JP2001278666A - Method for manufacturing sintered silicon nitride - Google Patents

Method for manufacturing sintered silicon nitride

Info

Publication number
JP2001278666A
JP2001278666A JP2000097718A JP2000097718A JP2001278666A JP 2001278666 A JP2001278666 A JP 2001278666A JP 2000097718 A JP2000097718 A JP 2000097718A JP 2000097718 A JP2000097718 A JP 2000097718A JP 2001278666 A JP2001278666 A JP 2001278666A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
sintered body
silicon carbide
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097718A
Other languages
Japanese (ja)
Inventor
Masahito Iguchi
真仁 井口
Masayuki Watanabe
雅幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000097718A priority Critical patent/JP2001278666A/en
Publication of JP2001278666A publication Critical patent/JP2001278666A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered silicon nitride with a complicated shape whose surface layer is highly hardened because of an added silicon nitride particle. SOLUTION: A molded silicon article containing oxygen is sintered under a condition of carbon-containing nitrogenous atmosphere <=0.1 MPa and temperature <1500 deg.C using a compound consisting of aluminum and/or yttrium and oxygen as an auxiliary for sintering, with the result that a silicon carbide fine particle is formed on the surface layer of silicon nitride. Then the article is heat-treated under the condition of a nitrogenous atmosphere >=0.1 MPa and <=1 MPa and temperature >=1500 deg.C and <=2000 deg.C. The finished compact with a relative density >=97% contains silicon carbide on the surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面が高硬度化さ
れ、複雑な形状であっても容易に製造することができ
る、表層に炭化珪素粒子を含む窒化珪素焼結体とその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body containing silicon carbide particles in a surface layer and a method for manufacturing the same, which can be easily manufactured even if the surface has a high hardness and a complicated shape. .

【0002】[0002]

【従来の技術】耐熱性、耐熱衝撃性、耐摩耗性に優れた
窒化珪素(Si)焼結体は、高温部材であるとと
もに、熱衝撃の生じる部位等では、汎用セラミックスで
あるアルミナ(Al)に代わって耐摩耗部材とし
ても使用されるに至っている。そして、このような窒化
珪素焼結体の高温特性、耐摩耗特性を向上するために、
窒化珪素焼結体に炭化珪素(SiC)を複合させた複合
材料が開発されている。このような炭化珪素複合窒化珪
素質の緻密質な焼結体を得るためには、一般に、焼結助
剤を添加した窒化珪素粉末に炭化珪素粉末や炭化珪素前
駆体を添加する方法が採られている。
BACKGROUND ART heat resistance, thermal shock resistance, wear resistance excellent silicon nitride (Si 3 N 4) sintered body with a high temperature member, the site or the like of occurrence of thermal shock, a general purpose ceramic alumina It has been used as a wear-resistant member instead of (Al 2 O 3 ). And, in order to improve the high temperature characteristics and wear resistance characteristics of such a silicon nitride sintered body,
A composite material in which silicon carbide (SiC) is combined with a silicon nitride sintered body has been developed. In order to obtain such a dense sintered body of silicon carbide composite silicon nitride, generally, a method of adding a silicon carbide powder or a silicon carbide precursor to silicon nitride powder to which a sintering aid has been added is adopted. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窒化珪
素に添加した炭化珪素粒子は焼結を阻害するため、炭化
珪素複合窒化珪素焼結体の製造には、一般的にはホット
プレス(HP)や熱間静水圧プレス(HIP)等、外力
を必要とする加圧焼結法を用いる必要がある。これらの
方法を用いた場合には、例えば、ホットプレスでは板状
の焼結体しか得られず、複雑な形状の焼結体を製造でき
ない問題があり、熱間静水圧プレスは製造コストが高く
なることから、汎用部材を製造する目的に適するものと
は言い難い。また、窒化珪素に添加する炭化珪素として
は極微粒粉末を用いる必要がある。このようなことか
ら、従来の方法により製造された複合材料は高価なもの
となる。
However, since silicon carbide particles added to silicon nitride hinder sintering, hot press (HP) or the like is generally used for producing a silicon carbide composite silicon nitride sintered body. It is necessary to use a pressure sintering method that requires an external force, such as a hot isostatic press (HIP). When these methods are used, for example, only a plate-shaped sintered body can be obtained by hot pressing, and there is a problem that a sintered body of a complicated shape cannot be manufactured, and a hot isostatic press has a high manufacturing cost. Therefore, it is hard to say that it is suitable for the purpose of manufacturing a general-purpose member. Further, it is necessary to use ultrafine powder as silicon carbide to be added to silicon nitride. As such, composite materials produced by conventional methods are expensive.

【0004】炭化珪素複合窒化珪素焼結体を、構造用セ
ラミックスとして製造する場合に、常圧焼結法や1MP
a(10気圧)以下の窒素雰囲気下で焼結するガス圧焼
結法を用いることができれば、製造コストが低減され、
また、所定の複雑な形状のものも製造が容易となると考
えられ、実用上、望ましい。
When a silicon carbide composite silicon nitride sintered body is manufactured as a structural ceramic, a normal pressure sintering method or a 1MP
If the gas pressure sintering method of sintering under a nitrogen atmosphere of a (10 atm) or less can be used, the production cost can be reduced,
In addition, it is considered that a product having a predetermined complicated shape is easily manufactured, which is desirable in practical use.

【0005】本発明は、このような問題点に鑑みてなさ
れたものであり、表層に炭化珪素粒子を含ませることに
よって表層が高硬度化され、また、複雑な形状であって
も容易かつ安価に製造することができる窒化珪素焼結体
とその製造方法を提供することを目的とする。
[0005] The present invention has been made in view of such problems, and the surface layer is made harder by including silicon carbide particles in the surface layer. It is an object of the present invention to provide a silicon nitride sintered body that can be manufactured at a low temperature and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】発明者らは、上述した従
来技術の有する課題を解決すべく鋭意検討した結果、反
応焼結法と緻密化焼結法を組み合わせた2段焼結法を用
い、反応焼結時の窒素雰囲気に炭素を含ませることによ
り、窒化珪素成形体表層に微細な炭化珪素粒子を生成さ
せて、焼結させることが可能であることを見い出し、本
発明に到達した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems of the prior art, and have found that a two-stage sintering method combining a reaction sintering method and a densification sintering method is used. The present inventors have found that it is possible to generate fine silicon carbide particles on the surface layer of a silicon nitride molded body and to perform sintering by including carbon in a nitrogen atmosphere at the time of reaction sintering, and arrived at the present invention.

【0007】すなわち、本発明によれば、表層に炭化珪
素粒子を含み、97%以上の相対密度を有することを特
徴とする窒化珪素焼結体、が提供される。このような窒
化珪素焼結体を得るために、アルミニウムおよび/また
はイットリウムと酸素からなる化合物が焼結助剤として
好適に用いられる。
That is, according to the present invention, there is provided a silicon nitride sintered body characterized in that the surface layer contains silicon carbide particles and has a relative density of 97% or more. In order to obtain such a silicon nitride sintered body, a compound comprising aluminum and / or yttrium and oxygen is suitably used as a sintering aid.

【0008】また、本発明によれば、上述した表層に炭
化珪素を含有する窒化珪素焼結体の製造方法が提供され
る。すなわち、アルミニウムおよび/またはイットリウ
ムと酸素からなる化合物を焼結助剤として用い、酸素を
含む珪素成形体を、炭素を含有する0.1MPa以下の
窒素雰囲気中、1500℃未満で反応焼結して、窒化珪
素表層に炭化珪素微粒子を形成せしめ、次いで、0.1
MPa以上1MPa以下の窒素雰囲気中、1500℃以
上2000℃以下で加熱し、相対密度を97%以上に緻
密化させることを特徴とする窒化珪素焼結体の製造方
法、が提供される。
Further, according to the present invention, there is provided a method for producing a silicon nitride sintered body containing silicon carbide in a surface layer as described above. That is, a compound comprising aluminum and / or yttrium and oxygen is used as a sintering aid, and a silicon compact containing oxygen is reactively sintered at less than 1500 ° C. in a nitrogen atmosphere containing 0.1 MPa or less containing carbon. To form silicon carbide fine particles on the surface layer of silicon nitride.
There is provided a method for producing a silicon nitride sintered body, characterized by heating in a nitrogen atmosphere of MPa to 1 MPa at 1500 ° C. to 2000 ° C. to densify the relative density to 97% or more.

【0009】このような製造方法を用いた場合には、ホ
ットプレスや熱間静水圧プレス等を用いる必要がないこ
とから、製造装置についてもコストがかからず、しか
も、複雑な形状の製品も容易に製造することが可能とな
る。
When such a manufacturing method is used, there is no need to use a hot press, a hot isostatic press, or the like. It can be easily manufactured.

【0010】[0010]

【発明の実施の形態】本発明の窒化珪素(Si
焼結体は、その表層が、耐酸化性や硬度、耐摩耗性等に
ついて、窒化珪素と炭化珪素(SiC)からなる複合材
料の性質を有する。ここで、窒化珪素粉末を成形して焼
結する一般的な窒化珪素焼結体であっても、焼成雰囲気
によっては、その表面に緑色の炭化珪素が生成する場合
があるが、この場合の炭化珪素の生成は、窒化珪素焼結
体のごく表面に限られる。しかしながら、本発明の窒化
珪素焼結体の表層とは、焼結体表面から5mm程度の内
部までを含む表層をいい、この点で、従来の炭化珪素が
表面または表面のごく浅い部分に生成した窒化珪素焼結
体と区別される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon Nitride (Si 3 N 4 ) of the present invention
The surface of the sintered body has the properties of a composite material composed of silicon nitride and silicon carbide (SiC) with respect to oxidation resistance, hardness, wear resistance, and the like. Here, even with a general silicon nitride sintered body obtained by molding and sintering silicon nitride powder, green silicon carbide may be generated on the surface depending on the firing atmosphere. Production of silicon is limited to the very surface of the silicon nitride sintered body. However, the surface layer of the silicon nitride sintered body of the present invention refers to a surface layer including the inside from the surface of the sintered body to about 5 mm, and in this regard, conventional silicon carbide is formed on the surface or a very shallow portion of the surface. It is distinguished from a silicon nitride sintered body.

【0011】本発明の窒化珪素焼結体は、焼結体内部か
ら表面にかけて傾斜的に炭化珪素量が増加するという特
徴を有し、X線回析における炭化珪素と窒化珪素のメイ
ンピークの強度比から求めた炭化珪素含有量は、例え
ば、厚さ20mmの焼結体の表面から1mm深さでは炭
化珪素の含有量は5〜20重量%程度であるが、同一の
焼結体でも5mm深さでは5重量%以下となる。本発明
において、窒化珪素に含まれることとなる炭化珪素の含
有量に制限はない。
The silicon nitride sintered body of the present invention is characterized in that the amount of silicon carbide increases in a gradient from the inside of the sintered body to the surface, and the intensity of the main peak of silicon carbide and silicon nitride in X-ray diffraction. The silicon carbide content determined from the ratio is, for example, at a depth of 1 mm from the surface of a sintered body having a thickness of 20 mm, the content of silicon carbide is about 5 to 20% by weight. In this case, the content is 5% by weight or less. In the present invention, there is no limitation on the content of silicon carbide to be included in silicon nitride.

【0012】本発明の窒化珪素焼結体を、耐熱性部材、
耐摩耗性部材として使用する場合には、相対密度が97
%以上あることが望ましい。ここでの相対密度とは、炭
化珪素と窒化珪素の理論密度がほぼ同じであることか
ら、窒化珪素の理論密度に対する相対密度で示すものと
して差し支えなく、本発明において、窒化珪素の理論密
度を基準とする。なお、相対密度が97%未満の場合に
は、機械的強度、硬度等の焼結体物性が著しく低下する
問題がある。
[0012] The silicon nitride sintered body of the present invention comprises a heat-resistant member,
When used as a wear-resistant member, the relative density is 97
% Is desirable. Since the relative density of silicon carbide and silicon nitride is almost the same here, the relative density may be indicated as a relative density to the theoretical density of silicon nitride.In the present invention, the relative density is based on the theoretical density of silicon nitride. And If the relative density is less than 97%, there is a problem that the physical properties of the sintered body such as mechanical strength and hardness are significantly reduced.

【0013】次に、上述した本発明の窒化珪素焼結体の
製造方法について説明する。原料として用いる珪素(S
i)粉末は、粉砕される工程で表面が酸化され、0.5
〜3%程度の酸素を含むようになり、さらに、このよう
な粉砕粉末は、粒子や成形体として空気や酸素を含む雰
囲気下で放置され、処理されることで表面酸化が進行
し、焼成前の段階で、酸素や酸化物の形態で約0.5〜
5重量%の酸素を含むようになる。
Next, a method for manufacturing the above-described silicon nitride sintered body of the present invention will be described. Silicon (S
i) The surface of the powder is oxidized in the step of pulverization,
About 3% of oxygen. Further, such a crushed powder is left in an atmosphere containing air or oxygen as particles or a molded body, and is subjected to treatment to promote surface oxidation. In the stage, in the form of oxygen or oxide about 0.5 ~
It comes to contain 5% by weight of oxygen.

【0014】また珪素粉末には、通常、精製段階で微量
の鉄(Fe)、アルミニウム(A1)、カルシウム(C
a)等の金属不純物が含まれることとなる。本発明にお
いて、これら鉄等の不純物含有量に限定はなく、製造さ
れる窒化珪素焼結体の使用用途に応じて、通常焼結用原
料として用いることができる程度に鉄等の不純物を含ん
だ珪素粉末を、適宜使用することができる。
[0014] In addition, silicon powder usually contains trace amounts of iron (Fe), aluminum (A1), calcium (C) in the refining stage.
a) and other metal impurities. In the present invention, the content of impurities such as iron is not limited, and depending on the intended use of the manufactured silicon nitride sintered body, impurities such as iron and the like are contained to such an extent that they can be usually used as a raw material for sintering. Silicon powder can be used as appropriate.

【0015】一般的に、出発原料の純度が高ければ、優
れた機械的特性を有する焼結体が得られることから、こ
のような不純物の含有量は少ない方が好ましいが、窒化
はより困難となる問題がある。本発明では、鉄の含有量
が0.1重量%以下で、かつ金属不純物の総量が0.4
重量%以下の高純度な珪素粉末を使用することが可能で
ある。
Generally, if the purity of the starting material is high, a sintered body having excellent mechanical properties can be obtained. Therefore, it is preferable that the content of such impurities is small, but nitriding is more difficult. There is a problem. In the present invention, the iron content is 0.1% by weight or less and the total amount of metal impurities is 0.4% by weight.
It is possible to use a high purity silicon powder of not more than weight%.

【0016】出発原料として用いる珪素粉末の粒度は、
44μm以下であることが好ましく、焼結助剤の混合分
散を均一にするためには、平均粒径が0.5〜l0μm
程度であることが好ましい。焼結助剤として用いる酸化
イットリウム(Y)と酸化アルミニウム(Al
)の添加量は、両者を併せて通常、窒化珪素に対し
て3〜30重量%とされ、5〜15重量%であるとより
好ましい。焼結助剤の量が5%より少ないと十分に緻密
化せず、一方、30%以上になると粒界相が多くなり、
窒化珪素の機械的特性等が低下する問題がある。このよ
うな焼結助剤は、珪素粉末に均一に分散させる目的か
ら、平均粒径は0.5〜1μm程度であることが好まし
い。
The particle size of the silicon powder used as a starting material is
The average particle size is preferably from 0.5 to 10 μm in order to make the mixing and dispersion of the sintering aid uniform.
It is preferred that it is about. Yttrium oxide (Y 2 O 3 ) and aluminum oxide (Al 2 ) used as sintering aids
The added amount of O 3 ) is usually 3 to 30% by weight, more preferably 5 to 15% by weight, based on silicon nitride. If the amount of the sintering aid is less than 5%, it will not be sufficiently densified, while if it is more than 30%, the grain boundary phase will increase,
There is a problem that the mechanical properties and the like of silicon nitride deteriorate. Such a sintering aid preferably has an average particle size of about 0.5 to 1 μm for the purpose of uniformly dispersing it in the silicon powder.

【0017】上述した珪素粉末と焼結助剤を所定比で調
製し、ボールミルや媒体撹拌ミル等の一般的な混合手段
を用いて、湿式或いは乾式で混合する。得られた混合粉
末は、金型成形、ゴム型成形、射出成形、鋳込成形、押
出成形等の任意の成形法によって成形をすることができ
る。また、成形体を機械加工して、所望の形状とするこ
とも好ましい。
The above-mentioned silicon powder and sintering aid are prepared at a predetermined ratio, and are mixed by a wet or dry method using a general mixing means such as a ball mill or a medium stirring mill. The obtained mixed powder can be molded by any molding method such as mold molding, rubber mold molding, injection molding, cast molding, and extrusion molding. It is also preferable to machine the molded body to have a desired shape.

【0018】続いて、得られた成形体を窒素(N)雰
囲気中で反応焼結(窒化)するが、本発明においては、
1500℃未満の温度で珪素成形体を窒化する工程にお
いて、雰囲気ガス中に炭素を含有させる。この炭素成分
が珪素成形体の表面から内部に向かって拡散すること
で、珪素成形体の表面に、炭化珪素の微粒子が傾斜組成
的に析出・分布した表層が形成されることとなる。ここ
での窒素雰囲気とは窒化性ガス雰囲気を指し、窒素ガス
のみの場合、および窒素ガスを主体としてアルゴン(A
r)、ヘリウム(He)、水素(H)、アンモニア
(NH)等が少量混合した混合ガス雰囲気の場合、の
両者が含まれる。
Subsequently, the obtained compact is subjected to reaction sintering (nitriding) in a nitrogen (N 2 ) atmosphere.
In the step of nitriding the silicon compact at a temperature lower than 1500 ° C., carbon is contained in the atmosphere gas. When the carbon component diffuses from the surface of the silicon molded body toward the inside, a surface layer in which fine particles of silicon carbide are precipitated and distributed in a gradient composition is formed on the surface of the silicon molded body. Here, the nitrogen atmosphere refers to a nitriding gas atmosphere, in the case of only nitrogen gas, and in the case of argon (A) mainly containing nitrogen gas.
r), helium (He), hydrogen (H 2 ), ammonia (NH 3 ) and the like in the case of a mixed gas atmosphere in which a small amount is mixed.

【0019】このような雰囲気ガスに炭素を含有させる
方法としては、一酸化炭素(CO)、二酸化炭素(CO
)を混合する方法や、珪素成形体が窒化される際に放
出される酸素と反応して一酸化炭素や二酸化炭素を発生
させる炭素源を併存させる方法、例えば、炭化珪素や黒
鉛(C)などを焼成容器内に珪素成形体と共存させる方
法が挙げられる。また、焼成容器に通気孔を設けて黒鉛
ヒータや炭化珪素ヒータから供給させる方法を用いるこ
ともできるが、この場合には、発熱体の使用寿命が短く
なる欠点がある。
As a method for containing carbon in such an atmosphere gas, carbon monoxide (CO), carbon dioxide (CO
2 ) or a method in which a carbon source that generates carbon monoxide or carbon dioxide by reacting with oxygen released when the silicon molded body is nitrided, for example, silicon carbide or graphite (C) And the like, in which a coexistence with a silicon molded body is made in a firing vessel. In addition, a method in which a ventilation hole is provided in the firing container and supplied from a graphite heater or a silicon carbide heater can be used, but in this case, there is a disadvantage that the service life of the heating element is shortened.

【0020】窒化温度は1200℃以上1500℃未満
であるが、1350〜1450℃が特に好ましい。ま
た、珪素成形体から効果的にSiOを揮散させるために
は、雰囲気圧力は0.1MPa以下、好ましくは0.0
5〜0.1MPaとすることが好ましい。なお、窒化反
応は発熱反応であるため、急激な加熱を避けて、珪素の
溶出が起こらないように、適当な昇温速度を選択する必
要がある。
The nitriding temperature is not less than 1200 ° C. and less than 1500 ° C., but 1350 to 1450 ° C. is particularly preferred. In order to effectively volatilize SiO from the silicon molded body, the atmospheric pressure is 0.1 MPa or less, preferably 0.02 MPa or less.
The pressure is preferably set to 5 to 0.1 MPa. Since the nitriding reaction is an exothermic reaction, it is necessary to select an appropriate heating rate so as to avoid rapid heating and prevent the elution of silicon.

【0021】このように、本発明では窒素雰囲気中に適
量な炭素成分を含ませることが重要であるが、過剰の一
酸化炭素や二酸化炭素の混合は窒化反応を阻害するた
め、混合量(含有量)は10体積%以下、好ましくは5
体積%以下とする必要がある。また、窒素ガス中に適量
な炭素含有ガスを生じさせる炭素源として黒鉛、炭化珪
素等を用いる場合には、高温での焼結中に低沸点不純物
の溶出や気化を起こさないものを用いることが好まし
い。
As described above, in the present invention, it is important to contain an appropriate amount of a carbon component in a nitrogen atmosphere. However, mixing of an excessive amount of carbon monoxide or carbon dioxide inhibits a nitriding reaction. Amount) is 10% by volume or less, preferably 5% by volume.
It is necessary to be not more than volume%. When graphite, silicon carbide, or the like is used as a carbon source for generating an appropriate amount of a carbon-containing gas in a nitrogen gas, a material that does not elute or vaporize low-boiling impurities during sintering at a high temperature may be used. preferable.

