JP2016105408A - 非水系電池用の電極リード線部材 - Google Patents

非水系電池用の電極リード線部材 Download PDF

Info

Publication number
JP2016105408A
JP2016105408A JP2016003864A JP2016003864A JP2016105408A JP 2016105408 A JP2016105408 A JP 2016105408A JP 2016003864 A JP2016003864 A JP 2016003864A JP 2016003864 A JP2016003864 A JP 2016003864A JP 2016105408 A JP2016105408 A JP 2016105408A
Authority
JP
Japan
Prior art keywords
thin film
coating layer
film coating
wire member
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003864A
Other languages
English (en)
Other versions
JP6125054B2 (ja
Inventor
宏和 飯塚
Hirokazu Iizuka
宏和 飯塚
邦浩 武井
Kunihiro Takei
邦浩 武井
康宏 金田
Yasuhiro Kaneda
康宏 金田
雅子 山田
Masako Yamada
雅子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP2016003864A priority Critical patent/JP6125054B2/ja
Publication of JP2016105408A publication Critical patent/JP2016105408A/ja
Application granted granted Critical
Publication of JP6125054B2 publication Critical patent/JP6125054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

【課題】リチウムイオン電池の電解液が水分と反応してフッ酸が発生し腐食性が増大しても、その悪影響を回避しリチウムイオン電池の寿命が延びるように、耐蝕性を向上させた非水系電池用の電極リード線部材を提供する。【解決手段】非水系電池用収納容器から引き出される電極リード線部材18であって、金属製の導出部21を備え、該導出部21の表面上に、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂が架橋していて耐水化されている耐蝕性の薄膜コーティング層22が積層されていて、薄膜コーティング層22には、フッ化金属又はその誘導体からなり、薄膜コーティング層22に含まれる水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂を架橋させる物質が含まれている。【選択図】図4

Description

本発明は、2次電池であるリチウムイオン電池や電気二重層キャパシタ(以下、キャパシタと呼ぶ)等の電解液に有機電解質を使用した非水系電池用の電極リード線部材に関する。
近年、世界的な環境問題の高まりと共に、電気自動車の普及や、風力発電・太陽光発電などの自然エネルギーの有効活用が課題となっている。それに伴って、これらの技術分野では、電気エネルギーを貯蔵するための蓄電池として、リチウムイオン電池などの2次電池やキャパシタが注目されている。また、電気自動車などに使用されるリチウムイオン電池を収納する外装容器には、アルミニウム箔と樹脂フィルムを積層した電池外装用積層体を使用して作成した平袋や、絞り成形または張出成形による成形容器が使用されて薄型軽量化が図られている。
ところで、リチウムイオン電池の電解液は水分や光に弱いという性質を有している。そのため、リチウムイオン電池用の外装材料には、ポリアミドやポリエステルからなる基材層とアルミニウム箔とが積層された、防水性や遮光性に優れた電池外装用積層体が使用されている。
このような電池外装用積層体を用いて作成された収納容器に、リチウムイオン電池を収納するには、例えば、図3(a)に示すように、あらかじめ電池外装用積層体を用いて、凹部31を有するトレー状の形状を絞り成形などにより成形し、そのトレーの凹部31にリチウムイオン電池(図示せず)および電極などの付属品を収納する。次いで、図3(b)に示すように、電池外装用積層体からなる蓋材33を上から重ねて電池を包み、トレーのフランジ部32と蓋材33の四方の側縁部34をヒートシールして電池を密閉する。このようなトレーの凹部31に電池を載置する方法により形成された収納容器35では、上から電池を収納できるため、生産性が高い。
上述した図3(a)に示したリチウムイオン電池の載置容器30において、トレーの深さ(以下、トレーの深さを「絞り」ということがある)は、従来、小型のリチウムイオン電池においては5〜6mm程度であった。ところが、近年では、電気自動車用などの用途では、これまでより大型電池用の収納容器が求められている。大型電池用の収納容器を製造するには、より深い絞りのトレーを成形しなければならなくなり技術的な困難さが増している。
また、リチウムイオン電池の内部に水分が侵入した場合、電解液が水分で分解して、強酸が発生する。この場合、電池外装用の積層体の内側から発生した強酸が浸透し、その結果としてアルミ箔が強酸で腐食して劣化してしまい、電解液の液漏れが発生し、電池性能が低下するだけでなく、リチウムイオン電池が発火する恐れがあるという問題があった。
特開2000−357494号公報
上記の電池外装用積層体を構成するアルミ箔や電極リード線部材の表面層が、強酸で腐食するのを防止する対策として、特許文献1には、アルミ箔の表面にクロメート処理を施すことによりクロム化処理被膜を形成し、耐蝕性を向上させる対策が開示されているが、クロメート処理は重金属であるクロムを使用することから環境対策の点から問題であり、6価クロムは人体に影響を与える有害物質であるため使用できず、3価クロムのクロメート処理液を使用している。また、クロメート処理以外の化成処理では耐蝕性を向上させる効果が薄いという問題はある。
また、従来の電極リード線部材は、正極と負極の両方の電極のうち、正極の電極部材であるアルミ材は耐電解液性が良いが、負極の電極部材である銅板は、表層にニッケルメッキを付与し、さらに三価クロムのクロメート処理を施しても耐電解液性が劣る。
本発明は、上記事情を鑑みて行われたものであり、リチウムイオン電池の電解液が水分と反応してフッ酸が発生し、腐食性が増大しても、その悪影響を回避しリチウムイオン電池の寿命が延びるように、耐蝕性を向上させた非水系電池用の電極リード線部材を提供することを目的とする。
本発明は、電解液に有機電解質を使用した非水系電池用収納容器において、外装材のラミネートフィルム積層体と電極リード線部材とが接合される部分の、電極リード線部材の外表面に、印刷によりパターン状に薄膜コーティング層を積層し、腐食性の電解液に対する耐蝕性を向上させることを技術思想としている。この薄膜コーティング層は、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる。
上記の課題を解決するため、本発明は、アルミ箔と樹脂フィルムとのラミネートフィルム積層体を外装材に用いてなる非水系電池用収納容器から引き出される電極リード線部材であって、金属製の導出部を備え、該導出部の表面上に、シーラント層が、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる耐蝕性の薄膜コーティング層を介して、積層されてなり、前記薄膜コーティング層が、熱処理により、架橋または非晶化することにより耐水化されてなることを特徴とする電極リード線部材を提供する。
また、前記薄膜コーティング層には、フッ化金属又はその誘導体からなり、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層を架橋させる物質を含むことが好ましい。
また、前記フッ化金属又はその誘導体が、不動態であるアルミニウムのフッ化物を形成するFイオンを含む物質であることが好ましい。
