JPH028726A - Measurement of refractive index of lens - Google Patents

Measurement of refractive index of lens

Info

Publication number
JPH028726A
JPH028726A JP15899288A JP15899288A JPH028726A JP H028726 A JPH028726 A JP H028726A JP 15899288 A JP15899288 A JP 15899288A JP 15899288 A JP15899288 A JP 15899288A JP H028726 A JPH028726 A JP H028726A
Authority
JP
Japan
Prior art keywords
refractive index
lens
interference fringes
matching liquid
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15899288A
Other languages
Japanese (ja)
Other versions
JP2678464B2 (en
Inventor
Masahiro Ono
大野 政博
Toru Chiba
亨 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP15899288A priority Critical patent/JP2678464B2/en
Publication of JPH028726A publication Critical patent/JPH028726A/en
Priority to US07/707,438 priority patent/US5151752A/en
Application granted granted Critical
Publication of JP2678464B2 publication Critical patent/JP2678464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To enable measurement of a refractive index and a refractive index distribution without destroying a lens by arranging a glass sample and the lens to be inspected with a refractive index and shape known to generate an interference fringe using two matching liquids with the refractive index thereof slightly different therebetween and a computation is performed from an output of an intensity distribution thereof. CONSTITUTION:A glass sample 9 with a refractive index and shape known and a lens 10 to be inspected with a refractive index and shape unknown are immersed into a first matching liquid 8 and a coherent light from a light source 1 is transmitted therethrough. An imaging lens 13 and an image sensing element 14 are made movable vertically together and moved to positions facing the lens 10 to be inspected or the glass sample 9. An interference fringe forms an image on the image sensing element 14 as generated with the overlapping of a light wave transmitted through the lens 10 or the glass sample 9 with a reference light wave. Then, a second matching liquid obtained by changing a mixing ratio of the matching liquid 8 is used to generate an interference fringe likewise. Thus, an average refractive index and a refractive index distribution of the lens 10 to be inspected can be determined quantitatively from an output of the intensity distribution of the interference fringes.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レンズの屈折率測定方法に関し、特に、形
状及び屈折率が未知のプラスチック製のレンズの屈折率
及び屈折率分布を測定するのに適した、レンズの屈折率
測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the refractive index of a lens, and in particular, to a method for measuring the refractive index and refractive index distribution of a plastic lens whose shape and refractive index are unknown. The present invention relates to a method for measuring the refractive index of a lens, which is suitable for

[従来の技術] プラスチックレンズは、レンズの軽量化や原価低減、あ
るいは非球面レンズなどに対するニーズから、近年多用
されるようになっている。
[Prior Art] Plastic lenses have come into widespread use in recent years due to the need for lightweight lenses, cost reductions, and aspheric lenses.

しかし、プラスチックレンズを物性面の安定という観点
からみると、ガラスレンズに比べて、製造上、屈折率及
びその分布が不安定で変動が大きい欠点がある。したが
って、プラスチックレンズは、屈折率とその分布を成形
後に一個一個測定する必要がある。この場合、レンズを
破壊するわけにはいかないから、その測定は容易ではな
い、非球面レンズなどであればなおさらである。
However, from the viewpoint of stability of physical properties, plastic lenses have the disadvantage that, compared to glass lenses, the refractive index and its distribution are unstable and fluctuate widely due to manufacturing reasons. Therefore, it is necessary to measure the refractive index and its distribution of each plastic lens after molding. In this case, since the lens cannot be destroyed, its measurement is not easy, especially if it is an aspherical lens.

このようなプラスチックレンズの屈折率の測定方法とし
て、従来は次のようなものがあった。
Conventionally, the following methods have been used to measure the refractive index of such plastic lenses.

用いられる装置は、全体としては、マツ/\・ツエンダ
−の干渉計になっていて、−光束を平面波の参照光とし
て使い、もう−光束中に被検レンズを、被検レンズと屈
折率がほぼ等しいマツチング液に浸してセットする。さ
らに、屈折率参照用として、被検レンズに屈折率の近い
、屈折率既知のガラス試料も同時に液浸してセットする
。このよな液浸装置をマツハ・ツエンダ−干渉計の一光
東中に置くことにより生ずる干渉縞観測において、N本
の干渉縞が観測される間の試料の厚さの差を測定して、
その測定値から被検レンズの屈折率を求めていた。
The device used as a whole is a Matsu/Zehnder interferometer, in which the light beam is used as a plane wave reference beam, and the test lens is placed in the light beam, and the refractive index is the same as that of the test lens. Dip and set in approximately equal amount of matting liquid. Furthermore, for refractive index reference, a glass sample with a known refractive index that is close to that of the test lens is also immersed and set at the same time. In the observation of interference fringes produced by placing such an immersion device in the center of a Matsuha-Zehnder interferometer, the difference in the thickness of the sample is measured while N interference fringes are observed.
The refractive index of the lens to be tested was determined from the measured values.

[発明が解決しようとする課題] しかし、マツチング液の屈折率は、温度変化等に伴って
変動するものである。したがって上述の測定方法では、
温度が変化すればN木の干渉縞の生じる範囲も変動し、
その度毎にその部分の試料の厚さを測定しなければなら
ない、また、レンズの屈折率分布が一様でなければ、不
規則な形の干渉縞が発生するので、N本の縞というのは
どのように解釈すればよいかが困難な事態が生じる。し
たがって、このような場合の屈折率測定においては、定
量解釈が難しい欠点があった。また、そのために測定の
自動化なども困難であった。
[Problems to be Solved by the Invention] However, the refractive index of the matching liquid changes with changes in temperature and the like. Therefore, in the above measurement method,
If the temperature changes, the range where N-tree interference fringes occur will also change,
The thickness of the sample at that part must be measured each time, and if the refractive index distribution of the lens is not uniform, irregularly shaped interference fringes will occur, so there are only N fringes. A situation arises in which it is difficult to know how to interpret this. Therefore, in refractive index measurement in such cases, quantitative interpretation is difficult. Additionally, it has been difficult to automate measurements.