【0022】一方で、珪素成形体が窒化される際に放出
される酸素と反応して一酸化炭素や二酸化炭素を発生し
易い炭素源は、その表面積が大きいものが効果的であ
る。このため、珪素成形体と共存させる黒鉛または炭化
珪素としては、粉状、繊維状、多孔体形状のものを用い
ることが好ましい。但し、粉状の場合に粒度が極端に小
さいと、焼成準備等、製造時のハンドリング性が悪く、
一方、塊状で表面積が小さいと、十分な炭素含有ガスの
発生効果が得られない。
On the other hand, a carbon source which easily reacts with oxygen released when the silicon molded body is nitrided to generate carbon monoxide or carbon dioxide is effective if the carbon source has a large surface area. For this reason, as the graphite or silicon carbide coexisting with the silicon molded body, it is preferable to use a powdery, fibrous, or porous material. However, if the particle size is extremely small in the case of powder, handling properties during production, such as firing preparation, are poor,
On the other hand, if the surface is massive and has a small surface area, a sufficient effect of generating a carbon-containing gas cannot be obtained.

【0023】つまり、窒化珪素焼結体の表面に生成させ
る炭化珪素含有層の厚みは、共存させる黒鉛や炭化珪素
の総表面積、試料容器の容積、珪素の酸素含有量、窒素
雰囲気圧力、バッチ炉であれば1回あたりの仕込み量等
によって左右されるため、適宜条件出しを行った上で決
定することが望ましい。
That is, the thickness of the silicon carbide-containing layer formed on the surface of the silicon nitride sintered body depends on the total surface area of the coexisting graphite and silicon carbide, the volume of the sample container, the oxygen content of silicon, the nitrogen atmosphere pressure, the batch furnace If this is the case, it depends on the preparation amount per operation and the like, so it is desirable to determine after appropriately setting conditions.

【0024】次に、前述の通りにして窒化された窒化珪
素体は、窒化に用いた炉で連続して加熱することにより
焼結してもよく、別の焼成炉に移して焼結してもよい。
焼結温度は1500℃〜2000℃とされるが、170
0〜2000℃とすることが、より好ましい。1500
℃以下では焼結が促進されず、一方、2000℃を超え
ると窒化珪素の粒成長が激しくなり、焼結体中の窒化珪
素粒子が粗大化し、機械的特性等が低下する問題があ
る。
Next, the silicon nitride body nitrided as described above may be sintered by continuously heating it in the furnace used for nitriding, or may be transferred to another firing furnace and sintered. Is also good.
The sintering temperature is 1500-2000 ° C.
The temperature is more preferably set to 0 to 2000 ° C. 1500
Sintering is not promoted below ℃, while on the other hand, above 2,000 ℃, silicon nitride grains grow violently, silicon nitride particles in the sintered body are coarsened, and there is a problem that mechanical properties and the like deteriorate.

【0025】焼結雰囲気は窒素による加圧雰囲気とす
る。ここで、窒化珪素の分解抑制のために、窒素ガス雰
囲気を1MPa以上の高圧にすることが最も好ましい
が、焼結炉が高価となることから、製造コストの高騰に
つながる問題がある。そこで、本発明においては、窒化
珪素の分解を抑制することができる範囲で圧力が低い条
件、つまり、窒素ガス加圧で0.1MPa以上1MPa
以下とする。これにより装置コストを低減し、また安全
に製造を行うことが可能となる。
The sintering atmosphere is a pressurized atmosphere with nitrogen. Here, in order to suppress the decomposition of silicon nitride, it is most preferable to set the nitrogen gas atmosphere to a high pressure of 1 MPa or more. However, since the sintering furnace becomes expensive, there is a problem that the production cost rises. Therefore, in the present invention, the pressure is low as long as the decomposition of silicon nitride can be suppressed, that is, 0.1 MPa or more and 1 MPa under nitrogen gas pressurization.
The following is assumed. As a result, the cost of the apparatus can be reduced and the production can be performed safely.

【0026】このように焼結温度、時間および焼結雰囲
気を制御することにより、相対密度が97%以上で、表
層に炭化珪素の微粒子が分散した窒化珪素焼結体を得る
ことができる。この炭化珪素複合窒化珪素焼結体は、そ
の表層に存在する炭化珪素粒子に起因して、焼結体表面
の硬度が高く、また、焼結体表層において粒界相が占め
る割合が減少して焼結体組織が微細化するため、耐酸化
性、耐摩耗性が大幅に向上する。このような本発明の窒
化珪素焼結体は、特に耐熱材料、耐摩耗材料として、好
適に用いられる。
By controlling the sintering temperature, time and sintering atmosphere, a silicon nitride sintered body having a relative density of 97% or more and silicon carbide fine particles dispersed in the surface layer can be obtained. This silicon carbide composite silicon nitride sintered body has a high hardness on the surface of the sintered body due to the silicon carbide particles present in its surface layer, and the proportion of the grain boundary phase in the surface layer of the sintered body decreases. Oxidation resistance and wear resistance are greatly improved because the structure of the sintered body is refined. Such a silicon nitride sintered body of the present invention is suitably used especially as a heat-resistant material and a wear-resistant material.

【0027】次に、本発明の実施例について説明する
が、本発明が以下の実施例に限定されるものでないこと
はいうまでもない。
Next, embodiments of the present invention will be described, but it goes without saying that the present invention is not limited to the following embodiments.