また、前記薄膜コーティング層が、前記導出部の表面に印刷により、前記シーラント層が前記導出部の長手方向に交差して積層される方向に沿った、前記シーラント層より幅の広い帯状のパターンに形成されてなることが好ましい。これにより、非水系電池内部の集電材と電極リード線部材との接合や、非水系電池を直列又は並列に接合する部分に、薄膜コーティング層を付着させないことにより、超音波や抵抗溶接などによる接合をする際に、接合する部分に薄膜コーティング層がない為、接合性が良くなるという利点がある。
また、前記シーラント層が、無水マレイン酸変性のポリオレフィン系樹脂フィルム、又は、エポキシ官能基で変性されたポリオレフィン系樹脂フィルムであることが好ましい。
また、前記シーラント層の厚みが、50μm以上300μm以下であり、且つ、薄膜コーティング層の厚みが、0.1〜5.0μmであり、前記薄膜コーティング層が形成された導出部と前記薄膜コーティング層の上に積層されたシーラント層との層間剥離強度が、JIS C6471に規定された引き剥がし測定方法Aにより測定し、40N/inch以上であることが好ましい。
また、前記電極リード線部材の、前記外装材との接合部に沿う断面で見た両端部が押し潰されて、断面中央部よりも厚みが薄くされていることが好ましい。
電極リード線部材の、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層が、熱処理により、架橋または非晶化することにより耐水化され、電極リード線部材の、断面で見た両端部から電解液の外部への漏洩や大気中の水分が内部に浸入するのを抑えることができる。
電極リード線部材の、断面で見た両端部が押し潰されて、断面中央部よりも厚みが薄くされていると、電極リード線部材とラミネートフィルム積層体との密着が良くなり空隙部が少なくなり、電解液の外部への漏洩や大気中の水分が内部に浸入するのが低減される。
電池用収納容器の一例を示す斜視図である。 電池用収納容器に用いられる電池用外装積層体の一例を示す概略断面図である。 リチウムイオン電池を収納容器に収める工程を順に示す斜視図である。 (a)は本発明に係わる電極リード線部材の一例を示す斜視図であり、(b)は(a)のS−S線に沿う断面図である。 本発明に係わる電極リード線部材の一例を示す平面図である。 薄膜コーティング層を示差熱分析装置で測定した、測定結果である。
本発明に係わる電極リード線部材を、電池外装用積層体を用いて製造したリチウムイオン電池用の収納容器から、引き出したものを例に取り上げ、図1および図2を参照しながら説明する。
図1に示すように、本発明の電極リード線部材18及びリチウムイオン電池17は、電池外装用積層体10を折り重ねて作成された電池用外装容器20に内包されている。
さらに、電池用外装容器20の三方の側縁部19は、ヒートシールして袋状に製袋されたものである。電極リード線部材18は、図1の様に電池用外装容器20から引き出されている。なお、本発明に係わる電極リード線部材18を用いて製造したリチウムイオン電池の電池用収納容器における収納方法は、図3に示した。
ラミネートフィルム積層体からなる電池外装用積層体10は、図2に示すように、基材層11と、アルミ箔12と、樹脂フィルム13とが、それぞれ接着剤層15,16を介して接着されている。
図4に示すように、電極リード線部材18は、アルミニウム製あるいはニッケルメッキ銅板製の導出部21を備え、該導出部21の表面上に、シーラント層23が、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる耐蝕性の薄膜コーティング層22を介して、積層されている。
薄膜コーティング層22には、フッ化金属又はその誘導体からなり、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層を架橋させ、且つ、金属表面を活性化させる物質が含有されている。但し、フッ化金属又はその誘導体が含まれていなくても、薄膜コーティング層の耐蝕性は向上している。
薄膜コーティング層22は、導出部21の表面に印刷によりパターン状に形成されている。
導出部21の表面に形成されている薄膜コーティング層22は、熱処理により、架橋または非晶化することにより耐水化されている。
また、フッ化金属のように、水溶液の状態では遊離して酸性になる物質を、薄膜コーティング層に含有させて使用することにより、金属表面が活性化されて、金属表面と薄膜コーティング層の皮膜とが強く接着される。
ところで、ポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層は、一般的にガスバリヤ性が良いことが知られている。薄膜コーティング層を構成する樹脂内部は、空隙が少なく、特に湿度の低い雰囲気下では、水素ガスのような分子径の小さなガス分子に対してもガスバリヤ性があることから、リチウム電池やキャパシタのような非水系電解液を用いた電池において、水分の存在しない電池内部の構成部材に薄膜コーティング層が使用される場合は、電解液や水分に対するバリヤ性が高いと考えられる。従って、フッ酸等の金属表面を腐食させる物質に対するバリヤ性も高いので腐食防止の効果があると予想される。このように、水酸基を含有する物質の中から選定された、ポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層は、架橋させることにより、耐蝕性の向上を図ることができる。
電極リード線部材18の導出部21は、一般的に、正極はアルミ板、負極は銅板にニッケルメッキで被覆した金属が使用される。アルミラミネートフィルムからなる電池外装用積層体10との熱接合を容易にするために、電極リード線部材18の接合部分に事前に、シーラント層23を形成して置く。シーラント層23は、導出部21を表裏両側から挟み込むように両面に積層することが好ましい。
もし、導出部21の表層に耐蝕性の薄膜コーティング層22を形成させていないと電解液の浸透により、導出部21の表層で、水分と電解液とが反応してフッ酸が発生し、導出部21が腐食することにより、その接着を劣化させるとされている。よって、少なくとも導出部21の電池側の表層面を、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層22が積層されてなることが好ましい。図4(b)に示すように、外装材との接合部分においては、導出部21の断面の外周部全体に、薄膜コーティング層22を積層する必要がある。
従来技術による、電極リード線部材に用いられるアルミ製の導出部21についての電解液に対する腐食防止対策としては、クロメート処理が広く用いられているが、アルミ製の導出部21と比較して、銅にニッケルメッキを施した導出部21に対しては、クロメート処理の効果が少ない。ところが、本発明による電極リード線部材18は、銅にニッケルメッキを施した導出部21についても電解液に対する腐食防止の効果があることが解った。
このことから、本発明の薄膜コーティング層22による電解液に対する腐食防止は、腐食防止のメカニズムが、従来技術のクロメート処理と異なっていると考えられる。
シーラント層23は、図5に示すように、正極と負極の双方にまたがるように積層しても良い。これにより、正極と負極とが一体化した電極リード線部材を得ることができる。また、薄膜コーティング層22の腐食防止効果は、アルミ板やニッケルメッキ銅板など各種金属板に対して得られるので、薄膜コーティング層22を正極と負極の双方の導出部21に設けることが好ましい。
水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂とは、ビニルエステル系モノマーの重合体又はその共重合体をケン化して得られる樹脂である。ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、酪酸ビニル等の脂肪酸ビニルエステルや、安息香酸ビニル等の芳香族ビニルエステルが挙げられる。共重合させる他のモノマーとしては、エチレン、プロピレン、α−オレフィン類、アクリル酸、メタクリル酸、無水マレイン酸等の不飽和酸類、塩化ビニルや塩化ビニリデン等のハロゲン化ビニル類などが挙げられる。市販品としては、日本合成化学(株)製が挙げられる。
また、薄膜コーティング層22にはフッ化金属又はその誘導体からなり、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層を架橋させる物質を含有することが好ましい。フッ化金属又はその誘導体としては、例えばフッ化クロム、フッ化鉄、フッ化ジルコニウム、フッ化チタン、フッ化ハフニウム、ジルコンフッ化水素酸およびそれらの塩、チタンフッ化水素酸およびそれらの塩、等のフッ化物が挙げられる。これらのフッ化金属又はその誘導体は、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂を架橋させる物質であると同時に、不動態であるアルミニウムのフッ化物を形成するFイオンを含む物質でもあるので、導出部21がアルミニウム製である場合には、導出部21の表面を不動態化して、腐食防止の効果を高めることができると考えられる。
この導出部21の表層面に、薄膜コーティング層22を形成するには、例えば、水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を0.2〜6wt%、及びフッ化クロム(III)を0.1〜3wt%溶解した水溶液を用いて、乾燥後の厚みが0.1〜5μm程度となるように塗布した後、更にオーブンにて加熱乾燥及び焼き付け接着及び架橋化を行なうことにより、薄膜コーティング層22を形成することができる。
図6に、水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を3wt%、及びフッ化クロム(III)を1wt%溶かした水溶液を用いて乾燥後の厚みが3μmとなるように塗布し、更に200℃のオーブンにて加熱乾燥の処理をした薄膜コーティング層を示差熱分析装置で測定した結果の一例を示す。融点を確認したところ、融点のピークが無いことから架橋していることが解った。
この様に、導出部21の表層面に薄膜コーティング層22が積層されていると、薄膜コーティング層22の耐圧強度が高いので、シーラント層23であるポリプロピレン層又はポリエチレン層の厚みを薄くしても耐圧強度が保持できる為、導出部21のエッジ部分(側縁部)からリチウムイオン電池内部への水分の浸入が少なくなり、リチウムイオン電池の電解液の経時劣化が減少するので電池の製品寿命が長くなる。
更に、微量の水分が電池内部に浸入し、電解液と水分とが反応して電解液が分解することによりフッ酸が発生した場合にも、導出部21の表層面に積層された水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層22は、フリーボリュームが少ないので、ガスバリヤ性が高く、シーラント層に沿って、外部へ拡散すること、及び微量のフッ酸が導出部21であるアルミ板の表面に接触しても、アルミ板の表面に形成されている不動態化膜により導出部21の腐食が防止されて、導出部21とシーラント層23との層間接着強度が保たれ、耐圧強度保持が高くなり、電池の液漏れ等の問題も発生しない。
事前に接合するシーラント層23の厚さは50〜300μmが良く、防水性を考えると50〜150μmが最も良い。導出部21の厚さが200μm以上であると、導出部21のエッジにスルーホールが出来て、電解液のシールが出来ない場合がある。そこで、図4(b)に示すように、外装材との接合部に沿う断面で見た導出部21の両端部24が押し潰されて、断面中央部よりも厚みが薄くされていることが好ましい。これにより、事前に接合するシーラント層23の厚みを薄くすることが可能となる。
水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂からなる薄膜コーティング層22の厚みは、0.1〜5.0μmが望ましく、更に望ましくは0.5〜3μmであり、このような薄膜コーティング層の厚みであると、防湿性や接着強度の性能が増加する。
薄膜コーティング層22は、印刷方法により、導出部21の必要部分に付与される。印刷方式としては、インクジェット方式、ディスペンサー方式、スプレーコート方式など、公知の印刷方法を用いることが可能である。本発明に使用できる印刷方法は任意であるが、導出部21の表層だけでなく、電極リード線部材の断面で見たエッジ部も印刷する必要がある為、インクジェット方式とディスペンサー方式が良い。特に、ディスペンサー方式において、10mm幅程度に薄く幅を持たせて印刷できる塗布ヘッドを用いて実験したところ、最も適した方式であることが判った。
事前に電極リード線部材に接合しておくシーラント層23は、アルミラミネートフィルム10の最内層に用いられる樹脂フィルム13と同一または類似の樹脂フィルムを用いるのが好ましく、樹脂フィルム13が一般的に使用されているポリプロピレンの場合、シーラント層23は、無延伸ポリプロピレン(CPP)、無水マレイン酸変性プロピレン単独のフィルムもしくは、グリシジルメタクリレート等のエポキシ官能基を有するモノマーで変性されたポリプロピレンの単独フィルムであるか、これとポリプロピレンとの多層フィルムであっても良い。樹脂フィルム13がポリエチレンの場合も、シーラント層23は、ポリエチレン、無水マレイン酸変性ポリエチレンもしくは、グリシジルメタクリレート等のエポキシ官能基を有するモノマーで変性されたポリエチレン単体であってもよく、さらに、これとポリエチレン及びその共重合体との多層フィルムでもよい。この場合は、電解液と接触する面に、無水マレイン酸やアクリル酸の共重合体、グリシジルメタクリレート等で変性されたポリエチレンなどであっても良い。
本発明が用いられる非水系電池としては、2次電池であるリチウムイオン電池や電気二重層キャパシタなどの電解液に有機電解質を使用したものが挙げられる。有機電解質としては、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、エチレンカーボネートなどの炭酸エステル類を媒質とするものが一般的であるが、特にこれに限定されるものではない。
(測定方法)
・電極リード線部材の導出部とシーラント層との接着強度の測定方法:シーラント層の上にアルミラミネートフィルムをヒートシールした測定サンプルを用いて、JIS C6471「フレキシブルプリント配線板用銅張積層板試験方法」に規定された測定方法により測定した。
・電解液強度保持率の測定方法:電池外装用積層体を用いて、50×50mm(ヒートシール幅が5mm)の4方袋に製袋して、その中にLiPFを1mol/リットル添加したPC/DEC電解液に純水を0.5wt%添加して、それを2cc計量し、充填して包装した。この4方袋の中に、電極リード線部材の導出部表面の一部に薄膜コーティング層をディスペンサー方式にて印刷し、その薄膜コーティング層の上にヒートシールによりシーラント層が積層された電極リード線部材を入れて、60℃のオーブンに100時間保管後、電極リード線部材の薄膜コーティング層とシーラント層との層間接着強度(k2)を測定する。
ここで、事前に測定しておいた、電解液に暴露する前の薄膜コーティング層とシーラント層であるポリプロピレン(PP)フィルムとの層間接着強度(k1)と、電解液に暴露した後の層間接着強度(k2)との比率を電解液強度保持率K=(k2/k1)×100(%)とした。
(測定装置)
・接着強度の測定装置:島津製作所製、型式:AUTOGRAPH AGS‐100A引張試験装置
(実施例1)
リチウム電池用の電極リード線部材の導出部として、厚みが200μmのアルミ板を50mm×60mmの寸法に切断したアルミ片を用いた。脱脂洗浄したこのアルミ片の表面に、水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を3wt%、及びフッ化クロム(III)を1wt%溶かした水溶液を用いて1μmの厚みで10mm幅型ディスペンサーにて両面塗布し、薄膜コーティング層を積層し、更に200℃のオーブンにて加熱乾燥し、薄膜コーティング層の樹脂を焼き付けると同時に架橋化させた。この時に、導出部の裏表の表層だけでなく、導出部の両端面にも薄膜コーティング層が塗布されていることを確認した。
さらに、この導出部表面の薄膜コーティング層の上に、無水マレイン酸変性ポリプロピレンフィルムの単層フィルム(三井化学製ポリプロピレン系樹脂、品名/アドマーQE060をフィルム製膜機で100μmに製膜したフィルムを使用)をヒートシールにて両面接合し、実施例1の電極リード線部材を得た。
実施例1の電極リード線部材のシーラント層の上にアルミ箔(厚み20μm)/無水マレイン酸変性ポリプロピレンフィルム(厚み100μm)からなる、厚みが120μmのアルミラミネートフィルムをヒートシールして、実施例1の電極リード線部材を用いた測定サンプルを作製した。
この実施例1の測定サンプルから接着強度測定用の試験片を採取し、導出部とシーラント層との接着強度を測定したところ、46N/inchの接着強度を示した。
また、実施例1の測定サンプルについて、電解液強度保持率Kを測定した結果は、K=88%であった。
(実施例2)
リチウム電池用の電極リード線部材の導出部として、厚みが200μmの銅板片(寸法50mm×60mm)の表面にニッケルスルファミン酸メッキを2〜5μmの厚みでメッキして、その一部に水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を3wt%、及びフッ化クロム(III)を1wt%溶かした水溶液を用いて1μmの厚みで塗布し、薄膜コーティング層を積層し、更に200℃のオーブンにて加熱乾燥し、薄膜コーティング層の樹脂を焼き付けると同時に架橋化させた。
さらに、この導出部表面の薄膜コーティング層の上に、無水マレイン酸変性ポリプロピレンフィルム単層(三井化学製ポリプロピレン系樹脂、品名/アドマーQE060をフィルム製膜機で100μmに製膜したフィルムを使用)をヒートシールにより両面熱接合して、実施例2の電極リード線部材を得た。
実施例2の電極リード線部材を用いて、実施例1と同様にアルミラミネートフィルムをヒートシールして実施例2の測定サンプルを得て、導出部とシーラント層との接着強度を測定したところ、44N/inchの接着強度を示した。
また、実施例2の電池収納容器の一部分について、電解液強度保持率Kを測定した結果は、K=78%であった。
(比較例1)
アルミ板に薄膜コーティング層を積層しない以外は実施例1と同様にして、比較例1の電極リード線部材及び測定サンプルを得て、導出部とシーラント層との接着強度を測定したところ、54N/inchの接着強度を示した。また、比較例1の測定サンプルについて、電解液強度保持率Kを測定した結果は、K=10%以下であった。
(比較例2)
リチウム電池用の電極リード線部材の導出部として、厚みが200μmの銅板片(寸法50mm×60mm)の表面に2〜5μm程度のスルファミン酸ニッケルメッキを施し、その一部に、水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を3wt%、及びフッ化クロム(III)を1wt%混ぜた塗料を用いて1μmの厚みで塗布し、薄膜コーティング層を積層した。その積層後に加熱乾燥の処理をしなかった以外は、実施例1と同様にして比較例2の電極リード線部材及び測定サンプルを得た。
比較例2の電極リード線部材及び測定サンプルについて、導出部とシーラント層との接着強度を測定したところ、46N/inchの接着強度を示した。また、比較例2の測定サンプルについて、電解液強度保持率Kを測定した結果は、K=10%以下であった。電解液強度保持率の測定後には、電解液への暴露のため、電極リード線部材の導出部とシーラント層とが剥離現象(デラミ)を起した。
以上の結果を表1にまとめて示す。表1において、「電極リード線部材の導出部とシーラント層との接着強度」は、単に「接着強度」とした。
Figure 2016105408
実施例1および実施例2は、水酸基を含有するポリビニルアルコールの骨格を持つ非結晶ポリマー(日本合成化学(株)製)を3wt%、及びフッ化クロム(III)を1wt%混ぜた塗料を用いて、電極リード線部材の導出部に塗布し、薄膜コーティング層を積層してあることから、電極リード線部材の導出部とシーラント層との接着強度が40N/inch以上である。また、シーラント層と導出部との間に薄膜コーティング層を塗布した電極リード線部材は、リチウム電池の電解液に対しても耐性があり、耐圧強度も高かった。
一方、比較例1は、電極リード線部材に薄膜コーティング層を積層しなかった場合であるが、電極リード線部材の導出部とシーラント層との接着強度は、54N/inchと高い値であるが、電解液強度保持率Kが10%以下であり電解液耐性が無い。
また、比較例2は、電極リード線部材に薄膜コーティング層を塗布してもその加熱乾燥をしなかった場合であるが、電極リード線部材の導出部とシーラント層との接着強度は、46N/inchであるが、電解液強度保持率Kが10%以下であり電解液耐性が無い。
10…電池外装用積層体、11…基材層、12…アルミ箔、13…樹脂フィルム、15,16…接着剤層、17…リチウムイオン電池、18…電極リード線部材、19…側縁部、20…電池用外装容器、21…導出部、22…薄膜コーティング層、23…シーラント層、30…電池用載置容器、35…電池用収納容器。

Claims (8)

  1. 非水系電池用収納容器から引き出される電極リード線部材であって、
    金属製の導出部を備え、該導出部の表面上に、水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂が架橋していて耐水化されている耐蝕性の薄膜コーティング層が積層されていて、
    前記薄膜コーティング層には、フッ化金属又はその誘導体からなり、前記薄膜コーティング層に含まれる水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂を架橋させる物質が含まれていることを特徴とする電極リード線部材。
  2. 前記薄膜コーティング層が、前記導出部の必要な部分の表面に印刷により形成されていて、前記薄膜コーティング層の厚みが、0.1〜5.0μmであることを特徴とする請求項1に記載の電極リード線部材。
  3. 前記薄膜コーティング層が、前記導出部の表面に印刷により、前記導出部の長手方向に交差する方向に沿った、帯状のパターンに形成されてなることを特徴とする請求項1又は2に記載の電極リード線部材。
  4. 前記薄膜コーティング層において、前記水酸基を含有するポリビニルアルコールの骨格を有する樹脂又はその共重合樹脂が、前記フッ化金属又はその誘導体により架橋されていることを特徴とする請求項1〜3のいずれかに記載の電極リード線部材。
  5. 前記フッ化金属又はその誘導体が、アルミニウムのフッ化物を形成できるFイオンを含む物質であることを特徴とする請求項1〜4のいずれかに記載の電極リード線部材。
  6. 前記導出部の、断面で見た両端部が押し潰されて、断面中央部よりも厚みが薄くされていることを特徴とする請求項1〜5のいずれかに記載の電極リード線部材。
  7. さらに、前記薄膜コーティング層の上に、シーラント層が積層されていて、前記シーラント層の厚みが、50μm以上300μm以下であり、前記薄膜コーティング層が形成された導出部と前記薄膜コーティング層の上に積層されたシーラント層との層間剥離強度が、JIS C6471に規定された引き剥がし測定方法Aにより測定し、40N/inch以上であることを特徴とする請求項1〜6のいずれかに記載の電極リード線部材。
  8. 前記シーラント層が、無水マレイン酸変性のポリオレフィン系樹脂フィルム、又は、エポキシ官能基で変性されたポリオレフィン系樹脂フィルムであることを特徴とする請求項7に記載の電極リード線部材。
JP2016003864A 2016-01-12 2016-01-12 非水系電池用の電極リード線部材 Active JP6125054B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003864A JP6125054B2 (ja) 2016-01-12 2016-01-12 非水系電池用の電極リード線部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003864A JP6125054B2 (ja) 2016-01-12 2016-01-12 非水系電池用の電極リード線部材

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015244585 Division 2010-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017074682A Division JP6382386B2 (ja) 2017-04-04 2017-04-04 非水系電池用の電極リード線部材

Publications (2)

Publication Number Publication Date
JP2016105408A true JP2016105408A (ja) 2016-06-09
JP6125054B2 JP6125054B2 (ja) 2017-05-10

Family

ID=56102866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003864A Active JP6125054B2 (ja) 2016-01-12 2016-01-12 非水系電池用の電極リード線部材

Country Status (1)

Country Link
JP (1) JP6125054B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151024A (ja) * 2000-11-15 2002-05-24 Asahi Kasei Corp 扁平型電池
WO2009147989A1 (ja) * 2008-06-02 2009-12-10 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP2011081992A (ja) * 2009-10-06 2011-04-21 Sumitomo Electric Ind Ltd リード部材の製造方法
JP2011202121A (ja) * 2010-03-26 2011-10-13 Nets:Kk 水溶性高分子皮膜形成剤並びに水溶性高分子皮膜形成剤の製造方法並びにタブリード並びにタブリードの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151024A (ja) * 2000-11-15 2002-05-24 Asahi Kasei Corp 扁平型電池
WO2009147989A1 (ja) * 2008-06-02 2009-12-10 大日精化工業株式会社 塗工液、電極板製造用塗工液、アンダーコート剤およびその使用
JP2011081992A (ja) * 2009-10-06 2011-04-21 Sumitomo Electric Ind Ltd リード部材の製造方法
JP2011202121A (ja) * 2010-03-26 2011-10-13 Nets:Kk 水溶性高分子皮膜形成剤並びに水溶性高分子皮膜形成剤の製造方法並びにタブリード並びにタブリードの製造方法

Also Published As

Publication number Publication date
JP6125054B2 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5562176B2 (ja) 非水系電池用の電極リード線部材
JP5959878B2 (ja) 電極リード線部材を備えた非水系電池用収納容器
JP5538121B2 (ja) 電池外装用積層体
KR102100628B1 (ko) 비수계 전지용 전극 리드선 부재
JP5830585B2 (ja) 電池外装用積層体
JP2013012468A (ja) 非水系電池用の電極リード線部材
JP5856693B2 (ja) 非水系電池用の電極リード線部材
JP5859604B2 (ja) 非水系電池用の電極リード線部材
JP5876552B2 (ja) 電池外装用積層体
JP6344874B2 (ja) 電極リード線部材を備えた非水系電池用収納容器の製造方法
JP6647349B2 (ja) 非水系電池用の電極リード線部材の製造方法
JP6987175B2 (ja) 非水系電池用の電極リード線部材
JP6180054B2 (ja) 電極リード線部材を備えた非水系電池用収納容器の製造方法
JP6382386B2 (ja) 非水系電池用の電極リード線部材
JP6125054B2 (ja) 非水系電池用の電極リード線部材
JP6397080B2 (ja) 非水系電池用の電極リード線部材
JP7050631B2 (ja) 非水系電池用の電極リード線部材
JP6129362B2 (ja) 非水系電池用の電極リード線部材

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6125054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250