yを5mass%、AlNを4mass%、MgOを1mass%、WOを1mass%以上7.9mass%以下、および不可避不純物を含有し、残部がSiである組成に配合し、湿式混合粉砕して、必要によりパラフィン等の粉末用成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース内にセットし、カーボン断熱材、カーボンヒータを用いる真空焼結炉に充填し、6.5MPaに排気した後、0.2MPa以上1.0MPa未満の窒素雰囲気下として1650℃で3h焼結し、焼結後に含有するWまたはその炭化物は、原料粉末のWOが、焼結時に還元・炭化されて生成したものであり、このうち50mass%以上がWCで、焼結体中のWC量が0.46mass%以上3.85mass%以下である、Si系セラミックスは、実施例に示した通り特にインコネル用の切削工具および一般耐摩耗工具としての性能が高い。 Among these conditions, Y 2 O 3 to 5 mass%, AlN and 4 mass%, MgO and 1 mass%, the WO 3 1 mass% or more 7.9Mass% or less, and contain inevitable impurities, the balance in Si 3 N 4 A carbon case that is blended into a certain composition, wet-mixed and pulverized, added with powder molding aids such as paraffin, if necessary, dried, cold-compressed, and molded into a predetermined shape if necessary. Set inside, filled in a vacuum sintering furnace using a carbon heat insulating material and a carbon heater, exhausted to 6.5 MPa, and then sintered at 1650 ° C. for 3 h under a nitrogen atmosphere of 0.2 MPa or more and less than 1.0 MPa, W or its carbide contained after sintering is produced by reducing and carbonizing WO 3 of the raw material powder during sintering, of which 50 mass% or more is W 2 C. The Si 3 N 4 ceramics having a W 2 C content of 0.46 mass% or more and 3.85 mass% or less in the sintered body are particularly useful as cutting tools and general wear-resistant tools for Inconel as shown in the examples. High performance.

また、Yの一部または全部をR(RはScまたはランタン系列の元素)の少なくとも1種以上で置換してもよい。これも前記Si系セラミックスも同様の特性を示す。これらは第六の知見である。 Further, part or all of Y 2 O 3 may be substituted with at least one of R 2 O 3 (R is an element of Sc or lanthanum series). This also shows the same characteristics as the Si 3 N 4 ceramics. These are the sixth findings.

なお、浸炭性のガス、すなわちCH等の炭化水素またはCO等を焼結時に導入して、WOを炭化することも可能であるが、特別の設備を必要とし、不経済である。 It is possible to carbonize WO 3 by introducing a carburizing gas, that is, a hydrocarbon such as CH 4 or CO at the time of sintering, but it requires special equipment and is uneconomical.

なお、本発明のSi系セラミックスは、セラミックス中のWCが、炭化物の中では、BC、SiCおよびTiCに次いで硬い物質(3000HV)であり、それが極めて微細に分散していることから、耐摩耗工具としても有用な特性を有することは自明である。すなわち、アルミ溶湯部品、研磨布ドレッシングプレート、高周波焼入れ治具、塑性加工用ロール、ノズル、ノズルカバー、ベアリングボールとしても用いることができる。これは第七の知見である。 In the Si 3 N 4 ceramics of the present invention, W 2 C in the ceramic is a hard substance (3000 HV) next to B 4 C, SiC and TiC in carbides, and it is very finely dispersed. Therefore, it is obvious that it has characteristics useful as a wear-resistant tool. That is, it can also be used as molten aluminum parts, abrasive cloth dressing plates, induction hardening jigs, plastic working rolls, nozzles, nozzle covers, and bearing balls. This is the seventh finding.

なお、本発明においてWC粉末を原料に直接添加する方法を採用していないのは、次の諸事情に基づく。1)炭化による発熱で生じる焼結駆動力が得られなくなり組成の自由度が減少する。2)市販のWCは硬いため通常のセラミックスの混合・粉砕条件(粉砕でのボールがセラミックス)では十分微細化しないので、超硬合金の混合・粉砕条件(粉砕でのボールが超硬合金)で予め粉砕したものを添加用として用意し、用いることになり、コストアップする。3)微粉砕すると酸化するので、事実上WOの添加と同じになる。4)これら1)〜3)のことから、WC粉末を原料に添加する方法は工業的に有用でない。 The reason why the method of directly adding the W 2 C powder to the raw material is not adopted in the present invention is based on the following circumstances. 1) A sintering driving force generated by heat generation due to carbonization cannot be obtained, and the degree of freedom in composition is reduced. 2) Since commercially available W 2 C is hard, it will not be sufficiently refined under normal ceramic mixing and grinding conditions (balls in grinding are ceramics), so mixing and grinding conditions in cemented carbide (balls in grinding are cemented carbide) ) Is previously prepared and added for use, which increases costs. 3) Since the oxidized pulverized, it becomes the same as the addition of virtually WO 3. 4) From these 1) to 3), the method of adding W 2 C powder to the raw material is not industrially useful.

また、パラフィン等の粉末用成形助剤は、本発明の焼結では特に浸炭に対して影響しなかった。これらは600℃以下で蒸発し圧粉体から無くなり、炉内からワックストラップ等へ移動するためと思われる。   Also, powder molding aids such as paraffin did not particularly affect carburization in the sintering of the present invention. These are considered to evaporate below 600 ° C., disappear from the green compact, and move from the furnace to a wax trap or the like.

なお、焼結温度における炭化が極めて不十分な場合は、Wの他に、WSi等を生じることがある。こうして、本発明は完成した。 When carbonization at the sintering temperature is extremely insufficient, W 5 Si 3 or the like may be generated in addition to W. Thus, the present invention has been completed.

本発明の、原料粉末にWOを1mass%以上7.9mass%以下配合したSi系セラミックスは、放熱性が少なく、高温での耐摩耗性が優れるため、インコネルの切削用の刃先交換式切削チップまたはエンドミルとして用いると、優れた耐久性がある。また同様に、アルミ溶湯部品、研磨布ドレッシングプレート、高周波焼入れ治具、塑性加工用ロール、ノズル、ノズルカバー、ベアリングボール等の耐摩耗工具としても優れた特性がある。 The Si 3 N 4 ceramics containing WO 3 in the material powder of 1 mass% or more and 7.9 mass% or less of the present invention has low heat dissipation and excellent wear resistance at high temperatures. When used as a type cutting tip or end mill, it has excellent durability. Similarly, it has excellent characteristics as wear-resistant tools such as molten aluminum parts, polishing cloth dressing plates, induction hardening jigs, plastic working rolls, nozzles, nozzle covers, bearing balls and the like.

Si−2mass%Al−5mass%Y−3mass%MgO−1mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼす焼結温度の影響である。白矢印はポアを示す。高倍写真(上段)はポアの少ない部分を撮影したもの。This is the influence of the sintering temperature on the mirror surface SEM structure of Si 3 N 4 ceramics blended with the composition of Si 3 N 4 -2 mass% Al 2 O 3 -5 mass% Y 2 O 3 -3 mass% MgO-1 mass% AlN. A white arrow indicates a pore. The high-magnification photograph (top) is a photograph of a part with few pores. Si−2mass%Al−5mass%Y−1mass%〜2mass%MgO−1mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼすMgO添加量の影響である。白矢印はポアを示す。高倍写真(上段)はポアの少ない部分を撮影したもの。Effect of MgO addition amount on mirror SEM structure of Si 3 N 4 ceramics blended with Si 3 N 4 -2 mass% Al 2 O 3 -5 mass% Y 2 O 3 -1 mass% to 2 mass% MgO-1 mass% AlN composition It is. A white arrow indicates a pore. The high-magnification photograph (top) is a photograph of a part with few pores. Si−5mass%Y−1mass%MgO−0mass%〜6mass%AlN組成に配合したSi系セラミックスのα率に及ぼすAlN添加量の影響である。This is the influence of the added amount of AlN on the α rate of Si 3 N 4 -based ceramics blended in a composition of Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-0 mass% to 6 mass% AlN. Si−5mass%Y−1mass%MgO−4mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼすWO添加の影響である。WOを添加したセラミックス中の白色粒子はWC等のWを含む相である。寸法は、最大でも約1μmで、多くの粒子は0.2μm以下であった。Si 3 is the effect of N 4 -5mass% Y 2 O 3 -1mass% WO 3 Addition on MgO-4mass% Si 3 N 4 ceramic mirror SEM tissues formulated to AlN composition. White particles in the ceramic added with WO 3 are phases containing W such as W 2 C. The maximum dimension was about 1 μm, and many particles were 0.2 μm or less. 図4の各セラミックスのX線回折図(ターゲット:CuKα)である。FIG. 5 is an X-ray diffraction diagram (target: CuKα) of each ceramic of FIG. 4. 図5の各セラミックスについて、セラミックス全体の量に対するWO添加量と、WおよびW炭化物全体に対するW、WC、WCの重量比率との関係である。図5の組成に加え、WO10mass%添加を追記している。FIG. 5 shows the relationship between the amount of WO 3 added to the total amount of ceramic and the weight ratio of W, W 2 C, and WC to the entire W and W carbides. In addition to the composition of FIG. 5, the addition of 10 mass% of WO 3 is added. インコネル718の引張り強さに及ぼす測定温度の影響(非特許文献3にある図の一部を改変)である。982℃−1hの固溶化処理および718℃−8hの後621℃まで炉内冷却し、全時効時間の合計が18hになるように621℃に保持する時効をした、直径12.7mmのインコネル718の試験片による。It is the influence of the measurement temperature on the tensile strength of Inconel 718 (part of the diagram in Non-Patent Document 3 is modified). Inconel 718 with a diameter of 12.7 mm, which was solvated at 982 ° C.-1 h and cooled in the furnace to 621 ° C. after 718 ° C.-8 h and kept at 621 ° C. so that the total aging time was 18 h. According to the test piece.