【0028】[0028]

【実施例】(実施例1)実施例1の窒化珪素焼結体の製
造には、表1に示す組成を有する珪素(Si)粉末およ
び焼結助剤(AlおよびY)を使用した。
この表1に示す珪素粉末と焼結助剤を、表2に示した割
合で調製し、エタノール中、20時間ほど、窒化珪素ボ
ールを用いたボールミル混合により処理した。得られた
混合粉末を乾燥後、メノウ乳鉢で解砕し、200μmの
メッシュパスを行った。こうして得られた粉末を一軸プ
レスで予備成形した後、98MPa(1.0t/c
)の圧力で、静水圧プレス(CIP)し、50mm
×50mm×5mmの珪素成形体を得た。
EXAMPLES Example 1 To produce the silicon nitride sintered body of Example 1, a silicon (Si) powder having the composition shown in Table 1 and sintering aids (Al 2 O 3 and Y 2 O 3) were used. )It was used.
The silicon powder and the sintering aid shown in Table 1 were prepared in the proportions shown in Table 2, and were treated in ethanol by ball milling using silicon nitride balls for about 20 hours. After drying the obtained mixed powder, it was pulverized in an agate mortar and passed through a 200 μm mesh pass. The powder thus obtained was preformed by a uniaxial press, and then was subjected to 98 MPa (1.0 t / c).
m 2 ) at a pressure of 50 mm
A silicon molded body of × 50 mm × 5 mm was obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】続いて、内径200mmφ、深さ50mm
の蓋付き反応焼結窒化珪素製容器の底に純度98%以
上、平均粒度20μmの炭化珪素(SiC)粉末を20
0g敷き詰め、この上に前述した成形体4枚を、SiC
粉末に直接触れないように10×5×50mmの窒化珪
素製試料台の上に橋渡しする形で載置した。
Subsequently, an inner diameter of 200 mmφ and a depth of 50 mm
A silicon carbide (SiC) powder having a purity of 98% or more and an average particle size of 20 μm is placed on the bottom of a reaction sintered silicon nitride container with a lid of
0 g, and the above-mentioned four compacts were placed on the
The sample was placed on a 10 × 5 × 50 mm silicon nitride sample table so as not to touch the powder directly.

【0032】蓋をした容器を、0.1MPaの窒素(純
度99.99%)雰囲気中、表3に示す温度条件で窒化
した。なお、窒化後の焼結体の結晶相を確認するため
に、得られた窒化後の焼結体の1枚を切断し、断面の炭
化珪素含有層(緑色に着色した層を指し、表層と同
義。)の厚さを測定した。その測定結果は表2に示され
ている。
The container with the lid was nitrided in a 0.1 MPa nitrogen (purity: 99.99%) atmosphere under the temperature conditions shown in Table 3. In addition, in order to confirm the crystal phase of the sintered body after nitriding, one of the obtained sintered bodies after nitriding was cut, and a silicon carbide-containing layer (referred to as a layer colored green, indicating a surface layer) Synonym.) Was measured. The measurement results are shown in Table 2.

【0033】[0033]

【表3】 [Table 3]

【0034】残りの窒化体については、引き続き、表3
に示す焼結条件にて焼結を行い、得られた焼結体の密度
はアルキメデス法により測定し、相対密度は窒化珪素の
理論密度に対する相対密度で算出した。また、曲げ強度
はJIS R1601に準拠した4点曲げ試験により測
定した。さらに、焼結体の硬度は、JlS R1610
に準拠したビッカース硬さ試験法(押し込み圧力10
N)により測定した。測定結果は表2に併記した。
For the remaining nitride, Table 3
The sintering was performed under the sintering conditions shown in (1), the density of the obtained sintered body was measured by the Archimedes method, and the relative density was calculated as a relative density to the theoretical density of silicon nitride. The bending strength was measured by a four-point bending test according to JIS R1601. Further, the hardness of the sintered body is Jls R1610
Hardness test method (indentation pressure 10
N). The measurement results are also shown in Table 2.

【0035】製造された焼結体の摩耗量は、衝突粒子と
してホワイトアルミナ#70を用い、衝突角度を30
°、流速を70m/分、衝突量を1kg/1時間、試験
時間を2時間としたサンドブラスト摩耗試験により行
い、表面粗さ計を用いて最大摩耗深さを読み取ることに
より評価した。さらに、耐酸化性は、大気炉で1300
℃、500時間加熱したときの焼結体の重量増加分を焼
結体の表面積で除して求めた。
The amount of wear of the manufactured sintered body was determined by using white alumina # 70 as the collision particles and setting the collision angle to 30.
°, a flow rate of 70 m / min, a collision amount of 1 kg / 1 hour, and a test time of 2 hours were performed by a sand blast wear test, and the evaluation was performed by reading the maximum wear depth using a surface roughness meter. Further, the oxidation resistance is 1300 in an atmospheric furnace.
The weight increase of the sintered body when heated at 500C for 500 hours was divided by the surface area of the sintered body.

【0036】(実施例2)実施例2の試料は、実施例1
において用いたSiC粉末の代わりに、純度98%以
上、気孔率30%、50mm×50mm×5mmの形状
を有するSiC多孔体を用い、このSiC多孔体4枚を
同じ焼成容器に設置して、実施例1と同じ条件で窒化お
よび焼結することで作製した。
Example 2 The sample of Example 2 is the same as that of Example 1
In place of the SiC powder used in the above, a porous SiC body having a purity of 98% or more, a porosity of 30%, and a shape of 50 mm × 50 mm × 5 mm was used, and the four porous SiC bodies were set in the same firing vessel, and It was produced by nitriding and sintering under the same conditions as in Example 1.

【0037】(実施例3)実施例3の試料は、実施例1
において用いたSiC粉末の代わりに、純度99%以
上、平均粒径50μmの黒鉛(C)粉末を容器底に30
g敷き詰めて、その他は実施例1の場合と同じ条件で窒
化および焼結して作製した。
Example 3 The sample of Example 3 is the same as that of Example 1
A graphite (C) powder having a purity of 99% or more and an average particle size of 50 μm was placed on the bottom of the container in place of the SiC powder used in the step (1).
g, and nitriding and sintering were performed under the same conditions as in Example 1 except for the above.

【0038】(実施例4)実施例4の試料は、実施例1
において用いたSiC粉末の代わりに、純度99%以
上、気孔率35%で、50mm×50mm×5mmの黒
鉛(C)多孔体を用い、その他は実施例1の場合と同じ
条件で窒化および焼結することにより作製した。
Example 4 The sample of Example 4 is the same as that of Example 1
In place of the SiC powder used in Example 1, a graphite (C) porous body having a purity of 99% or more and a porosity of 35% and a size of 50 mm × 50 mm × 5 mm was used, and the others were nitrided and sintered under the same conditions as in Example 1. It produced by doing.

【0039】(実施例5)実施例5の試料は、実施例1
の試料の作製条件における窒化工程の雰囲気圧力を0.
08MPaとし、その他は実施例1の場合と同じ条件と
して作製した。
(Example 5) The sample of Example 5 is the same as that of Example 1
The atmosphere pressure in the nitridation step under the conditions for preparing the sample was 0.
The pressure was set to 08 MPa, and the other conditions were the same as those in Example 1.

【0040】(実施例6)実施例6の試料は、実施例1
において用いたSiC粉末の代わりに、純度99%以上
の二酸化炭素(CO)ガスを2体積%ほど窒素に混合
すること以外は、実施例1の場合と同じ条件で作製し
た。
(Example 6) The sample of Example 6 is the same as that of Example 1
In the same manner as in Example 1, except that approximately 2% by volume of carbon dioxide (CO 2 ) gas having a purity of 99% or more was mixed with nitrogen instead of the SiC powder used in Example 1.

【0041】(比較例1〜3)比較例1の試料は、実施
例1において用いたSiC粉末を用いない、つまり窒化
工程において炭素源を併存させないこと以外は、実施例
1と同じ条件で窒化および焼結することにより作製し
た。また、比較例2の試料は、原料混合時に純度98%
以上、平均粒度0.6μmのSiC粉末を5重量%添加
し、窒化工程において炭素源を用いないことを除いて、
その他の条件は実施例1の場合と同様として、窒化、焼
結することで作製した。比較例3の試料としては、市販
の窒化珪素焼結体を用いた。
(Comparative Examples 1 to 3) The samples of Comparative Example 1 were nitrided under the same conditions as in Example 1 except that the SiC powder used in Example 1 was not used, that is, the carbon source was not used in the nitriding step. And by sintering. The sample of Comparative Example 2 had a purity of 98% when the raw materials were mixed.
As described above, 5% by weight of SiC powder having an average particle size of 0.6 μm was added, and a carbon source was not used in the nitriding step.
The other conditions were the same as in Example 1, and were manufactured by nitriding and sintering. As a sample of Comparative Example 3, a commercially available silicon nitride sintered body was used.

【0042】(試験結果)試験結果は、表2に併記し
た。比較例1は、窒化工程において炭素源が存在しない
ことから、その表面に炭化珪素含有層が形成されず、従
って、緻密に焼結して相対密度が高く、また機械的強度
も大きいが表面硬度が小さく、このために摩耗試験にお
ける摩耗量が大きなものとなり、酸化による重量増加も
大きなものとなった。比較例2は、原料にSiC粉末が
混合されていることから、焼結が進まず、これにより強
度試験等の試験を行うことができなかった。比較例3の
窒化珪素焼結体は、比較例1とほぼ同等の特性を示した
が、比較例1と比較しても耐酸化性に劣るものであっ
た。この原因は、炭化珪素粒子を含有しないためと考え
られる。
(Test Results) The test results are shown in Table 2. In Comparative Example 1, since no carbon source was present in the nitriding step, a silicon carbide-containing layer was not formed on the surface thereof. Therefore, the sintered body was densely sintered, the relative density was high, and the mechanical strength was large. , The amount of wear in the wear test was large, and the weight increase due to oxidation was also large. In Comparative Example 2, sintering did not proceed because the SiC powder was mixed with the raw material, and as a result, tests such as a strength test could not be performed. The silicon nitride sintered body of Comparative Example 3 exhibited almost the same characteristics as Comparative Example 1, but was inferior in oxidation resistance to Comparative Example 1. It is considered that this is because silicon carbide particles are not contained.

【0043】これら比較例1〜3の試験結果に対して、
本発明に係る実施例1〜6の窒化珪素焼結体は、全てが
相対密度97%以上に緻密に焼結して機械的強度が確保
され、また、約2mm前後の炭化珪素含有層が表面に形
成されていることから表面硬度が大きく、これにより良
好な耐摩耗性を有することが確認された。さらに、耐酸
化性にも優れることが確認された。
With respect to the test results of Comparative Examples 1 to 3,
All of the silicon nitride sintered bodies of Examples 1 to 6 according to the present invention were densely sintered to a relative density of 97% or more to secure mechanical strength, and a silicon carbide-containing layer of about 2 mm was formed on the surface. , It was confirmed that the surface hardness was high, and that it had good wear resistance. Furthermore, it was confirmed that it was also excellent in oxidation resistance.

