JPH04254473A - Production of ceramic composite sintered body - Google Patents

Production of ceramic composite sintered body

Info

Publication number
JPH04254473A
JPH04254473A JP3032270A JP3227091A JPH04254473A JP H04254473 A JPH04254473 A JP H04254473A JP 3032270 A JP3032270 A JP 3032270A JP 3227091 A JP3227091 A JP 3227091A JP H04254473 A JPH04254473 A JP H04254473A
Authority
JP
Japan
Prior art keywords
carbon
sintered body
silicon carbide
powder
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3032270A
Other languages
Japanese (ja)
Other versions
JP2801785B2 (en
Inventor
Saburo Nagano
三郎 永野
Shuichi Tateno
周一 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3032270A priority Critical patent/JP2801785B2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Publication of JPH04254473A publication Critical patent/JPH04254473A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2801785B2 publication Critical patent/JP2801785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered body having high strength and improved sliding property in the surface part by baking a molded body of mixture powder essentially comprising silicon carbide under specified conditions, effecting the reaction of silicon carbide and nitrogen to produce silicon nitride and carbon. CONSTITUTION:To a silicon carbide powder, there are added carbon powder such as carbon black and graphite, phenol resin or coal tar pitch powder which produces carbon by pyrolysis, and boron-contg. compd. such as B4C, by total <=10wt.%. To this mixture powder, a binder, etc., is added and molded, and the molded body is baked at 1000-2200 deg.C under >=500atm. of nitrogen gas pressure. Thereby, the sintered body is highly dense in both inside and surface area, and the reaction above-mentioned proceeds actively in the surface area of the sintetred body. Thereby, the controlling the calcination time, the amt. of carbon is made larger in the surface part than in the inside of the body. The obtd. composite sintered body comprising silicon carbide and silicon nitride as an aggregate has small coefft. of friction in the surface part and higher thermal conductivity and electric conductivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高強度を有するととも
炭化珪素および/または窒化珪素からなる複合焼結体で
あり、例えば摺動部材に好適な焼結体の新規製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite sintered body having high strength and made of silicon carbide and/or silicon nitride, and relates to a new method for producing a sintered body suitable for, for example, a sliding member.

【0002】0002

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較して
、硬度、強度、靱性および化学的安定性等に優れる材料
として注目され、例えば、メカニカルシール部品、軸受
部品、薬品用バルブ部材として用いられている。
[Prior Art] Non-oxide ceramics such as silicon carbide and silicon nitride have attracted attention as materials with superior hardness, strength, toughness, and chemical stability compared to other ceramics and metals. Used as mechanical seal parts, bearing parts, and chemical valve parts.

【0003】しかしながら、窒化珪素および炭化珪素単
体では十分な摺動特性が得られないことから、窒化珪素
粉末や炭化珪素粉末に対して、焼結助剤としてAl2 
O3 や周期律表第3a族元素酸化物、あるいは炭素お
よびB4 C等を添加すると同時にグラファイトやBN
等の固体潤滑材を添加し、これを窒素雰囲気あるいは不
活性雰囲気中で焼成することにより、窒化珪素や炭化珪
素からなるマトリックス中に前記固体潤滑材が均一分散
させ、これによりその焼結体表面における摺動特性を高
めることが行われている。
However, silicon nitride and silicon carbide alone cannot provide sufficient sliding properties, so Al2 is used as a sintering aid for silicon nitride powder and silicon carbide powder.
At the same time as adding O3, oxides of Group 3a elements of the periodic table, or carbon and B4C, graphite and BN are added.
By adding a solid lubricant such as and firing it in a nitrogen atmosphere or an inert atmosphere, the solid lubricant is uniformly dispersed in a matrix made of silicon nitride or silicon carbide, and the surface of the sintered body is Efforts are being made to improve the sliding characteristics of

【0004】0004

【発明が解決しようとする問題点】摺動特性を高めるた
めには、焼結体表層部における固体潤滑材の量が多い方
が望ましいが、固体潤滑材を多量に添加すると、焼結体
自体の緻密化が阻害されるとともに、いわゆる骨材とし
てのセラミックス自体の強度が低くなるために摺動部材
として割れや欠け等が生じやすくなるという問題があっ
た。そのために固体潤滑材の添加量にもおのずと制限が
あった。
[Problems to be Solved by the Invention] In order to improve the sliding properties, it is desirable to have a large amount of solid lubricant on the surface layer of the sintered body, but if a large amount of solid lubricant is added, the sintered body itself There is a problem in that the densification of ceramics is inhibited, and the strength of the ceramic itself as so-called aggregate becomes low, making it easy for sliding members to crack or chip. For this reason, there was naturally a limit to the amount of solid lubricant added.