原料粉末として、宇部興産株式会社製の平均粒度0.6μmのSi、信越化学工業株式会社製の平均粒度5μmのY、純正化学株式会社製の平均粒度1μmのMgO、電気化学工業株式会社製の平均粒度1.0μmのAlN、日本新金属株式会社製の平均粒度0.6μmのWOを用いて、表2の組成に配合し、24hの湿式混合粉砕後、乾燥し、圧力98MPaで圧縮成形し、カーボンケース内に充填し、カーボンケース等を用いる真空焼結炉を用いて一度真空(6.5Pa以下)に排気した後、0.5MPaの窒素雰囲気として、焼結温度を1650℃とし、3h保持して、Si系セラミックスを作製した(表2の試料番号No.1〜No.17)。 As raw material powder, Si 3 N 4 with an average particle size of 0.6 μm manufactured by Ube Industries, Ltd., Y 2 O 3 with an average particle size of 5 μm manufactured by Shin-Etsu Chemical Co., Ltd., MgO with an average particle size of 1 μm manufactured by Junsei Chemical Co., Ltd. Using AlN manufactured by Chemical Industry Co., Ltd. with an average particle size of 1.0 μm and WO 3 manufactured by Nippon Shin Metal Co., Ltd. with an average particle size of 0.6 μm, they are blended into the composition shown in Table 2 and dried after wet mixing and grinding for 24 hours. Compressed and molded at a pressure of 98 MPa, filled in a carbon case, evacuated to a vacuum (6.5 Pa or less) once using a vacuum sintering furnace using a carbon case, etc., and then sintered as a 0.5 MPa nitrogen atmosphere. The temperature was set to 1650 ° C. and held for 3 hours to produce Si 3 N 4 -based ceramics (sample numbers No. 1 to No. 17 in Table 2).

このセラミックスにより、旋削用の刃先交換式切削チップを作製し、インコネル718を切削速度1000m/minでの切削した時の性能を、表2に原料粉末の配合組成、焼結条件、焼結後の相組成等と共に併記した。発明セラミックスのNo.9〜No.11およびNo.14〜No.17の切削性能は、市販の従来セラミックスと比べて1.2倍以上長寿命であった。   Using this ceramic, a cutting edge exchangeable cutting tip for turning was prepared, and the performance when Inconel 718 was cut at a cutting speed of 1000 m / min is shown in Table 2. It was written together with the phase composition. Inventive ceramics No. 9-No. 11 and no. 14-No. The cutting performance of 17 was 1.2 times longer than that of commercially available conventional ceramics.

なお、原料粉末は、上記製品に限定されるものではなく、上記と同等の品質のものであれば、特にメーカー等は異なっても同様の結果が得られる。   The raw material powder is not limited to the above product, and the same result can be obtained even if the manufacturer is different as long as it has a quality equivalent to the above.

表3に耐摩耗性能を検証した結果を示す。参考セラミックスは、強度不足で使用不可であったが、発明セラミックスは使用できた。また、既存材料との比較では優れた長寿命を示すことが分かる。試料番号No.5、No.9〜No.12およびNo.17は表2と共通である。   Table 3 shows the results of verifying the wear resistance performance. The reference ceramics could not be used due to insufficient strength, but the inventive ceramics could be used. Moreover, it turns out that the outstanding long life is shown in comparison with the existing material. Sample No. 5, no. 9-No. 12 and no. 17 is common to Table 2.

本発明のセラッミクスによる切削工具は、インコネル製の航空機の部品等を切削する分野で多用され、生産性および経済性を向上させる。また、これに限らず、耐摩耗工具としても多用され、生産性および経済性を向上させる。よって利用価値は大きい。   The ceramic cutting tool of the present invention is frequently used in the field of cutting Inconel aircraft parts and the like, and improves productivity and economy. Moreover, it is not limited to this and is frequently used as a wear-resistant tool to improve productivity and economy. Therefore, the utility value is great.

以上から、Si−5mass%Y−1mass%MgO−mass%〜6mass%AlNセラミックスを1650℃−3h焼結で作製した。こうして得られたセラミックスについてX線回折を行った。得られたX線回折図から、α−SiのICDD(International Centre for Diffraction Data)データをα−サイアロンのデータと等価とみなしてα−サイアロン({210}面のピーク、2θ=35.3°)およびβ−Si({200}面のピーク、27.0°)の基準のピーク(以後基準のピークをSPと記す)面積をICDDデータのI/Ic(試料にα−Al(Corundum)を50mass%混入した時のα−Alの{113}の強度Icと試料の最強線の強度Iとの比)で補正したものを設定して、それぞれの強度(面積)から、α−サイアロンのSP/(α−サイアロンのSP+β−SiのSP)×100をα率とすると、図3が得られた。
From the above, Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO- 1 mass% to 6 mass% AlN ceramics were produced by sintering at 1650 ° C. for 3 h. The ceramics thus obtained were subjected to X-ray diffraction. From the obtained X-ray diffraction pattern, α-Si 3 N 4 ICDD (International Center for Diffraction Data) data is regarded as equivalent to α-sialon data, and α-sialon ({210} plane peak, 2θ = 35 .3 °) and β-Si 3 N 4 ({200} plane peak, 27.0 °) reference peak (reference peak hereinafter referred to as SP) area is defined as I / Ic of the ICDD data (α -Al 2 O 3 (Corundum) 50 mass% mixed α α-Al 2 O 3 {113} intensity Ic and the ratio of the intensity I of the strongest line of the sample) was corrected, respectively, From the intensity (area), α-sialon SP / (SP of α-sialon + SP of β-Si 3 N 4 ) × 100 was taken as α rate, and FIG. 3 was obtained.

