JP2678463B2 - Refractive index measurement method - Google Patents

Refractive index measurement method

Info

Publication number
JP2678463B2
JP2678463B2 JP14983188A JP14983188A JP2678463B2 JP 2678463 B2 JP2678463 B2 JP 2678463B2 JP 14983188 A JP14983188 A JP 14983188A JP 14983188 A JP14983188 A JP 14983188A JP 2678463 B2 JP2678463 B2 JP 2678463B2
Authority
JP
Japan
Prior art keywords
refractive index
lens
interference fringes
output
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14983188A
Other languages
Japanese (ja)
Other versions
JPH01316627A (en
Inventor
政博 大野
亨 千葉
Original Assignee
旭光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭光学工業株式会社 filed Critical 旭光学工業株式会社
Priority to JP14983188A priority Critical patent/JP2678463B2/en
Publication of JPH01316627A publication Critical patent/JPH01316627A/en
Priority to US07/707,438 priority patent/US5151752A/en
Application granted granted Critical
Publication of JP2678463B2 publication Critical patent/JP2678463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、屈折率測定方法に関し、特に、プラスチ
ック製のレンズの屈折率及び屈折率分布を測定するのに
適した屈折率測定方法に関する。
TECHNICAL FIELD The present invention relates to a refractive index measuring method, and more particularly to a refractive index measuring method suitable for measuring a refractive index and a refractive index distribution of a plastic lens.

[従来の技術] プラスチックレンズは、レンズの軽量化や原価低減、
あるいは非球面レンズなどに対するニーズから、近年多
用されるようになっている。
[Prior Art] Plastic lenses reduce the weight and cost of lenses.
Or, due to the need for aspherical lenses, etc., they have been widely used in recent years.

しかし、プラスチックレンズを物性面の安定という観
点からみると、ガラスレンズに比べて、製造上、屈折率
及びその分布が不安定で変動が大きい欠点がある。した
がって、プラスチックレンズは、屈折率とその分布を成
形後に一個一個測定する必要がある。この場合、レンズ
を破壊するわけにはいかないから、その測定は容易では
ない。非球面レンズなどであればなおさらである。
However, from the viewpoint of stability of the physical properties of the plastic lens, there is a drawback in that the refractive index and its distribution are unstable and the fluctuation thereof is large in manufacturing, as compared with the glass lens. Therefore, it is necessary to measure the refractive index and its distribution of each plastic lens one by one after molding. In this case, the lens cannot be destroyed, so the measurement is not easy. Especially if it is an aspherical lens.

このようなプラスチックレンズの屈折率の測定方法と
して、従来は次のようなものがあった。
Conventionally, there have been the following methods for measuring the refractive index of such a plastic lens.

用いられる装置は、全体としては、マッハ・シェンダ
ーの干渉計になっていて、一光束を平面波の参照光とし
て使い、もう一光束中に被検レンズを、被検レンズと屈
折率がほぼ等しいマッチング液に浸してセットする。さ
らに、屈折率参照用として、被検レンズに屈折率の近
い、屈折率既知のガラス試料も同時に液浸してセットす
る。このよな液浸装置をマッハ・シェンダー干渉計の一
光束中に置くことにより生ずる干渉縞観測において、N
本の干渉縞が観測される間の試料の厚さの差を測定し
て、その測定値から被検レンズの屈折率を求めていた。
The device used as a whole is a Mach-Schender interferometer, which uses one light beam as the reference light of the plane wave and matches the lens under test in the other light beam with a refractive index almost equal to that of the lens under test. Set by immersing in liquid. Further, as a reference for the refractive index, a glass sample having a refractive index close to the lens to be inspected and having a known refractive index is simultaneously immersed in the liquid and set. In observing the interference fringes generated by placing such an immersion device in one beam of the Mach-Schender interferometer,
The difference in the thickness of the sample was measured while the interference fringes of the book were observed, and the refractive index of the lens under test was determined from the measured value.

[発明が解決しようとする課題] しかし、マッチング液の屈折率は、温度変化等に伴っ
て変動するものである。したがって上述の測定方法で
は、温度が変化すればN本の干渉縞の生じる範囲も変動
し、その度毎にその部分の試料の厚さを測定しなければ
ならない。また、レンズの屈折率分布が一様でなけれ
ば、不規則な形の干渉縞が発生するので、N本の縞とい
うのはどのように解釈すればよいかが困難な事態が生じ
る。したがって、このような場合の屈折率測定において
は、定量解釈が難しい欠点があった。また、そのために
測定の自動化なども困難であった。
[Problems to be Solved by the Invention] However, the refractive index of the matching liquid fluctuates with changes in temperature and the like. Therefore, in the above-described measuring method, if the temperature changes, the range in which N interference fringes occur also changes, and the thickness of the sample in that portion must be measured each time. Further, if the refractive index distribution of the lens is not uniform, irregularly shaped interference fringes are generated, and it is difficult to interpret N fringes. Therefore, in the measurement of the refractive index in such a case, there is a drawback that quantitative interpretation is difficult. In addition, it is difficult to automate the measurement.