この発明は、そのような従来の欠点を解消し。This invention eliminates such conventional drawbacks.

形状及び屈折率が未知のレンズを破壊せずに、その屈折
率と屈折率分布を測定することができ、しかも定量解釈
が容易で、測定の自動化を行うのも容易なレンズの屈折
率測定方法を提供することを目的とする。
A method for measuring the refractive index of a lens that can measure the refractive index and refractive index distribution of a lens whose shape and refractive index are unknown without destroying the lens, and which also allows for easy quantitative interpretation and automated measurement. The purpose is to provide

[課題を解決するための手段] 上記の目的を達成するために、本発明のレンズの屈折率
測定方法は、屈折率及び形状が既知のガラス試料と、屈
折率及び形状が未知の被検レンズとを第1のマツチング
液中に浸し、これらにコヒーレント光を透過させて、そ
の透過光波を参照光波と重ね合わせて干渉縞を発生させ
、上記ガラス試料を透過した光波により生ずる干渉縞の
強度分布を出力してその出力から上記第1のマツチング
液の屈折率を求めると共に、上記被検レンズを透過した
光波により生ずる干渉縞の強度分布を出力して、その出
力から、その干渉縞を表す第1の多項式を求め1次に、
上記ガラス試料と被検レンズとを、屈折率が上記第1の
マツチング液とわずかに異なる第2のマツチング液中に
浸し、これらに上記コヒーレント光を透過させて、その
透過光波を参照光波と重ね合わせて干渉縞を発生させ、
上記ガラス試料を透過した光波により生ずる干渉縞の強
度分布を出力してその出力から上記第2のマツチング液
の屈折率を求めると共に、上記被検レンズを透過した光
波により生ずる干渉縞の強度分布を出力して、その出力
から、その干渉縞を表す第2の多項式を求めて、上記第
1及び第2のマツチング液の屈折率と第1及び第2の多
項式とから上記被検レンズの形状を求め、そして、上記
第1又は第2の多項式のディフォーカス項と収差項とを
分離して、上記ディフォーカス項と上記第1又は第2の
マツチング液の屈折率とから上記被検レンズの平均屈折
率を求め、上記収差項から上°記被検レンズの屈折率分
布を求めるようにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for measuring the refractive index of a lens according to the present invention uses a glass sample whose refractive index and shape are known, and a test lens whose refractive index and shape are unknown. are immersed in the first matching liquid, coherent light is transmitted through them, and the transmitted light wave is superimposed on the reference light wave to generate interference fringes, and the intensity distribution of the interference fringes caused by the light waves transmitted through the glass sample is determined. The refractive index of the first matching liquid is determined from the output, and the intensity distribution of the interference fringes caused by the light waves transmitted through the test lens is output, and from the output, the refractive index of the first matching liquid is determined. Find the polynomial of 1 and obtain the first order,
The glass sample and the lens to be tested are immersed in a second matching liquid whose refractive index is slightly different from that of the first matching liquid, the coherent light is transmitted through them, and the transmitted light wave is superimposed on the reference light wave. Together, they generate interference fringes,
The intensity distribution of interference fringes generated by the light waves transmitted through the glass sample is output, and the refractive index of the second matching liquid is determined from the output, and the intensity distribution of the interference fringes generated by the light waves transmitted through the test lens is determined. A second polynomial representing the interference fringes is determined from the output, and the shape of the lens to be tested is determined from the refractive indices of the first and second matching liquids and the first and second polynomials. Then, the defocus term and the aberration term of the first or second polynomial are separated, and the average of the test lens is determined from the defocus term and the refractive index of the first or second matching liquid. The present invention is characterized in that the refractive index is determined, and the refractive index distribution of the lens to be tested is determined from the aberration term.

[作用] 第9図及び第10図は、本発明のレンズの屈折率測定方
法の測定原理を示しているm X + y、 Zは座標
である。
[Operation] FIGS. 9 and 10 show the measurement principle of the method for measuring the refractive index of a lens according to the present invention. m X + y, Z is the coordinate.

まず、屈折率nIIが被検レンズの屈折率n、とほぼ等
しいマツチング液に浸した被検レンズに、波長入の平面
波を透過させた時、その透過波と参照波とによって得ら
れる干渉縞Wo(x、y)を考える。
First, when a plane wave containing a wavelength is transmitted through a test lens immersed in a matching liquid whose refractive index nII is approximately equal to the refractive index n of the test lens, the interference pattern Wo obtained by the transmitted wave and the reference wave is Consider (x, y).

被検レンズの各面の形状を。The shape of each surface of the lens to be tested.

工面: Z+ =S+ (X 、 y)11面’ Z2
 =82 (X * y)とし、中心肉厚をdとすると
、両面のSag量合計Sag(x 、 y)は Sag(x、y) = S +  (x、y) +S 
2 (x、y) ・(1)である。
Surface: Z+ =S+ (X, y) 11th surface' Z2
=82 (X * y) and the center wall thickness is d, the total amount of Sag on both sides Sag (x, y) is Sag (x, y) = S + (x, y) + S
2 (x, y) · (1).