【0044】[0044]

【発明の効果】上述の通り、本発明の窒化珪素焼結体と
その製造方法によれば、反応焼結時(窒化時)の窒素雰
囲気に炭素を含ませることにより、窒化珪素成形体表層
に微細な炭化珪素粒子を生成させて、焼結させることが
可能であり、こうして得られた窒化珪素焼結体は、表層
に存在する炭化珪素に依存して高い表面硬度を有し、耐
摩耗性や耐酸化性に優れる特性を有する。また、このよ
うな製造方法によれば、複雑な形状の製品も容易に製造
することが可能となり、また、装置コストも低く抑えら
れる。このように、本発明は、機械的強度、硬度、耐酸
化性、耐摩耗性等の機械的特性に優れた窒化珪素焼結体
であって、任意の形状のものを安価に提供することが可
能となるという優れた効果を奏する。
As described above, according to the silicon nitride sintered body of the present invention and the method for producing the same, carbon is contained in the nitrogen atmosphere during the reaction sintering (nitriding), so that the surface layer of the silicon nitride molded body is formed. It is possible to generate fine silicon carbide particles and sinter them, and the silicon nitride sintered body thus obtained has a high surface hardness depending on the silicon carbide present in the surface layer and has a high wear resistance. And have excellent resistance to oxidation. Further, according to such a manufacturing method, it is possible to easily manufacture a product having a complicated shape, and the cost of the apparatus can be reduced. As described above, the present invention provides a silicon nitride sintered body having excellent mechanical properties such as mechanical strength, hardness, oxidation resistance, and abrasion resistance. It has an excellent effect that it becomes possible.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA03 BA09 BA62 BA71 BA73 BB03 BB09 BB22 BB32 BC45 BC47 BC48 BC52 BC54 BC57 BC62 BD12 BD14 BD37 BE15 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA03 BA09 BA62 BA71 BA73 BB03 BB09 BB22 BB32 BC45 BC47 BC48 BC52 BC54 BC57 BC62 BD12 BD14 BD37 BE15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表層に炭化珪素粒子を含み、97%以上
の相対密度を有することを特徴とする窒化珪素焼結体。
1. A silicon nitride sintered body comprising silicon carbide particles in a surface layer and having a relative density of 97% or more.
【請求項2】 焼結助剤として、アルミニウムおよび/
またはイットリウムと酸素からなる化合物が用いられて
いることを特徴とする請求項1に記載の窒化珪素焼結
体。
2. A sintering aid comprising aluminum and / or
The silicon nitride sintered body according to claim 1, wherein a compound comprising yttrium and oxygen is used.
【請求項3】 アルミニウムおよび/またはイットリウ
ムと酸素からなる化合物を焼結助剤として用い、酸素を
含む珪素成形体を、炭素を含有する0.1MPa以下の
窒素雰囲気中、1500℃未満で反応焼結して、窒化珪
素表層に炭化珪素微粒子を形成せしめ、次いで、0.1
MPa以上1MPa以下の窒素雰囲気中、1500℃以
上2000℃以下で加熱し、相対密度を97%以上に緻
密化させることを特徴とする窒化珪素焼結体の製造方
法。
3. Using a compound comprising aluminum and / or yttrium and oxygen as a sintering aid, subjecting a silicon compact containing oxygen to a reaction sintering at a temperature of less than 1500 ° C. in a nitrogen atmosphere containing carbon of 0.1 MPa or less. To form silicon carbide fine particles on the silicon nitride surface layer.
A method for producing a silicon nitride sintered body, comprising heating in a nitrogen atmosphere of from 1 MPa to 1 MPa at a temperature of from 1500 ° C. to 2000 ° C. to increase the relative density to 97% or more.
JP2000097718A 2000-03-31 2000-03-31 Method for manufacturing sintered silicon nitride Pending JP2001278666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097718A JP2001278666A (en) 2000-03-31 2000-03-31 Method for manufacturing sintered silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097718A JP2001278666A (en) 2000-03-31 2000-03-31 Method for manufacturing sintered silicon nitride

Publications (1)

Publication Number Publication Date
JP2001278666A true JP2001278666A (en) 2001-10-10

Family

ID=18612301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097718A Pending JP2001278666A (en) 2000-03-31 2000-03-31 Method for manufacturing sintered silicon nitride

Country Status (1)

Country Link
JP (1) JP2001278666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909804B1 (en) * 2014-12-17 2016-04-27 冨士ダイス株式会社 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909804B1 (en) * 2014-12-17 2016-04-27 冨士ダイス株式会社 Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same
JP2016113347A (en) * 2014-12-17 2016-06-23 冨士ダイス株式会社 Si3nN4-BASED CERAMIC LESS IN HEAT RELEASING PROPERTY, AND TIP EXCHANGE TYPE CUTTING TIP, END MILL AND ANTIFRICTION TOOL USING THE SAME

Similar Documents

Publication Publication Date Title
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
EP2636659B1 (en) High rigidity ceramic material and method for producing same
JPH1149572A (en) Ceramic composite particles and their production
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JP2001278666A (en) Method for manufacturing sintered silicon nitride
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP3672476B2 (en) Silicon iron nitride powder and refractory
JPS63236763A (en) Boron carbide sintered body and manufacture
JP3694583B2 (en) Crusher parts
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JPS6212664A (en) Method of sintering b4c base composite body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH01246178A (en) Production of refractory for molten steel
JPH08319168A (en) Production of sialon ceramic
JP2004256339A (en) Manufacturing method of silicon nitride sintered compact
JPH06279124A (en) Production of silicon nitride sintered compact
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH07277835A (en) Production of combined sintered compact
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JPH04254473A (en) Production of ceramic composite sintered body
Zhang et al. Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPH1017308A (en) Silicon nitride-silicon carbide composite powder and production of combined sintered compact using the same
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture