JP2016109593A - Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method - Google Patents

Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method Download PDF

Info

Publication number
JP2016109593A
JP2016109593A JP2014248477A JP2014248477A JP2016109593A JP 2016109593 A JP2016109593 A JP 2016109593A JP 2014248477 A JP2014248477 A JP 2014248477A JP 2014248477 A JP2014248477 A JP 2014248477A JP 2016109593 A JP2016109593 A JP 2016109593A
Authority
JP
Japan
Prior art keywords
refractive index
test lens
reference table
lens
transmitted wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014248477A
Other languages
Japanese (ja)
Other versions
JP6407000B2 (en
Inventor
杉本 智洋
Tomohiro Sugimoto
智洋 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014248477A priority Critical patent/JP6407000B2/en
Publication of JP2016109593A publication Critical patent/JP2016109593A/en
Application granted granted Critical
Publication of JP6407000B2 publication Critical patent/JP6407000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure the refractive index of a lens to be inspected with high accuracy in a nondestructive way.SOLUTION: A lens 60 to be inspected is installed on a reference base 50 having the shape of a form at edges of the lens 60 to be inspected, and the transmission wavefront in a plurality of wavelengths at edges of the lens 60 to be inspected is measured. The refractive index at edges of the lens 60 be inspected is specified on the basis of the transmission wavefront in the plurality of wavelengths at edges of the lens 60 to be inspected and the refractive index of the reference base 50.SELECTED DRAWING: Figure 1

Description

本発明は、光学素子の屈折率を計測する屈折率計測方法及び屈折率計測装置に関する。   The present invention relates to a refractive index measuring method and a refractive index measuring apparatus for measuring a refractive index of an optical element.

光学素子の屈折率を計測する手法として、光学素子をプリズム形状に加工した後に、最小偏角法やVブロック法により計測を行う方法が知られている。しかし、これらの方法による計測は、光学素子の加工を行う必要があるため、加工に時間を要し、さらにコストが増大してしまう。また、モールドで製造された光学素子の場合、光学素子に蓄積されていた応力が、加工の際に解放される。その応力解放によって光学素子の屈折率が変化してしまうため、屈折率を正確に計測することができない。そこで、光学素子に加工を施すことなく光学素子の屈折率を計測する方法が求められている。   As a method for measuring the refractive index of an optical element, a method is known in which measurement is performed by a minimum deflection angle method or a V-block method after processing the optical element into a prism shape. However, since measurement by these methods requires processing of the optical element, processing takes time and the cost further increases. In the case of an optical element manufactured by a mold, the stress accumulated in the optical element is released during processing. Since the refractive index of the optical element changes due to the stress release, the refractive index cannot be measured accurately. Therefore, a method for measuring the refractive index of an optical element without processing the optical element is required.

特許文献1に開示された計測方法では、被検レンズと、屈折率及び形状が既知のガラス試料とを、被検レンズの屈折率とほぼ等しい屈折率を有する第1のマッチング液に浸して干渉縞を測定する。さらに、被検レンズとガラス試料とを、第1のマッチング液の屈折率とわずかに異なる屈折率を有する第2のマッチング液に浸して干渉縞を測定する。そして、第1のマッチング液による測定結果と第2のマッチング液による測定結果とから、被検レンズの形状と屈折率と屈折率分布とを求める。それぞれのマッチング液の屈折率は、干渉縞が密になりすぎない範囲で被検レンズの屈折率とわずかに異なっている必要がある。   In the measurement method disclosed in Patent Document 1, a test lens and a glass sample whose refractive index and shape are known are immersed in a first matching liquid having a refractive index substantially equal to the refractive index of the test lens and interfered. Measure streaks. Further, the interference fringes are measured by immersing the lens to be examined and the glass sample in a second matching liquid having a refractive index slightly different from the refractive index of the first matching liquid. Then, the shape, refractive index, and refractive index distribution of the test lens are obtained from the measurement result using the first matching liquid and the measurement result using the second matching liquid. The refractive index of each matching liquid needs to be slightly different from the refractive index of the lens to be measured within a range where interference fringes are not too dense.

特開平02−008726号公報Japanese Patent Laid-Open No. 02-008726

特許文献1に開示された計測方法では、被検レンズの屈折率とほぼ等しい屈折率を有するマッチング液が必要である。しかしながら、屈折率が高いマッチング液は、透過率が低い。このため、特許文献1で開示された計測方法により高屈折率の光学素子の干渉縞を測定すると、検出器から小さな信号しか得られず、測定精度が低くなる。   In the measurement method disclosed in Patent Document 1, a matching liquid having a refractive index substantially equal to the refractive index of the test lens is required. However, the matching liquid having a high refractive index has a low transmittance. For this reason, when the interference fringes of the optical element having a high refractive index are measured by the measurement method disclosed in Patent Document 1, only a small signal can be obtained from the detector, and the measurement accuracy is lowered.

本発明は、被検レンズの屈折率を非破壊で高精度に計測することができる屈折率計測方法及び屈折率計測装置を提供することを例示的な目的とする。   An object of the present invention is to provide a refractive index measuring method and a refractive index measuring apparatus capable of measuring a refractive index of a lens to be examined with high accuracy in a nondestructive manner.

本発明の一側面としての屈折率計測方法は、被検レンズの端部の型の形状を有する基準台に被検レンズを配置し、複数の波長において被検レンズの端部の透過波面を測定するステップと、複数の波長における被検レンズの端部の透過波面と基準台の屈折率とに基づいて被検レンズの端部の屈折率を特定するステップと、を有することを特徴とする。   The refractive index measurement method according to one aspect of the present invention is such that a test lens is arranged on a reference table having a shape of a mold at the end of a test lens, and a transmitted wavefront at the end of the test lens is measured at a plurality of wavelengths. And a step of specifying the refractive index of the end of the test lens based on the transmitted wavefront of the end of the test lens at a plurality of wavelengths and the refractive index of the reference table.

尚、光学素子をモールドするステップと、上記屈折率計測方法を用いて光学素子の屈折率を計測することによって、モールドされた光学素子の光学性能を評価するステップとを含む光学素子の製造方法も、本発明の他の一側面を構成する。   An optical element manufacturing method including the steps of molding an optical element and evaluating the optical performance of the molded optical element by measuring the refractive index of the optical element using the refractive index measurement method. This constitutes another aspect of the present invention.

また、本発明のさらに他の一側面としての屈折率計測装置は、被検レンズの端部の型の形状を有する基準台と、基準台に配置された被検レンズの透過波面を複数の波長において測定する測定手段を有することを特徴とする。   Further, the refractive index measuring apparatus as still another aspect of the present invention includes a reference table having a shape of an end mold of a test lens, and a transmission wavefront of the test lens arranged on the reference table having a plurality of wavelengths. It has the measurement means to measure in.

本発明によれば、被検レンズの屈折率を非破壊で高精度に計測することができる。   According to the present invention, it is possible to measure the refractive index of a lens to be examined with high accuracy in a nondestructive manner.

本発明における実施例1の屈折率計測装置の概略構成を示す図。The figure which shows schematic structure of the refractive index measuring apparatus of Example 1 in this invention. 実施例1における基準台と被検レンズそれぞれの形状と屈折率を示す図。FIG. 3 is a diagram illustrating the shape and refractive index of a reference table and a test lens in Example 1. 実施例1における被検レンズの屈折率の算出手順を示すフローチャート。3 is a flowchart showing a procedure for calculating a refractive index of a test lens in Example 1. 実施例1において検出器で検出される干渉光を示す図。FIG. 3 is a diagram illustrating interference light detected by a detector in the first embodiment. 実施例1における基準台と異なる形状の基準台を示す図。FIG. 3 is a diagram showing a reference table having a shape different from that of the reference table in the first embodiment. 実施例1における基準台と異なる形状の基準台、及びその基準台において検出器で検出される干渉光を示す図。The figure which shows the interference light detected by the detector in the reference stand of the shape different from the reference stand in Example 1, and the reference stand. 本発明における実施例2の屈折率計測装置の概略構成を示す図。The figure which shows schematic structure of the refractive index measuring apparatus of Example 2 in this invention. 実施例2における被検レンズの屈折率の算出手順を示すフローチャート。9 is a flowchart showing a procedure for calculating a refractive index of a test lens in Example 2. 本発明の光学素子の製造方法の製造工程を示す図。The figure which shows the manufacturing process of the manufacturing method of the optical element of this invention.

以下、図面を参照しつつ、本発明の実施例について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明における実施例1の屈折率計測装置の概略構成を示している。本実施例の屈折率計測装置は、マッハツェンダ干渉計をもとに構成されている。計測装置は、光源10、干渉光学系、基準台50、検出器80、コンピュータ90を有し、被検レンズ60の端部の屈折率を計測する。本実施例では、被検レンズ60は負の屈折力を有するレンズであるが、屈折力の正負に依らず、屈折型光学素子であれば屈折率の計測を行うことができる。   FIG. 1 shows a schematic configuration of a refractive index measuring apparatus according to a first embodiment of the present invention. The refractive index measuring apparatus of the present embodiment is configured based on a Mach-Zehnder interferometer. The measuring device includes a light source 10, an interference optical system, a reference table 50, a detector 80, and a computer 90, and measures the refractive index at the end of the lens 60 to be examined. In this embodiment, the test lens 60 is a lens having a negative refractive power, but the refractive index can be measured as long as it is a refractive optical element regardless of whether the refractive power is positive or negative.

光源10は、複数の波長の光を射出することができる光源(例えば、白色LED)である。複数の波長の光は、分光器20を通って準単色光となる。分光器20を通った光は、ピンホール30を通って発散波となり、コリメータレンズ40を通って平行光となる。   The light source 10 is a light source (for example, white LED) that can emit light having a plurality of wavelengths. Light having a plurality of wavelengths passes through the spectroscope 20 and becomes quasi-monochromatic light. The light that passes through the spectroscope 20 becomes a divergent wave through the pinhole 30 and becomes parallel light through the collimator lens 40.

干渉光学系は、ビームスプリッタ100、101、ミラー105、106を有する。干渉光学系は、コリメータレンズ40を通った光を、被検レンズ60を透過する被検光と透過しない参照光に分割し、被検光と参照光とを干渉させて、その干渉光を検出器80に導光する。   The interference optical system includes beam splitters 100 and 101 and mirrors 105 and 106. The interference optical system divides the light that has passed through the collimator lens 40 into test light that passes through the test lens 60 and reference light that does not pass through, and causes the test light and reference light to interfere with each other to detect the interference light. The light is guided to the vessel 80.

被検レンズ60は、基準台50の上に試液(液体)70を介在させて配置されている。図2(a)は、基準台50上に設置された被検レンズ60の斜視図である。被検レンズ60の端部が基準台50にフィットするように、基準台50は被検レンズ60の型の形状を有している。図1では、基準台50と被検レンズ60とを、鉛直方向と光軸方向に平行な断面図で示している。尚、被検レンズ60の端部の面は、鏡面である必要はなく、砂ずり面でよい。   The test lens 60 is arranged on the reference table 50 with a test solution (liquid) 70 interposed. FIG. 2A is a perspective view of the test lens 60 installed on the reference table 50. The reference table 50 has the shape of the test lens 60 so that the end of the test lens 60 fits the reference table 50. In FIG. 1, the reference table 50 and the test lens 60 are shown in a cross-sectional view parallel to the vertical direction and the optical axis direction. Note that the surface of the end portion of the test lens 60 does not need to be a mirror surface, and may be a sanded surface.

基準台50は、被検レンズ60と異なる屈折率分散を有し、かつ、特定の波長において被検レンズ60の屈折率と等しい屈折率を有する。図2(b)は、基準台50と被検レンズ60それぞれの屈折率分散を示す図である。図2(b)は、特定の波長λにおいて基準台50の屈折率と被検レンズ60の屈折率とが等しいことを表している。本実施例では、基準台50の形状及び屈折率は既知の値としている。 The reference table 50 has a refractive index dispersion different from that of the test lens 60 and has a refractive index equal to the refractive index of the test lens 60 at a specific wavelength. FIG. 2B is a diagram illustrating the refractive index dispersion of the reference table 50 and the test lens 60. FIG. 2 (b) indicates that the refractive index of the refractive index and the test lens 60 of the reference platform 50 are equal at a particular wavelength lambda 0. In this embodiment, the shape and refractive index of the reference table 50 are set to known values.

試液70の屈折率は、被検レンズ60の屈折率と一致している必要はない(例えば、被検レンズ60の屈折率を約1.9として、試液70の屈折率を約1.7とすればよい)。   The refractive index of the test solution 70 does not need to match the refractive index of the test lens 60 (for example, the refractive index of the test lens 60 is about 1.9, and the refractive index of the test solution 70 is about 1.7. do it).

ビームスプリッタ100で反射した被検光は、ミラー106で反射し、基準台50と試液70と被検レンズ60の端部とを透過する。一方、ビームスプリッタ100を透過した参照光は、基準台50を透過し、ミラー105で反射する。被検光と参照光とがともに基準台50を透過することで、被検光と参照光の光路長差が小さくなる。つまり、参照光が透過する基準台50は、補償板の役割を担う。もちろん、参照光の光路に、基準台50の代わりに補償板を挿入してもよい。被検光と参照光は、ビームスプリッタ101で合波されて、干渉光を形成する。   The test light reflected by the beam splitter 100 is reflected by the mirror 106 and passes through the reference table 50, the test solution 70, and the end of the test lens 60. On the other hand, the reference light that has passed through the beam splitter 100 passes through the reference base 50 and is reflected by the mirror 105. Since both the test light and the reference light pass through the reference base 50, the optical path length difference between the test light and the reference light is reduced. That is, the reference base 50 through which the reference light is transmitted functions as a compensation plate. Of course, a compensation plate may be inserted in the optical path of the reference light instead of the reference table 50. The test light and the reference light are combined by the beam splitter 101 to form interference light.

ビームスプリッタ101で形成された干渉光は、結像レンズ45を介して検出器80(例えば、CCDやCMOS)で検出される。検出器80で検出された干渉信号は、コンピュータ90に送られる。検出器80は、被検レンズ60の位置と結像レンズ45に関して共役な位置に配置されている。つまり、被検レンズ60の像と干渉縞とが検出器80上に結像される。   The interference light formed by the beam splitter 101 is detected by a detector 80 (for example, CCD or CMOS) through the imaging lens 45. The interference signal detected by the detector 80 is sent to the computer 90. The detector 80 is arranged at a conjugate position with respect to the position of the test lens 60 and the imaging lens 45. That is, the image of the test lens 60 and the interference fringes are formed on the detector 80.

コンピュータ90は、検出器80の検出結果をもとに被検レンズ60の屈折率を算出する算出手段や、分光器20を透過する波長を制御する制御手段を有し、CPU等から成る。   The computer 90 has calculation means for calculating the refractive index of the lens 60 to be measured based on the detection result of the detector 80 and control means for controlling the wavelength transmitted through the spectroscope 20, and is composed of a CPU and the like.

図3は、本実施例において被検レンズ60の端部の屈折率を算出する算出手段を示すフローチャートである。まず基準台50上に試液70を挟んで被検レンズ60が設置される(S10)。分光器20で波長を制御しながら、複数の波長における被検レンズ60の端部の透過波面(干渉光)が測定される(S20)。複数の波長における透過波面から特定の波長λが決定される(S30)。 FIG. 3 is a flowchart showing calculation means for calculating the refractive index of the end portion of the test lens 60 in this embodiment. First, the test lens 60 is placed on the reference table 50 with the reagent solution 70 interposed therebetween (S10). While controlling the wavelength with the spectroscope 20, the transmitted wavefront (interference light) at the end of the lens 60 to be measured at a plurality of wavelengths is measured (S20). A specific wavelength λ 0 is determined from transmitted wavefronts at a plurality of wavelengths (S30).

図4は、検出器80で検出される干渉光を示している。被検レンズ60の端部の屈折率と基準台50の屈折率とに差があれば、図4のように被検レンズ60の端部に干渉縞が現れる。分光器20で波長を掃引していくと、被検レンズ60の干渉縞が最も少なくなる波長が存在する。その波長が特定の波長λであり、λにおいて被検レンズ60の端部と基準台50の屈折率とが一致する。以上より、特定の波長λにおける基準台50の屈折率に基づいて、被検レンズ60の端部の屈折率が特定される(S40)。 FIG. 4 shows the interference light detected by the detector 80. If there is a difference between the refractive index at the end of the test lens 60 and the refractive index of the reference base 50, interference fringes appear at the end of the test lens 60 as shown in FIG. When the wavelength is swept by the spectroscope 20, there is a wavelength at which the interference fringes of the test lens 60 are minimized. The wavelength is a specific wavelength λ 0 , and at λ 0 , the end of the test lens 60 and the refractive index of the reference base 50 coincide. From the above, based on the refractive index of the reference table 50 at the specific wavelength λ 0, the refractive index of the end of the lens 60 to be tested is specified (S40).

本実施例の計測方法は、被検レンズ60の屈折率とほぼ等しい屈折率を有する試液(マッチング液)を用いずに、被検レンズ60の屈折率を計測する。したがって、実効的なマッチング液が得られない高屈折率(〜1.8以上)の光学素子の屈折率も、非破壊かつ高精度に計測できる。   The measurement method of the present embodiment measures the refractive index of the test lens 60 without using a test solution (matching solution) having a refractive index substantially equal to the refractive index of the test lens 60. Therefore, the refractive index of an optical element having a high refractive index (up to 1.8 or more) from which an effective matching liquid cannot be obtained can be measured nondestructively and with high accuracy.

本実施例では、複数の波長の光を射出する光源と分光器の組み合わせで波長を走査した。複数の波長の光を射出する光源として白色LEDが使用されているが、スーパーコンティニューム光源、短パルスレーザ、ハロゲンランプが代用できる。その他にも、波長掃引光源でもよいし、複数の波長を離散的に射出するマルチラインレーザでもよい。複数の波長の光を射出する光源は、単一の光源に限らず、複数の光源を組み合わせでもよい。   In this example, the wavelength was scanned with a combination of a light source that emits light of a plurality of wavelengths and a spectroscope. A white LED is used as a light source that emits light of a plurality of wavelengths, but a supercontinuum light source, a short pulse laser, and a halogen lamp can be substituted. In addition, a wavelength swept light source or a multiline laser that emits a plurality of wavelengths discretely may be used. A light source that emits light of a plurality of wavelengths is not limited to a single light source, and a plurality of light sources may be combined.

本実施例では、被検光と参照光を干渉させる干渉光学系としてマッハツェンダ干渉計を用いたが、フィゾー干渉計やトワイマングリーン干渉計も代用できる。被検光と参照光を干渉させる干渉光学系の代わりに、タルボ干渉計のようなシアリング干渉計やシャックハルトマンセンサを用いてもよい。   In this embodiment, a Mach-Zehnder interferometer is used as an interference optical system for causing the test light and the reference light to interfere with each other. However, a Fizeau interferometer or a Twiman Green interferometer can be used instead. A shearing interferometer such as a Talbot interferometer or a Shack-Hartmann sensor may be used instead of the interference optical system that causes the test light and the reference light to interfere with each other.

本実施例の基準台50は、図1や図2(a)のように1つの部品で構成されていたが、図5のように2つ以上の部品で構成されてもよい。   The reference table 50 of the present embodiment is composed of one component as shown in FIG. 1 and FIG. 2A, but may be composed of two or more components as shown in FIG.

また、本実施例における基準台50は、図2(a)のように、被検レンズ60の外周部と接する形状を有していた。その代わりに、基準台50と被検レンズ60との接する範囲が、図1で示した1つの断面(図4における直線ABを含む面)のみでもよい。つまり、基準台50が図6(a)のような形状でもよい。本発明において、被検レンズの端部の型の形状を有する基準台とは、図4における直線ABを含む面において被検レンズの端部とフィットする形状を有する基準台のことを意味する。   In addition, the reference table 50 in the present embodiment has a shape in contact with the outer peripheral portion of the lens 60 to be tested, as shown in FIG. Instead, the range where the reference table 50 and the test lens 60 are in contact may be only one cross section shown in FIG. 1 (surface including the straight line AB in FIG. 4). That is, the reference table 50 may have a shape as shown in FIG. In the present invention, the reference table having the shape of the mold of the end portion of the test lens means a reference table having a shape that fits the end portion of the test lens on the plane including the straight line AB in FIG.

図6(b)は、基準台50が図6(a)のような形状を有しているときに検出される干渉光の様子を示している。直線AB上の干渉縞のみに着目すれば、上記の方法と同様に、特定の波長λを決定することができる。 FIG. 6B shows the state of interference light detected when the reference table 50 has a shape as shown in FIG. If attention is paid only to the interference fringes on the straight line AB, the specific wavelength λ 0 can be determined similarly to the above method.

本実施例では、被検レンズ60端部の屈折率と基準台50の屈折率とが等しくなる特定の波長λを決定し、特定の波長λにおける被検レンズ60の端部の屈折率を算出した。特定の波長λを決定する代わりに、透過波面の値と基準台50の形状とから被検レンズ60の端部の屈折率を算出することができる。例えば、波長λにおいて、図4の点Aと点Bの光路長差が5λ(干渉縞5本分)のとき、被検レンズ60の端部の屈折率NLens(λ)と基準台50の屈折率NBlock(λ)との差は数式1で算出される。 In this embodiment, a specific wavelength λ 0 at which the refractive index of the end of the test lens 60 is equal to the refractive index of the reference base 50 is determined, and the refractive index of the end of the test lens 60 at the specific wavelength λ 0 is determined. Was calculated. Instead of determining the specific wavelength λ 0 , the refractive index of the end of the lens 60 to be tested can be calculated from the value of the transmitted wavefront and the shape of the reference table 50. For example, at the wavelength λ 1 , when the optical path length difference between the points A and B in FIG. 4 is 5λ 1 (for five interference fringes), the refractive index N Lens1 ) at the end of the lens 60 to be measured and the reference The difference from the refractive index N Block1 ) of the table 50 is calculated by Equation 1.

Figure 2016109593
Figure 2016109593

Lは図1に示されている被検レンズ端部(図4の点A)を透過する光線の幾何学的距離であり、基準台の形状から算出できる。基準台50の屈折率NBlock(λ)は既知の量なので、被検レンズ60の端部の屈折率NLens(λ)を算出できる。ただし、この算出方法の使用可能条件は、検出器80において干渉縞が分解できることである。 L is the geometric distance of the light beam that passes through the end of the lens shown in FIG. 1 (point A in FIG. 4), and can be calculated from the shape of the reference table. Since the refractive index N Block1 ) of the reference table 50 is a known amount, the refractive index N Lens1 ) at the end of the lens 60 to be measured can be calculated. However, the usable condition of this calculation method is that the interference fringes can be resolved in the detector 80.

図7は、本発明における実施例2の屈折率計測装置の概略構成を示している。本実施例の屈折率計測装置は、波面センサを用いて透過波面を測定する。計測装置は、光源11、基準台50、シャックハルトマンセンサ81、コンピュータ90を有し、被検レンズ60の端部の屈折率を計測する。本実施例では、被検レンズ60は正の屈折力を有するレンズである。本実施例では、被検レンズ60の端部の形状と基準台50の形状との差が大きい場合における、被検レンズ60の端部の屈折率計測方法を説明する。実施例1と同様の構成については、同一の符号を付して説明する。   FIG. 7 shows a schematic configuration of the refractive index measuring apparatus according to the second embodiment of the present invention. The refractive index measurement apparatus of the present embodiment measures a transmitted wavefront using a wavefront sensor. The measuring device has a light source 11, a reference table 50, a Shack-Hartmann sensor 81, and a computer 90, and measures the refractive index of the end of the lens 60 to be examined. In this embodiment, the test lens 60 is a lens having a positive refractive power. In this embodiment, a method for measuring the refractive index of the end of the test lens 60 when the difference between the shape of the end of the test lens 60 and the shape of the reference table 50 is large will be described. The same configurations as those in the first embodiment will be described with the same reference numerals.

光源11は波長掃引光源(例えば、半導体レーザ)である。光源11の波長は、コンピュータ90により制御される。光源11から射出された光は、ピンホール30を通って発散波となり、コリメータレンズ40で平行光になる。コリメータレンズ40を通った光は、基準台50上に試液を介して設置された被検レンズ60を透過し、シャックハルトマンセンサ81で検出される。   The light source 11 is a wavelength swept light source (for example, a semiconductor laser). The wavelength of the light source 11 is controlled by the computer 90. The light emitted from the light source 11 passes through the pinhole 30 and becomes a divergent wave, and becomes parallel light by the collimator lens 40. The light that has passed through the collimator lens 40 passes through the lens 60 to be tested placed on the reference table 50 via the test solution, and is detected by the Shack-Hartmann sensor 81.

本実施例における基準台50は、被検レンズ60と同一材質で製作されているため、被検レンズ60とほぼ同一の屈折率分散を有する。また、本実施例における基準台50は、図7のように50aと50bの2部品で構成されている。部品50aは平面形状を有し、部品50bは被検レンズ60の第2面に近い形状を有する。被検レンズ60の第2面に近い形状とは、例えば、被検レンズ60の第2面の設計値の形状を意味する。   Since the reference table 50 in this embodiment is made of the same material as the lens 60 to be tested, it has substantially the same refractive index dispersion as the lens 60 to be tested. Further, the reference base 50 in this embodiment is composed of two parts 50a and 50b as shown in FIG. The component 50 a has a planar shape, and the component 50 b has a shape close to the second surface of the test lens 60. The shape close to the second surface of the test lens 60 means, for example, the shape of the design value of the second surface of the test lens 60.

本実施例において、被検レンズ60の第2面は設計値からの形状誤差を有し、基準台50(部品50b)の形状との差が大きい。形状誤差が大きい場合、透過波面に形状誤差の影響(形状成分)が現れるため、屈折率計測精度が低下する。本実施例では、形状誤差の影響を除去するために、互いに異なる屈折率を有する2種類の試液を用いる。図8は、本実施例において被検レンズ60の端部の屈折率を算出する算出手段を示すフローチャートである。   In the present embodiment, the second surface of the lens 60 to be examined has a shape error from the design value, and the difference from the shape of the reference table 50 (component 50b) is large. When the shape error is large, the influence of the shape error (shape component) appears on the transmitted wavefront, so that the refractive index measurement accuracy decreases. In this embodiment, two types of test solutions having different refractive indexes are used in order to remove the influence of the shape error. FIG. 8 is a flowchart showing the calculation means for calculating the refractive index of the end of the lens 60 to be tested in this embodiment.

まず、基準台50上に第1の試液70(例えば、屈折率1.7)を挟んで被検レンズ60が設置される(S110)。波長掃引光源の波長を制御しながら、複数の波長における被検レンズ60の端部の第1の透過波面W(λ)が測定される(S120)。第1の透過波面W(λ)は、数式2で表される。 First, the test lens 60 is placed on the reference table 50 with the first reagent solution 70 (for example, refractive index 1.7) interposed therebetween (S110). While controlling the wavelength of the wavelength swept light source, the first transmitted wavefront W 1 (λ) at the end of the test lens 60 at a plurality of wavelengths is measured (S120). The first transmitted wavefront W 1 (λ) is expressed by Equation 2.

Figure 2016109593
Figure 2016109593

ここで、NLens(λ)は被検レンズ60の端部の屈折率、NBlock(λ)は基準台50の屈折率、N Oil(λ)は第1の試液70の屈折率である。yは図7に記載の座標、δ(y)は図7に示されている試液内を透過する光線の幾何学距離、L(y)−δ(y)は図7に示されている被検レンズ60の端部を透過する光線の幾何学距離である。被検レンズ60が設計値通りの形状を有している場合、δ(y)=0となる。つまり、δ(y)は形状誤差に由来する量(形状成分)である。数式2は、数式3の近似式を用いて数式4のように変形される。 Here, N Lens (λ) is the refractive index of the end of the test lens 60, N Block (λ) is the refractive index of the reference base 50, and N 1 Oil (λ) is the refractive index of the first test solution 70. . y is the coordinate shown in FIG. 7, δ (y) is the geometric distance of the light beam transmitted through the test solution shown in FIG. 7, and L (y) −δ (y) is the object shown in FIG. This is the geometric distance of the light beam that passes through the end of the analyzing lens 60. When the test lens 60 has a shape as designed, δ (y) = 0. That is, δ (y) is an amount derived from a shape error (shape component). Formula 2 is transformed into Formula 4 using the approximate formula of Formula 3.

Figure 2016109593
Figure 2016109593

Figure 2016109593
Figure 2016109593

次に、基準台50上に、第2の試液(例えば、屈折率〜1.75)を挟んで被検レンズ60が設置される(S130)。そして、複数の波長における被検レンズ60の端部の第2の透過波面W(λ)が測定される(S140)。第2の透過波面W(λ)は、第1の透過波面W(λ)と同様にして数式5で表される。N Oil(λ)は第2の試液の屈折率である。 Next, the test lens 60 is placed on the reference table 50 with the second reagent (for example, refractive index˜1.75) interposed therebetween (S130). Then, the second transmitted wavefront W 2 (λ) at the end of the test lens 60 at a plurality of wavelengths is measured (S140). The second transmitted wavefront W 2 (λ) is expressed by Equation 5 in the same manner as the first transmitted wavefront W 1 (λ). N 2 Oil (λ) is the refractive index of the second reagent.

Figure 2016109593
Figure 2016109593

最後に、第1の透過波面W(λ)と第2の透過波面W(λ)とから形状成分δ(y)を消去すると、被検レンズ60の端部の屈折率NLens(λ)が数式6のように算出される(S150)。 Finally, when the shape component δ (y) is eliminated from the first transmitted wavefront W 1 (λ) and the second transmitted wavefront W 2 (λ), the refractive index N Lens (λ ) Is calculated as in Equation 6 (S150).

Figure 2016109593
Figure 2016109593

実施例1、実施例2で説明した装置及び方法を用いて、計測された屈折率の結果を、モールドレンズ等の光学素子の製造方法にフィードバックすることも可能である。   Using the apparatus and method described in the first and second embodiments, the result of the measured refractive index can be fed back to a method for manufacturing an optical element such as a molded lens.

図9には、モールド成型を利用した光学素子の製造工程の例を示している。   FIG. 9 shows an example of a manufacturing process of an optical element using molding.

光学素子は、光学素子の設計工程、金型の設計工程及び、設計された金型を用いた光学素子のモールド工程を経て製造される。モールドされた光学素子は、その形状精度が評価され、精度不足である場合は金型を補正して再度モールドを行う。形状精度が良好であれば、光学素子の光学性能が評価される。この光学性能の評価工程に、図3や図8を用いて説明した屈折率算出フローを組み込むことで、高屈折率硝材を母材としてモールドされる光学素子の量産が可能になる。なお、光学性能が低い場合は、光学面を補正した光学素子を設計し直す。   The optical element is manufactured through an optical element design process, a mold design process, and an optical element mold process using the designed mold. The molded optical element is evaluated for its shape accuracy, and when the accuracy is insufficient, the mold is corrected and the molding is performed again. If the shape accuracy is good, the optical performance of the optical element is evaluated. By incorporating the refractive index calculation flow described with reference to FIGS. 3 and 8 into this optical performance evaluation step, it is possible to mass-produce optical elements molded using a high refractive index glass material as a base material. If the optical performance is low, the optical element whose optical surface is corrected is redesigned.

以上、説明した各実施例は代表的な例に過ぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   The embodiments described above are merely representative examples, and various modifications and changes can be made to the embodiments when the present invention is implemented.

10 光源
50 基準台
60 被検レンズ
70 試液
10 Light source 50 Reference table 60 Test lens 70 Test solution

Claims (19)

被検レンズの端部の型の形状を有する基準台に前記被検レンズを配置し、複数の波長において前記被検レンズの端部の透過波面を測定するステップと、
前記複数の波長における前記被検レンズの端部の透過波面と前記基準台の屈折率とに基づいて前記被検レンズの端部の屈折率を特定するステップと、
を含むことを特徴とする屈折率計測方法。
Placing the test lens on a reference table having the shape of the mold at the end of the test lens, and measuring a transmitted wavefront at the end of the test lens at a plurality of wavelengths;
Identifying the refractive index of the end of the test lens based on the transmitted wavefront of the end of the test lens at the plurality of wavelengths and the refractive index of the reference table;
A refractive index measuring method comprising:
前記基準台と前記被検レンズの間に液体を介在させて前記被検レンズの端部の透過波面を測定することを特徴とする請求項1に記載の屈折率計測方法。   2. The refractive index measuring method according to claim 1, wherein a transmitted wavefront at an end of the test lens is measured with a liquid interposed between the reference table and the test lens. 前記液体の屈折率は、前記被検レンズの屈折率よりも低いことを特徴とする請求項2に記載の屈折率計測方法。   The refractive index measurement method according to claim 2, wherein a refractive index of the liquid is lower than a refractive index of the test lens. 前記被検レンズの屈折率分散と前記基準台の屈折率分散が互いに異なることを特徴とする請求項1から3のいずれか1項に記載の屈折率計測方法。   The refractive index measurement method according to any one of claims 1 to 3, wherein the refractive index dispersion of the test lens and the refractive index dispersion of the reference table are different from each other. 前記複数の波長における前記被検レンズの端部の透過波面から、前記被検レンズの端部の屈折率と前記基準台の屈折率とが等しくなる特定の波長を決定し、前記特定の波長における前記基準台の屈折率を前記被検レンズの端部の屈折率として特定することを特徴とする請求項4に記載の屈折率計測方法。   From the transmitted wavefront at the end of the test lens at the plurality of wavelengths, determine a specific wavelength at which the refractive index of the end of the test lens and the refractive index of the reference table are equal, and at the specific wavelength The refractive index measurement method according to claim 4, wherein a refractive index of the reference table is specified as a refractive index of an end portion of the lens to be examined. 前記複数の波長における前記被検レンズの端部の透過波面と前記基準台の形状とから、前記被検レンズの端部の屈折率と前記基準台の屈折率との差を算出し、前記基準台の屈折率に基づいて前記被検レンズの端部の屈折率を算出することを特徴とする請求項1から4のいずれか1項に記載の屈折率計測方法。   The difference between the refractive index of the end of the test lens and the refractive index of the reference table is calculated from the transmitted wavefront of the end of the test lens at the plurality of wavelengths and the shape of the reference table, and the reference 5. The refractive index measurement method according to claim 1, wherein a refractive index of an end portion of the test lens is calculated based on a refractive index of a table. 前記基準台と前記被検レンズの間に第1の液体を介在させて、複数の波長において前記被検レンズの端部の第1の透過波面を測定し、
前記基準台と前記被検レンズの間に、前記第1の液体の屈折率とは異なる屈折率を有する第2の液体を介在させて、複数の波長において前記被検レンズの端部の第2の透過波面を測定し、
前記第1の透過波面と前記第2の透過波面と前記基準台の屈折率とに基づいて前記被検レンズの形状成分を除去し、前記被検レンズの端部の屈折率を算出することを特徴とする請求項1から3のいずれか1項に記載の屈折率計測方法。
Measuring a first transmitted wavefront at the end of the test lens at a plurality of wavelengths by interposing a first liquid between the reference table and the test lens;
A second liquid having a refractive index different from the refractive index of the first liquid is interposed between the reference stage and the test lens, so that the second end of the test lens at a plurality of wavelengths is provided. Measure the transmitted wavefront of
Removing the shape component of the test lens based on the first transmitted wavefront, the second transmitted wavefront, and the refractive index of the reference table, and calculating the refractive index of the end of the test lens. The refractive index measuring method according to claim 1, wherein the refractive index is measured.
光学素子をモールドするステップと、
請求項1から7のいずれか1項に記載の屈折率計測方法を用いて前記光学素子の屈折率を計測することによって、モールドされた光学素子の光学性能を評価するステップと、を含むことを特徴とする光学素子の製造方法。
Molding the optical element;
Evaluating the optical performance of the molded optical element by measuring the refractive index of the optical element using the refractive index measurement method according to any one of claims 1 to 7. A method for manufacturing an optical element.
被検レンズの端部の型の形状を有する基準台と、
前記基準台に配置された前記被検レンズの透過波面を複数の波長において測定する測定手段を有することを特徴とする屈折率計測装置。
A reference table having the shape of the mold at the end of the lens to be examined;
An apparatus for measuring a refractive index, comprising: a measuring unit that measures a transmission wavefront of the lens to be measured arranged on the reference table at a plurality of wavelengths.
前記基準台と前記被検レンズの間に液体を介在させて前記被検レンズの端部の透過波面を測定することを特徴とする請求項9に記載の屈折率計測装置。   The refractive index measuring apparatus according to claim 9, wherein a transmitted wavefront of an end portion of the test lens is measured with a liquid interposed between the reference table and the test lens. 前記液体の屈折率は、前記被検レンズの屈折率よりも低いことを特徴とする請求項10に記載の屈折率計測装置。   The refractive index measuring apparatus according to claim 10, wherein a refractive index of the liquid is lower than a refractive index of the test lens. 前記被検レンズの屈折率分散と前記基準台の屈折率分散が互いに異なることを特徴とする請求項9から11のいずれか1項に記載の屈折率計測装置。   The refractive index measurement apparatus according to any one of claims 9 to 11, wherein the refractive index dispersion of the test lens and the refractive index dispersion of the reference table are different from each other. 前記複数の波長における前記被検レンズの端部の透過波面から、前記被検レンズの端部の屈折率と前記基準台の屈折率とが等しくなる特定の波長が決定され、前記特定の波長における前記基準台の屈折率が前記被検レンズの端部の屈折率として特定されることを特徴とする請求項12に記載の屈折率計測装置。   A specific wavelength at which the refractive index of the end of the test lens and the refractive index of the reference table are equal is determined from the transmitted wavefront at the end of the test lens at the plurality of wavelengths, and at the specific wavelength The refractive index measuring apparatus according to claim 12, wherein a refractive index of the reference table is specified as a refractive index of an end portion of the test lens. 前記複数の波長における前記被検レンズの端部の透過波面と前記基準台の形状とから、前記被検レンズの端部の屈折率と前記基準台の屈折率との差を算出し、前記基準台の屈折率に基づいて前記被検レンズの端部の屈折率を算出する算出手段を有することを特徴とする請求項9から12のいずれか1項に記載の屈折率計測装置。   The difference between the refractive index of the end of the test lens and the refractive index of the reference table is calculated from the transmitted wavefront of the end of the test lens at the plurality of wavelengths and the shape of the reference table, and the reference 13. The refractive index measuring apparatus according to claim 9, further comprising a calculating unit that calculates a refractive index of an end portion of the test lens based on a refractive index of a table. 前記測定手段は、前記基準台と前記被検レンズの間に第1の液体を介在させて、複数の波長において前記被検レンズの端部の第1の透過波面を測定し、前記基準台と前記被検レンズの間に、前記第1の液体の屈折率とは異なる屈折率を有する第2の液体を介在させて、複数の波長において前記被検レンズの端部の第2の透過波面を測定し、
前記第1の透過波面と前記第2の透過波面と前記基準台の屈折率とに基づいて前記被検レンズの形状成分を除去し、前記被検レンズの端部の屈折率を算出する算出手段を有することを特徴とする請求項9に記載の屈折率計測装置。
The measuring means includes a first liquid interposed between the reference table and the lens to be measured, measures a first transmitted wavefront at an end of the test lens at a plurality of wavelengths, and By interposing a second liquid having a refractive index different from the refractive index of the first liquid between the test lenses, a second transmitted wavefront at the end of the test lens at a plurality of wavelengths. Measure and
Calculation means for removing a shape component of the test lens based on the first transmitted wavefront, the second transmitted wavefront, and the refractive index of the reference table, and calculating the refractive index of the end of the test lens The refractive index measuring device according to claim 9, wherein
前記測定手段は、マッハツェンダ干渉計を有することを特徴とする請求項9から15のいずれか1項に記載の屈折率計測装置。   The refractive index measurement apparatus according to claim 9, wherein the measurement unit includes a Mach-Zehnder interferometer. 前記測定手段は、シアリング干渉計を有することを特徴とする請求項9から15のいずれか1項に記載の屈折率計測装置。   The refractive index measurement apparatus according to claim 9, wherein the measurement unit includes a shearing interferometer. 前記測定手段は、シャックハルトマンセンサを有することを特徴とする請求項9から15のいずれか1項に記載の屈折率計測装置。   The refractive index measurement apparatus according to claim 9, wherein the measurement unit includes a Shack-Hartmann sensor. 前記基準台は、2つ以上の部品から構成されていることを特徴とする請求項9から18のいずれか1項に記載の屈折率計測装置。   The refractive index measuring apparatus according to claim 9, wherein the reference table is composed of two or more parts.
JP2014248477A 2014-12-08 2014-12-08 Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method Active JP6407000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014248477A JP6407000B2 (en) 2014-12-08 2014-12-08 Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014248477A JP6407000B2 (en) 2014-12-08 2014-12-08 Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2016109593A true JP2016109593A (en) 2016-06-20
JP6407000B2 JP6407000B2 (en) 2018-10-17

Family

ID=56123987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014248477A Active JP6407000B2 (en) 2014-12-08 2014-12-08 Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP6407000B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028726A (en) * 1988-06-27 1990-01-12 Asahi Optical Co Ltd Measurement of refractive index of lens
JPH1034507A (en) * 1996-07-26 1998-02-10 Olympus Optical Co Ltd Work method of optical element
JP2004086149A (en) * 2002-06-28 2004-03-18 Nippon Zeon Co Ltd Optical molding and method for manufacturing optical molding
JP2005193416A (en) * 2003-12-26 2005-07-21 Nippon Zeon Co Ltd Method for manufacturing optical molded product
JP2006170775A (en) * 2004-12-15 2006-06-29 Canon Inc Method of measuring refractive index and its measuring device
JP2009197139A (en) * 2008-02-21 2009-09-03 Nippon Zeon Co Ltd Optical molding
JP2010151578A (en) * 2008-12-25 2010-07-08 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring device
JP2011013170A (en) * 2009-07-06 2011-01-20 Panasonic Corp Refractive index measuring device
JP2011247687A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of refraction factor
JP3175079U (en) * 2012-02-08 2012-04-19 株式会社島津製作所 Refractometer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028726A (en) * 1988-06-27 1990-01-12 Asahi Optical Co Ltd Measurement of refractive index of lens
JPH1034507A (en) * 1996-07-26 1998-02-10 Olympus Optical Co Ltd Work method of optical element
JP2004086149A (en) * 2002-06-28 2004-03-18 Nippon Zeon Co Ltd Optical molding and method for manufacturing optical molding
JP2005193416A (en) * 2003-12-26 2005-07-21 Nippon Zeon Co Ltd Method for manufacturing optical molded product
JP2006170775A (en) * 2004-12-15 2006-06-29 Canon Inc Method of measuring refractive index and its measuring device
JP2009197139A (en) * 2008-02-21 2009-09-03 Nippon Zeon Co Ltd Optical molding
JP2010151578A (en) * 2008-12-25 2010-07-08 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring device
JP2011013170A (en) * 2009-07-06 2011-01-20 Panasonic Corp Refractive index measuring device
JP2011247687A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of refraction factor
JP3175079U (en) * 2012-02-08 2012-04-19 株式会社島津製作所 Refractometer

Also Published As

Publication number Publication date
JP6407000B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
KR101373659B1 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
KR101390721B1 (en) Measuring method of refractive index and measuring apparatus of refractive index
KR101107507B1 (en) Method for modeling distibution curve of reflectance and method, reflectometer for measuring thickness using the same
JP5868142B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2017003434A (en) Method of measuring refractive index, measuring device, and method of manufacturing optical element
US10337953B2 (en) Method and apparatus for determining surface data and/or measurement data relating to a surface of an at least partially transparent object
KR20160142235A (en) Measurement method, measurement apparatus, and manufacturing method for optical element
CN111386449B (en) Stress analysis system for curved surface material inspection
JP6207383B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP2020159747A (en) Method for estimating current stress of structure and device therefor
TWI524062B (en) Method and apparatus for measuring refractive index and method for manufacturing optical element
KR20160069476A (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP6407000B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP2017198613A (en) Refractive index measurement method, refractive index measurement device, and optical element manufacturing method
JPWO2017138083A1 (en) V block type refractive index measuring device
JP2017161278A (en) Method and apparatus for measuring refractive-index distribution of cylindrical optical waveguide
JP2013024720A (en) Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program
KR102057153B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement method of the lens
KR101826191B1 (en) Curvature of both sides surface and refractive index profile simultaneous measurement equipment and method of the lens
KR101485548B1 (en) Method of measuring shape which has cuvature on both sides of lens
JP2016109592A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
JP2013186117A (en) Refractive index measurement method and refractive index measurement apparatus
JP2015210241A (en) Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element
JP2016109594A (en) Refractive index distribution measurement method, refractive index distribution measurement method, and optical element manufacturing method
JP2011252769A (en) Device and method for measuring refractive index distribution of optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R151 Written notification of patent or utility model registration

Ref document number: 6407000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151