この発明は、そのような従来の欠点を解消し、レンズ
等被検物を破壊せずにその屈折率と屈折率分布を測定す
ることができ、しかも定量解釈が容易で、測定の自動化
を行うのも容易な屈折率測定方法を提供することを目的
とする。
The present invention eliminates such conventional drawbacks, can measure the refractive index and the refractive index distribution of a test object such as a lens without destroying it, and is easy to quantitatively interpret, and automates the measurement. It is an object of the present invention to provide a method of measuring a refractive index which is also easy.

[課題を解決するための手段] 上記の目的を達成するために、本発明の屈折率測定方
法は、屈折率及び形状が既知の試料と、屈折率が未知で
形状が既知の被検物とを、屈折率が上記被検物とわずか
に異なるマッチング液中に浸し、これらにコヒーレント
光を透過させて、その透過光波を参照光波と重ね合わせ
て干渉縞を発生させ、上記試料を透過した光波により生
ずる干渉縞の強度分布を出力してその出力から上記マッ
チング液の屈折率を求めると共に、上記被検物を透過し
た光波により生ずる干渉縞の強度分布を出力して、その
出力から、その干渉縞を表す多項式のディフォーカス項
と収差項とを分離して、上記ディフォーカス項と上記マ
ッチング液の屈折率とから上記被検物の平均屈折率を求
め、上記収差項から上記被検物の屈折率分布を求めるよ
うにしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the refractive index measuring method of the present invention comprises a sample having a known refractive index and a shape, and an object having an unknown refractive index and a known shape. Is dipped in a matching liquid whose refractive index is slightly different from that of the test object, transmits coherent light to these, and generates an interference fringe by superimposing the transmitted light wave with a reference light wave, and the light wave transmitted through the sample. The intensity distribution of the interference fringes generated by the above is output, the refractive index of the matching liquid is obtained from the output, and the intensity distribution of the interference fringes generated by the light wave transmitted through the test object is output, and the interference is output from the output. The defocus term and the aberration term of the polynomial representing the fringes are separated, the average refractive index of the test object is obtained from the defocus term and the refractive index of the matching liquid, and the test item is calculated from the aberration term. Refractive index distribution Is characterized in that

[作用] 第11図及び第12図に示されるように、屈折率nmが被検
物の屈折率ntとほぼ等しいマッチング液に浸した被検物
に、波長λの平面波を透過させた時、その透過波と参照
波とによって得られる干渉縞W0(x,y)を考える。
[Operation] As illustrated in FIG. 11 and FIG. 12, the refractive index n m is the specimen soaked in approximately equal matching liquid with a refractive index n t of the test object was transmitted through the plane wave having a wavelength λ Consider the interference fringe W 0 (x, y) obtained by the transmitted wave and the reference wave.

被検物の形状は既知であり(設計値又は測定値が既
知)、その量を I面:Z1=S1(x,y) II面:Z2=S2(x,y) とし、中心肉厚をdとすると、両面のSag量合計Sag(x,
y)は Sag(x,y)=S1(x,y)+S2(x,y)…(1) 一方、屈折率nt(x,y)を、平均屈折率nt0と屈折率分布
Δnt(x,y)とに分離すると、 W0(x,y)=Sag(x,y)・[nt0−nm]+[d−Sag(x,
y)]Δnt(x,y)…(2) (2)式よりマッチング液の屈折率nmを測定すれば、
W0(x,y)はnt0及びΔnt(x,y)のみの関数になるが、
一般には、この二つのパラメータを分離して求めること
はできない。
The shape of the object to be inspected is known (designed value or measured value is known), and its amount is I surface: Z 1 = S 1 (x, y) II surface: Z 2 = S 2 (x, y), If the central wall thickness is d, the total amount of Sag on both sides is Sag (x,
y) is Sag (x, y) = S 1 (x, y) + S 2 (x, y)… (1) On the other hand, the refractive index n t (x, y) is calculated as the average refractive index n t0 and the refractive index distribution. When separated into Δn t (x, y), W 0 (x, y) = Sag (x, y) · [n t0 −n m ] + [d−Sag (x,
y)] Δn t (x, y) ... (2) (2) by measuring the refractive index n m of the matching liquid from the equation,
W 0 (x, y) is a function of only n t0 and Δn t (x, y),
Generally, these two parameters cannot be obtained separately.