【0005】また製法上、固体潤滑材自体の分散を均一
に行う必要があり、場合によっては焼結体内部の固体潤
滑材が焼結体の破壊源となり、強度を低下させるという
問題がある。しかも窒化珪素をマトリックスとした固体
潤滑材として分散した焼結体では、その窒化珪素結晶の
粒界に焼結助剤として添加した金属酸化物が存在するた
めに耐薬品性が悪く、その使用範囲が限定されるという
問題もある。
[0005] Furthermore, due to the manufacturing method, it is necessary to uniformly disperse the solid lubricant itself, and in some cases, there is a problem that the solid lubricant inside the sintered body becomes a source of destruction of the sintered body, reducing its strength. Moreover, sintered bodies in which silicon nitride is dispersed as a solid lubricant with a matrix have poor chemical resistance due to the presence of metal oxides added as sintering aids at the grain boundaries of the silicon nitride crystals. There is also the problem that it is limited.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、出発原料中に潤滑成分
を添加することなしに、出発原料として炭化珪素を主成
分とする混合粉末を用い、これを所望の形状に成形後、
該成形体を窒素加圧雰囲気中で焼成することにより炭化
珪素と窒素とを反応せしめることにより、窒化珪素とそ
れ自体固体潤滑性を有する炭素とを生成させることがで
き、しかも生成された炭素が焼結体表層部に多量に存在
させることができ、これにより系の焼結性を阻害するこ
となく、高い強度を有するとともに表層部における摺動
性を向上することができ、これにより各種の摺動部材と
して信頼性の高い安定した特性を発揮することができる
ことを見出したものである。
[Means for Solving the Problems] As a result of repeated studies on the above problems, the present inventors have developed a method using silicon carbide as the main component as a starting material without adding a lubricating component to the starting material. After molding the mixed powder into the desired shape,
By firing the compact in a nitrogen pressurized atmosphere and causing silicon carbide and nitrogen to react, silicon nitride and carbon, which itself has solid lubricating properties, can be produced, and the produced carbon It can be present in large amounts in the surface layer of the sintered body, and as a result, it has high strength without inhibiting the sinterability of the system and can improve the sliding properties in the surface layer. It has been discovered that this material can exhibit highly reliable and stable characteristics as a moving member.

【0007】以下、本発明の製法をさらに詳述すると、
まず原料粉末として炭化珪素粉末を準備する。用いる炭
化珪素粉末としてはα−SiC、β−SiCのいずれか
、またはこれらを混合して使用することもできる。炭化
珪素粉末の平均粒径は0.1〜2μm が適当である。 また上記炭化珪素粉末に対しては添加物として、カーボ
ンブラックやグラファイト等の炭素粉末あるいは熱分解
により炭素を生成しうるフェノール樹脂やコールタール
ピッチ等の粉末や、B4 C等の硼素含有化合物を10
重量%以下の割合で添加することができる。
[0007] The manufacturing method of the present invention will be explained in more detail below.
First, silicon carbide powder is prepared as a raw material powder. The silicon carbide powder used may be either α-SiC or β-SiC, or a mixture thereof. The average particle size of the silicon carbide powder is suitably 0.1 to 2 μm. Additionally, as additives for the silicon carbide powder, carbon powders such as carbon black and graphite, powders such as phenol resins and coal tar pitch that can generate carbon through thermal decomposition, and boron-containing compounds such as B4C are added.
It can be added in a proportion of % by weight or less.

【0008】上記炭化珪素粉末と、場合により上記添加
物を充分に添加混合した後、上記粉末にバインダー等を
添加し、周知の成形方法、たとえばプレス成形、押出成
形、鋳込み成形、冷間静水圧成形等により所望の形状に
成形する。成形体は、所望により200〜800℃で仮
焼することにより、フェノール樹脂等の炭素生成化合物
より炭素を生成させることができる。
After the silicon carbide powder and optionally the additives are sufficiently added and mixed, a binder or the like is added to the powder, and the powder is subjected to a known molding method such as press molding, extrusion molding, casting molding, or cold isostatic pressing. Form into a desired shape by molding or the like. The molded body can be calcined at 200 to 800°C, if desired, to generate carbon from a carbon-generating compound such as a phenol resin.

【0009】次に、上記のようにして得られた成形体を
焼成するが、本発明によれば、この焼成を下記数1
[0009] Next, the molded body obtained as described above is fired, and according to the present invention, this firing is performed according to the following equation 1.

【数
1】    3SiC+2N2   →  Si3 N
4 +3Cで示されるように炭化珪素と窒素の反応によ
り窒化珪素および炭素が生成可能な雰囲気中で焼成する
。具体的には、1000〜2200℃以上、特に150
0〜2200℃の温度にて、雰囲気中に窒素ガスを必須
成分として含むとともに該窒素ガス圧力が500気圧以
上の加圧下で焼成することにより上記数1の反応を進行
させることができる。
[Math. 1] 3SiC+2N2 → Si3 N
4 +3C, firing is carried out in an atmosphere in which silicon nitride and carbon can be produced by a reaction between silicon carbide and nitrogen. Specifically, 1000 to 2200°C or higher, especially 150°C
By firing at a temperature of 0 to 2200° C. in an atmosphere containing nitrogen gas as an essential component and at a nitrogen gas pressure of 500 atm or more, the reaction shown in Equation 1 above can proceed.

【0010】この焼成によれば、内部および表層部とも
に高緻密化が達成されるとともに、焼結体の表層部にお
いて特に上記反応が活発に生じるために、焼成時間等を
調整することにより、焼結体の表層部に炭素が内部より
も多くなるという特異的焼結体が形成される。上記焼成
によれば、焼成温度、焼成時間等を制御することにより
表層部において炭素の生成量を高めるとともに、焼結体
内部において炭素の生成を抑制することができる。
[0010] According to this firing, high densification is achieved in both the interior and the surface layer, and the above-mentioned reaction occurs particularly actively in the surface layer of the sintered body, so by adjusting the firing time etc. A unique sintered body is formed in which the surface layer of the body contains more carbon than the inside. According to the above-described firing, by controlling the firing temperature, firing time, etc., it is possible to increase the amount of carbon produced in the surface layer portion and to suppress the production of carbon inside the sintered body.

【0011】また、上記方法によれば、表層部から内部
にかけて骨材である炭化珪素および窒化珪素の量比も変
化し、炭化珪素/(窒化珪素+炭化珪素)で表される組
成比は表層部から内部にかけて大きく、さらにまた、生
成された窒化珪素結晶粒子間には金属酸化物が実質的に
存在しないことも大きな特徴である。
Further, according to the above method, the quantitative ratio of silicon carbide and silicon nitride, which are aggregates, changes from the surface layer to the inside, and the composition ratio expressed as silicon carbide/(silicon nitride + silicon carbide) changes from the surface layer to the inside. Another major feature is that the silicon nitride crystal grains are large from the inside to the inside, and there is substantially no metal oxide between the generated silicon nitride crystal particles.

【0012】上記のような特異的焼結体が形成されるメ
カニズムについては定かではないが、高温高圧の窒素雰
囲気中で炭化珪素粒子の表面から窒化珪素への変換が進
行するに伴い、体積膨張が生じ、それによりある程度緻
密化が進行する。そして表層部に一旦緻密層が形成され
ると焼結体内部への窒素ガスの進入が抑制されるために
、結果として表層部、内部ともに気孔率10%以下の緻
密体となり、且つ表層部と内部においてほぼ連続的に異
なる組織が形成されると考えられる。
The mechanism by which the above-mentioned specific sintered body is formed is not clear, but as the conversion from the surface of silicon carbide particles to silicon nitride progresses in a high-temperature, high-pressure nitrogen atmosphere, volumetric expansion occurs. occurs, and densification progresses to some extent. Once a dense layer is formed in the surface layer, the intrusion of nitrogen gas into the interior of the sintered body is suppressed, resulting in a dense body with a porosity of 10% or less both in the surface layer and inside. It is thought that different tissues are formed almost continuously inside.

【0013】なお、摺動特性の点からは最終焼結体の表
層部の炭素量が1体積%以上になるように制御すること
が望ましく、表層部の炭化珪素を全部窒化珪素に変換し
た場合、表層部には窒化珪素を骨材とし炭素が約26体
積%の割合で均一に分散した組織が形成される。炭素量
を26体積%より多く存在させようとする場合には、出
発原料中に炭素粉末を添加すればよいが、表層部の炭素
量が40体積%を越えると、摺動面の強度が低下し望ま
しくない。好適には5〜30体積%に制御される。
[0013] From the viewpoint of sliding properties, it is desirable to control the carbon content in the surface layer of the final sintered body to 1% by volume or more, and if all silicon carbide in the surface layer is converted to silicon nitride In the surface layer, a structure is formed in which silicon nitride is used as an aggregate and carbon is uniformly dispersed at a ratio of about 26% by volume. If you want to make the carbon content more than 26% by volume, you can add carbon powder to the starting material, but if the carbon content in the surface layer exceeds 40% by volume, the strength of the sliding surface will decrease. and undesirable. The content is preferably controlled to 5 to 30% by volume.

【0014】また、炭素量が少なくとも20体積%以上
の表層部はその厚みが10〜2000μm であること
が望ましく、厚みが10μm より薄いと摺動特性の長
期安定性に欠け、2000μm より厚いと表層部の強
度が低下し欠け等が発生しやすくなる。
[0014] Furthermore, it is desirable that the thickness of the surface layer portion containing at least 20% by volume of carbon is 10 to 2000 μm; if the thickness is thinner than 10 μm, the long-term stability of the sliding properties will be lacking, and if it is thicker than 2000 μm, the surface layer will be damaged. The strength of the parts decreases and chips are more likely to occur.

【0015】一方、焼結体の内部は炭化珪素あるいは炭
化珪素と窒化珪素を主体として構成されることが望まし
く、内部において炭化珪素/(炭化珪素+窒化珪素)の
組成比率が0.2以上であることが望ましい。
On the other hand, it is desirable that the inside of the sintered body is mainly composed of silicon carbide or silicon carbide and silicon nitride, and the composition ratio of silicon carbide/(silicon carbide + silicon nitride) in the inside is 0.2 or more. It is desirable that there be.

【0016】[0016]

【作  用】本発明の方法によれば、炭素粉末を出発原
料中に添加することなく、焼結過程において炭素を多量
に生成させることができるために系の焼結性を阻害する
ことがない。
[Function] According to the method of the present invention, a large amount of carbon can be generated in the sintering process without adding carbon powder to the starting material, so that the sinterability of the system is not inhibited. .

【0017】また、表層部における固体潤滑材である炭
素量を焼結体表層部のみに多く存在させることができる
ために、焼結体全体としての強度を低下させることがな
く、表層部において比較的多量の炭素が存在しても内部
における強度が高いことから摺動部材としても安定した
摺動特性を発揮することができる。しかも、表層部から
内部にかけての組織的な変化がほぼ連続的に形成されて
いることから、焼結体内での特性の相違により発生する
応力を低減することができる。
[0017] Furthermore, since a large amount of carbon, which is a solid lubricant in the surface layer, can be present only in the surface layer of the sintered body, the strength of the sintered body as a whole does not decrease, and the strength of the sintered body as a whole is not reduced. Even if a large amount of carbon is present, the internal strength is high, so it can exhibit stable sliding characteristics as a sliding member. Moreover, since the structural changes from the surface layer to the inside are almost continuous, it is possible to reduce stress caused by differences in characteristics within the sintered body.

【0018】また、炭素を表層部において多量に存在さ
せることができることに起因して、焼結体自体の熱伝導
率を高めることができ、これにより摺動時に発生した熱
を効率的に放熱することもできる。さらに炭素を内部に
おいても適量存在させることにより焼結体全体の電気抵
抗を小さくすることができ、これにより放電加工を行う
ことができる。
Furthermore, since a large amount of carbon can be present in the surface layer, the thermal conductivity of the sintered body itself can be increased, thereby efficiently dissipating the heat generated during sliding. You can also do that. Furthermore, by allowing an appropriate amount of carbon to exist inside the sintered body, the electrical resistance of the entire sintered body can be reduced, thereby allowing electric discharge machining to be performed.

【0019】さらに、表層部において前述した反応を完
遂することにより窒化珪素の骨材とし炭素が均一に分散
した組織が形成されることにより全体の靱性、耐熱衝撃
性を高めることができ、しかも窒化珪素結晶の粒界に金
属酸化が実質的に存在しないことから耐薬品性を高める
ことができる。
Furthermore, by completing the above-mentioned reaction in the surface layer, a structure in which carbon is uniformly dispersed as an aggregate of silicon nitride is formed, thereby improving the overall toughness and thermal shock resistance. Since metal oxidation is substantially absent at the grain boundaries of silicon crystals, chemical resistance can be improved.

【0020】[0020]

【実施例】実施例1 β−SiC粉末(平均粒径0.4μm 、酸素含有量0
.2重量%)100重量部に対して、成形用バインダー
としてレゾール型フェノール樹脂20%溶液を10重量
部添加し、さらに溶媒としてアセトンを適量添加し、混
練乾燥後、篩を通して成形用顆粒を得た。この顆粒を金
型プレスを用いて成形圧2000kg/cm2 で外径
20mm、厚み10mmの円板状成形体を作成した。
[Example] Example 1 β-SiC powder (average particle size 0.4 μm, oxygen content 0
.. 2% by weight), 10 parts by weight of a 20% resol type phenolic resin solution was added as a molding binder, and an appropriate amount of acetone was further added as a solvent, and after kneading and drying, the mixture was passed through a sieve to obtain molding granules. . The granules were molded into a disc-shaped molded body having an outer diameter of 20 mm and a thickness of 10 mm using a mold press at a molding pressure of 2000 kg/cm 2 .

【0021】次に成形体を600℃の不活性雰囲気(N
2 気流中)で仮焼し、フェノール樹脂を炭化させた後
、仮焼体の組成の分析を行ったところ、SiC98.1
重量%、炭素1.96重量%であった。
Next, the molded body is placed in an inert atmosphere (N
2) in an air stream) to carbonize the phenolic resin, and analyzed the composition of the calcined body, which revealed that SiC98.1
% by weight, and carbon content was 1.96% by weight.

【0022】そして、この仮焼体を焼成温度および圧力
を変化させ、焼成を行った。得られた焼結体に対して、
得られた焼結体に対してアルキメデス法により密度を測
定し、また、焼結体の表層部および内部の構成相をX線
回折分析にて行った。また表層部の炭素量は、試料より
表層部を切り出し、粉砕後、LECO法で全炭素量、全
窒素量、全珪素量を測定し、窒素は窒化珪素として、残
る珪素は炭化珪素として結合炭素を求め、その残りの炭
素を遊離炭素として計算した。なお、同時に粉末X線回
折法により構成相を調べた。なお結果は表1に示した。
[0022] Then, this calcined body was fired by varying the firing temperature and pressure. For the obtained sintered body,
The density of the obtained sintered body was measured by the Archimedes method, and the constituent phases in the surface layer and inside of the sintered body were analyzed by X-ray diffraction. To determine the amount of carbon in the surface layer, cut out the surface layer from the sample, crush it, and then measure the total carbon amount, total nitrogen amount, and total silicon amount using the LECO method. Nitrogen is treated as silicon nitride, and the remaining silicon is treated as silicon carbide. The remaining carbon was calculated as free carbon. At the same time, the constituent phases were examined by powder X-ray diffraction. The results are shown in Table 1.

【0023】[0023]

【表1】[Table 1]

【0024】表1によれば、温度が1000℃より低い
かまたは窒素圧力が500気圧より低い試料No,4,
7ではいずれも炭化珪素の窒化珪素への変換が生ぜず、
炭素の生成が認められなかった。
According to Table 1, samples No. 4, whose temperature is lower than 1000° C. or whose nitrogen pressure is lower than 500 atm.
7, no conversion of silicon carbide to silicon nitride occurred,
No carbon formation was observed.

【0025】また、出発原料を変え、仮焼体の組成を表
2に示すような割合に変更し、また、焼成条件を190
0℃、窒素ガス圧力2000atmにて1時間焼成する
以外は前記方法と全く同様にして焼結体を作成した。
In addition, the starting materials were changed, the composition of the calcined body was changed to the proportions shown in Table 2, and the firing conditions were changed to 190%
A sintered body was produced in exactly the same manner as described above, except that the sintered body was fired at 0° C. and a nitrogen gas pressure of 2000 atm for 1 hour.

【0026】得られた焼結体に対して前記と同様な特性
評価を行った。また、機械的特性評価として、JISR
1601に基づき、4点曲げ抗折試験を行ったところ、
表2に示すように、いずれも焼結体表層部に炭素の生成
が認められ、しかも気孔率も1%以下が達成され、強度
も20kg/mm2 以上が達成された。
The properties of the obtained sintered body were evaluated in the same manner as described above. In addition, as a mechanical property evaluation, JISR
1601, a four-point bending bending test was conducted.
As shown in Table 2, carbon formation was observed in the surface layer of the sintered bodies in all cases, and the porosity was 1% or less, and the strength was 20 kg/mm2 or more.

【0027】[0027]

【表2】[Table 2]

【0028】[0028]

【発明の効果】以上、詳述した通り、本発明の製法によ
れば、焼結体の表層部に出発原料中に炭素粉末を配合す
ることなく、焼結過程で生成させることにより、炭化珪
素及び/または窒化珪素を骨材とする炭素との複合材料
が得られ、焼結体全体としての強度を低下させることが
なく、多量の炭素を担持することができる。
Effects of the Invention As detailed above, according to the manufacturing method of the present invention, silicon carbide can be produced in the surface layer of a sintered body by forming it during the sintering process without adding carbon powder to the starting materials. A composite material with carbon and/or silicon nitride as an aggregate can be obtained, and a large amount of carbon can be supported without reducing the strength of the sintered body as a whole.

【0029】よって、表層部における摩擦係数を小さく
することができるとともに熱伝導率および電気伝導率を
高めることができ、それにより特に摺動部材として優れ
た摺動特性が得られる。
[0029] Therefore, the coefficient of friction in the surface layer portion can be reduced and the thermal conductivity and electrical conductivity can be increased, thereby providing particularly excellent sliding characteristics as a sliding member.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭化珪素を主体とする混合粉末を成形
した後、該成形体を窒素ガス圧力500気圧以上、10
00〜2200℃の温度にて焼成し、炭化珪素と窒素を
反応させ、窒化珪素と炭素を生成させることを特徴とす
るセラミックス複合焼結体の製法。
Claim 1: After molding a mixed powder mainly composed of silicon carbide, the molded body is heated at a nitrogen gas pressure of 500 atmospheres or more for 10
1. A method for producing a ceramic composite sintered body, characterized by firing at a temperature of 00 to 2200°C, reacting silicon carbide with nitrogen, and generating silicon nitride and carbon.
【請求項2】  焼結体表層部における炭素量が5〜3
0体積%である請求項1記載のセラミックス複合焼結体
の製法。
[Claim 2] The amount of carbon in the surface layer of the sintered body is 5 to 3.
The method for producing a ceramic composite sintered body according to claim 1, wherein the content is 0% by volume.
JP3032270A 1991-01-31 1991-01-31 Manufacturing method of ceramic composite sintered body Expired - Fee Related JP2801785B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3032270A JP2801785B2 (en) 1991-01-31 1991-01-31 Manufacturing method of ceramic composite sintered body
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032270A JP2801785B2 (en) 1991-01-31 1991-01-31 Manufacturing method of ceramic composite sintered body

Publications (2)

Publication Number Publication Date
JPH04254473A true JPH04254473A (en) 1992-09-09
JP2801785B2 JP2801785B2 (en) 1998-09-21

Family

ID=12354308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032270A Expired - Fee Related JP2801785B2 (en) 1991-01-31 1991-01-31 Manufacturing method of ceramic composite sintered body

Country Status (1)

Country Link
JP (1) JP2801785B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100278013B1 (en) * 1998-05-13 2001-01-15 손재익 Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material
US6472075B1 (en) 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100278013B1 (en) * 1998-05-13 2001-01-15 손재익 Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material
US6472075B1 (en) 1999-09-08 2002-10-29 Ngk Spark Plug Co., Ltd. Sintered silicon nitride member and ceramic ball

Also Published As

Publication number Publication date
JP2801785B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JPS5924751B2 (en) Sintered shaped body
EP2634160B1 (en) Volume-change resistant silicon oxy-nitride or silicon oxy-nitride and silicon nitride bonded silicon carbide refractory
JPS6228109B2 (en)
JPS6048474B2 (en) Silicon nitride sintered body and its manufacturing method
Baharvandi et al. Processing and mechanical properties of boron carbide–titanium diboride ceramic matrix composites
JP5528749B2 (en) Boron carbide-silicon carbide composite ceramic and method for producing the ceramic
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
KR890003510B1 (en) Method for producing silicon-nitrated ceramics
Gordeev et al. Low-pressure fabrication of diamond–SiC–Si composites
EP1928806A2 (en) Boron suboxide composite material
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
Rambo et al. Synthesis of porous biomorphic α/β-Si 3 N 4 composite from sea sponge
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2851717B2 (en) Sliding member
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JP3694583B2 (en) Crusher parts
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JPS6212663A (en) Method of sintering b4c base fine body
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
Samoilov et al. Physicomechanical and thermophysical properties of SiC-based ceramics
JPS60255672A (en) Manufacture of silicon carbide sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees