JP2013024720A - Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program - Google Patents

Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program Download PDF

Info

Publication number
JP2013024720A
JP2013024720A JP2011159605A JP2011159605A JP2013024720A JP 2013024720 A JP2013024720 A JP 2013024720A JP 2011159605 A JP2011159605 A JP 2011159605A JP 2011159605 A JP2011159605 A JP 2011159605A JP 2013024720 A JP2013024720 A JP 2013024720A
Authority
JP
Japan
Prior art keywords
test
light
optical path
refractive index
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011159605A
Other languages
Japanese (ja)
Inventor
Toshiyuki Naoi
俊幸 直井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011159605A priority Critical patent/JP2013024720A/en
Publication of JP2013024720A publication Critical patent/JP2013024720A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a refractive index of an optical element without requiring measurement of a thickness of the optical element.SOLUTION: A refractive index measurement instrument 20 is an optical system for interfering test light and reference light each other, is capable of placing a test optical element in an optical path of the test light, and is used together with an interference optical system including optical path length changing means 3 for changing an optical path length of one of the test light and the reference light. The instrument 20 obtains difference of interference setting values between an interference setting value of the optical path length changing means 3 when the test light transmitted through the test optical element placed in the optical path interferes with the reference light and an interference setting value when the test light and the reference light interfere with each other without the test optical element in the optical path, with respect to each of mutually different first and second wavelengths included in wavelength bands of the test light and the reference light. The instrument 20 calculates a refractive index of the test optical element using difference in the first wavelength, the difference in the second wavelength, and dispersion of the test optical element.

Description

本発明は、光の干渉を利用してレンズ等の光学素子の屈折率を測定する技術に関する。   The present invention relates to a technique for measuring the refractive index of an optical element such as a lens by utilizing interference of light.

光学素子の屈折率の測定には、低コヒーレンス干渉法が用いられることが多い。低コヒーレンス干渉法の1つとして、光学素子(試料)の表裏面の反射光と参照光との干渉および基準面の反射光と参照光との干渉を検出して該光学素子の屈折率を測定する方法が提案されている。また、低コヒーレンス干渉法を用いて測定した光学素子の分散曲線と、別途計測した光学素子の厚みとを用いて、該光学素子の屈折率を測定する方法が非特許文献1にて開示されている。   Low coherence interferometry is often used to measure the refractive index of optical elements. As one of the low coherence interferometry, the refractive index of the optical element is measured by detecting the interference between the reflected light on the front and back surfaces of the optical element (sample) and the reference light and the interference between the reflected light on the reference surface and the reference light. A method has been proposed. Further, Non-Patent Document 1 discloses a method for measuring the refractive index of an optical element using a dispersion curve of the optical element measured using a low coherence interferometry and the thickness of the optical element measured separately. Yes.

High-precision indexmeasurement in anisotropic crystals using white-light spectral interferometry;著者H. Delbarre 掲載Applied Physics BHigh-precision indexmeasurement in anisotropic crystals using white-light spectral interferometry; author H. Delbarre published Applied Physics B

上述した光学素子の表面での反射光と参照光との干渉を検出して該光学素子の屈折率を測定する手法は、光学素子の表面形状の影響を受けやすく、測定精度が低い。これは、光学素子の表面での反射光の波面が非常に大きな収差を持つことが原因である。   The above-described method of detecting the interference between the reflected light and the reference light on the surface of the optical element and measuring the refractive index of the optical element is easily affected by the surface shape of the optical element, and the measurement accuracy is low. This is because the wavefront of the reflected light on the surface of the optical element has a very large aberration.

また、非特許文献1にて開示された方法は光学素子の表面の反射光と参照光との干渉を測定しないものの、予め光学素子の厚みを測定しておく必要がある。しかし、レンズ形状等を有する光学素子の厚みを必要な精度で測定することは非常に難しい。   Although the method disclosed in Non-Patent Document 1 does not measure the interference between the reflected light on the surface of the optical element and the reference light, it is necessary to measure the thickness of the optical element in advance. However, it is very difficult to measure the thickness of an optical element having a lens shape or the like with necessary accuracy.

本発明は、光学素子の厚み測定を不要としつつ、高い測定精度で光学素子の屈折率を測定できるようにした屈折率測定方法、屈折率測定装置および屈折率測定プログラムを提供する。   The present invention provides a refractive index measurement method, a refractive index measurement device, and a refractive index measurement program that can measure the refractive index of an optical element with high measurement accuracy while making it unnecessary to measure the thickness of the optical element.

本発明の一側面としての屈折率測定装置は、被検光と参照光とを互いに干渉させる光学系であり、被検光の光路内に被検光学素子の設置が可能で、かつ被検光および参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系とともに用いられ、被検光学素子の屈折率を測定する。該装置は、光路長変更手段により被検光と参照光とが干渉する光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、被検光および参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、光路内に設置された被検光学素子を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子が光路から取り除かれた状態で被検光と参照光とが干渉するときの干渉設定値との差を求める。そして、該装置は、第1の波長における上記差、第2の波長における上記差および被検光学素子の分散を用いて被検光学素子の屈折率を算出することを特徴とする。   A refractive index measuring apparatus according to an aspect of the present invention is an optical system that causes test light and reference light to interfere with each other, and allows the test optical element to be installed in the optical path of the test light. And an interference optical system including an optical path length changing means for changing one optical path length of the reference light, and measures the refractive index of the optical element to be tested. When the optical path length changing means obtains an optical path length at which the test light and the reference light interfere with each other, when the value indicating the setting of the optical path length changing means is used as the interference set value, the test light and the reference Interference setting value when the test light transmitted through the test optical element installed in the optical path interferes with the reference light in each of the first wavelength and the second wavelength different from each other included in the light wavelength band And the difference between the interference setting value when the test light and the reference light interfere with each other with the test optical element removed from the optical path. The apparatus calculates the refractive index of the test optical element using the difference at the first wavelength, the difference at the second wavelength, and the dispersion of the test optical element.

また、本発明の一側面としての屈折率測定装置は、被検光と参照光とを互いに干渉させる光学系であり、被検光の光路内に被検光学素子を浸すことが可能な液体が配置され、かつ被検光および参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系とともに用いられ、被検光学素子の屈折率を測定する。該装置は、光路長変更手段により被検光と参照光とが干渉する光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、被検光および参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、液体に浸された被検光学素子を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子が浸されていない液体を透過した被検光と参照光とが干渉するときの干渉設定値との差を求め、第1および第2の波長のそれぞれにおいて、被検光学素子が浸されていない液体を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子および液体が光路から取り除かれた状態で被検光と参照光とが干渉するときの干渉設定値とを用いて液体の屈折率を求める。そして、該装置は、第1の波長における上記差、第2の波長における上記差、第1および第2の波長のそれぞれにおける液体の屈折率および被検光学素子の分散を用いて被検光学素子の屈折率を算出することを特徴とする。   The refractive index measuring apparatus according to one aspect of the present invention is an optical system that causes the test light and the reference light to interfere with each other, and a liquid that can immerse the test optical element in the optical path of the test light. It is used together with an interference optical system that includes an optical path length changing unit that changes the optical path length of one of the test light and the reference light, and measures the refractive index of the test optical element. When the optical path length changing means obtains an optical path length at which the test light and the reference light interfere with each other, when the value indicating the setting of the optical path length changing means is used as the interference set value, the test light and the reference An interference set value when the test light transmitted through the test optical element immersed in the liquid and the reference light interfere with each other in the first wavelength and the second wavelength different from each other included in the wavelength band of the light; The difference between the test light transmitted through the liquid not immersed in the test optical element and the interference set value when the reference light interferes is obtained, and the test optical element is obtained at each of the first and second wavelengths. The interference setting value when the test light transmitted through the liquid in which the liquid is not immersed interferes with the reference light, and the test light and the reference light interfere with each other with the test optical element and the liquid removed from the optical path The refractive index of the liquid is obtained using the interference setting value. The apparatus uses the difference at the first wavelength, the difference at the second wavelength, the refractive index of the liquid at each of the first and second wavelengths, and the dispersion of the test optical element. The refractive index is calculated.

また、本発明の他の一側面としての屈折率測定方法(屈折率測定プログラム)は、被検光と参照光とを互いに干渉させる光学系であり、被検光の光路内に被検光学素子の設置が可能で、かつ被検光および参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、被検光学素子の屈折率を測定する。該測定方法(測定プログラム)は、光路長変更手段により被検光と参照光とが干渉する光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、被検光および参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、光路内に設置された被検光学素子を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子が光路から取り除かれた状態で被検光と参照光とが干渉するときの干渉設定値との差を求めるステップと、第1の波長における上記差、第2の波長における上記差および被検光学素子の分散を用いて被検光学素子の屈折率を算出するステップとを有することを特徴とする。   A refractive index measurement method (refractive index measurement program) as another aspect of the present invention is an optical system that causes test light and reference light to interfere with each other, and the test optical element is in the optical path of the test light. The refractive index of the optical element to be measured is measured using an interference optical system that includes an optical path length changing unit that changes the optical path length of one of the test light and the reference light. When the measurement method (measurement program) sets the value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is set as the interference setting value by the optical path length changing means, The test light and the reference light that have passed through the test optical element installed in the optical path interfere with each other in the first wavelength and the second wavelength that are different from each other in the wavelength bands of the test light and the reference light. Determining a difference between the interference setting value when the test light and the reference light interfere with the test optical element removed from the optical path, and the difference in the first wavelength, Calculating the refractive index of the test optical element using the difference at the second wavelength and the dispersion of the test optical element.

さらに、本発明の他の一側面としての屈折率測定方法(屈折率測定プログラム)は、被検光と参照光とを互いに干渉させる光学系であり、被検光の光路内に被検光学素子を浸すことが可能な液体が配置され、かつ被検光および参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、被検光学素子の屈折率を測定する。該測定方法(測定プログラム)は、光路長変更手段により被検光と参照光とが干渉する光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、被検光および参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、液体に浸された被検光学素子を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子が浸されていない液体を透過した被検光と参照光とが干渉するときの干渉設定値との差を求めるステップと、第1および第2の波長のそれぞれにおいて、被検光学素子が浸されていない液体を透過した被検光と参照光とが干渉するときの干渉設定値と、被検光学素子および液体が光路から取り除かれた状態で被検光と参照光とが干渉するときの干渉設定値とを用いて液体の屈折率を求めるステップとを有する。そして、第1の波長における上記差、第2の波長における上記差、第1および第2の波長のそれぞれにおける液体の屈折率および被検光学素子の分散を用いて被検光学素子の屈折率を算出するステップとを有することを特徴とする。   Furthermore, a refractive index measurement method (refractive index measurement program) as another aspect of the present invention is an optical system that causes test light and reference light to interfere with each other, and the test optical element is in the optical path of the test light. The refractive index of the optical element to be measured is measured using an interference optical system including an optical path length changing unit that changes the optical path length of one of the test light and the reference light. . When the measurement method (measurement program) sets the value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is set as the interference setting value by the optical path length changing means, When the test light transmitted through the test optical element immersed in the liquid and the reference light interfere with each other in the first wavelength and the second wavelength included in the wavelength bands of the test light and the reference light, respectively. Determining a difference between the interference set value of the first and second interference wavelengths when the test light transmitted through the liquid in which the test optical element is not immersed and the reference light interfere with each other, and In each case, the test light with the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light, and the test light with the test optical element and the liquid removed from the optical path. And the interference setting value when the reference beam interferes And a step of determining a refractive index of the liquid. Then, the refractive index of the test optical element is calculated using the difference at the first wavelength, the difference at the second wavelength, the refractive index of the liquid at each of the first and second wavelengths, and the dispersion of the test optical element. And a calculating step.

本発明によれば、測定精度を低下させる光学素子での反射光の検出や、光学素子の厚みの高精度な測定を必要とすることなく、光学素子を透過する被検光と参照光との低コヒーレンス干渉を利用して精度良く光学素子の屈折率を測定することができる。   According to the present invention, the detection light and the reference light transmitted through the optical element can be transmitted without requiring the detection of the reflected light by the optical element that decreases the measurement accuracy and the high-precision measurement of the thickness of the optical element. The refractive index of the optical element can be accurately measured using low coherence interference.

本発明の実施例1である屈折率測定装置を含む屈折率測定システムの構成を示す図。The figure which shows the structure of the refractive index measurement system containing the refractive index measuring apparatus which is Example 1 of this invention. 実施例1における屈折率測定方法を説明するフローチャート。3 is a flowchart for explaining a refractive index measurement method in Embodiment 1. 本発明の実施例2である屈折率測定装置を含む屈折率測定システムの構成を示す図。The figure which shows the structure of the refractive index measurement system containing the refractive index measuring apparatus which is Example 2 of this invention. 実施例2における屈折率測定方法を説明するフローチャート。9 is a flowchart for explaining a refractive index measurement method in Embodiment 2. 実施例におけるターゲット板を示す図。The figure which shows the target board in an Example. 実施例の効果を説明する図。The figure explaining the effect of an Example.

以下、本発明の実施例について図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1には、本発明の実施例1である屈折率測定装置を含む屈折率測定システムの構成を示している。   FIG. 1 shows a configuration of a refractive index measuring system including a refractive index measuring apparatus that is Embodiment 1 of the present invention.

1は白色光源(以下、単に光源という)であり、コヒーレンス長を短くするために波長帯域が広い光を出力する。光源1としては、例えば、紫外から赤外までの光を出力するスーパーコンティニウム(SC)光源または互いに異なる波長を出力する2つのスーパールミネッセントダイオード(SLD)が用いられる。   Reference numeral 1 denotes a white light source (hereinafter simply referred to as a light source), which outputs light having a wide wavelength band in order to shorten the coherence length. As the light source 1, for example, a super continuum (SC) light source that outputs light from ultraviolet to infrared or two super luminescent diodes (SLD) that output different wavelengths are used.

18はフォーカス調整器であり、被検光学素子としての被検レンズに光源1からの光の焦点が合うようにフォーカシングを行う機能を有する。フォーカス調整器18は、予め被検レンズに焦点が合うように調整され、測定中は常に一定の状態を保つ。   A focus adjuster 18 has a function of performing focusing so that light from the light source 1 is focused on a test lens as a test optical element. The focus adjuster 18 is adjusted in advance so as to be focused on the lens to be examined, and always maintains a constant state during measurement.

2は分波器であり、光源1(フォーカス調整器18)からの光を2分割し、一方の光を参照光路に、他方の光を被検光路にそれぞれ伝搬させる。分波器2としては、例えば、波長依存性がないビームスプリッターであって、裏面反射光が干渉信号に混入しないようにウエッジをつけたものが用いられる。   A demultiplexer 2 divides light from the light source 1 (focus adjuster 18) into two, and propagates one light to the reference light path and the other light to the test light path. As the duplexer 2, for example, a beam splitter having no wavelength dependency and having a wedge so that back surface reflected light is not mixed in an interference signal is used.

参照光路には、光路長調整器(光路長変更手段)3が設けられている。光路長調整器3は、2つの反射面を備えた駆動ステージを有し、該駆動ステージを移動させることで2つの反射面で反射する参照光の光路長を調整(変更)可能とする。光路長調整器3は、駆動ステージとともに移動する2つの反射面の位置(つまりは駆動ステージの位置)、すなわち光路長調整器3の設定を示す値としての設定値の出力が可能である。設定値は、駆動ステージの移動、つまりは参照光の光路長の変更に伴って変化する値である。   An optical path length adjuster (optical path length changing means) 3 is provided in the reference optical path. The optical path length adjuster 3 has a driving stage having two reflecting surfaces, and the optical path length of the reference light reflected by the two reflecting surfaces can be adjusted (changed) by moving the driving stage. The optical path length adjuster 3 can output a set value as a value indicating the setting of the optical path length adjuster 3, that is, the position of the two reflecting surfaces that move with the drive stage (that is, the position of the drive stage). The set value is a value that changes as the drive stage moves, that is, the optical path length of the reference light changes.

以下の説明において、光路長調節器3の設定値をステージ値といい、そのうち被検光と参照光とが干渉する参照光の光路長が得られたときの設定値を干渉ステージ値(干渉設定値)という。   In the following description, the set value of the optical path length adjuster 3 is referred to as a stage value, and the set value when the optical path length of the reference light where the test light and the reference light interfere is obtained as the interference stage value (interference setting). Value).

なお、本実施例では、光路長調整器3を参照光路に配置しているが、被検光路に配置してもよい。すなわち、光路長調整器3は、参照光路と被検光路のうち一方に設けられればよい。   In the present embodiment, the optical path length adjuster 3 is disposed in the reference optical path, but may be disposed in the test optical path. That is, the optical path length adjuster 3 may be provided on one of the reference optical path and the test optical path.

被検光路には、被検レンズ6を設置可能な被検ステージ15が設けられている。被検ステージ15には、被検レンズ6の設置と取り外しが可能であるとともに、設置された被検レンズ6の平行偏心と傾きの調整が可能な構造を有する。   A test stage 15 on which the test lens 6 can be installed is provided in the test light path. The test stage 15 has a structure in which the test lens 6 can be installed and removed and the parallel eccentricity and inclination of the installed test lens 6 can be adjusted.

被検レンズ6の偏心は、偏心調整用ターゲット板14を指標にして調整する。ターゲット板14には、例えば白色の紙が用いられる。図5に示すように、ターゲット板14上には被検光と参照光の輝点が形成される。被検光の輝点が参照光の輝点と空間的に重畳するように被検レンズ6の偏心が調整される。   The eccentricity of the test lens 6 is adjusted using the eccentricity adjustment target plate 14 as an index. For example, white paper is used for the target plate 14. As shown in FIG. 5, bright spots of test light and reference light are formed on the target plate 14. The eccentricity of the test lens 6 is adjusted so that the bright spot of the test light is spatially superimposed on the bright spot of the reference light.

被検レンズ6は、その分散が既知であり、かつその中心部を被検光が透過可能な光学素子である。なお、被検レンズ6の中心とは、該被検レンズ6の一方のレンズ面の曲率中心と他方のレンズ面の曲率中心とを結んだ線を意味する。また、被検レンズ6の中心部は、上記中心とその近傍を含む領域を意味する。   The test lens 6 is an optical element whose dispersion is known and through which the test light can pass. The center of the test lens 6 means a line connecting the center of curvature of one lens surface of the test lens 6 and the center of curvature of the other lens surface. Further, the central portion of the lens 6 to be examined means a region including the center and the vicinity thereof.

7は合波器であり、被検光路と参照光路をそれぞれ伝搬してきた光を空間的に重ね合わせる。合波器7としては、例えば、波長依存性がないビームスプリッターであって、裏面反射光が干渉信号に混入しないようにウエッジをつけたものが用いられる。   Reference numeral 7 denotes a multiplexer that spatially superimposes the light propagating through the test optical path and the reference optical path. As the multiplexer 7, for example, a beam splitter having no wavelength dependency and having a wedge so that back surface reflected light is not mixed into an interference signal is used.

波長分割器8は、波長帯域が広い光を、互いに波長が異なる2つの光に空間的に分割する。波長分割器8としては、例えばダイクロイックミラーが用いられる。   The wavelength divider 8 spatially divides light having a wide wavelength band into two lights having different wavelengths. For example, a dichroic mirror is used as the wavelength divider 8.

9と10は波長選択器であり、波長分割器8により分割された2つの光のそれぞれに含まれる(つまりは被検光および参照光に含まれていた)互いに異なる特定波長帯域の光成分のみを透過させる(すなわち、バンドパスフィルタリングを行う)。特定波長帯域の幅は、およそ40nm以下に設定することが望ましい。図1では、波長選択器9を透過する光の中心波長をλ(第1の波長)として示し、波長選択器10を透過する光の中心波長をλ(第2の波長)として示す。 Reference numerals 9 and 10 denote wavelength selectors, which are included in each of the two lights divided by the wavelength divider 8 (that is, included in the test light and the reference light), and only light components in different specific wavelength bands. Is transmitted (that is, band-pass filtering is performed). The width of the specific wavelength band is desirably set to about 40 nm or less. In FIG. 1, the center wavelength of light transmitted through the wavelength selector 9 is denoted as λ 1 (first wavelength), and the center wavelength of light transmitted through the wavelength selector 10 is denoted as λ 2 (second wavelength).

11と12は光強度検出器であり、それぞれ波長選択器9,10を透過した光の強度を検出する。光強度検出器11,12としては、例えば、フォトダイオードが用いられる。以上説明した光源1〜光強度検出器11,12によって、干渉光学系を含む干渉計が構成される。   Reference numerals 11 and 12 denote light intensity detectors that detect the intensity of light transmitted through the wavelength selectors 9 and 10, respectively. As the light intensity detectors 11 and 12, for example, photodiodes are used. The light source 1 to the light intensity detectors 11 and 12 described above constitute an interferometer including an interference optical system.

20は屈折率測定装置であり、コンピュータプログラムとしての屈折率測定プログラムによって動作するパーソナルコンピュータにより構成されている。屈折率測定装置20には、光路長調整器3からのステージ値と、光強度検出器11,12からの出力とが入力される。屈折率測定装置20は、光強度検出器11,12の出力をモニタしながら被検光と参照光とが干渉するように光路長調整器3の駆動ステージの位置を調整(制御)する。   Reference numeral 20 denotes a refractive index measuring device, which is constituted by a personal computer that operates according to a refractive index measuring program as a computer program. The refractive index measuring device 20 receives the stage value from the optical path length adjuster 3 and the outputs from the light intensity detectors 11 and 12. The refractive index measuring device 20 adjusts (controls) the position of the drive stage of the optical path length adjuster 3 so that the test light and the reference light interfere with each other while monitoring the outputs of the light intensity detectors 11 and 12.

屈折率測定装置(以下、単に測定装置という)20は、図3のフローチャートに示す屈折率測定プログラム(屈折率測定方法)を実行して、被検レンズ6の中心の屈折率(群屈折率)を測定する。ここでは、被検レンズ6は、被検ステージ15上に設置されて被検光路中に配置されているものとし、また平行偏心と傾きも調整されているものとする。   A refractive index measurement device (hereinafter simply referred to as a measurement device) 20 executes a refractive index measurement program (refractive index measurement method) shown in the flowchart of FIG. 3 to perform a refractive index (group refractive index) at the center of the test lens 6. Measure. Here, it is assumed that the test lens 6 is installed on the test stage 15 and arranged in the test optical path, and the parallel eccentricity and inclination are also adjusted.

ステップ1では、測定装置20は、光強度検出器11,12の出力として、波長λと波長λの参照光と被検光の干渉を示す信号(以下、干渉信号という)が得られるように光路長調整器3の駆動ステージの位置を調整する。そして、波長λと波長λのそれぞれの干渉信号が得られるときの光路長調整器3の干渉ステージ値S1,S2を取得する。 In step 1, the measurement apparatus 20 obtains a signal (hereinafter referred to as an interference signal) indicating the interference between the reference light having the wavelengths λ 1 and λ 2 and the test light as outputs of the light intensity detectors 11 and 12. Then, the position of the drive stage of the optical path length adjuster 3 is adjusted. Then, to obtain the interference stage values S1, S2 of the optical path length adjuster 3 when the respective interference signals of wavelengths lambda 1 and wavelength lambda 2 is obtained.

次に、被検レンズ6が被検ステージ15(被検光路)から取り除かれ、被検光が被検レンズ6を透過しない状態となる。この状態で、ステップ2では、測定装置20は、光強度検出器11,12から波長λと波長λの干渉信号が得られるように光路長調整器3の駆動ステージの位置を調整する。そして、波長λと波長λのそれぞれの干渉信号が得られるときの光路長調整器3の干渉ステージ値S3,S4を取得する。 Next, the test lens 6 is removed from the test stage 15 (test optical path), and the test light does not pass through the test lens 6. In this state, in step 2, the measuring apparatus 20 adjusts the position of the drive stage of the optical path length adjuster 3 so that the interference signals having the wavelengths λ 1 and λ 2 can be obtained from the light intensity detectors 11 and 12. Then, to obtain the interference stage values S3, S4 of the optical path length adjuster 3 when the respective interference signals of wavelengths lambda 1 and wavelength lambda 2 is obtained.

波長λと波長λの参照光と被検光とが互いに干渉するのは、それぞれの波長において参照光と被検光の光路長が一致するときである。理想的な干渉光学系においては、空気の分散を0に近似すると、干渉ステージ値S3,S4は互いに同じ値になり、S3のみを取得すればよい。しかし、実際はビームスプリッターの厚み差等のシステムエラーによって干渉ステージ値S3,S4は互いに異なる値になる。したがって、干渉ステージ値S3,S4の両方を取得した方がよい。 The reference light and the test light having the wavelengths λ 1 and λ 2 interfere with each other when the optical path lengths of the reference light and the test light match at the respective wavelengths. In an ideal interference optical system, when the dispersion of air is approximated to 0, the interference stage values S3 and S4 have the same value, and only S3 needs to be acquired. However, actually, the interference stage values S3 and S4 are different from each other due to a system error such as a difference in thickness of the beam splitter. Therefore, it is better to acquire both interference stage values S3 and S4.

また、干渉ステージ値S3,S4はそれぞれ、被検レンズ6の有無によって被検光路の光路長が変化するので、干渉ステージ値S1,S2とは異なる値になる。   Further, the interference stage values S3 and S4 are different from the interference stage values S1 and S2 because the optical path length of the test optical path changes depending on the presence or absence of the test lens 6.

ステップ1〜4の処理は、測定システムの環境変化による影響を低減するために迅速に行うことが望ましい。このためには、被検レンズ6の設置姿勢を調整する時間を省くために、干渉ステージ値S1,S2を干渉ステージ値S3,S4よりも先に取得する方がよい。   It is desirable to perform the processing of steps 1 to 4 quickly in order to reduce the influence due to the environmental change of the measurement system. For this purpose, it is better to obtain the interference stage values S1 and S2 before the interference stage values S3 and S4 in order to save time for adjusting the installation posture of the lens 6 to be examined.

次にステップ3では、測定装置20は、λとλの波長ごとに、被検光路中に被検レンズ6が配置されている場合と配置されていない場合の干渉ステージ値の差α,βを以下のように算出する。
α=S1−S3
β=S2−S4
差α,βは、Dを被検レンズ6の中心厚みとし、n(λ)を波長λにおける被検レンズの群屈折率とし、空気の群屈折率をng_airとし、その分散を0とするとき、
Next, in step 3, the measurement apparatus 20 determines, for each of the wavelengths λ 1 and λ 2 , the difference in interference stage values α, when the test lens 6 is placed in the test optical path and when it is not placed. β is calculated as follows.
α = S1-S3
β = S2-S4
The differences α and β are such that D is the center thickness of the test lens 6, ng (λ) is the group refractive index of the test lens at the wavelength λ, the air group refractive index is ng_air, and its dispersion is 0. and when,

と表すことができる。なお、空気の群屈折率ng_airは、測定装置内の気温と気圧と湿度を計測することにより、エドレンの式を用いて算出することができる。 It can be expressed as. The group refractive index ng_air of air can be calculated using Edlen's equation by measuring the temperature, pressure and humidity in the measuring device.

ステップ4では、測定装置20は、ステップ3で求めた差α,βと、被検レンズ6の既知の分散とから、被検レンズ6の中心厚みDを求める。被検レンズ6の分散である、   In step 4, the measuring apparatus 20 calculates the center thickness D of the test lens 6 from the differences α and β determined in step 3 and the known dispersion of the test lens 6. The dispersion of the test lens 6

は予め測定することで既知となる。 Becomes known by measuring in advance.

厚みDは以下の式で求まる。   The thickness D is obtained by the following formula.

ステップ5では、測定装置20は、差αと差βと被検レンズ6の中心厚みDとから波長λと波長λにおける被検レンズ6の中心の群屈折率を算出する。ここで算出する群屈折率は、被検レンズ6の中心を光線が透過した方向に平均化されたものである。 In step 5, the measuring device 20 calculates the group refractive index of the center of the lens 6 to be measured at the wavelengths λ 1 and λ 2 from the difference α and the difference β and the center thickness D of the lens 6 to be tested. The group refractive index calculated here is averaged in the direction in which the light beam passes through the center of the lens 6 to be examined.

また、測定装置20は、必要に応じて以下の式を用いて、群屈折率から位相屈折率への変換を行う。Nは群屈折率の文献値であり、Nは位相屈折率の文献値である。nは上記(a)式で求めた群屈折率の実測値であり、nは求めるべき位相屈折率の実測値である。NとNは、例えば被検レンズ6の材料である硝材を製造したメーカーのカタログ値等を用いる。 Moreover, the measuring apparatus 20 performs conversion from a group refractive index to a phase refractive index using the following formula as necessary. N g is a literature value of the group refractive index, and N p is a literature value of the phase refractive index. ng is an actual measurement value of the group refractive index obtained by the above equation (a), and NP is an actual measurement value of the phase refractive index to be obtained. N g and N p is, for example, a manufacturer and catalogs of producing a glass material which is the material of the lens 6.

図6を用いて、本実施例の効果について説明する。被検レンズ6のレンズ表面の法線に対する入射光線の傾きをθとし、該入射光線に対する透過光線の傾きをθtとし、入射光線に対する反射光線の傾きをθとする。さらに、被検レンズ6の屈折率をnとし、被検レンズ6の周りの媒質の屈折率をn′とする。このとき、スネルの法則から、θとθtとの間には以下の関係が成り立つ。
n′sinθ=nsin(θ-θt)
θは十分に小さいと仮定できるので、傾きθtは、
The effect of the present embodiment will be described with reference to FIG. The inclination of the incident light with respect to the normal of the lens surface of the lens 6 to be examined is θ, the inclination of the transmitted light with respect to the incident light is θ t, and the inclination of the reflected light with respect to the incident light is θ r . Furthermore, the refractive index of the test lens 6 is n, and the refractive index of the medium around the test lens 6 is n ′. In this case, from Snell's law, between the θ and θ t the following relationship holds.
n'sinθ = nsin (θ-θ t )
Since it can be assumed that θ is sufficiently small, the slope θt is

と表すことができる。また、反射光線の傾きθrは、θの2倍であるから、 It can be expressed as. In addition, since the inclination θ r of the reflected light is twice θ,

という関係が成り立つ。ここで、被検レンズ6の屈折率は1<n<2であるため、これを透過する光線の傾きは、反射する光線に比べて小さくなる。したがって、光線の傾きが小さく波面収差が小さい透過光のみを測定することで、屈折率の測定精度が向上する。 This relationship holds. Here, since the refractive index of the lens 6 to be examined is 1 <n <2, the inclination of the light beam passing through the lens 6 is smaller than that of the reflected light beam. Therefore, the measurement accuracy of the refractive index is improved by measuring only the transmitted light having a small ray inclination and a small wavefront aberration.

発明者による実験(シミュレーション)結果によれば、本実施例の測定方法を用いることで、最適な波長λ,λ(例えば、λ=400nm、λ=800nm)の選択により、1.2×10-4の精度で被検レンズ6の屈折率の測定が可能となった。 According to the results of experiments (simulations) by the inventor, by using the measurement method of this example, the optimum wavelengths λ 1 and λ 2 (for example, λ 1 = 400 nm, λ 2 = 800 nm) can be selected. The refractive index of the test lens 6 can be measured with an accuracy of 2 × 10 −4 .

図2には、本発明の実施例2である屈折率測定装置を含む屈折率測定システムの構成を示している。本実施例において、実施例1と共通する構成要素については、実施例1中の符号と同符号を付して説明に代える。   FIG. 2 shows a configuration of a refractive index measuring system including a refractive index measuring apparatus that is Embodiment 2 of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description is omitted.

本実施例では、干渉光学系の被検光路中に、被検レンズ6を浸すことが可能な液体17を満たした液槽16が配置されている。液漕16の壁面のうち被検光が透過する部分は窓ガラスとして形成されている。窓ガラスは、その表裏面の平行度が高いガラス材を用いて形成され、さらに液漕16における入射側の窓ガラスと射出側の窓ガラスは互いに平行に配置されている。これら入射側の窓ガラスと射出側の窓ガラスの間隔(液漕間隔)Lは、予め測定される。   In this embodiment, a liquid tank 16 filled with a liquid 17 capable of immersing the test lens 6 is disposed in the test optical path of the interference optical system. The portion of the wall surface of the liquid tank 16 through which the test light passes is formed as a window glass. The window glass is formed using a glass material having high parallelism on the front and back surfaces, and the incident-side window glass and the emission-side window glass in the liquid tank 16 are arranged in parallel to each other. An interval (liquid interval) L between the entrance side window glass and the exit side window glass is measured in advance.

液体17は、空気よりも屈折率が高く、被検光を完全には吸収せず、かつ被検レンズ6の屈折率の測定中に屈折率が変化しない液体である。本実施例では、空気よりも被検レンズ6に対して屈折率が近い液体17を用いる。このような液体17に被検レンズ6を浸すと、被検光のレンズ面での屈折を小さくすることができる。   The liquid 17 has a higher refractive index than air, does not completely absorb the test light, and does not change the refractive index during measurement of the refractive index of the test lens 6. In the present embodiment, a liquid 17 having a refractive index closer to the lens 6 to be examined than air is used. When the test lens 6 is immersed in such a liquid 17, the refraction of the test light on the lens surface can be reduced.

実施例1にて説明した式(b)によると、n′がnに近いほど透過光線の傾きtが小さくなり、被検レンズ6の中心の屈折率の測定精度が向上する。   According to the equation (b) described in the first embodiment, as n ′ is closer to n, the inclination t of the transmitted light becomes smaller, and the measurement accuracy of the refractive index at the center of the lens 6 to be measured is improved.

30は屈折率測定装置であり、コンピュータプログラムとしての屈折率測定プログラムによって動作するパーソナルコンピュータにより構成されている。屈折率測定装置30には、光路長調整器3からのステージ値と、光強度検出器11,12からの出力とが入力される。屈折率測定装置30は、光強度検出器11,12の出力をモニタしながら被検光と参照光とが干渉するように光路長調整器3の駆動ステージの位置を調整(制御)する。   Reference numeral 30 denotes a refractive index measuring device, which is constituted by a personal computer that operates according to a refractive index measuring program as a computer program. The refractive index measuring device 30 receives the stage value from the optical path length adjuster 3 and the outputs from the light intensity detectors 11 and 12. The refractive index measurement device 30 adjusts (controls) the position of the drive stage of the optical path length adjuster 3 so that the test light and the reference light interfere with each other while monitoring the outputs of the light intensity detectors 11 and 12.

本実施例の屈折率測定装置(以下、単に測定装置という)30は、図4のフローチャートに示す屈折率測定プログラム(屈折率測定方法)を実行して、被検レンズ6の中心の屈折率(群屈折率)を測定する。ここでは、被検レンズ6は、被検ステージ15上に設置され、該被検ステージ15とともに液漕16内に満たされた液体17に浸されて被検光路中に配置されているものとし、また平行偏心と傾きも調整されているものとする。   The refractive index measuring apparatus (hereinafter simply referred to as a measuring apparatus) 30 of this embodiment executes a refractive index measuring program (refractive index measuring method) shown in the flowchart of FIG. Group refractive index). Here, it is assumed that the test lens 6 is placed on the test stage 15 and immersed in the liquid 17 filled in the liquid tank 16 together with the test stage 15 and arranged in the test optical path. It is also assumed that the parallel eccentricity and inclination are adjusted.

ステップ11では、測定装置30は、光強度検出器11,12の出力として、波長λと波長λの参照光と被検光の干渉を示す干渉信号が得られるように光路長調整器3の駆動ステージの位置を調整する。そして、波長λと波長λのそれぞれの干渉信号が得られるときの光路長調整器3の干渉ステージ値S1,S2を取得する。 In step 11, the measuring apparatus 30 uses the optical path length adjuster 3 so that an interference signal indicating interference between the reference light having the wavelengths λ 1 and λ 2 and the test light can be obtained as the outputs of the light intensity detectors 11 and 12. Adjust the position of the drive stage. Then, to obtain the interference stage values S1, S2 of the optical path length adjuster 3 when the respective interference signals of wavelengths lambda 1 and wavelength lambda 2 is obtained.

次に、被検レンズ6が被検ステージ15(被検光路)から取り除かれ、被検光が被検レンズ6を透過せず、液漕16内の液体17を透過する状態となる。この状態で、ステップ12では、測定装置30は、光強度検出器11,12から波長λと波長λの干渉信号が得られるように光路長調整器3の駆動ステージの位置を調整する。そして、波長λと波長λのそれぞれの干渉信号が得られるときの光路長調整器3の干渉ステージ値S3,S4を取得する。 Next, the test lens 6 is removed from the test stage 15 (test light path), so that the test light does not pass through the test lens 6 and passes through the liquid 17 in the liquid tank 16. In this state, in step 12, the measuring apparatus 30 adjusts the position of the drive stage of the optical path length adjuster 3 so that the interference signals having the wavelengths λ 1 and λ 2 can be obtained from the light intensity detectors 11 and 12. Then, to obtain the interference stage values S3, S4 of the optical path length adjuster 3 when the respective interference signals of wavelengths lambda 1 and wavelength lambda 2 is obtained.

さらに、被検光路(液漕16)内から液体17も取り除かれ、被検光が被検レンズ6と液体16を透過しない状態となる。この状態で、ステップ13では、測定装置30は、光強度検出器11,12から波長λと波長λの干渉信号が得られるように光路長調整器3の駆動ステージの位置を調整する。そして、波長λと波長λのそれぞれの干渉信号が得られるときの光路長調整器3の干渉ステージ値S5,S6を取得する。 Further, the liquid 17 is also removed from the test light path (liquid tank 16), and the test light does not pass through the test lens 6 and the liquid 16. In this state, in step 13, the measuring device 30 adjusts the position of the drive stage of the optical path length adjuster 3 so that the interference signals having the wavelengths λ 1 and λ 2 can be obtained from the light intensity detectors 11 and 12. Then, to obtain the interference stage value S5, S6 of the optical path length adjuster 3 when the respective interference signals of wavelengths lambda 1 and wavelength lambda 2 is obtained.

続いてステップ14では、測定装置30は、先のステップで取得した干渉ステージ値S3,S4,S5,S6および液漕間隔Lから、波長λと波長λにおける液体17の屈折率(群屈折率)を算出する。具体的には、まず干渉ステージ値S3,S4,S5,S6の差γ,εを以下のように算出する。
γ=S3−S5
ε=S4−S6
そして、波長λにおける液体17の群屈折率ng_oil(λ)を、以下の式で算出する。
Subsequently, in step 14, the measuring apparatus 30 determines the refractive index (group refraction) of the liquid 17 at the wavelengths λ 1 and λ 2 from the interference stage values S 3, S 4, S 5, S 6 and the liquid bath interval L obtained in the previous step. Rate). Specifically, first, differences γ and ε between the interference stage values S3, S4, S5 and S6 are calculated as follows.
γ = S3-S5
ε = S4-S6
Then, the group refractive index ng_oil (λ) of the liquid 17 at the wavelength λ is calculated by the following equation.

次にステップ15では、測定装置30は、波長λ,λごとに、被検光路内に被検レンズ6が配置されている場合と配置されていない場合の干渉ステージ値の差α,βを算出する。
α=S1−S3
β=S2−S4
差α,βは、Dを被検レンズ6の中心厚みとし、n(λ)を波長λにおける被検レンズの群屈折率とし、ng_oil(λ)を波長λにおける液体17の群屈折率とするとき、
Next, in step 15, the measurement apparatus 30 determines, for each of the wavelengths λ 1 and λ 2 , the difference between the interference stage values α and β when the test lens 6 is placed in the test optical path and when it is not placed. Is calculated.
α = S1-S3
β = S2-S4
The differences α and β are such that D is the center thickness of the test lens 6, ng (λ) is the group refractive index of the test lens at the wavelength λ, and ng_oil (λ) is the group refractive index of the liquid 17 at the wavelength λ. And when

と表すことができる。 It can be expressed as.

次にステップ16では、測定装置30は、ステップ15で求めた差α,βと、被検レンズ6の既知の分散とから、被検レンズ6の中心厚みDを求める。被検レンズ6の分散νは、実施例で説明したように既知である。   Next, in step 16, the measuring apparatus 30 obtains the center thickness D of the test lens 6 from the differences α and β obtained in step 15 and the known dispersion of the test lens 6. The dispersion ν of the test lens 6 is known as described in the embodiment.

そして、厚みDは以下の式で求まる。   And thickness D is calculated | required with the following formula | equation.

続いてステップ17では、測定装置30は、差α,βと、被検レンズ6の中心厚みDと、液体17の群屈折率ng_oil(λ)とから、波長λと波長λにおける被検レンズ6の中心の群屈折率を算出する。ここで算出する群屈折率は、被検レンズ6の中心を光線が透過した方向に平均化されたものである。 Subsequently, in step 17, the measuring apparatus 30 determines the object to be measured at the wavelengths λ 1 and λ 2 from the differences α and β, the center thickness D of the lens 6 to be measured, and the group refractive index ng_oil (λ) of the liquid 17. The group refractive index at the center of the analyzing lens 6 is calculated. The group refractive index calculated here is averaged in the direction in which the light beam passes through the center of the lens 6 to be examined.

また、測定装置30は、必要に応じて以下の式を用いて、群屈折率から位相屈折率への変換を行う。Nは群屈折率の文献値であり、Nは位相屈折率の文献値である。nは上記(c)式で求めた群屈折率の実測値であり、nは求めるべき位相屈折率の実測値である。NとNは、例えば被検レンズ6の材料である硝材を製造したメーカーのカタログ値等を用いる。 Moreover, the measuring apparatus 30 performs conversion from a group refractive index to a phase refractive index using the following formula as necessary. N g is a literature value of the group refractive index, and N p is a literature value of the phase refractive index. ng is an actual measurement value of the group refractive index obtained by the above equation (c), and NP is an actual measurement value of the phase refractive index to be obtained. N g and N p is, for example, a manufacturer and catalogs of producing a glass material which is the material of the lens 6.

上記各実施例では、測定精度を低下させる被検レンズ6での反射光の検出や、被検レンズ6の厚みの高精度な測定を必要としない。したがって、各実施例によれば、被検レンズ6を透過する被検光と参照光との低コヒーレンス干渉を利用して、精度良く被検レンズ6の屈折率を測定することができる。   In each of the above-described embodiments, it is not necessary to detect reflected light from the lens 6 to be measured and reduce the thickness of the lens 6 to be measured with high accuracy. Therefore, according to each embodiment, the refractive index of the test lens 6 can be accurately measured by using the low coherence interference between the test light transmitted through the test lens 6 and the reference light.

なお、実施例1,2において、波長分割器8としてビームスプリッターを用いてもよい。また、実施例1,2において、干渉計(干渉光学系)としてマッハツェンダー型を用いているが、これ以外の干渉計、例えばリング干渉計を用いてもよい。   In the first and second embodiments, a beam splitter may be used as the wavelength divider 8. In the first and second embodiments, the Mach-Zehnder type is used as the interferometer (interference optical system). However, other interferometers such as a ring interferometer may be used.

以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。   Each embodiment described above is only a representative example, and various modifications and changes can be made to each embodiment in carrying out the present invention.

光の干渉を利用して精度良く光学素子の屈折率を測定する屈折率測定技術を提供できる。   It is possible to provide a refractive index measurement technique for accurately measuring the refractive index of an optical element by using light interference.

3 光路長調整器
6 被検レンズ
17 液体
20,30 屈折率測定装置
3 Optical path length adjuster 6 Test lens 17 Liquid 20, 30 Refractive index measuring device

Claims (6)

被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子の設置が可能で、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系とともに用いられ、前記被検光学素子の屈折率を測定する屈折率測定装置であって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記光路内に設置された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求め、
前記第1の波長における前記差、前記第2の波長における前記差および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出することを特徴とする屈折率測定装置。
An optical system for causing the test light and the reference light to interfere with each other, and a test optical element can be installed in the optical path of the test light, and the optical path length of one of the test light and the reference light is set A refractive index measuring device that is used together with an interference optical system including an optical path length changing means for changing, and measures a refractive index of the optical element to be tested.
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element installed in the optical path in each of the first wavelength and the second wavelength different from each other in the wavelength bands of the test light and the reference light, and the A difference between the interference setting value when the reference light interferes and the interference setting value when the test light and the reference light interfere with the test optical element removed from the optical path. Seeking
A refractive index measuring apparatus that calculates a refractive index of the optical element to be measured using the difference at the first wavelength, the difference at the second wavelength, and dispersion of the optical element to be measured.
被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子を浸すことが可能な液体が配置され、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系とともに用いられ、前記被検光学素子の屈折率を測定する屈折率測定装置であって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記液体に浸された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求め、
前記第1および第2の波長のそれぞれにおいて、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子および前記液体が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値とを用いて前記液体の屈折率を求め、
前記第1の波長における前記差、前記第2の波長における前記差、前記第1および第2の波長のそれぞれにおける前記液体の屈折率および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出することを特徴とする屈折率測定装置。
An optical system for causing the test light and the reference light to interfere with each other, wherein a liquid capable of immersing the test optical element is disposed in an optical path of the test light, and the test light and the reference light A refractive index measuring device that is used together with an interference optical system including an optical path length changing means for changing one optical path length and measures the refractive index of the optical element to be tested,
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element immersed in the liquid and the reference at different first wavelengths and second wavelengths included in the wavelength bands of the test light and the reference light, respectively A difference between the interference setting value when the light interferes with the interference setting value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light. Seeking
In each of the first and second wavelengths, the interference set value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light, and the test Obtaining the refractive index of the liquid using the interference set value when the test light and the reference light interfere with each other in a state where the optical element and the liquid are removed from the optical path,
The test optical element using the difference at the first wavelength, the difference at the second wavelength, the refractive index of the liquid at each of the first and second wavelengths, and the dispersion of the test optical element The refractive index measuring apparatus characterized by calculating the refractive index of.
被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子の設置が可能で、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、前記被検光学素子の屈折率を測定する屈折率測定方法であって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記光路内に設置された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求めるステップと、
前記第1の波長における前記差、前記第2の波長における前記差および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出するステップとを有することを特徴とする屈折率測定方法。
An optical system for causing the test light and the reference light to interfere with each other, and a test optical element can be installed in the optical path of the test light, and the optical path length of one of the test light and the reference light is set A refractive index measurement method for measuring a refractive index of the optical element to be measured using an interference optical system including an optical path length changing unit to change,
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element installed in the optical path in each of the first wavelength and the second wavelength different from each other in the wavelength bands of the test light and the reference light, and the A difference between the interference setting value when the reference light interferes and the interference setting value when the test light and the reference light interfere with the test optical element removed from the optical path. Seeking steps,
Calculating a refractive index of the test optical element using the difference in the first wavelength, the difference in the second wavelength, and dispersion of the test optical element. Measuring method.
被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子を浸すことが可能な液体が配置され、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、前記被検光学素子の屈折率を測定する屈折率測定方法であって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記液体に浸された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求めるステップと、
前記第1および第2の波長のそれぞれにおいて、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子および前記液体が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値とを用いて前記液体の屈折率を求めるステップと、
前記第1の波長における前記差、前記第2の波長における前記差、前記第1および第2の波長のそれぞれにおける前記液体の屈折率および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出するステップとを有することを特徴とする屈折率測定方法。
An optical system for causing the test light and the reference light to interfere with each other, wherein a liquid capable of immersing the test optical element is disposed in an optical path of the test light, and the test light and the reference light A refractive index measurement method for measuring a refractive index of the optical element to be measured using an interference optical system including an optical path length changing unit for changing one optical path length,
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element immersed in the liquid and the reference at different first wavelengths and second wavelengths included in the wavelength bands of the test light and the reference light, respectively A difference between the interference setting value when the light interferes with the interference setting value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light. Seeking steps,
In each of the first and second wavelengths, the interference set value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light, and the test Obtaining a refractive index of the liquid using the interference setting value when the test light and the reference light interfere with each other in a state where the optical element and the liquid are removed from the optical path;
The test optical element using the difference at the first wavelength, the difference at the second wavelength, the refractive index of the liquid at each of the first and second wavelengths, and the dispersion of the test optical element Calculating a refractive index of the refractive index.
コンピュータに、
被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子の設置が可能で、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、前記被検光学素子の屈折率の測定を実行させるる屈折率測定プログラムであって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記光路内に設置された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求めるステップと、
前記第1の波長における前記差、前記第2の波長における前記差および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出するステップとを有することを特徴とする屈折率測定プログラム。
On the computer,
An optical system for causing the test light and the reference light to interfere with each other, and a test optical element can be installed in the optical path of the test light, and the optical path length of one of the test light and the reference light is set A refractive index measurement program for executing a measurement of the refractive index of the optical element to be measured using an interference optical system including an optical path length changing unit to be changed,
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element installed in the optical path in each of the first wavelength and the second wavelength different from each other in the wavelength bands of the test light and the reference light, and the A difference between the interference setting value when the reference light interferes and the interference setting value when the test light and the reference light interfere with the test optical element removed from the optical path. Seeking steps,
Calculating a refractive index of the test optical element using the difference in the first wavelength, the difference in the second wavelength, and dispersion of the test optical element. Measurement program.
コンピュータに、
被検光と参照光とを互いに干渉させる光学系であり、前記被検光の光路内に被検光学素子を浸すことが可能な液体が配置され、かつ前記被検光および前記参照光のうち一方の光路長を変更する光路長変更手段を含む干渉光学系を用いて、前記被検光学素子の屈折率の測定を実行させる屈折率測定プログラムであって、
前記光路長変更手段により前記被検光と前記参照光とが干渉する前記光路長が得られたときの該光路長変更手段の設定を示す値を干渉設定値とするとき、
前記被検光および前記参照光の波長帯域に含まれる互いに異なる第1の波長と第2の波長のそれぞれにおいて、前記液体に浸された前記被検光学素子を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値との差を求めるステップと、
前記第1および第2の波長のそれぞれにおいて、前記被検光学素子が浸されていない前記液体を透過した前記被検光と前記参照光とが干渉するときの前記干渉設定値と、前記被検光学素子および前記液体が前記光路から取り除かれた状態で前記被検光と前記参照光とが干渉するときの前記干渉設定値とを用いて前記液体の屈折率を求めるステップと、
前記第1の波長における前記差、前記第2の波長における前記差、前記第1および第2の波長のそれぞれにおける前記液体の屈折率および前記被検光学素子の分散を用いて前記被検光学素子の屈折率を算出するステップとを有することを特徴とする屈折率測定プログラム。
On the computer,
An optical system for causing the test light and the reference light to interfere with each other, wherein a liquid capable of immersing the test optical element is disposed in an optical path of the test light, and the test light and the reference light A refractive index measurement program for performing a measurement of the refractive index of the optical element to be measured using an interference optical system including an optical path length changing means for changing one optical path length,
When a value indicating the setting of the optical path length changing means when the optical path length at which the test light and the reference light interfere with each other is obtained by the optical path length changing means as an interference setting value,
The test light transmitted through the test optical element immersed in the liquid and the reference at different first wavelengths and second wavelengths included in the wavelength bands of the test light and the reference light, respectively A difference between the interference setting value when the light interferes with the interference setting value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light. Seeking steps,
In each of the first and second wavelengths, the interference set value when the test light transmitted through the liquid in which the test optical element is not immersed interferes with the reference light, and the test Obtaining a refractive index of the liquid using the interference setting value when the test light and the reference light interfere with each other in a state where the optical element and the liquid are removed from the optical path;
The test optical element using the difference at the first wavelength, the difference at the second wavelength, the refractive index of the liquid at each of the first and second wavelengths, and the dispersion of the test optical element And a step of calculating the refractive index of the refractive index measurement program.
JP2011159605A 2011-07-21 2011-07-21 Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program Withdrawn JP2013024720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159605A JP2013024720A (en) 2011-07-21 2011-07-21 Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159605A JP2013024720A (en) 2011-07-21 2011-07-21 Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program

Publications (1)

Publication Number Publication Date
JP2013024720A true JP2013024720A (en) 2013-02-04

Family

ID=47783243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159605A Withdrawn JP2013024720A (en) 2011-07-21 2011-07-21 Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program

Country Status (1)

Country Link
JP (1) JP2013024720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208572A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method for measuring refractive index, refractive index measuring device, and method for producing optical element
JP2015124997A (en) * 2013-12-25 2015-07-06 キヤノン株式会社 Method for measuring refractive index distribution, apparatus for measuring refractive index distribution, and method for manufacturing optical element
CN105339779A (en) * 2013-06-28 2016-02-17 佳能株式会社 Method and apparatus for measuring refractive index and method for manufacturing optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208572A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method for measuring refractive index, refractive index measuring device, and method for producing optical element
JP2015010921A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
CN105339779A (en) * 2013-06-28 2016-02-17 佳能株式会社 Method and apparatus for measuring refractive index and method for manufacturing optical element
JP2015124997A (en) * 2013-12-25 2015-07-06 キヤノン株式会社 Method for measuring refractive index distribution, apparatus for measuring refractive index distribution, and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
US8520218B2 (en) Measuring method of refractive index and measuring apparatus of refractive index
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
US8405836B2 (en) System and method for measuring an optical fiber
KR20130006692A (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
WO2013139137A1 (en) Film thickness measurement device and method
JP5428538B2 (en) Interfering device
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JP2013024720A (en) Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program
TWI524062B (en) Method and apparatus for measuring refractive index and method for manufacturing optical element
JP6207383B2 (en) Refractive index distribution measuring method, refractive index distribution measuring apparatus, and optical element manufacturing method
JP3762420B2 (en) Method and apparatus for measuring refractive index distribution
JP2015105850A (en) Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
JP2007298281A (en) Measuring method and device of surface shape of specimen
JP2007093288A (en) Light measuring instrument and light measuring method
JP2017198613A (en) Refractive index measurement method, refractive index measurement device, and optical element manufacturing method
JP5868227B2 (en) Refractive index measuring method and refractive index measuring apparatus
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
RU2727783C1 (en) Transparent samples refraction index distribution measurement device
JP5376284B2 (en) Interferometry method and interferometer
JP2011252769A (en) Device and method for measuring refractive index distribution of optical element
JP6407000B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
JP2015210241A (en) Wavefront measurement method, wavefront measurement device, and manufacturing method of optical element
JP2016109592A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
JP2003227775A (en) Striae inspection apparatus for optical part
JP2007033169A (en) Surface property measuring apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007