さて、ここで上記の(2)式を、波面収差の展開式で
は一般的なゼルニケの多項式を用いて展開すると、 W0(x,y)=Sag(x,y)・[nt0−nm]+[d−Sag(x,
y)]Δnt(x,y) =C1+C2ρcos+C3ρsin+C4(2ρ2−1)+C5ρ2
cos2+… と書ける。
Now, when the above formula (2) is expanded by using a general Zernike polynomial in the expansion formula of the wavefront aberration, W 0 (x, y) = Sag (x, y) · [n t0 −n m ] + [d−Sag (x,
y)] Δn t (x, y) = C 1 + C 2 ρ cos + C 3 ρ sin + C 4 (2ρ 2 -1) + C 5 ρ 2
You can write cos2 + ...

C2ρcos,C3ρsinはチルト項、 C4(2ρ2−1)はディフォーカス項(W2) C5ρ2cos2+…は収差項(W) である。C 2 ρcos and C 3 ρsin are tilt terms, C 4 (2ρ 2 −1) is a defocus term (W 2 ), C 5 ρ 2 cos 2 + ... Is an aberration term (W).

そして、今[nt0−nm]≒0だから、Sag(x,y)・[n
t0−nm]は2次関数で近似でき、ディフォーカス項とほ
ぼ等しくなる。
Then, since [n t0 −n m ] ≈ 0, Sag (x, y) · [n
t0 −n m ] can be approximated by a quadratic function, and is approximately equal to the defocus term.

第13図は、一方の面が球面(曲率半径r)、他方の面
が平面(曲率半径∞)、直径がDであって屈折率分布の
ない種々のRナンバー(R=r/D)の被検物を考え、そ
の被検物を、縞本数3本(W0=3λ)及び1本(W0=1
λ)なる縞を観測可能なようにマッチング液の調合を行
ったと想定した場合の、収差項(ΔW)の値を示してい
る。縞読取の再現性をRmsでλ/25とすれば、縞本数3本
の場合でもR>0.7となる。
FIG. 13 shows that one surface is a spherical surface (curvature radius r), the other surface is a flat surface (curvature radius ∞), the diameter is D, and there are various R numbers (R = r / D) with no refractive index distribution. Consider an object to be inspected, and the object to be inspected is 3 stripes (W 0 = 3λ) and 1 stripe (W 0 = 1)
The value of the aberration term (ΔW) is shown on the assumption that the matching liquid is prepared so that the fringes λ) can be observed. If the reproducibility of fringe reading is λ / 25 in Rms, R> 0.7 even when the number of fringes is three.

したがって、ほとんどのRナンバーの被検物が、縞読
取再現性以下となり、観測された干渉縞の成分がディフ
ォーカス項(W2)のみで表されることを示している。
Therefore, most of the R-number test objects have fringe reading reproducibility or less, indicating that the observed interference fringe component is represented only by the defocus term (W 2 ).

したがって、読み取った縞W0(x,y)のディフォーカ
ス項W2から[nt0−nm]が求められ、収差項WからΔnt
(x,y)が求められ、二つのパラメータの分離が可能と
なる。すなわち、 (Se1,Se2は、第11図に示されるように、被検物両面の
最大Sag量である。) したがって、被検物の屈折率分布が多項式の収差項か
ら求まり、マッチング液の屈折率を知れば、多項式のデ
ィフォーカス項から、被検物の平均屈折率が求まる。
Therefore, [n t0 −n m ] is obtained from the defocus term W 2 of the read fringe W 0 (x, y), and Δn t is obtained from the aberration term W.
(X, y) is obtained, and the two parameters can be separated. That is, (Se 1 and Se 2 are the maximum Sag amounts on both sides of the test object, as shown in Fig. 11.) Therefore, the refractive index distribution of the test object is calculated from the aberration term of the polynomial, and the refractive index of the matching liquid is calculated. If the index is known, the average refractive index of the test object can be obtained from the defocus term of the polynomial.

なお、マッチング液の屈折率nmは、試料の既知の屈折
率と形状とから求めればよい。
The refractive index n m of the matching fluid may be obtained from the known refractive index and shape of the sample.

[実施例] 第1図は、本発明に用いられる測定装置を示してお
り、この装置は基本的にはマッハ・ツェンダーの干渉計
になっている。1は、コヒーレント光(波長λ)を出射
するコヒーレント光源であり、例えば、He−Neレーザ光
源が用いられる。コヒーレント光源1から出射された光
線は、ビームエキスパンダレンズ2によって拡げられ、
コリメータレンズ3によって平行光束となる。4は第1
のハーフミラーであり、このハーフミラー4で反射され
た光束は可動ミラー5でさらに反射されて透明容器6を
透過する。可動ミラー5は、その角度を任意に微動(チ
ルト)させることができる。
[Example] FIG. 1 shows a measuring apparatus used in the present invention, and this apparatus is basically a Mach-Zehnder interferometer. Reference numeral 1 denotes a coherent light source that emits coherent light (wavelength λ), for example, a He-Ne laser light source. The light beam emitted from the coherent light source 1 is expanded by the beam expander lens 2,
The collimator lens 3 forms a parallel light beam. 4 is the first
The light flux reflected by the half mirror 4 is further reflected by the movable mirror 5 and transmitted through the transparent container 6. The movable mirror 5 can arbitrarily finely move (tilt) its angle.

透明容器6は、歪みのないガラスで形成されている。
7は、開閉自在な蓋である。透明容器6内には、被検レ
ンズ10の材質がポリメチルメタクリレート(アクリル)
の場合には、例えばジメチルシリコンオイルとフェニル
メチルシリコンオイルとを混合したマッチング液8が入
っている。
The transparent container 6 is formed of glass without distortion.
Reference numeral 7 denotes an openable / closable lid. In the transparent container 6, the material of the test lens 10 is polymethyl methacrylate (acryl).
In the case of (1), for example, a matching liquid 8 in which dimethyl silicone oil and phenylmethyl silicone oil are mixed is contained.

マッチング液8内には、第2図にも示されるように、
屈折率ng及び形状(θ,L)が既知のガラス試料9と、屈
折率ntが未知で、形状(d,Sag(x,y))が既知の被検レ
ンズ10とが並列に、透過光束に対して垂直に配置されて
いる。被検レンズ10は、一般には例えばポリメチルメタ
クリレート(アクリル)等のプラスチック製のレンズが
対象となるが、ガラスその他の材質のレンズを対象にし
てもよい。
In the matching liquid 8, as shown in FIG.
A glass sample 9 having a known refractive index ng and a shape (θ, L) and a test lens 10 having a known refractive index n t and a known shape (d, Sag (x, y)) are transmitted in parallel. It is arranged perpendicular to the light flux. The lens 10 to be inspected is generally a plastic lens such as polymethylmethacrylate (acrylic), but may be a lens made of glass or other material.

第1のハーフミラー4を透過した光束は、第1の固定
ミラー11で反射された後、さらに第2のハーフミラー12
で反射されて、被検レンズ10又はガラス試料9を通って
きた光波と重ね合わせられる。そして、2つの光波の重
なりによって生じる干渉縞が、第1の結像レンズ13によ
って撮像素子14表面上に結像する。
The light beam transmitted through the first half mirror 4 is reflected by the first fixed mirror 11 and then further reflected by the second half mirror 12.
Are superimposed on the light wave which has been reflected by the lens 10 and passed through the lens 10 to be inspected or the glass sample 9. Then, an interference fringe generated by the overlap of the two light waves forms an image on the surface of the imaging element 14 by the first imaging lens 13.

この第1の結像レンズ13と撮像素子14とは、一体とな
って図において上下方向に移動できるように設けられて
いる。したがって、第1図においては第1の結像レンズ
13が被検レンズ10に対向しているが、第3図に示される
ように第1の結像レンズ13をガラス試料9に対向させる
こともできる。
The first imaging lens 13 and the imaging element 14 are provided so as to be integrally movable in the vertical direction in the figure. Therefore, in FIG. 1, the first imaging lens
Although the lens 13 faces the lens 10 to be measured, the first imaging lens 13 may face the glass sample 9 as shown in FIG.

第1図に戻って、撮像素子14は、例えば50×50個の独
立した光電素子により形成されている。そして、その出
力端に、AD変換器15、デジタル用演算回路16及び表示装
置17が順次接続されている。また、演算回路16には、演
算に必要なデータを記憶するメモリ18と、既知のデータ
を入力する入力回路19とが順次接続されている。尚、演
算回路16としては、マイクロコンピュータその他の演算
装置を用いることができる。
Returning to FIG. 1, the imaging element 14 is formed of, for example, 50 × 50 independent photoelectric elements. An AD converter 15, a digital operation circuit 16, and a display device 17 are sequentially connected to the output terminal. Further, the arithmetic circuit 16 is sequentially connected with a memory 18 for storing data necessary for the arithmetic operation and an input circuit 19 for inputting known data. Note that the arithmetic circuit 16 can be a microcomputer or other arithmetic device.

20は、透明容器6内の状態を観察するための観察装置
であり、第2のハーフミラー12に対向して設けられた第
2の固定ミラー21と、第2の結像レンズ22と、その結像
位置に設けられた撮像装置23とテレビモニタ24とにより
構成されている。
Reference numeral 20 denotes an observation device for observing the state in the transparent container 6, and includes a second fixed mirror 21 provided to face the second half mirror 12, a second imaging lens 22, It is composed of an imaging device 23 and a television monitor 24 provided at the image forming position.

本発明の測定方法によって被検レンズ10の屈折率測定
を行うには、まず、既知のデータを入力回路19から入力
する。そして、ガラス試料9に関する既知のデータ(n
g,θ,L)はメモリ18に入力して記憶しておく。被検レン
ズ10の形状に関する既知のデータ(d,Sag(x,y))か
ら、被検レンズ10の両面の最大Sag量(Se1+Se2)と各
部分の肉厚[d−Sag(x,y)]とを演算回路16で演算し
て、メモリ18に記憶しておく。
In order to measure the refractive index of the lens under test 10 by the measuring method of the present invention, first, known data is input from the input circuit 19. Then, known data (n
g, θ, L) is input and stored in the memory 18. From the known data (d, Sag (x, y)) about the shape of the lens 10 to be tested, the maximum amount of Sag (Se 1 + Se 2 ) on both sides of the lens 10 to be tested and the wall thickness [d−Sag (x , y)] is calculated by the arithmetic circuit 16 and stored in the memory 18.

次に、マッチング液8の屈折率nmを被検レンズ10の屈
折率ntとわずかに異なる値に調整する。この調整は、被
検レンズ10を透過した光波によって生ずる干渉縞の数が
例えば3本以下になるように、テレビモニタ24を見なが
ら行う。具体的には、透明容器6の蓋7を取り外してお
いて、マッチング液8を構成する2種のシリコンオイル
のうちの一方をスポイト等で容器6内に点滴し、マッチ
ング液8を撹拌混合すればよい。同一設計値の被検レン
ズを連続的に測定する場合には、マッチング液8の調整
は、最初だけ行っておけばよい。
Next, the refractive index n m of the matching liquid 8 is adjusted to a value slightly different from the refractive index n t of the lens under test 10. This adjustment is performed while watching the television monitor 24 so that the number of interference fringes generated by the light wave that has passed through the lens 10 to be inspected is, for example, three or less. Specifically, with the lid 7 of the transparent container 6 removed, one of the two types of silicone oil forming the matching liquid 8 is dropped into the container 6 with a dropper or the like, and the matching liquid 8 is stirred and mixed. Good. When continuously measuring test lenses having the same design value, the matching liquid 8 may be adjusted only at the beginning.

次に、第3図に示されるように、第1の結像レンズ13
をガラス試料9に対向させる。すると、第4図に示され
るように、ガラス試料9を透過した光波と参照光波との
重なりによって発生する干渉縞30が、撮像素子14に結像
する。そして、そのときの撮像素子14からの出力によっ
て、その縞の空間周波数Fを演算回路16において演算す
る。これは公知のディスクリート・フーリエ・トランス
フォーム(DFT)により行うことができるが、さらに高
速なファースト・フーリエ・トランスフォーム(FFT)
によるのがよい。
Next, as shown in FIG.
Is made to face the glass sample 9. Then, as shown in FIG. 4, an interference fringe 30 generated by an overlap between the light wave transmitted through the glass sample 9 and the reference light wave forms an image on the image sensor 14. Then, based on the output from the image sensor 14 at that time, the arithmetic circuit 16 calculates the spatial frequency F of the stripe. This can be done with the well-known Discrete Fourier Transform (DFT), but faster Fast Fourier Transform (FFT)
Good.

この場合、撮像素子14上の干渉縞30に対して直角をな
す、第5図に示されるような線分31上の出力から、第6
図に示されるような略サインカーブ状の明るさの強度分
布を演算する。そして、その強度分布から、FFTによっ
て干渉縞の空間周波数Fを演算し、その値からマッチン
グ液8の屈折率nmを求める。
In this case, from the output on the line segment 31 which is perpendicular to the interference fringes 30 on the image pickup device 14 as shown in FIG.
An intensity distribution of brightness in a substantially sinusoidal shape as shown in the figure is calculated. Then, from the intensity distribution, and calculating a spatial frequency F of the interference fringes by FFT, obtains the refractive index n m of the matching liquid 8 from that value.

即ち、 F=k/L (nm−ng)L・tanθ=kλ であるから、 nm=ng+λ・F/tanθ により求められる。そして、nmの値はメモリ18に記憶し
ておく。
That is, since F = k / L (n m −ng) L · tan θ = kλ, it can be obtained by n m = ng + λ · F / tan θ. Then, the value of nm is stored in the memory 18.

次に、第1図に示されるように、第1の結像レンズ13
を被検レンズ10に対向させる。すると、被検レンズ10を
透過した光波と参照光波との重なりによって発生する干
渉縞40が、第7図に示されるように、撮像素子14に結像
する。そのときの撮像素子14からの出力を、演算回路16
において、まず高精度縞解析にかける。この解析は、可
動ミラー5を微小角度回動して縞にチルトを与え、例え
ば公知の空間的フリンジ走査法により行う。そして、位
相を決定して、ひきつづき演算回路16において多項式に
展開する。本実施例においては例えばゼルニケの多項式
に展開する。
Next, as shown in FIG. 1, the first imaging lens 13
Is opposed to the lens 10 to be inspected. Then, the interference fringes 40 generated by the superposition of the light wave that has passed through the lens 10 to be inspected and the reference light wave form an image on the image sensor 14, as shown in FIG. The output from the image sensor 14 at that time is calculated by the arithmetic circuit 16
First, a high-precision fringe analysis is performed. This analysis is performed by, for example, a known spatial fringe scanning method by turning the movable mirror 5 by a slight angle to give a tilt to the stripe. Then, the phase is determined and subsequently expanded into a polynomial in the arithmetic circuit 16. In the present embodiment, it is expanded to Zernike polynomials, for example.

そして、メモリ18からマッチング液8の屈折率nmと最
大Sag量(Se1+Se2)とを読み出し、多項式のディフォ
ーカス項から、被検レンズ10の平均屈折率nt0を、 として求め、その結果を表示装置17に出力して表示す
る。
Then, the refractive index n m of the matching liquid 8 and the maximum Sag amount (Se 1 + Se 2 ) are read from the memory 18, and the average refractive index n t0 of the lens under test 10 is calculated from the defocus term of the polynomial. And outputs the result to the display device 17 for display.

また、メモリ18から、被検レンズ10の各部分の肉厚
[d−Sag(x,y)]を読み出し、多項式の収差項(W)
から、被検レンズ10の屈折率分布Δnt(x,y)を、 として求め、その結果を表示装置17に出力して表示す
る。
Further, the thickness [d-Sag (x, y)] of each portion of the lens 10 to be inspected is read from the memory 18 and the aberration term (W) of the polynomial is read.
From, the refractive index distribution Δn t (x, y) of the lens 10 under test is And outputs the result to the display device 17 for display.

(測定例1) 第8図に示されるように、肉厚が4.6mm、両面が各々
半径4mmのガラス(BK9)製の凸レンズの、屈折率と屈折
率分布を測定した。別途の方法で測定したλ=632.8nm
の波長の光でのBK9の屈折率は1.49255であり、分布はほ
ぼ完全に一様であると考えられる。
(Measurement Example 1) As shown in FIG. 8, the refractive index and the refractive index distribution of a convex lens made of glass (BK9) having a thickness of 4.6 mm and a radius of 4 mm on each side were measured. Λ = 632.8nm measured by another method
The refractive index of BK9 for light of wavelength is 1.49255, and it is considered that the distribution is almost completely uniform.

最大Sag量1.2mm(0.6×2) 観測縞数1.5λ程度 で観測した結果は、 平均屈折率1.4925 屈折率分布最大値0.174×10-4 であった。The maximum Sag amount of 1.2 mm (0.6 × 2) and the number of observed fringes of about 1.5λ were observed, and the average refractive index was 1.4925 and the maximum refractive index distribution value was 0.174 × 10 -4 .

この結果から、平均屈折率が極めて正確に測定されて
おり、屈折率分布も極めて小さく、誤差が非常に小さい
ことがわかる。
From this result, it can be seen that the average refractive index is measured extremely accurately, the refractive index distribution is also very small, and the error is very small.

(測定例2) マッチング液の混合比を変えて、ポリメチルメタクリ
レート(アクリル)製の被検レンズの測定を行った。そ
の結果、 (1)マッチング液の屈折率1.4901のとき被検レンズの
屈折率1.4903 屈折率分布最大値0.511×10-4 であり、 (2)マッチング液の屈折率1.4907のとき被検レンズの
屈折率1.4902 屈折率分布最大値0.852×10-4 となり、マッチング液の混合比が変わっても、測定結果
にほとんど変化がないことがわかる。
(Measurement Example 2) The test lens made of polymethylmethacrylate (acrylic) was measured by changing the mixing ratio of the matching liquid. As a result, (1) when the refractive index of the matching liquid is 1.4901, the refractive index of the tested lens is 1.4903, the maximum refractive index distribution value is 0.511 × 10 -4 , and (2) when the refractive index of the matching liquid is 1.4907, the refractive index of the tested lens is The refractive index distribution maximum value was 0.852 × 10 -4 , which shows that the measurement result hardly changed even when the mixing ratio of the matching liquid changed.

(測定例3) 温度を19〜25℃の間で変化させて、ポリメチルメタク
リレート(アクリル)製の被検レンズの測定を行った。
(Measurement Example 3) The temperature was changed between 19 ° C and 25 ° C, and the test lens made of polymethylmethacrylate (acrylic) was measured.

その結果は、第9図に平均屈折率nt、第10図に屈折率
分布を示す。
The results are shown in FIG. 9 which shows the average refractive index n t and FIG. 10 which shows the refractive index distribution.

この結果、被検レンズ及びマッチング液の屈折率の温
度依存性測定値は、d線でのレンズ材料(アクリル)の
理論値及びマッチング液の理論値(アッベの屈折計にて
測定した値)に対して、温度変化率がほとんど一致し
た。
As a result, the measured temperature dependence of the refractive index of the lens to be tested and the matching liquid is the theoretical value of the lens material (acrylic) at the d line and the theoretical value of the matching liquid (value measured by Abbe's refractometer). On the other hand, the rate of temperature change was almost the same.

また、屈折率分布最大値は、1.4×10-5の変化しかな
く、温度依存性がほとんどないことがわかる。
Further, it can be seen that the maximum value of the refractive index distribution has only a change of 1.4 × 10 −5 and has almost no temperature dependence.

[発明の効果] 本発明の屈折率測定方法によれば、被検物はマッチン
グ液に浸すだけなので、測定に際して被検物を破壊する
必要がない。しかも、干渉縞の強度分布の出力から、干
渉縞を表す多項式のディフォーカス項を取り出すことに
より被検物の平均屈折率が求まり、多項式の収差項から
被検物の屈折率分布が求まるので、定量的に求めること
が可能であり、したがって自動解析等も容易に行うこと
ができる等の優れた効果を有する。
[Effects of the Invention] According to the refractive index measuring method of the present invention, since the test object is only immersed in the matching liquid, it is not necessary to destroy the test object during the measurement. Moreover, from the output of the intensity distribution of the interference fringes, the average refractive index of the test object can be obtained by extracting the defocus term of the polynomial that represents the interference fringes, and the refractive index distribution of the test object can be obtained from the aberration term of the polynomial. It has an excellent effect that it can be obtained quantitatively, and therefore automatic analysis can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明による測定を行う測定装置
の一例を示す略示図、第4図ないし第6図はマッチング
液の屈折率を求める手順を示す略示図、第7図は被検レ
ンズを透過した光波により撮像素子表面に生ずる干渉縞
を示す略示図、第8図は第1の測定例に用いられる被検
レンズの略示図、第9図および第10図は第3の測定例の
結果を示す線図、第11図および第12図は本発明の測定原
理を説明する略示図、第13図は本発明の測定原理による
測定精度を説明する線図である。
1 to 3 are schematic diagrams showing an example of a measuring apparatus for performing the measurement according to the present invention, FIGS. 4 to 6 are schematic diagrams showing a procedure for obtaining the refractive index of a matching liquid, and FIG. FIG. 8 is a schematic diagram showing interference fringes generated on the surface of the image pickup device by the light wave transmitted through the lens to be inspected, FIG. 8 is a schematic diagram of the lens to be inspected used in the first measurement example, and FIGS. 3 is a diagram showing the results of the measurement example, FIGS. 11 and 12 are schematic diagrams illustrating the measurement principle of the present invention, and FIG. 13 is a diagram illustrating the measurement accuracy according to the measurement principle of the present invention. .

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】屈折率及び形状が既知の試料と、屈折率が
未知で形状が既知の被検物とを、屈折率が上記被検物と
わずかに異なるマッチング液中に浸し、これらにコヒー
レント光を透過させて、その透過光波を参照光波と重ね
合わせて干渉縞を発生させ、上記試料を透過した光波に
より生ずる干渉縞の強度分布を出力してその出力から上
記マッチング液の屈折率を求めると共に、上記被検物を
透過した光波により生ずる干渉縞の強度分布を出力し
て、その出力から、その干渉縞を表す多項式のディフォ
ーカス項と収差項とを分離して、上記ディフォーカス項
と上記マッチング液の屈折率とから上記被検物の平均屈
折率を求めるようにしたことを特徴とする屈折率測定方
法。
1. A sample having a known refractive index and a shape, and an object having an unknown refractive index and a known shape are immersed in a matching liquid having a refractive index slightly different from that of the object to be coherent thereto. The light is transmitted, the transmitted light wave is superimposed on the reference light wave to generate interference fringes, the intensity distribution of the interference fringes generated by the light wave transmitted through the sample is output, and the refractive index of the matching liquid is obtained from the output. Along with it, the intensity distribution of the interference fringes generated by the light wave that has passed through the object to be inspected is output, and from the output, the defocus term and the aberration term of the polynomial representing the interference fringes are separated, and the defocus term and A refractive index measuring method, wherein an average refractive index of the test object is determined from the refractive index of the matching liquid.
【請求項2】屈折率及び形状が既知の試料と、屈折率が
未知で形状が既知の被検物とを、屈折率が上記被検物と
わずかに異なるマッチング液中に浸し、これらにコヒー
レント光を透過させて、その透過光波を参照光波と重ね
合わせて干渉縞を発生させ、上記試料を透過した光波に
より生ずる干渉縞の強度分布を出力してその出力から上
記マッチング液の屈折率を求めると共に、上記被検物を
透過した光波により生ずる干渉縞の強度分布を出力し
て、その出力から、その干渉縞を表す多項式のディフォ
ーカス項と収差項とを分離して、上記収差項から上記被
検物の屈折率分布を求めるようにしたことを特徴とする
屈折率測定方法。
2. A sample having a known refractive index and shape, and an object having an unknown refractive index and a known shape are dipped in a matching liquid having a refractive index slightly different from that of the object to be coherent. The light is transmitted, the transmitted light wave is superimposed on the reference light wave to generate interference fringes, the intensity distribution of the interference fringes generated by the light wave transmitted through the sample is output, and the refractive index of the matching liquid is obtained from the output. Along with it, the intensity distribution of the interference fringes generated by the light wave that has passed through the test object is output, and from the output, the defocus term and the aberration term of the polynomial representing the interference fringes are separated, and from the aberration term the above A refractive index measuring method, characterized in that a refractive index distribution of a test object is obtained.
【請求項3】上記試料がガラスである請求項1又は2記
載の屈折率測定方法。
3. The refractive index measuring method according to claim 1, wherein the sample is glass.
【請求項4】上記被検物がレンズである請求項1、2又
は3記載の屈折率測定方法。
4. The refractive index measuring method according to claim 1, 2 or 3, wherein the test object is a lens.
JP14983188A 1988-06-16 1988-06-16 Refractive index measurement method Expired - Lifetime JP2678463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14983188A JP2678463B2 (en) 1988-06-16 1988-06-16 Refractive index measurement method
US07/707,438 US5151752A (en) 1988-06-16 1991-05-28 Method of measuring refractive indices of lens and sample liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14983188A JP2678463B2 (en) 1988-06-16 1988-06-16 Refractive index measurement method

Publications (2)

Publication Number Publication Date
JPH01316627A JPH01316627A (en) 1989-12-21
JP2678463B2 true JP2678463B2 (en) 1997-11-17

Family

ID=15483621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14983188A Expired - Lifetime JP2678463B2 (en) 1988-06-16 1988-06-16 Refractive index measurement method

Country Status (1)

Country Link
JP (1) JP2678463B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0302676D0 (en) * 2003-10-09 2003-10-09 Neural Ab Method and apparatus for holographic refractometry
JP4268985B2 (en) * 2006-12-05 2009-05-27 東洋ガラス株式会社 Glass identification device
CA2672900C (en) * 2006-12-21 2015-02-17 Johnson & Johnson Vision Care, Inc. Interferometry testing of lenses, and systems and devices for same
JP5008650B2 (en) 2008-12-25 2012-08-22 キヤノン株式会社 Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP5328437B2 (en) 2009-03-25 2013-10-30 キヤノン株式会社 Transmitted wavefront measuring method, refractive index distribution measuring method, optical element manufacturing method, and transmitted wavefront measuring apparatus
JP4968965B2 (en) 2009-11-18 2012-07-04 キヤノン株式会社 Refractive index distribution measuring method and measuring apparatus
JP4968966B2 (en) 2009-12-07 2012-07-04 キヤノン株式会社 Refractive index distribution measuring method and measuring apparatus
JP4895409B2 (en) 2010-05-25 2012-03-14 キヤノン株式会社 Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP5021054B2 (en) 2010-05-25 2012-09-05 キヤノン株式会社 Refractive index distribution measuring method and refractive index distribution measuring apparatus
JP5008763B2 (en) 2010-12-03 2012-08-22 キヤノン株式会社 Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
CN108519354B (en) * 2018-04-08 2020-11-10 张小月 Glass fragment source testing method

Also Published As

Publication number Publication date
JPH01316627A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
US5151752A (en) Method of measuring refractive indices of lens and sample liquid
US4340306A (en) Optical system for surface topography measurement
JP4895409B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
Creath et al. Contouring aspheric surfaces using two-wavelength phase-shifting interferometry
Tentori et al. Refractometry by minimum deviation: accuracy analysis
Yatagai et al. Aspherical surface testing with shearing interferometer using fringe scanning detection method
JP2678464B2 (en) Refractive index measurement method
EP1789753A1 (en) Method and apparatus for thin film metrology
JP2678463B2 (en) Refractive index measurement method
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
Trivedi et al. Measurement of focal length using phase shifted moiré deflectometry
CN105352915A (en) Refractive index two-dimensional distribution dynamic measurement method
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
Briers Optical testing: a review and tutorial for optical engineers
Müller et al. Multiple Aperture Shear-Interferometry (MArS): a solution to the aperture problem for the form measurement of aspheric surfaces
US6449049B1 (en) Profiling of aspheric surfaces using liquid crystal compensatory interferometry
US3432239A (en) Optical instruments of the interference type
JP2678465B2 (en) Lens refractive index distribution measurement method
Ramirez et al. Estimation of the degree of asphericity of a glass sphere using a vectorial shearing interferometer
Malacara-Hernandez et al. Optical testing and interferometry
Tavassoly et al. Fresnel diffraction from phase steps and its applications
Reza et al. Simultaneous thickness and phase index measurements with a motion-free actively tunable Twyman–Green interferometer
JP2652667B2 (en) Refractive index measurement method
CN108333146B (en) Portable refractive index measuring device and refractive index measuring method
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

EXPY Cancellation because of completion of term