一方、屈折率n t  (x + y)を、平均屈折率
ntoと屈折率分布Δnt(x、y)とに分離すると、 Wo(x、y)=Siag(x、y) @ [nto−
11+a I+[d−9ag(!、り]Δnt (x、
y) ++ (2)(2)式よりマツチング液の屈折率
n11を測定すれば、w、)(x、y)はn ta及び
Δnt(x。
On the other hand, if the refractive index n t (x + y) is separated into the average refractive index nto and the refractive index distribution Δnt (x, y), then Wo (x, y) = Siag (x, y) @ [nto-
11+a I+[d-9ag(!,ri]Δnt(x,
y) ++ (2) If the refractive index n11 of the matching liquid is measured from equation (2), w, )(x, y) are n ta and Δnt(x.

y)のみの関数になるが、一般には、この二つのパラメ
ータを分離して求めることはできない。
y), but generally these two parameters cannot be determined separately.

さて、ここで上記の(2)式を、波面収差の展開式では
一般的なツェルニケの多項式を用いて展開すると、 Wo(x、y)−9ag(x、y) * Into−+
+a ]++d−9ag(i、を月Δnt (x、y)
・CI +C2fcosLf+C3fsjnf’<4 
(2j2−1)+ C5/”cos2デ4−*−と書け
る。
Now, if we expand equation (2) above using Zernike's polynomial, which is common in wavefront aberration expansion equations, we get Wo(x, y)-9ag(x, y) * Into-+
+a]++d-9ag(i, month Δnt (x, y)
・CI +C2fcosLf+C3fsjnf'<4
It can be written as (2j2-1)+C5/"cos2 de 4-*-.

C2アcascJ)、  C3ア5infはチルト項、
ca (2/)2−1)はディフォーカス項(W2)C
sJ” cos2プ+・・・は収差項(W)である。
C2a cascJ), C3a5inf is the tilt term,
ca (2/)2-1) is the defocus term (W2)C
sJ''cos2p+... is an aberration term (W).

そして、今[n (6nB ] # 0だから。And now [n (6nB)] #0.

Sag(X 、 V)   [nto  nm ]は2
次関数で近似でき、ディフォーカス項とほぼ等しくなる
Sag(X, V) [nton nm] is 2
It can be approximated by the following function, and is almost equal to the defocus term.

第11図は、一方の面が球面(曲率半径r)、他方の面
が平面(曲率半径oo)、直径がDであって屈折率分布
のない種々のRナンバー(R=r/D)のレンズを考え
、そのレンズに対して、稿本数3本(WQ=3人)及び
1本(Wo = 1人)なる縞を観測可能なようにマツ
チング液の調合を行ったと想定した場合の、収差項(Δ
W)の値を示している。縞読取の再現性をRIIlsで
入/25とすれば、稿本数3木の場合でもR>0.7と
なる。
Figure 11 shows various R numbers (R=r/D) where one surface is spherical (radius of curvature r), the other surface is flat (radius of curvature oo), the diameter is D, and there is no refractive index distribution. Aberrations when considering a lens and assuming that the matching liquid is prepared for that lens so that three stripes (WQ = 3 people) and 1 stripe (Wo = 1 person) can be observed. term (Δ
W) is shown. If the reproducibility of stripe reading is set to /25 in RIIls, R>0.7 even in the case of three manuscripts.

したがって、はとんどのRナンバーのレンズが、縞読取
再現性以下となり、観測された干渉縞の成分がディフォ
ーカス項のみで表されることを示している。
Therefore, most R-number lenses have less than the fringe reading reproducibility, indicating that the observed interference fringe component is represented only by the defocus term.

したがって、読み取った縞WO(x、y)のディフォー
カス項から[nto−nmlが求められ、収差項Wから
Δnt(x、y)が求められ。
Therefore, [nto-nml is obtained from the defocus term of the read fringe WO (x, y), and Δnt (x, y) is obtained from the aberration term W.

二つのパラメータの分離が可能となる。すなわズの平均
屈折率が求まる。
It becomes possible to separate the two parameters. In other words, the average refractive index of Wazu is determined.

そこで、本発明においては、測定に際して、屈折率が互
いにわずかに異なる第1と第2のマツチング液を用いて
、その各々の場合における干渉縞解析から、まず被検レ
ンズのSag量を求めている。
Therefore, in the present invention, during measurement, first and second matching liquids with slightly different refractive indexes are used, and the Sag amount of the lens to be tested is first determined from interference fringe analysis in each case. .

即ち、第1と第2のマツチング液の屈折率をn Ial
 + n112とし、第1と第2のマツチング液を用い
たときに生じる干渉縞をWo、、Wヮとすると、Wo+
(x、y)−9ag(x、7) * [nto−nm+
]+[d−Sag(x、y)lΔnt (x、y) °
−(3)Wdx、y)=Sag(x、y)* [nto
−nm2]+[d−3ag(x、7月Δnt(x、り…
(ヰ)したがって(3)−(4)より、 (Se1. Se2は、第9図に示されるように、レン
ズ両面の最大Sag量である。) したがって、被検レンズのSag量即ち形状がわかれば
、そのレンズの屈折率分布が多項式の収差項から求まり
、さらにマツチング液の屈折率を知れば、多項式のディ
フォーカス項から、被検レンnm2−n1ll となり、各マツチング液の屈折率n1ll+n112を
求めれば、(5)式から被検レンズのSag量が求まる
That is, the refractive index of the first and second matching liquids is n Ial
+n112, and the interference fringes that occur when using the first and second matching liquids are Wo, ,Wwa, then Wo+
(x,y)-9ag(x,7)*[nto-nm+
] + [d-Sag (x, y) lΔnt (x, y) °
−(3) Wdx, y)=Sag(x, y)* [nto
−nm2]+[d−3ag(x, July Δnt(x, r...
(I) Therefore, from (3) and (4), (Se1. Se2 is the maximum Sag amount on both sides of the lens, as shown in FIG. 9.) Therefore, the Sag amount, that is, the shape of the tested lens is different. For example, if the refractive index distribution of the lens is found from the aberration term of the polynomial and the refractive index of the matching liquid is known, then the lens to be tested is nm2-n1ll from the defocus term of the polynomial, and the refractive index of each matching liquid n1ll + n112 can be found. For example, the Sag amount of the lens to be tested can be found from equation (5).

なお、マツチング液の屈折率は、ガラス試料の既知の屈
折率と形状とから求めればよい。
Note that the refractive index of the matching liquid may be determined from the known refractive index and shape of the glass sample.

[実施例] 第1図は、本発明に用いられる測定装置を示しており、
この装置は基本的にはマツハ赤ツエンダ−の干渉計にな
っている。1は、コヒーレント光(波長λ)を出射する
コヒーレント光源であり、例えば、)Ie−Neレーザ
光源が用いられる。コヒーレント光源lから出射された
光線は、ビームエキスパンダレンズ2によって拡げられ
、コリメータレンズ3によって平行光束となる。4は第
1のハーフミラ−であり、このハーフミラ−4で反射さ
れた光束は可動ミラー5でさらに反射されて透明容器6
を透過する。可動ミラー5は、その角度を任意に微動(
チルト)させることができる。
[Example] FIG. 1 shows a measuring device used in the present invention,
This device is basically a Matsuha Red Zender interferometer. 1 is a coherent light source that emits coherent light (wavelength λ); for example, a) Ie-Ne laser light source is used. A beam of light emitted from a coherent light source 1 is expanded by a beam expander lens 2 and turned into a parallel beam of light by a collimator lens 3. 4 is a first half mirror, and the light beam reflected by this half mirror 4 is further reflected by a movable mirror 5 and sent to a transparent container 6.
Transparent. The movable mirror 5 can adjust its angle slightly (
tilt).

透明容器6は、歪みのないガラスで形成されている。7
は、開閉自在な蓋である。透明容器6内には、被検レン
ズlOの材質がポリメチルメタクリレート(アクリル)
の場合には、例えばジメチルシリコンオイルとフェニル
メチルシリコンオイルとを混合したマツチング液8が入
っている。
The transparent container 6 is made of undistorted glass. 7
is a lid that can be opened and closed. Inside the transparent container 6, the material of the test lens lO is polymethyl methacrylate (acrylic).
In this case, a matching liquid 8 containing, for example, a mixture of dimethyl silicone oil and phenylmethyl silicone oil is contained.

マツチング液8内には、第2図にも示されるように、屈
折率ng及び形状(θ、L)が既知のガラス試料9と、
屈折率nt及び形状(d 、 Sag(x 、 y) 
)が未知の被検レンズ10とが並列に。
As shown in FIG. 2, the matching liquid 8 contains a glass sample 9 whose refractive index ng and shape (θ, L) are known.
Refractive index nt and shape (d, Sag(x, y)
) is in parallel with the unknown test lens 10.

透過光束に対して垂直に配置されている。被検レンズl
Oは、一般には例えばポリメチルメタクリレート(アク
リル)等のプラスチック製のレンズが対象となるが、ガ
ラスその他の材質のレンズを対象にしてもよい。
It is arranged perpendicular to the transmitted light beam. Test lens l
O generally targets lenses made of plastic such as polymethyl methacrylate (acrylic), but may also target lenses made of glass or other materials.

第1のハーフミラ−4を透過した光束は、第1の固定ミ
ラー11で反射された後、さらに第2のハーフミラ−1
2で反射されて、被検レンズlO又はガラス試料9を通
ってきた光波と重ね合わせられる。そして、2つの光波
の重なりによって生じる干渉縞が、第1の結像レンズ1
3によって撮像素子14表面上に結像する。
The light beam transmitted through the first half mirror 4 is reflected by the first fixed mirror 11, and then further reflected by the second half mirror 1.
2 and is superimposed on the light wave that has passed through the test lens lO or the glass sample 9. Then, the interference fringes caused by the overlap of the two light waves are transmitted to the first imaging lens 1.
3, an image is formed on the surface of the image sensor 14.

この第1の結像レンズ13と撮像素子14とは、一体と
なって図において上下方向に移動できるように設けられ
ている。したがって、第1図においては第1の結像レン
ズ13が被検レンズ10に対向しているが、第3図に示
されるように第1の結像レンズ13をガラス試料9に対
向させることもできる。
The first imaging lens 13 and the image sensor 14 are provided so as to be able to move in the vertical direction in the figure as a unit. Therefore, although the first imaging lens 13 faces the test lens 10 in FIG. 1, the first imaging lens 13 may also face the glass sample 9 as shown in FIG. can.

第1図に戻って、撮像素子14は、例えば50X50個
の独立した光電素子により形成されている。そして、そ
の出力端に、AD変換器15、デジタル用演算回路16
及び表示装置17が順次接続されている。また、演算回
路16には、演算に必要なデータを記憶するメモリ18
と、既知のデータを入力する入力回路19とが順次接続
されている。尚、演算回路16としては、マイクロコン
ピュータその他の演算装置を用いることができる。
Returning to FIG. 1, the image sensor 14 is formed of, for example, 50×50 independent photoelectric elements. An AD converter 15 and a digital arithmetic circuit 16 are connected to the output terminal.
and a display device 17 are sequentially connected. The arithmetic circuit 16 also includes a memory 18 that stores data necessary for the arithmetic operation.
and an input circuit 19 for inputting known data are sequentially connected. Note that as the arithmetic circuit 16, a microcomputer or other arithmetic device can be used.