以上のようにして、ポアをほとんど生じない状態で、組織ムラがないWCをWO換算で1mass%〜7.9mass%含有したSi−5mass%Y−1mass%MgO−4mass%AlNに配合したSi系セラミックスの大量生産が可能となったので、切削チップに供したところ、WCが50mass%以上で、焼結体中のWC量が0.44mass%以上3.85mass%以下であれば、従来のSiセラミックスより優れた切削寿命を示した。切削性能が優れた原因として以下の2つがある。
As described above, Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO containing 1 mass% to 7.9 mass% of W 2 C in terms of WO 3 in a state in which pores are hardly generated and having no structure unevenness. Since mass production of Si 3 N 4 -based ceramics blended with -4 mass% AlN became possible, when applied to a cutting tip, W 2 C was 50 mass% or more and the amount of W 2 C in the sintered body was 0 if less .44 mass% or more 3.85mass%, exhibited a more excellent cutting life prior the Si 3 N 4 ceramics. There are two reasons why cutting performance is excellent.

(1)ポアをほとんど生じない組織としたことに加えてWOを1mass%〜7.9mass%添加(配合)し、焼結時の還元・炭化により生成したWおよびその炭化物のうち50mass%以上WCとし、焼結体中のWC量が0.44mass%以上3.85mass%以下生じさせて黒色化することで、焼結性が高められたと共に均一に焼結することができ、本質的に高強度とすることができた。
(1) In addition to having a structure that hardly generates pores, WO 3 is added (mixed) in an amount of 1 mass% to 7.9 mass%, and 50 mass% or more of W generated by reduction and carbonization during sintering and its carbides By making it W 2 C and blackening the W 2 C content in the sintered body by producing 0.44 mass% to 3.85 mass%, it is possible to enhance the sinterability and sinter uniformly. And essentially high strength.

このことから、新しい発見である、WOを1mass%〜7.9mass%添加し、焼結時の還元・炭化により生成したWおよびその炭化物のうち50mass%以上がWCになり、焼結体中のWC量が0.44mass%以上3.85mass%以下とする場合の、1)黒色化、2)発熱反応による焼結駆動力、3)高硬度のWCが微細分散することの三点は、上記のインコネルの切削性能が優れた組成に留まらず、より広範囲なSi系セラミックス組成に応用できることは自明である。
From this, WO 3 is added by 1 mass% to 7.9 mass%, which is a new discovery, and 50 mass% or more of W and its carbide produced by reduction and carbonization during sintering become W 2 C, and sintering. When the amount of W 2 C in the body is 0.44 mass% or more and 3.85 mass% or less, 1) blackening, 2) sintering driving force due to exothermic reaction, 3) high hardness W 2 C is finely dispersed It is obvious that the above three points are not limited to the composition with excellent cutting performance of the above-mentioned Inconel, but can be applied to a wider range of Si 3 N 4 ceramic compositions.

すなわち、上記の、WO添加Si−5mass%Y−1mass%MgO−4mass%AlNセラミックス以外の、Alが0mass%以上15mass%以下、Yが0mass%以上15mass%以下、AlNがmass%以上20mass%以下、MgOが0mass%以上1mass%以下、AlのAlN換算分(原料粉末でのAlN配合分)とYをY換算分の合計が5mass%以上であり、WOが1mass%以上7.9mass%以下、残部がSiとして配合、焼結し、焼結後のWおよびその炭化物の50mass%以上がWCで、焼結体中のWC量が0.44mass%以上3.85mass%以下、W量が0.01mass%以上0.16mass%以下、およびWC量が0.08mass%以上0.37mass%以下のSi系セラミックスも同様のWO添加効果が期待できる。
That is, other than the above-mentioned WO 3 -added Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO-4 mass% AlN ceramics, Al 2 O 3 is 0 mass% to 15 mass% and Y 2 O 3 is 0 mass%. above 15 mass% or less, AlN is 1 mass% or more 20 mass% or less, MgO is less 0Mass% or more 1 mass%, the sum and the Y of the Y 2 O 3 in terms of content (AlN compounded amount of the raw material powder) AlN converted content of Al 5 mass% or more, WO 3 is 1 mass% or more and 7.9 mass% or less, the remainder is blended and sintered as Si 3 N 4 , and 50 mass% or more of sintered W and its carbides are W 2 C and sintered. The amount of W 2 C in the combined body is 0.44 mass% to 3.85 mass% , and the amount of W is 0.01 mass% to 0.16 mass. %, And Si 3 N 4 -based ceramics having a WC amount of 0.08 mass% or more and 0.37 mass% or less can be expected to have the same WO 3 addition effect.

この作製は次のようにする。Si、Al、Y、AlN、MgO、WOの各粉末を所定の量調合し、湿式混合粉砕して、必要によりパラフィン等の粉末用成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース等を用いて真空焼結炉に充填し、0.2MPa以上1MPa未満の窒素雰囲気下で1600℃以上1800℃以下の温度で3h以上6h以下の保持により焼結し、WOを還元・炭化してWおよびその炭化物としたSi系セラミックスを作製する。
This production is performed as follows. Each powder of Si 3 N 4 , Al 2 O 3 , Y 2 O 3 , AlN, MgO, and WO 3 is prepared in a predetermined amount, wet mixed and pulverized, and if necessary, powder molding aids such as paraffin are added. Then, after being dried, cold compression molded and if necessary molded into a predetermined shape is filled into a vacuum sintering furnace using a carbon case or the like, and 1600 ° C. in a nitrogen atmosphere of 0.2 MPa or more and less than 1 MPa. Sintering is performed at a temperature of 1800 ° C. or less for 3 hours or more and 6 hours or less, and WO 3 is reduced and carbonized to produce W 3 and its carbide Si 3 N 4 ceramics.

ここで、Alを0mass%以上15mass%以下としたのは、15mass%を越えると酸素含有量が上昇し、ガラス相中の成分にムラを生じて特性が不安定となるためである。また、Yを0mass%以上15mass%以下としたのは、15mass%を越えるとガラス相が過量となって強度低下するためである。AlNをmass%以上20mass%以下としたのは、20mass%を越えるとα−サイアロンが粗粒化し硬さが下がるためである。MgOが0mass%以上1mass%以下としたのは、0mass%でもよいが、ガラス相が少ない場合に焼結性を改善するために1mass%まで添加する。しかし、1mass%を越えるとポアが発生するためである。
Here, the reason why Al 2 O 3 is set to 0 mass% or more and 15 mass% or less is that when the content exceeds 15 mass%, the oxygen content increases, causing unevenness in the components in the glass phase and unstable characteristics. . The reason why Y 2 O 3 is set to 0 mass% or more and 15 mass% or less is that if it exceeds 15 mass%, the glass phase becomes excessive and the strength decreases. The reason why AlN is 1 mass% or more and 20 mass% or less is that when it exceeds 20 mass%, α-sialon becomes coarse and the hardness decreases. MgO may be 0 mass% or more and 1 mass% or less, but may be 0 mass%, but is added up to 1 mass% in order to improve sinterability when the glass phase is small. However, pores are generated when it exceeds 1 mass%.

AlのAlN換算分(原料粉末でのAlN配合分)とYのY換算分の合計が5mass%以上としたのは、これより少ないと焼結が困難になるためである。Wおよびその炭化物をWO換算で1mass%以上7.9mass%以下としたのは、1mass%未満では黒色化が不十分となりかつ耐摩耗性が高くならず、7.9mass%を越えると図6に示すように添加したWOが完全に炭化せずWCが50mass%未満となり、かつ、Wが多く生成して軟化するため耐摩耗性が十分高くならないことおよび焼結性が低下して低強度となるためである。
The reason why the total amount of Al in terms of AlN (the amount of AlN in the raw material powder) and Y in terms of Y 2 O 3 is set to 5 mass% or more is that if it is less than this, sintering becomes difficult. The reason why W and its carbides are set to 1 mass% or more and 7.9 mass% or less in terms of WO 3 is that if the content is less than 1 mass%, blackening becomes insufficient and the wear resistance does not increase, and if it exceeds 7.9 mass%, FIG. The added WO 3 is not completely carbonized, W 2 C is less than 50 mass%, and a large amount of W is generated and softens, so the wear resistance is not sufficiently increased and the sinterability is reduced. This is because the strength becomes low.

焼結体中のWC量を0.44mass%以上3.85mass%以下としたのは、WC量が0.44mass%未満では黒色化せず、3.85mass%より多くするためには焼結雰囲気の制御が必要になり経済的ではないためである。なお、焼結体中のW C量が0.44mass%以上3.85mass%以下のとき、W量は0.01mass%以上0.16mass%以下であり、WC量は0.08mass%以上0.37mass%以下である。
The reason why the amount of W 2 C in the sintered body is set to 0.44 mass% or more and 3.85 mass% or less is that when the W 2 C amount is less than 0.44 mass%, blackening does not occur and the amount is increased to more than 3.85 mass%. This is because it is not economical because the sintering atmosphere needs to be controlled. When the amount of W 2 C in the sintered body is 0.44 mass% or more and 3.85 mass% or less, the W amount is 0.01 mass% or more and 0.16 mass% or less, and the WC amount is 0.08 mass% or more and 0. .37 mass% or less.