20は、透明容器6内の状態を観察するための観察装置
であり、第2のハーフミラ−12に対向して設けられた
第2の固定ミラー21と、第2の結像レンズ22と、そ
の結像位置に設けられた撮像装置23とテレビモニタ2
4とにより構成されている。
Reference numeral 20 denotes an observation device for observing the state inside the transparent container 6, which includes a second fixed mirror 21 provided opposite to the second half mirror 12, a second imaging lens 22, and the like. Imaging device 23 and television monitor 2 provided at the imaging position
4.

本発明の測定方法によって被検レンズ10の屈折率測定
を行うには、まず、ガラス試料9に関する既知のデータ
(n g *θ、L)を入力回路19からメモリ18に
入力して記憶しておく。
In order to measure the refractive index of the lens 10 to be tested using the measurement method of the present invention, first, known data (n g *θ, L) regarding the glass sample 9 is input to the memory 18 from the input circuit 19 and stored. put.

次に、マツチング液8の屈折率を調整する。この調整は
、被検レンズlOを透過した光波によって生ずる干渉縞
の数が例えば3本以下になるように、テレビモニタ24
を見ながら行う、干渉縞が1本以下になって、消えてし
まってもよい。具体的には、透明容器6の蓋7を取り外
しておいて、マツチング液8を構成する2種のシリコン
オイルのうちの一方をスポイト等で容器6内に点滴し、
マツチング液8を撹拌混合すればよい。このようにして
屈折率n重、の確定したものが1本発明における第1の
マツチング液である。
Next, the refractive index of the matching liquid 8 is adjusted. This adjustment is performed on the TV monitor 24 so that the number of interference fringes caused by the light waves transmitted through the test lens 10 is, for example, 3 or less.
It is possible that the number of interference fringes becomes one or less and disappears. Specifically, the lid 7 of the transparent container 6 is removed, and one of the two types of silicone oil constituting the matching liquid 8 is dripped into the container 6 using a dropper or the like.
The matching liquid 8 may be stirred and mixed. The liquid whose refractive index nfold is thus determined is the first matching liquid in the present invention.

次に、第3図に示されるように、第1の結像レンズ13
をガラス試料9に対向させる。すると、第4図に示され
るように、ガラス試料9を透過した光波と参照光波との
重なりによって発生する干渉縞30が、撮像素子14に
結像する。そして、そのときの撮像素子14からの出力
によって、その縞の空間周波a F +を演算回路16
において演算する。これは公知のディスクリート・フー
リエ・トランスフオーム(DFT)により行うことがで
きるが、さらに高速なファースト番フーリエ・トランス
フオーム(FFT)によるのがよい。
Next, as shown in FIG. 3, the first imaging lens 13
to face the glass sample 9. Then, as shown in FIG. 4, interference fringes 30 generated by the overlap of the light wave transmitted through the glass sample 9 and the reference light wave are imaged on the image sensor 14. Then, based on the output from the image sensor 14 at that time, the spatial frequency a F + of the stripe is calculated by the calculation circuit 16.
Calculate at. This can be done by a well-known discrete Fourier transform (DFT), but preferably by a faster first Fourier transform (FFT).

この場合、撮像素子14上の干渉縞30に対して直角を
なす、第5図に示されるような線分31上の出力から、
第6図に示されるような略サインカーブ状の明るさの強
度分布を演算する。そして、その強度分布から、FFT
によって干渉縞の空間周波数F1を演算し、その値から
第1のマツチング液8の屈折率n atを求める。
In this case, from the output on a line segment 31 as shown in FIG. 5, which is perpendicular to the interference fringes 30 on the image sensor 14,
A substantially sinusoidal brightness intensity distribution as shown in FIG. 6 is calculated. Then, from the intensity distribution, FFT
The spatial frequency F1 of the interference fringes is calculated, and the refractive index nat of the first matching liquid 8 is determined from the calculated value.

即ち、 F、=kl/L (nlll−ng)   L  拳 tan   θ 
= λ k。
That is, F,=kl/L (nllll-ng) L fist tan θ
= λk.

であるから、 nmt=ng+入・F+/lanθ により求められる。そしてtfllllの値はメモリ1
8に記憶しておく。
Therefore, it is determined by nmt=ng+in・F+/lanθ. And the value of tfllll is memory 1
Remember it in 8.

次に、第1図に示されるように、第1の結像レンズ13
を被検レンズ10に対向させる。すると、被検レンズ1
0を透過した光波と参照光波との重なりによって発生す
る干渉縞40が、第7図に示されるように、撮像素子1
4に結像する。そのときの撮像素子14からの出力を、
演算回路16において、まず高精度縞解析にかける。こ
の解析は、可動ミラー5を微小角度回動して縞にチルト
を与え、例えば公知の空間的フリンジ走査法により行う
、そして位相を決定して、ひきつづき演算回路16にお
いて第1の多項式W。l(x 、y)に展開する0本実
施例においては例えばツェルニケの多項式に展開してメ
モリ18に記憶する。
Next, as shown in FIG. 1, the first imaging lens 13
is made to face the lens 10 to be tested. Then, test lens 1
As shown in FIG.
4. The output from the image sensor 14 at that time is
The arithmetic circuit 16 first performs high-precision fringe analysis. This analysis is performed by rotating the movable mirror 5 by a small angle to give a tilt to the fringe, for example, by a well-known spatial fringe scanning method, determining the phase, and then calculating the first polynomial W in the arithmetic circuit 16. 0 expanded into l(x, y) In this embodiment, for example, it is expanded into a Zernike polynomial and stored in the memory 18.

次に、マツチング液8の混合比を少し変化させる。この
場合も、マツチング液8を構成する2種のシリコンオイ
ルのうちの一方をスポイト等で容器6内に点滴し、撹拌
混合する。このようにして屈折率n論2の確定したもの
が1本発明における第2のマツチング液である。この場
合、Mlのマツチング液の屈折率nl1が被検レンズl
Oの屈折率nlよりわずかに大きかったら、第2のマツ
チング液の屈折率n mtをnlよりわずかに小さく調
整し、逆に、n Illがntよりわずかに小さかった
ら、nm!をnlよりわずかに大きく調整するとよい。
Next, the mixing ratio of the matching liquid 8 is slightly changed. In this case as well, one of the two types of silicone oil constituting the matching liquid 8 is dripped into the container 6 using a dropper or the like, and mixed by stirring. The liquid whose refractive index n theory 2 has been determined in this way is the second matching liquid in the present invention. In this case, the refractive index nl1 of the matching liquid Ml is
If the refractive index of O is slightly larger than nl, then the refractive index n mt of the second matching liquid is adjusted to be slightly smaller than nl, and conversely, if n Ill is slightly smaller than nt, then nm! It is best to adjust the value to be slightly larger than nl.

次に、上述の第1のマツチング液を用いた場合と全く同
様にして、ガラス試料9を透過した光波と参照光波との
重なりによって発生する干渉縞から、第2のマツチング
液の屈折率nuを求めて、その値をメモリ18に記憶す
る。
Next, in exactly the same way as when using the first matching liquid described above, the refractive index nu of the second matching liquid is determined from the interference fringes generated by the overlap of the light wave transmitted through the glass sample 9 and the reference light wave. The value is stored in the memory 18.

次いで、やはり上述の第1のマツチング液を用いた場合
と全く同様にして、被検レンズlOを透過した光波と参
照光波との重なりによって干渉縞を発生させる。第8図
は、その時に撮像素子14に結像する干渉縞50を例示
している。そして、そのときの撮像素子14の出力から
、演算回路16において干渉縞を第2の多項式W田(x
 、 y)に展開する。そして、この多項式のディフォ
ーカス項と収差項とをメモリ18に記憶しておく。
Next, in exactly the same manner as when using the first matching liquid described above, interference fringes are generated by the overlap of the light wave transmitted through the test lens IO and the reference light wave. FIG. 8 illustrates an example of interference fringes 50 that are imaged on the image sensor 14 at that time. Then, based on the output of the image sensor 14 at that time, the arithmetic circuit 16 calculates interference fringes using a second polynomial W(x
, y). Then, the defocus term and the aberration term of this polynomial are stored in the memory 18.

次いで、まず、第1と第2の多項式Wo1.Wo2の差
とPi4iと第2のマツチング液の屈折率n1m1゜n
1ltの差とから、被検レンズのSag量(即ち形状)
を、 sag(x、y)=WX−WX nllffi−nt として求める。
Next, first, the first and second polynomials Wo1. The difference between Wo2 and the refractive index of Pi4i and the second matching liquid n1m1゜n
From the difference of 1lt, the amount of Sag (i.e. shape) of the lens to be tested
is determined as sag(x,y)=WX-WXnllffi-nt.

そして最大Sag量(Sel+Se2 )を求めて、メ
モリ18から第2のマツチング液の屈折率n1Ltを読
み出し、第2の多項式のディフォーカス項から、被検レ
ンズ10の平均屈折率ntoを、として求め、その結果
を表示装置17に出力して表示する。
Then, find the maximum Sag amount (Sel+Se2), read out the refractive index n1Lt of the second matching liquid from the memory 18, and find the average refractive index nto of the test lens 10 from the defocus term of the second polynomial as, The results are output and displayed on the display device 17.

また、メモリ18から、被検レンズlOの各部分の肉厚
[d −Sag(x 、 y) ]を読み出し、第2の
多項式の収差項(W)から、被検レンズ10の屈折率分
布Δn  (x、y)を。
Further, the wall thickness [d − Sag (x, y)] of each part of the test lens lO is read from the memory 18, and the refractive index distribution Δn of the test lens 10 is calculated from the aberration term (W) of the second polynomial. (x, y).

として求め、その結果を表示装置17に出力して表示す
る。
The result is output and displayed on the display device 17.

尚、上記実施例においては、第2の多項式のディフォー
カス項と収差項をメモリ18に記憶して、それを測定分
析に用いたが、第2の多項式に代えて第1の多項式を用
いてもよい、その場合には、被検レンズlOの平均屈折
率ntoは、として求まる。n組は第1のマツチング液
の屈折率である。
In the above embodiment, the defocus term and the aberration term of the second polynomial were stored in the memory 18 and used for measurement analysis, but the first polynomial was used instead of the second polynomial. In that case, the average refractive index nto of the lens lO to be tested is determined as follows. The n set is the refractive index of the first matching liquid.

[発明の効果] 本発明のレンズの屈折率測定方法によれば、被検レンズ
はマツチング液に浸すだけなので、測定に際してレンズ
を破壊する必要がない、しかも、干渉縞の強度分布の出
力から、干渉縞を表す多項式のディフォーカス項を取り
出すことにより、屈折率及び形状が未知の被検レンズの
平均屈折率が求まり、多項式の収差項から屈折率分布が
求まるので、定量的に求めることが可能であり。
[Effects of the Invention] According to the method for measuring the refractive index of a lens according to the present invention, since the lens to be tested is simply immersed in a matching liquid, there is no need to destroy the lens during measurement.Moreover, from the output of the intensity distribution of interference fringes, By extracting the defocus term of the polynomial that represents interference fringes, the average refractive index of the test lens whose refractive index and shape are unknown can be determined, and the refractive index distribution can be determined from the aberration term of the polynomial, so it can be determined quantitatively. Yes.

したがって自動層1析等も容易に行うことができる等の
優れた効果を有する。
Therefore, it has excellent effects such as being able to easily perform automatic layer 1 analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明による測定を行う測定装置
の一例を示す略示図、第4図ないし第6図はマツチング
液の屈折率を求める手順を示す略示図、第7図及び第8
図は被検レンズを透過した光波により撮像素子表面に生
ずる干渉縞を示す略示図、第9図及び第10図は本発明
の測定原理を説明する略示図、第11図は本発明の測定
原理による測定精度を説明する線図である。 代理人 弁理士  三 井 和 彦 第5図 第4図 第6図 第7図 jJ8図 第9図 第10図 参照通
1 to 3 are schematic diagrams showing an example of a measuring device for carrying out measurements according to the present invention, FIGS. 4 to 6 are schematic diagrams illustrating the procedure for determining the refractive index of a matching liquid, and FIGS. 8th
The figure is a schematic diagram showing interference fringes generated on the surface of the image sensor by light waves transmitted through the test lens, Figures 9 and 10 are schematic diagrams explaining the measurement principle of the present invention, and Figure 11 is a diagram illustrating the measurement principle of the present invention. FIG. 3 is a diagram illustrating measurement accuracy based on the measurement principle. Agent Patent Attorney Kazuhiko Mitsui See Figure 5, Figure 4, Figure 6, Figure 7, jJ8, Figure 9, Figure 10.

Claims (1)

【特許請求の範囲】[Claims] 屈折率及び形状が既知のガラス試料と、屈折率及び形状
が未知の被検レンズとを第1のマッチング液中に浸し、
これらにコヒーレント光を透過させて、その透過光波を
参照光波と重ね合わせて干渉縞を発生させ、上記ガラス
試料を透過した光波により生ずる干渉縞の強度分布を出
力してその出力から上記第1のマッチング液の屈折率を
求めると共に、上記被検レンズを透過した光波により生
ずる干渉縞の強度分布を出力して、その出力から、その
干渉縞を表す第1の多項式を求め、次に、上記ガラス試
料と被検レンズとを、屈折率が上記第1のマッチング液
とわずかに異なる第2のマッチング液中に浸し、これら
に上記ヒーレント光を透過させて、その透過光波を参照
光波と重ね合わせて干渉縞を発生させ、上記ガラス試料
を透過した光波により生ずる干渉縞の強度分布を出力し
てその出力から上記第2のマッチング液の屈折率を求め
ると共に、上記被検レンズを透過した光波により生ずる
干渉縞の強度分布を出力して、その出力から、その干渉
縞を表す第2の多項式を求めて、上記第1及び第2のマ
ッチング液の屈折率と第1及び第2の多項式とから上記
被検レンズの形状を求め、そして、上記第1又は第2の
多項式のディフォーカス項と収差項とを分離して、上記
ディフォーカス項と上記第1又は第2のマッチング液の
屈折率とから上記被検レンズの平均屈折率を求め、上記
収差項から上記被検レンズの屈折率分布を求めるように
したことを特徴とするレンズの屈折率測定方法。
Immersing a glass sample whose refractive index and shape are known and a test lens whose refractive index and shape are unknown in a first matching liquid,
Coherent light is transmitted through these, and the transmitted light wave is superimposed on a reference light wave to generate interference fringes, and the intensity distribution of the interference fringes generated by the light waves that have passed through the glass sample is output, and from that output, the first In addition to determining the refractive index of the matching liquid, the intensity distribution of interference fringes caused by the light waves transmitted through the test lens is output, and from the output, a first polynomial representing the interference fringes is determined. The sample and the lens to be tested are immersed in a second matching liquid whose refractive index is slightly different from that of the first matching liquid, the above-mentioned healed light is transmitted through them, and the transmitted light wave is superimposed on the reference light wave. Generating interference fringes, outputting the intensity distribution of the interference fringes caused by the light waves transmitted through the glass sample, and determining the refractive index of the second matching liquid from the output; The intensity distribution of the interference fringes is output, a second polynomial representing the interference fringes is determined from the output, and the above is calculated from the refractive indices of the first and second matching liquids and the first and second polynomials. The shape of the lens to be tested is determined, and the defocus term and the aberration term of the first or second polynomial are separated, and the defocus term and the refractive index of the first or second matching liquid are separated. A method for measuring the refractive index of a lens, characterized in that the average refractive index of the lens to be tested is determined, and the refractive index distribution of the lens to be tested is determined from the aberration term.
JP15899288A 1988-06-16 1988-06-27 Refractive index measurement method Expired - Lifetime JP2678464B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15899288A JP2678464B2 (en) 1988-06-27 1988-06-27 Refractive index measurement method
US07/707,438 US5151752A (en) 1988-06-16 1991-05-28 Method of measuring refractive indices of lens and sample liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15899288A JP2678464B2 (en) 1988-06-27 1988-06-27 Refractive index measurement method

Publications (2)

Publication Number Publication Date
JPH028726A true JPH028726A (en) 1990-01-12
JP2678464B2 JP2678464B2 (en) 1997-11-17

Family

ID=15683855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15899288A Expired - Lifetime JP2678464B2 (en) 1988-06-16 1988-06-27 Refractive index measurement method

Country Status (1)

Country Link
JP (1) JP2678464B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684359A (en) * 1994-06-06 1997-11-04 Matsushita Electric Industrial Co., Ltd. Discharge lamp and illumination instrument for general illumination
JP2010085235A (en) * 2008-09-30 2010-04-15 F K Kogaku Kenkyusho:Kk Measuring method of height of sample
JP2010151578A (en) * 2008-12-25 2010-07-08 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring device
JP2011106975A (en) * 2009-11-18 2011-06-02 Canon Inc Measuring method and measuring apparatus of refractive index distribution
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2011247692A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of diffraction factor
JP4912504B1 (en) * 2010-09-16 2012-04-11 キヤノン株式会社 Refractive index measurement method and measurement apparatus
JP2012088342A (en) * 2012-02-10 2012-05-10 Canon Inc Refraction index distribution measuring method and refraction index distribution measuring device
US8472014B2 (en) 2010-05-25 2013-06-25 Canon Kabushiki Kaisha Refractive index distribution measuring method and refractive index distribution measuring apparatus
US8786863B2 (en) 2009-03-25 2014-07-22 Canon Kabushiki Kaisha Transmitted wavefront measuring method, refractive-index distribution measuring method, and transmitted wavefront measuring apparatus that calculate a frequency distribution and obtain a transmitted wavefront of the object based on a primary frequency spectrum in the frequency distribution
JP2015105850A (en) * 2013-11-29 2015-06-08 キヤノン株式会社 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
CN105572050A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Method for detecting material uniformity of spherical lens
JP2016109593A (en) * 2014-12-08 2016-06-20 キヤノン株式会社 Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684359A (en) * 1994-06-06 1997-11-04 Matsushita Electric Industrial Co., Ltd. Discharge lamp and illumination instrument for general illumination
JP2010085235A (en) * 2008-09-30 2010-04-15 F K Kogaku Kenkyusho:Kk Measuring method of height of sample
JP2010151578A (en) * 2008-12-25 2010-07-08 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring device
US8472013B2 (en) 2008-12-25 2013-06-25 Canon Kabushiki Kaisha Refractive index distribution measurement method and apparatus that measure transmission wavefronts of a test object immersed in different media having refractive index lower than that of the test object
US8786863B2 (en) 2009-03-25 2014-07-22 Canon Kabushiki Kaisha Transmitted wavefront measuring method, refractive-index distribution measuring method, and transmitted wavefront measuring apparatus that calculate a frequency distribution and obtain a transmitted wavefront of the object based on a primary frequency spectrum in the frequency distribution
US8310664B2 (en) 2009-11-18 2012-11-13 Canon Kabushiki Kaisha Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP2011106975A (en) * 2009-11-18 2011-06-02 Canon Inc Measuring method and measuring apparatus of refractive index distribution
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
US8508725B2 (en) 2009-12-07 2013-08-13 Canon Kabushiki Kaisha Refractive index distribution measuring method and apparatus using position measurement and a reference object
JP2011247692A (en) * 2010-05-25 2011-12-08 Canon Inc Method and apparatus for measuring distribution of diffraction factor
US8472014B2 (en) 2010-05-25 2013-06-25 Canon Kabushiki Kaisha Refractive index distribution measuring method and refractive index distribution measuring apparatus
KR101288876B1 (en) * 2010-05-25 2013-07-23 캐논 가부시끼가이샤 Refractive index distribution measuring method and refractive index distribution measuring apparatus
US8525982B2 (en) 2010-05-25 2013-09-03 Canon Kabushiki Kaisha Refractive index distribution measuring method and refractive index distribution measuring apparatus
CN102297758A (en) * 2010-05-25 2011-12-28 佳能株式会社 Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP4912504B1 (en) * 2010-09-16 2012-04-11 キヤノン株式会社 Refractive index measurement method and measurement apparatus
US8520218B2 (en) 2010-09-16 2013-08-27 Canon Kabushiki Kaisha Measuring method of refractive index and measuring apparatus of refractive index
JP2012088342A (en) * 2012-02-10 2012-05-10 Canon Inc Refraction index distribution measuring method and refraction index distribution measuring device
JP2015105850A (en) * 2013-11-29 2015-06-08 キヤノン株式会社 Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
JP2016109593A (en) * 2014-12-08 2016-06-20 キヤノン株式会社 Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
CN105572050A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Method for detecting material uniformity of spherical lens

Also Published As

Publication number Publication date
JP2678464B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5151752A (en) Method of measuring refractive indices of lens and sample liquid
Bernd et al. Handbook of optical systems, volume 5: Metrology of optical components and systems
JP4895409B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
JPH028726A (en) Measurement of refractive index of lens
King et al. Quantitative phase microscopy through differential interference imaging
US4930893A (en) Electrophoresis imaging system
Tentori et al. Refractometry by minimum deviation: accuracy analysis
Yatagai et al. Aspherical surface testing with shearing interferometer using fringe scanning detection method
EP3059575B1 (en) Method for determining the quality of a surface of an ophthalmic lens
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
JP2678463B2 (en) Refractive index measurement method
JP2014016253A (en) Refractive index distribution measurement method, method of manufacturing optical element, and refractive index distribution measurement instrument
AU2002228108B2 (en) Device for ellipsometric two-dimensional display of a sample, display method and ellipsometric measurement method with spatial resolution
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
Briers Optical testing: a review and tutorial for optical engineers
Nyakuchena et al. Refractive index dispersion measurement in the short-wave infrared range using synthetic phase microscopy
Müller et al. Multiple Aperture Shear-Interferometry (MArS): a solution to the aperture problem for the form measurement of aspheric surfaces
CN101506615A (en) Method of contact-less measurement of two-layered three-dimensional objects by single-view optical ombroscopy
Mersereau et al. Testing and measurement of microlenses
JP2678465B2 (en) Lens refractive index distribution measurement method
Ramirez et al. Estimation of the degree of asphericity of a glass sphere using a vectorial shearing interferometer
Laubach et al. Combination of a fast white-light interferometer with a phase shifting interferometric line sensor for form measurements of precision components
Freischlad et al. Real-time wavefront measurement with lambda/10 fringe spacing for the optical shop
US20220099497A1 (en) System for inspecting surfaces of an optical wave using a graduated density filter
García-Torales et al. Experimental intensity patterns obtained from a 2D shearing interferometer with adaptable sensitivity

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

EXPY Cancellation because of completion of term