これらの条件の中でも、Yを5mass%、AlNを4mass%、MgOを1mass%、WOを1mass%以上7.9mass%以下、および不可避不純物を含有し、残部がSiである組成に配合し、湿式混合粉砕して、必要によりパラフィン等の粉末用成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース内にセットし、カーボン断熱材、カーボンヒータを用いる真空焼結炉に充填し、6.5MPaに排気した後、0.2MPa以上1.0MPa未満の窒素雰囲気下として1650℃で3h焼結し、焼結後に含有するWおよびその炭化物は、原料粉末のWOが、焼結時に還元・炭化されて生成したものであり、このうち50mass%以上がWCで、焼結体中のWC量が0.44mass%以上3.85mass%以下である、Si系セラミックスは、実施例に示した通り特にインコネル用の切削工具および一般耐摩耗工具としての性能が高い。
Among these conditions, Y 2 O 3 to 5 mass%, AlN and 4 mass%, MgO and 1 mass%, the WO 3 1 mass% or more 7.9Mass% or less, and contain inevitable impurities, the balance in Si 3 N 4 A carbon case that is blended into a certain composition, wet-mixed and pulverized, added with powder molding aids such as paraffin, if necessary, dried, cold-compressed, and molded into a predetermined shape if necessary. Set inside, filled in a vacuum sintering furnace using a carbon heat insulating material and a carbon heater, exhausted to 6.5 MPa, and then sintered at 1650 ° C. for 3 h under a nitrogen atmosphere of 0.2 MPa or more and less than 1.0 MPa, W and its carbides contained after sintering are produced by reducing and carbonizing WO 3 of the raw material powder during sintering, of which 50 mass% or more is W 2 C. The Si 3 N 4 ceramics having a W 2 C content of 0.44 mass% or more and 3.85 mass% or less in the sintered body are particularly cutting tools for inconel and general wear-resistant tools as shown in the examples. As a high performance.

Si−2mass%Al−5mass%Y−3mass%MgO−1mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼす焼結温度の影響である。白矢印はポアを示す。高倍写真(上段)はポアの少ない部分を撮影したもの。This is the influence of the sintering temperature on the mirror surface SEM structure of Si 3 N 4 ceramics blended with the composition of Si 3 N 4 -2 mass% Al 2 O 3 -5 mass% Y 2 O 3 -3 mass% MgO-1 mass% AlN. A white arrow indicates a pore. The high-magnification photograph (top) is a photograph of a part with few pores. Si−2mass%Al−5mass%Y−1mass%〜2mass%MgO−1mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼすMgO添加量の影響である。白矢印はポアを示す。高倍写真(上段)はポアの少ない部分を撮影したもの。Effect of MgO addition amount on mirror SEM structure of Si 3 N 4 ceramics blended with Si 3 N 4 -2 mass% Al 2 O 3 -5 mass% Y 2 O 3 -1 mass% to 2 mass% MgO-1 mass% AlN composition It is. A white arrow indicates a pore. The high-magnification photograph (top) is a photograph of a part with few pores. Si−5mass%Y−1mass%MgO−mass%〜6mass%AlN組成に配合したSi系セラミックスのα率に及ぼすAlN添加量の影響である。This is the influence of the added amount of AlN on the α rate of Si 3 N 4 ceramics blended in the composition of Si 3 N 4 -5 mass% Y 2 O 3 -1 mass% MgO- 1 mass% to 6 mass% AlN. Si−5mass%Y−1mass%MgO−4mass%AlN組成に配合したSi系セラミックスの鏡面SEM組織に及ぼすWO添加の影響である。WOを添加したセラミックス中の白色粒子はWC等のWを含む相である。寸法は、最大でも約1μmで、多くの粒子は0.2μm以下であった。Si 3 is the effect of N 4 -5mass% Y 2 O 3 -1mass% WO 3 Addition on MgO-4mass% Si 3 N 4 ceramic mirror SEM tissues formulated to AlN composition. White particles in the ceramic added with WO 3 are phases containing W such as W 2 C. The maximum dimension was about 1 μm, and many particles were 0.2 μm or less. 図4の各セラミックスのX線回折図(ターゲット:CuKα)である。FIG. 5 is an X-ray diffraction diagram (target: CuKα) of each ceramic of FIG. 4. 図5の各セラミックスについて、セラミックス全体の量に対するWO添加量と、WおよびW炭化物全体に対するW、WC、WCの重量比率との関係である。図5の組成に加え、WO10mass%添加を追記している。FIG. 5 shows the relationship between the amount of WO 3 added to the total amount of ceramic and the weight ratio of W, W 2 C, and WC to the entire W and W carbides. In addition to the composition of FIG. 5, the addition of 10 mass% of WO 3 is added. インコネル718の引張り強さに及ぼす測定温度の影響(非特許文献3にある図の一部を改変)である。982℃−1hの固溶化処理および718℃−8hの後621℃まで炉内冷却し、全時効時間の合計が18hになるように621℃に保持する時効をした、直径12.7mmのインコネル718の試験片による。It is the influence of the measurement temperature on the tensile strength of Inconel 718 (part of the diagram in Non-Patent Document 3 is modified). Inconel 718 with a diameter of 12.7 mm, which was solvated at 982 ° C.-1 h and cooled in the furnace to 621 ° C. after 718 ° C.-8 h and kept at 621 ° C. so that the total aging time was 18 h. According to the test piece.

Claims (9)

AlをAl換算で0mass%以上15mass%以下(原料粉末でのAl配合分)およびAlN換算で0mass%以上20mass%以下(原料粉末でのAlN配合分)の合計、YをY換算で0mass%以上15mass%以下、MgをMgO換算で0mass%以上1mass%以下、Wまたはその炭化物をWO換算で1mass%以上7.9mass%以下、および不可避不純物を含有し、残部がSiであり、かつAlのAlN換算分(原料粉末でのAlN配合分)とYのY換算分の合計が5mass%以上であり、含有するWまたはその炭化物は、原料粉末にWOを使用して、焼結時に還元・炭化して生成したものであり、このうち50mass%以上がWCであり、焼結体中のWC量が0.46mass%以上3.85mass%以下である、Si系セラミックス。 Al is 0 mass% or more and 15 mass% or less in terms of Al 2 O 3 (Al 2 O 3 content in raw material powder) and 0 mass% or more and 20 mass% or less in terms of AlN (AlN content in raw material powder), Y is Y 2 O 3 15mass% or more 0Mass% in terms of the following, a Mg 1 mass% or more 0Mass% in terms of MgO below, W, or 1 mass% or more 7.9Mass% less the carbide in terms of WO 3, and contains inevitable impurities, The balance is Si 3 N 4 , and the total amount of Al in terms of AlN (AlN content in the raw material powder) and the amount of Y in terms of Y 2 O 3 is 5 mass% or more. WO 3 is used as a raw material powder, and it is produced by reduction and carbonization during sintering, of which 50 mass% or more is W 2 C, and a sintered body Si 3 N 4 -based ceramics in which the amount of W 2 C is 0.46 mass% or more and 3.85 mass% or less. Si、Al、Y、AlN、MgO、WOの各粉末を所定の量調合し、湿式混合粉砕して、必要により成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース内にセットし、カーボン断熱材、カーボンヒータを用いる真空焼結炉に充填し、6.5Pa以下に排気した後、0.2MPa以上1MPa未満の窒素雰囲気下として1600℃以上1800℃以下の温度で3h以上6h以下保持することにより、焼結し、WOを還元・炭化してWまたはその炭化物とする、請求項1のSi系セラミックスを作製する方法。 Each powder of Si 3 N 4 , Al 2 O 3 , Y 2 O 3 , AlN, MgO, and WO 3 is prepared in a predetermined amount, wet-mixed and pulverized, and if necessary, a molding aid is added. After the intermediate compression molding, if necessary molded into a predetermined shape, set in a carbon case, filled in a vacuum sintering furnace using a carbon heat insulating material and a carbon heater, exhausted to 6.5 Pa or less, Sintering by holding at a temperature of 1600 ° C or higher and 1800 ° C or lower for 3h or more and 6h or less under a nitrogen atmosphere of 0.2MPa or more and less than 1MPa to reduce and carbonize WO 3 to obtain W or a carbide thereof. 1. A method of producing a Si 3 N 4 ceramic. 請求項1のYの一部または全部を、R(RはScまたはランタン系列の元素)の少なくとも1種以上で置換した、Si系セラミックス。 A Si 3 N 4 based ceramic in which a part or all of Y 2 O 3 of claim 1 is substituted with at least one of R 2 O 3 (R is an element of the Sc or lanthanum series). 請求項2のYの一部または全部を、R(RはScまたはランタン系列の元素)の少なくとも1種以上で置換した、請求項3のSi系セラミックスを作製する方法。 The Si 3 N 4 ceramics according to claim 3, wherein a part or all of Y 2 O 3 according to claim 2 is substituted with at least one of R 2 O 3 (R is an element of Sc or lanthanum series). how to. YをY換算で5mass%、AlをAlN換算で4mass%、MgをMgO換算で1mass%、Wまたはその炭化物をWO換算で1mass%以上7.9mass%以下、および不可避不純物を含有し、残部がSiであり、含有するWまたはその炭化物は、原料粉末にWOを使用して、焼結時に還元・炭化して生成したものであり、このうち50mass%以上がWCであり、焼結体中のWC量が0.46mass%以上3.85mass%以下である、Si系セラミックス。 Y is 5 mass% in terms of Y 2 O 3 , Al is 4 mass% in terms of AlN, Mg is 1 mass% in terms of MgO, W or its carbide is 1 mass% to 7.9 mass% in terms of WO 3 , and contains inevitable impurities However, the balance is Si 3 N 4 , and the contained W or carbide thereof is produced by reducing and carbonizing during sintering using WO 3 as a raw material powder, of which 50 mass% or more is W Si 3 N 4 -based ceramics that are 2 C and have a W 2 C content of 0.46 mass% or more and 3.85 mass% or less in the sintered body. を5mass%、AlNを4mass%、MgOを1mass%、WOを1mass%以上7.9mass%以下、残部がSiとして原料粉末を調合し、湿式混合粉砕して、必要により成形助剤を添加し、乾燥後、冷間圧縮成形して、必要により所定の形状に成形加工したものを、カーボンケース内にセットし、カーボン断熱材、カーボンヒータを用いる真空焼結炉に充填し、6.5Pa以下に排気した後、0.2MPa以上1MPa未満の窒素雰囲気下で1650℃の温度で3h保持することにより、焼結し、WOを還元・炭化してWまたはその炭化物とする、請求項5のSi系セラミックスを作製する方法。 Y 2 O 3 is 5 mass%, AlN is 4 mass%, MgO is 1 mass%, WO 3 is 1 mass% to 7.9 mass%, the remainder is Si 3 N 4 and the raw material powder is prepared, wet mixed and pulverized, necessary Add a molding aid, and after drying, cold compression molding, and if necessary molded into a predetermined shape, set it in a carbon case and place it in a vacuum sintering furnace using a carbon heat insulating material and a carbon heater. After filling and evacuating to 6.5 Pa or less, sintering is performed by holding at a temperature of 1650 ° C. for 3 hours under a nitrogen atmosphere of 0.2 MPa or more and less than 1 MPa, and WO 3 is reduced and carbonized to form W or a carbide thereof. A method for producing the Si 3 N 4 ceramics according to claim 5. 請求項1、請求項3または請求項5のいずれかのセラミックスを用いて作製した、刃先交換式切削チップ、またはエンドミル。   A blade-tip-exchangeable cutting tip or an end mill produced using the ceramic according to claim 1, claim 3 or claim 5. 請求項7の刃先交換式切削チップ、またはエンドミルで、インコネル(登録商標)を、切削速度500m/min以上1100m/min以下で切削加工する方法。   A method for cutting Inconel (registered trademark) at a cutting speed of 500 m / min or more and 1100 m / min or less with the cutting edge exchangeable cutting tip or end mill of claim 7. 請求項1、請求項3または請求項5のいずれかのセラミックスを用いて作製した、アルミ溶湯部品、研磨布ドレッシングプレート、高周波焼入れ治具、塑性加工用ロール、ノズル、ノズルカバー、またはベアリングボール。   A molten aluminum part, a polishing cloth dressing plate, an induction hardening jig, a roll for plastic working, a nozzle, a nozzle cover, or a bearing ball, produced using the ceramic according to claim 1, claim 3 or claim 5.
JP2014255407A 2014-12-17 2014-12-17 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same Active JP5909804B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255407A JP5909804B1 (en) 2014-12-17 2014-12-17 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255407A JP5909804B1 (en) 2014-12-17 2014-12-17 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same

Publications (2)

Publication Number Publication Date
JP5909804B1 JP5909804B1 (en) 2016-04-27
JP2016113347A true JP2016113347A (en) 2016-06-23

Family

ID=55808213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255407A Active JP5909804B1 (en) 2014-12-17 2014-12-17 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same

Country Status (1)

Country Link
JP (1) JP5909804B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172241A (en) * 2017-03-31 2018-11-08 島根県 Sialon ceramics and method for producing the same
JP2018202551A (en) * 2017-06-05 2018-12-27 国立大学法人名古屋大学 Cutting tool, cutting device and cutting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277570A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JP2001278666A (en) * 2000-03-31 2001-10-10 Taiheiyo Cement Corp Method for manufacturing sintered silicon nitride
JP2003192446A (en) * 2001-12-26 2003-07-09 Isuzu Motors Ltd Silicon nitride composite material and production method therefor
JP2014231460A (en) * 2013-05-29 2014-12-11 日本特殊陶業株式会社 Silicon nitride sintered compact and manufacturing method thereof and rolling element for bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277570A (en) * 1987-05-08 1988-11-15 Toshiba Corp Production of sintered aluminum nitride having high thermal conductivity
JP2001278666A (en) * 2000-03-31 2001-10-10 Taiheiyo Cement Corp Method for manufacturing sintered silicon nitride
JP2003192446A (en) * 2001-12-26 2003-07-09 Isuzu Motors Ltd Silicon nitride composite material and production method therefor
JP2014231460A (en) * 2013-05-29 2014-12-11 日本特殊陶業株式会社 Silicon nitride sintered compact and manufacturing method thereof and rolling element for bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172241A (en) * 2017-03-31 2018-11-08 島根県 Sialon ceramics and method for producing the same
JP2018202551A (en) * 2017-06-05 2018-12-27 国立大学法人名古屋大学 Cutting tool, cutting device and cutting method

Also Published As

Publication number Publication date
JP5909804B1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
JP2009234826A (en) Silicon nitride sintered compact
US9120707B2 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
US10364192B2 (en) Method for forming sintered ceramic material
US10532952B2 (en) Method including sonication and spark plasma sintering for forming a ceramic material
EP2636659B1 (en) High rigidity ceramic material and method for producing same
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5340028B2 (en) Cutting tools
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
JP5909804B1 (en) Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
JP2018015793A (en) Frictional agitation joining tool
JP6075803B2 (en) Silicon nitride sintered body and cutting tool
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2015009327A (en) Cutting insert
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
JP4820097B2 (en) Aluminum nitride sintered body and method for producing the same
JP2008297135A (en) Boron carbide based sintered compact, its manufacturing method and protective member
JP2008273752A (en) Boron carbide-based sintered compact and protective member
JP2004315329A (en) Method for manufacturing sintered aluminum nitride compact

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5909804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250