JP2016103866A - 非接触充電装置の給電装置、給電方法、及び非接触充電装置 - Google Patents

非接触充電装置の給電装置、給電方法、及び非接触充電装置 Download PDF

Info

Publication number
JP2016103866A
JP2016103866A JP2013047492A JP2013047492A JP2016103866A JP 2016103866 A JP2016103866 A JP 2016103866A JP 2013047492 A JP2013047492 A JP 2013047492A JP 2013047492 A JP2013047492 A JP 2013047492A JP 2016103866 A JP2016103866 A JP 2016103866A
Authority
JP
Japan
Prior art keywords
power
power supply
frequency
switching element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013047492A
Other languages
English (en)
Inventor
柏本 隆
Takashi Kashimoto
隆 柏本
別荘 大介
Daisuke Besso
大介 別荘
秀樹 定方
Hideki Sadakata
秀樹 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013047492A priority Critical patent/JP2016103866A/ja
Priority to PCT/JP2014/001290 priority patent/WO2014141661A1/ja
Publication of JP2016103866A publication Critical patent/JP2016103866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】給電装置におけるインバータ回路のスイッチング素子の動作周波数が、他の無線機器または設備の特定周波数に干渉または妨害を与える課題があった。【解決手段】給電装置1は、給電電力を放射するインダクタと、スイッチング素子を含み、前記給電電力を前記インダクタへ出力するインバータ回路と、他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定された前記スイッチング素子の動作周波数で、前記インバータ回路を制御する制御回路と、を具備するようにしたものである。【選択図】図1

Description

本発明は、例えば電気推進車両(電気自動車やハイブリッド車など)に搭載される二次電池に非接触で充電する給電装置、給電方法、及び非接触充電装置に関する。
非接触で電力伝送するための技術として、磁界、電界、電波などを用いる技術が開発されている。この非接触電力伝送技術によって、給電装置と受電装置とを接続する配線、接続部などが不要となるため、ユーザにとっては、接続の手間が省け、雨天時などの漏電または感電の心配がなくなる。
ところで、非接触電力伝送では、高効率化かつ電波法規上のノイズ低減のため、給電装置の高周波化への取組みが行われ、給電装置及び受電装置のそれぞれに交流信号を共振させる共振部を備える提案がされている(例えば、特許文献1参照)。
特開2009−296857号公報
しかしながら、特許文献1に記載の従来技術の場合、給電装置から出力される給電電力は、高周波で駆動する商用電源の周波数(商用電源周波数)の高調波成分が重畳されて、放射される。もし、位置ずれ状態で給電装置から受電装置へ給電された場合、該給電装置の周辺に存在している(すでに商用上許可されている)他の無線機器または設備が用いている周波数に対して、放射された給電電力が干渉を与え、通信などを妨害してしまう可能性がある。
本発明の目的は、従来技術が有する上記課題に鑑みてなされたものであり、商用電源周波数で駆動した場合でも、他の無線機器または設備への干渉を抑制することである。
上記目的を達成するために、本発明の給電装置は、給電電力を放射するインダクタと、スイッチング素子を含み、前記給電電力を前記インダクタへ出力するインバータ回路と、他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定された前記スイッチング素子の動作周波数で、前記インバータ回路を制御する制御回路と、を具備する。
本発明によれば、商用電源周波数で駆動した場合でも、他の無線機器または設備への干渉を抑制することができる。
本発明に係る非接触充電装置の給電装置の基本構成図 実施の形態1に係る非接触充電装置の回路図 入力検知部の回路図 入力電圧同期信号発生部の回路図 従来の非接触充電装置における各部の波形を示す図 本発明の非接触充電装置における各部の波形を示す図 高入力電力時における拡大したインバータ回路の動作波形を示す図 低入力電力時における拡大したインバータ回路の動作波形を示す図 本発明に係る入力電力に対するΔ通電率の関係を示す図 本発明に係る通電率に対する入力電力の関係を示す図 本発明に係る入力電力に対するΔデューティ比の関係を示す図 本発明に係る入力電力に対するΔ動作周波数の関係を示す図 所定の周波数だけずらしたインバータ回路の動作周波数を示す図 実施の形態2に係る非接触充電装置の回路図 実施の形態3に係る非接触充電装置の回路図 実施の形態4に係る非接触充電装置の回路図
図1に、本発明に係る非接触充電装置の給電装置の基本構成図を示す。本発明の給電装置1は、給電電力を受電装置2へ放射するインダクタ9と、スイッチング素子を含み、給電電力をインダクタ9へ出力するインバータ回路6と、他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定されたスイッチング素子の動作周波数で、インバータ回路6を制御する制御回路10と、を具備する。
また、本発明の給電方法は、他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定されたスイッチング素子の動作周波数で、インバータ制御を行い、インバータ制御によって、給電電力をインダクタへ出力する。
これらにより、商用電源周波数で駆動した場合でも、他の無線機器または設備への干渉または妨害を抑制することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではなく、同様の分野における類似の用語または類似の描写を用いて表現することが可能であることは、当業者において容易に理解されるであろう。
(実施の形態1)
図2は、本発明の実施の形態1に係る非接触充電装置の回路図である。図2に示されるように、非接触充電装置は、例えば駐車スペースに設置される給電装置1と、例えば電気推進車両に搭載される受電装置2とを備えている。給電装置1は、商用電源3、第1の整流回路4、力率改善回路5、インバータ回路6、入力検知部7、第1の共振コンデンサ8、第1のインダクタ9、給電装置側の制御回路10(以下、単に「制御回路10」という)、入力電圧同期信号発生部11、及び給電装置側の通信部50を備えている。
受電装置2は、第2のインダクタ40、第2の共振コンデンサ41、第2の整流回路42、負荷(バッテリー)43、受電装置側の制御回路44(以下、単に「制御回路44」という)、受電電力検知部45、及び受電側の通信部51を備えている。
以下、これらのブロックの構成について説明する。商用電源3は、低周波交流電源である200V商用電源であり、ブリッジダイオードと入力フィルタとを含む第1の整流回路4の入力端に接続される。
商用電源3の力率を改善する力率改善回路5は、バイパスコンデンサ12、チョークコイル15、第1のスイッチング素子16(本実施の形態においてはMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor))、第1のダイオードであるダイオード17、及び、平滑コンデンサ(電
解コンデンサ)18を含んでいる。
第1の整流回路4の高電位側(正極側)出力端子に、バイパスコンデンサ12の高電位端子と入力検知部7とが接続される。入力検知部7の出力端子に、チョークコイル15の入力側端子が接続される。さらに、チョークコイル15の出力側端子とダイオード17のアノード側端子との接続ラインに、第1のスイッチング素子16の高電位側端子(ドレイン)が接続される。
第1の整流回路4の低電位側(負極側)出力端子に、バイパスコンデンサ12の低電位側端子と第1のスイッチング素子16の低電位側端子(ソース)と平滑コンデンサ18の低電位側端子とが接続される。また、平滑コンデンサ18の高電位側端子は、ダイオード17のカソード側端子に接続される。
力率改善回路5には、第1の整流回路4の出力電圧が直流電源として入力される。バイパスコンデンサ12は、入力された第1の整流回路4の出力電圧の電圧変動を抑制する。また、チョークコイル15と第1のスイッチング素子16とのオン/オフ動作により、第1の整流回路4の出力電圧のピーク値より大きいピーク値を有する直流電圧であって任意の電圧に昇圧された電圧が、平滑コンデンサ18の両端に供給されて、平滑される。平滑コンデンサ18の出力電圧(平滑された電圧)は、力率改善回路5の出力電圧として、インバータ回路6の入力端子間に供給される。
なお、本実施の形態においては、力率改善回路5を高周波で動作させて力率改善効果を高めるために、スイッチング速度の速いMOSFETを第1のスイッチング素子16として使用する。通常、MOSFETに対して逆向きにダイオードが付帯されるが、このダイオードが無くても本実施の形態の基本動作に影響を与えないため、図には記載していない。
インバータ回路6の入力端子は、力率改善回路5の出力端子、つまり平滑コンデンサ18の両端に接続される。平滑コンデンサ18の両端には、スイッチング素子(第2及び第3のスイッチング素子)19、20の直列接続体とスイッチング素子(第4及び第5のスイッチング素子)24、26の直列接続体とが、並列に接続される。
第2及び第3のスイッチング素子19、20には、それぞれダイオード(第2及び第3のダイオード)21、22が逆並列(各スイッチング素子に対して、逆向きかつ並列)に接続される(すなわち、スイッチング素子の高電位側端子(コレクタ)とダイオードのカソード側端子とが接続される)。また、第3のスイッチング素子20(第2のスイッチング素子19であってもよい)に対して並列に、スナバコンデンサ23が接続される。
同様に、第4及び第5のスイッチング素子24、26には、それぞれダイオード25,27(第4及び第5のダイオード)が逆並列に接続される(すなわち、スイッチング素子の高電位側端子(コレクタ)とダイオードのカソード側端子が接続される)。また、第5のスイッチング素子26(第4のスイッチング素子24であってもよい)に並列に対して、スナバコンデンサ28が接続される。
さらに、第2のスイッチング素子19と第3のスイッチング素子20との接続ライン、及び、第4のスイッチング素子24と第5のスイッチング素子26との接続ラインに、第1の共振コンデンサ8と第1のインダクタ9との直列接続体が接続される。
入力検知部7は、図3に示されるように、電流検知部31、電圧検知部32、及び電力演算部33で構成される。ただし、電流及び電圧のいずれか一方で入力電力を推定できる
場合は、電流検知部31及び電圧検知部32のいずれか一方だけでもよい。電力演算部33は制御回路10に接続される。
入力電圧同期信号発生部11は、図4に示されるように、複数の抵抗34、35、36、37とトランジスタ38とからなる。図中のVddは、制御回路10の制御電圧である。商用電源3の正の半波の期間、図4のトランジスタ38がオンし、制御回路10への信号は略0V(=LOW)となる。一方、商用電源3の負の半波の期間、トランジスタ38がオフし、制御回路10への信号はVdd(=HIGH)となり、同期信号として出力される。
制御回路10は、この同期信号に同期して、インバータ制御を行う。後述するが、この同期信号は、トランジスタのオン/オフにより、商用電源3に対してΔθだけ遅延時間を含んだ出力信号となる。
第2のインダクタ40は、例えば電気推進車両の移動に伴い、第1のインダクタ9と対向するように配置される。
第2のインダクタ40の高電位側に、第2の共振コンデンサ41が接続される。第2のインダクタ40の低電位側及び第2の共振コンデンサ41は、平滑フィルタを内包する第2の整流回路42に接続される。第2の整流回路42の高電位側に受電電力検知部45が接続される。受電電力検知部45及び第2の整流回路42の低電位側に、負荷(バッテリー)43が接続される。
制御回路44は、受電電力検知部45によって検知されるバッテリー43の残電圧に応じて電力指令値を決定し、通信部50,51間の無線通信により制御回路10に電力指令値を送信する。また、給電装置の動作中に受電電力検知部45によって検知された受電電力に基づいて、負荷(バッテリー)43に過電流や過電圧がかからないように、制御回路44は電力指令値を変更する。
なお、受電電力検知部45については詳述しないが、受電電力検知部45は、入力検知部7の構成と同じであってもよい。
また、本実施の形態1の負荷43の一例として、電気推進車両用のバッテリーが用いられる。このとき、バッテリーは、バッテリーの残電圧以上の電圧が供給されて充電される。しかし、給電電圧がバッテリー残電圧を超えると、急激に充電電流が流れる。このことは、給電装置からみた負荷インピーダンスが、バッテリー残電圧及び/または給電電圧によって大きく変動することを意味している。
制御回路10は、それぞれの通信部50,51間の通信により、制御回路44から電力指令値(要求された給電電力値)を受信する。制御回路10は、入力検知部7によって検知される入力電力と受信した電力指令値とを比較し、電力指令値が得られるようにインバータ回路6(より詳細には、インバータ回路6の第2及び第3のスイッチング素子19、20と第4及び第5のスイッチング素子24、26)、及び、力率改善回路5(より詳細には、力率改善回路5の第1のスイッチング素子16)を駆動する。
なお、力率改善回路5の第1のスイッチング素子16の制御には専用の制御ICを用いてもよい。また、通信部50,51は、無線送受信回路で構成される。
以上のように構成された非接触充電装置の動作を、以下に説明する。
まず、上述した特許文献1に記載の電力伝送システムにおける各部の電圧波形、電流波形
等を、図5を参照しながら説明する。
ただし、特許文献1に記載の従来の電力伝送システムの回路構成は、当然のことながら、本発明に係る非接触充電装置と異なっているが、図5において、「第1の整流回路4の出力電圧」、「力率改善回路5の出力電圧」等と記載したのは、特許文献1に記載の電力伝送システムにおける対応部位の出力電圧等を示すためである。
図5(a)は、商用電源3の交流電圧波形を示す模式図であり、図5(b)は、直流電源の出力電圧波形、すなわち第1の整流回路4の出力電圧波形を示す模式図である。この電圧は、力率改善回路5に入力され、昇圧された後に平滑コンデンサ18に出力される。図5(c)は、平滑コンデンサ18に印加される(昇圧された後に出力された)波形、すなわち力率改善回路5の出力電圧波形であり、かつインバータ回路6の入力電圧波形を示す模式図である。
図5(d)は、第1のインダクタ9に発生する高周波電流波形を示す模式図であり、図5(e)は、給電装置1から受電装置2に給電される送電電力波形を示す模式図である。図5(f)は、第2の整流回路42の出力電流波形、すなわち負荷43への入力電流波形を示す模式図である。また、図5(g)及び(h)は、それぞれ通電率(デューティ比)及び動作周波数を示す模式図である。
一方、図6は、本発明の非接触充電装置における各部の電圧波形、電流波形等を示しており、図6(a)〜(h)は、図5(a)〜(h)にそれぞれ対応している。
次に、力率改善回路5の動作について説明する。図6(a)に示される商用電源3からの出力電圧(または出力電流)は第1の整流回路4により全波整流され、図6(b)の電圧波形に示されるような直流電圧が形成される。この直流電圧は、力率改善回路5の入力端子間に供給される。
力率改善回路5は、この直流電圧の瞬時値の大きさが平滑コンデンサ18の電圧よりも小さい場合に、力率改善回路5に含まれるダイオード17及び第1の整流回路4のブリッジダイオードがターンオンできずに入力電流波形が歪み、力率が著しく低くなる。よって、制御回路10は、第1のスイッチング素子16をターンオン/オフさせることにより、力率が改善される。
第1のスイッチング素子16がターンオンしている状態では、商用電源3からチョークコイル15にエネルギーが蓄えられる。その後、第1のスイッチング素子16がターンオフし、チョークコイル15に蓄えられたエネルギーがダイオード17を介して、平滑コンデンサ18に供給される。これにより、商用電源3からチョークコイル15を介して入力電流が流れるようになり、商用電源3側から歪んだ入力電流が流れないようにする。
また、本実施の形態では、力率改善回路5は、力率改善効果だけでなく、昇圧機能を同時に有する。このため、図6(c)に示されるように、力率改善回路5の出力電圧すなわち平滑コンデンサ18の電圧は、平滑コンデンサ18の電圧のピーク値が商用電源3のピーク値(すなわち直流電源のピーク値である力率改善回路5の入力電圧のピーク値)より高い電圧となり、平滑コンデンサ18を介してインバータ回路6に供給される。この平滑コンデンサ18の電圧波形には、力率改善回路5の目標出力電圧Vpfcに商用電源3の2倍の周波数の電圧リプルが重畳される。
以下に、インバータ回路6の動作について説明する。図6(c)に示される力率改善回路5の出力端間に接続された平滑コンデンサ18によって平滑された直流電圧は、インバ
ータ回路6に供給される。インバータ回路6は、第2及び第3のスイッチング素子19、20のオン/オフ、及び、第4及び第5のスイッチング素子24、26のオン/オフによって、第1の共振コンデンサ8と第1のインダクタ9とに、図6(d)に示されるような所定の周波数の高周波電流を発生させる。
この場合、指示された電力値になるように、所定の周波数は、例えば90KHzの動作周波数で制御される。
第2及び第3のスイッチング素子19、20のオン/オフ制御、及び、第4及び第5のスイッチング素子24、26のオン/オフ制御は、制御回路10が第2、第3、第4、及び第5のスイッチング素子19、20、24、及び26のゲートにオン信号を加えるによって行われる。
図7及び図8は、高入力電力時及び低入力電力時における拡大したインバータ回路6の動作波形をそれぞれ示している。(a)は第2及び第5のスイッチング素子であるスイッチング素子19、26及びダイオード21、27に流れる電流、(c)はスイッチング素子19、26の電圧、(d)はスイッチング素子19、26のゲート電圧、をそれぞれ示している。また、(b)は第3及び第4のスイッチング素子であるスイッチング素子20、24及びダイオード22、25に流れる電流、(e)はスイッチング素子20、24のゲート電圧、をそれぞれ示している。
また、(f)は第1のインダクタ9に流れる電流を示しており、図中のTon期間中はスイッチング素子19、26及びダイオード21、27に流れる電流が、1周期の残り(図中のT−Td−Ton)期間中はスイッチング素子20、24及びダイオード22、25に流れる電流が、それぞれ第1のインダクタ9に流れる。後述するデッドタイムTd期間中は第1のインダクタ9と第1の共振コンデンサ8とスナバコンデンサ23、28の共振電流が第1のインダクタ9に流れる。
図7及び図8に示されるように、直列接続された二つのスイッチング素子19、20は排他的に通電され、これら二つのスイッチング素子19、20に並列に直列接続された二つのスイッチング素子24、26は、スイッチング素子19、20の駆動信号位相をずらして排他的に通電されている。
すなわち、第2のスイッチング素子19と第5のスイッチング素子26とは同期してオン/オフを繰り返す。第2のスイッチング素子19と第5のスイッチング素子26とがオンのときに、第3のスイッチング素子20と第4のスイッチング素子24とがオフする。一方、第2のスイッチング素子19と第5のスイッチング素子26とがオフのときに、第3のスイッチング素子20と第4のスイッチング素子24とがオンする。これらの動作により、第3のスイッチング素子20と第4のスイッチング素子24とは同期してオン/オフを繰り返す。
なお、後述するように、第2のスイッチング素子19と第3のスイッチング素子20とが同時にオンにならないように、また、第4のスイッチング素子24と第5のスイッチング素子26とが同時にオンにならないように、第2及び第4のスイッチング素子19、24のオン期間と第3及び第5のスイッチング素子20、26のオン期間とが重ならないように、デッドタイムTdは設定されている。
第2及び第5のスイッチング素子19、26がオンしている状態からオフにすると、第1のインダクタ9と第1の共振コンデンサ8とスナバコンデンサ23の共振による緩やかな傾きで、スナバコンデンサ23が放電する。よって、第2及び第5のスイッチング素子
19、26は零ボルトスイッチング(ZVS、Zero Voltage Switching)ターンオフ動作を実現する。
また、このときスナバコンデンサ28が充電され、スナバコンデンサ23が放電しきると、ダイオード22、25がオンする。ダイオード22、25がオンしている期間中に第3及び第4のスイッチング素子20、24のゲートにオン信号を加えて待機すると、第1のインダクタ9の共振電流の向きが反転し、ダイオード22がターンオフして第3及び第4のスイッチング素子20、24に電流が転流する。よって、第3及び第4のスイッチング素子20、24は、ZVS&零電流スイッチング(ZCS、Zero Current
Switching)ターンオン動作を実現する。
一方、第3及び第4のスイッチング素子20、24がオンしている状態からオフにすると、第1のインダクタ9と第1の共振コンデンサ8とスナバコンデンサ28の共振による緩やかな傾きで、スナバコンデンサ28が放電する。よって、第3及び第4のスイッチング素子20、24はZVSターンオフ動作を実現する。
また、このときスナバコンデンサ23が充電され、スナバコンデンサ28が放電しきると、ダイオード21、27がオンする。ダイオード21、27がオンしている期間中にスイッチング素子19、26のゲートにオン信号を加えて待機すると、第1のインダクタ9の共振電流の向きが反転し、ダイオード27がターンオフして第2及び第5のスイッチング素子19、26に電流が転流する。よって、第2及び第5のスイッチング素子19、26は、ZVS&零電流スイッチング(ZCS)ターンオン動作を実現する。
本実施の形態では、スイッチング素子19、26及びスイッチング素子20、24は、平滑コンデンサ18を短絡しないようにデッドタイムTd(例えば、約1μs)を設け、交互にオン/オフする。また、図6(h)に示されるように、第2、第3、第4、及び第5のスイッチング素子19、20、24、及び26の駆動(動作)周波数を一定にして、図6(g)に示されるように、通電率(デューティ比)を制御することで、高周波電力が制御される。
なお、「通電率」とは、図7及び図8に示されるように、第2及び第5のスイッチング素子19、26(あるいは第3及び第4のスイッチング素子20、24)のオン/オフの1周期に要する時間に対する、スイッチング素子19、26(あるいはスイッチング素子20、24)のオン時間の比として定義している。
以下に、スイッチング素子における損失の抑制方法について、図5、図6、図7及び図8を参照しながら詳述する。
従来技術においては、図5(c)に示されるように、インバータ回路6には商用電源周波数60Hzの2倍の120Hzの電圧リプルを含む入力電圧が印可され、図5(d)に示されるように、第1のインダクタ9の電流には電流リプルが発生する。したがって、給電電力は、図5(e)に示されるように変動し、図5(f)に示されるように、負荷43の入力電流には120Hzの電流リプルが発生することになる。これは商用周波数が50Hzであっても同様であり、負荷43には100Hzの電流リプルが発生する。
一方、本発明においては、制御回路10は、入力検知部7で検知された商用電源3からの入力電流に基づいて決定される変調量Δ通電率(図6を参照)で、スイッチング素子19、20、24、26の通電率(デューティ比)を、商用電源3と同期して変調する。また、通電率(デューティ比)を変調する際、通電率を増加させる幅(Δ通電率+)が減少させる幅(Δ通電率−)以上となるように変調する。なお、通電率の変調の詳細について
は、後述する。
このようにすることで、図6(d)及び(e)に示されるように、第1のインダクタ9を流れる電流及び給電装置側の給電電力を略一定にすることができるだけでなく、インバータ回路6のスイッチング素子19、20、24、26のスイッチング損失を少なくすることができる。
図6(c)に示される平滑コンデンサの電圧リプルは、入力電力が大きくなるほど増加するため、本実施例では図9に示されるように、入力電流が大きくなるほどΔ通電率比が大きくなるように設定する。制御回路10は、図10に示されるような入力電流とΔ通電率の関係情報を保有しており、入力電流に応じてフィードフォワード制御することができる。
制御回路10は、図6(i)に示される入力電圧同期信号発生部11の出力信号に基づいて、商用電源3に同期して周波数を変調する。これにより、図6(c)に示されるような商用電源3に同期して発生する平滑コンデンサの電圧リプルを相殺するように変調することが可能となり、受電装置の出力電流リプルを精度良く抑制することができる。
また、制御回路10は、図6(i)に示される入力電圧同期信号発生部11の遅延時間Δθを補正して、周波数を変調する。この遅延時間Δθは、入力電力等によらず固定でよいため、制御回路10でのΔθの補正が不要となり、制御回路10による制御をより簡単に行うことができる。
図7及び図8に示されるように、高入力電力時は低入力電力時に比べ、通電率が大きくなるように設定される(例えば、高入力電力時は50%、40%等、低入力電力時は30%、20%等)。そして、図6(c)に示されるように、力率改善回路5の出力電圧に電圧リプルがある場合、高電圧時には通電率が小さく、低電圧時には通電率が大きく設定されるように(図6(g)参照)、制御回路10が第2、第3、第4、及び第5のスイッチング素子19、20、24、及び26を変調する。このようにすることで、第1のインダクタ9に流れる電流及び給電電力を略一定にすることができる。
ここで、通電率の変調について、図5、図8、図10を参照して詳述する。図5(e)に示されるように、送電電力のリプルは正負対象に発生する。このリプルを略一定にするように改善するためには、通電率(デューティ比)を変調して、増加する電力量と減少する電力量とを一致させる必要がある。
図8(a)に示されるように第2のスイッチング素子19及び第5のスイッチング素子26の通電時間Tonが短い低通電率時には、図8(b)に示されるように第3のスイッチング素子20及び第4のスイッチング素子24の通電時間が長く、ターンオフ時の電流が小さくなる。したがって、前述したようなスナバコンデンサ23、28の充放電ができなくなり、図8(a)に示されるように、第2のスイッチング素子19及び第5のスイッチング素子26は、スナバコンデンサの残存電圧を短絡する損失増加の動作モードとなる。すなわち、本実施の形態では、図10の範囲Aで示される通電率の範囲での動作モードは、損失増加の動作モードとなる。
しかしながら、通電率(デューティ比)による入力電力可変特性は、図10に示されるように、50%で飽和する特性を持っている。したがって、Δ通電率+とΔ通電率−とを同じ値で変調する場合には、図10に示される通電率aのように、通電率に対する入力電力特性曲線が略直線となる範囲(範囲B)でスイッチング素子19、20、24、26を動作させると、制御性を簡略化することができる。
一方、本発明においては、図10に通電率bでは、図9に示されるように、Δ通電率+がΔ通電率―以上となるように非対称に変調するため、通電率bで変調した場合でも増減する電力量を一致させることが可能となる。よって、低損失な動作モードで、給電装置の出力における商用電源の2倍の周波数成分の電流リプル及び電圧リプルを低減することが可能となる。また、図9に示すΔ通電率は、商用電源3の周波数によらず一定でよく、変調を簡略に行うことができる。
以下に、充電動作について説明する。
充電動作は、充電開始時に制御回路44は、受電電力検知部45によって検知されるバッテリーの残電圧に応じて充電電流、電圧、電力などの指令値を決定し、無線通信により制御回路10に送信する。また、充電中においても制御回路44は、充電電流、電圧、電力などの情報を無線通信により制御回路10に送信し、制御回路10は、受信した充電電流、電圧、電力などの情報に基づいて、インバータ回路6を制御する。
また、受電装置2においても、第2のインダクタ40と第2の共振コンデンサ41とを共振させることにより、第1のインダクタ9と第2のインダクタ40との間の電力伝送効率を高めることができる。言い換えれば、第2のインダクタ40のうち、第1のインダクタ9と磁気結合できない漏れインダクタンスによるインピーダンス成分を、第2の共振コンデンサ41で打ち消すことにより、2次側のインピーダンスが下がり、電力を伝送しやすくすることができる。なお、第2の共振コンデンサ41が無くても、本発明を実施することができる。
制御回路10は、電力指令値の受信を完了すると、上述した動作によって電力指令値と入力検知部7の検知結果とが一致するように、力率改善回路5及びインバータ回路6を制御する。
他の方法として、インバータ回路6の動作周波数を制御することにより、高周波電力は動作周波数を低くすると給電電力が大きくなる。つまり、入力検知部7で検知した商用電源3に応じて、平滑コンデンサ18の電圧が高電圧時には動作周波数を高く、平滑コンデンサ18の電圧が低電圧時には動作周波数を低くするよう、制御回路10によるインバータ回路6の動作周波数を変調する。
これにより、第1のインダクタ9に流れる電流及び給電電力を略一定にすることができる。なお、上記においては動作周波数を制御する場合を説明したが、通電率と動作周波数との両方を制御することでも、同様の効果を得ることができる。
すなわち、入力検知部7で検知された商用電源3からの入力電流に応じた動作周波数(図8、図12を参照)で、力率改善回路5の通電率が小さい場合、動作周通電率を大きく動作周波数を低くするように制御回路10が制御することで、電流リプルを低減することができる。
なお、本実施の形態においては、入力検知部7で検知された電流値に基づいて、スイッチング素子19、20、24、26を制御するようにしたが、入力検知部7で検知された入力電力に基づいて、インバータ回路6の変調量、動作周波数などを決定してもよい。
以下に、他の無線機器または設備への妨害または干渉を抑制する方法について説明する。インバータ回路6の動作周波数による、他の無線機器または設備の特定周波数への干渉を回避するために、図13に示されるように、制御回路10は、所定の周波数だけずれた動作周波数の制御を行なう。例えば、公共電波において、電波時計(40KHz、60K
Hz)への妨害を防ぐための一例として、制御回路10は、インバータ回路6の動作周波数が与える電波時計の周波数帯への影響を回避するために、40KHz、60KHzから所定の周波数だけずれた動作周波数で、スイッチング素子19、20,24、26を制御する。
なお、電波時計の受信IC、電波時計の受信ICに使用される水晶の狭帯域フィルタ、妨害波除去能力、及び該非接触充電装置と電波時計との設置位置関係から、インバータ回路6の動作周波数が、対象となる電波時計の周波数帯から例えば10kHz以上離れていれば、電波時計の受信に影響を与えないことが確認された。
このように、本発明の実施の形態において、制御回路10は、インバータ回路6のスイッチング素子の動作周波数を、他の無線機器または設備の特定周波数から所定の周波数だけずれた動作周波数に設定する制御を行うことで、他の無線機器または設備への妨害または干渉を抑制することができる。
(実施の形態2)
図14は、本発明の実施の形態2に係る非接触充電装置の回路図である。図14に示されるように、非接触充電装置は、給電装置1側に時計52を設けている。この時計52は、他の無線機器または設備が時計あわせをする時間帯(例えば、電波時計であれば、午前2時前後)に、非接触充電装置が充電中であれば一時的に充電を停止させることで、電波時計の時刻あわせをする時間帯に、干渉または妨害を与えることを抑制することができる。
なお、電波時計の時刻あわせに必要な時間は1分であるので、充電を停止する時間は約2分間程度でよい。
また、時計52は、受電装置2側に設けられてもよい。その場合、通信部50及び51を介して、給電装置1側に充電一時停止指示が行なわれる。
また、時計52として電波時計を実装することにより、より確実に他の無線機器または設備の電波時計に与える妨害または干渉の影響を抑制することができる。
(実施の形態3)
図15は、本発明の実施の形態3に係る非接触充電装置の回路図である。図15に示されるように、非接触充電装置は、特定動作周波数領域と給電装置の給電を停止する特定の時間帯とを記憶する記憶部53を、給電装置1側に設けている。
電波時計の例では、日本では40KHz、60KHzの周波数が電波時計の動作周波数として割当てられており、この記憶部53は、インバータ回路6の動作周波数領域として、電波時計の動作周波数への干渉を避けるための周波数領域(70K〜90KHz)と、充電を一時停止する時間帯(ここでは、例えば午前2時前後)を記憶する。
なお、電波時計は、外国において、動作周波数の割当てが異なっている(70KHz帯など)。よって、記憶部53は、非接触充電装置が設置されるそれぞれの国における電波時計の設定に基づいて、インバータ回路6の動作周波数領域と非接触充電装置が一時停止する時間帯とを記憶する。
また、記憶部53は、受電装置2側に設けられてもよい。その場合、通信部50及び51を介して、給電装置1側に動作周波数領域及び充電一時停止指示の通信が行なわれる。
(実施の形態4)
図16は、本発明の実施の形態4に係る非接触充電装置の回路図である。図16に示されるように、給電装置1側に外部機器または外部ネットワークと接続する接続部54を設け、これにより、記憶部53の内容を書き換えることができる。
なお、接続部54は、インターネット回線に接続できる接続部でもよく、あるいは特定のインターフェースをもった外部接続部でもよい。
このように、他の無線機器または設備が新規に周波数帯を割当てられた場合でも、接続部54から、記憶部53に記憶された、インバータ回路6の動作周波数領域、給電を一時停止する時間帯などを書き換えられるようにすることで、他の無線機器または設備への干渉または妨害の影響を低減することができる。
以上のように、本発明に係る非接触充電装置の給電装置は、例えば、電気推進車両の受電装置への給電等に有用であり、非接触充電装置の普及に有用である。また、電気推進車両用以外の送電コイルと受電コイルとを対とする非接触充電装置において、本発明の給電方法を適用することで、同様の効果を得ることが可能である。
1 給電装置
2 受電装置
3 商用電源
4、42 整流回路
5 力率改善回路
6 インバータ回路
7 入力検知部
8、41 共振コンデンサ
9、40 インダクタ
10、44 制御回路
11 入力電圧同期信号発生部
12 バイパスコンデンサ
15 チョークコイル
16、19、20、24、26 スイッチング素子
17、21、22、25、27 ダイオード
18 平滑コンデンサ
23、28 スナバコンデンサ
31 電流検知部
32 電圧検知部
33 電力演算部
43 負荷(バッテリー)
45 受電電力検知部
50、51 通信部
52 時計
53 記憶部
54 接続部

Claims (6)

  1. 給電電力を放射するインダクタと、
    スイッチング素子を含み、前記給電電力を前記インダクタへ出力するインバータ回路と、
    他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定された前記スイッチング素子の動作周波数で、前記インバータ回路を制御する制御回路と、
    を具備する給電装置。
  2. 前記給電装置または受電装置に設けられた時計を具備し、
    前記制御回路は、前記時計からの時刻が前記他の無線機器または他の設備が動作する所定の時間帯に含まれるとき、前記給電装置を一時的に停止する、
    請求項1に記載の給電装置。
  3. 前記給電装置または前記受電装置に設けられ、前記他の無線機器または他の設備における動作周波数及び前記他の無線機器または他の設備が動作する所定の時間帯を記憶する記憶部、
    を具備する請求項2に記載の給電装置。
  4. 前記記憶部が具備された前記給電装置または前記受電装置に設けられ、外部機器または外部ネットワークと接続する接続部を具備し、
    前記記憶部に記憶された、前記他の無線機器または他の設備における動作周波数及び前記他の無線機器または他の設備が動作する所定の時間帯は、前記外部機器または外部ネットワークによって書き換えられる、
    請求項3に記載の給電装置。
  5. 請求項1乃至4のいずれかに記載の給電装置と、
    受電装置と、
    を含む非接触充電装置。
  6. 他の無線機器または他の設備における動作周波数から所定の周波数だけずれた周波数に設定されたスイッチング素子の動作周波数で、インバータ制御を行い、
    前記インバータ制御によって、給電電力をインダクタへ出力する、
    給電方法。
JP2013047492A 2013-03-11 2013-03-11 非接触充電装置の給電装置、給電方法、及び非接触充電装置 Pending JP2016103866A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013047492A JP2016103866A (ja) 2013-03-11 2013-03-11 非接触充電装置の給電装置、給電方法、及び非接触充電装置
PCT/JP2014/001290 WO2014141661A1 (ja) 2013-03-11 2014-03-07 非接触充電装置の給電装置、給電方法、及び非接触充電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013047492A JP2016103866A (ja) 2013-03-11 2013-03-11 非接触充電装置の給電装置、給電方法、及び非接触充電装置

Publications (1)

Publication Number Publication Date
JP2016103866A true JP2016103866A (ja) 2016-06-02

Family

ID=51536340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013047492A Pending JP2016103866A (ja) 2013-03-11 2013-03-11 非接触充電装置の給電装置、給電方法、及び非接触充電装置

Country Status (2)

Country Link
JP (1) JP2016103866A (ja)
WO (1) WO2014141661A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014118343A1 (de) * 2014-12-10 2016-06-16 Huf Hülsbeck & Fürst Gmbh & Co. Kg Vorrichtung für ein Sicherheitssystem eines Fahrzeuges
WO2017061093A1 (ja) * 2015-10-08 2017-04-13 パナソニックIpマネジメント株式会社 非接触給電装置および非接触給電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821447B2 (ja) * 2006-06-14 2011-11-24 株式会社デンソー 車載装置及び車両用ナビゲーション装置
JP5233443B2 (ja) * 2008-06-30 2013-07-10 パナソニック株式会社 炊飯器
US9379780B2 (en) * 2010-12-16 2016-06-28 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
JP5720501B2 (ja) * 2011-08-29 2015-05-20 トヨタ自動車株式会社 車載携帯端末充電装置

Also Published As

Publication number Publication date
WO2014141661A1 (ja) 2014-09-18

Similar Documents

Publication Publication Date Title
JP6103445B2 (ja) 非接触充電装置の給電装置
JP6136025B2 (ja) 非接触充電装置の給電装置
CN205265550U (zh) 控制功率电路的功率晶体管、驱动电路的装置和控制功率电路的系统
JP4844674B2 (ja) スイッチング電源装置
US7388760B2 (en) Switching power supply circuit
US9425641B2 (en) Battery charging apparatus
US7656686B2 (en) Switching power supply circuit
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US20090284991A1 (en) Switching power supply
US20070086219A1 (en) Switching power supply circuit
US9160234B2 (en) Switching power supply apparatus
KR20070037384A (ko) 스위칭 전원 회로
US20120307535A1 (en) Power supply apparatus
US20170155325A1 (en) Resonant power supply device
US20120218798A1 (en) Power conversion device
WO2016080044A1 (ja) ワイヤレス給電装置
JPH04230988A (ja) インバータ電子レンジの駆動回路
WO2012098867A1 (ja) 非接触充電装置の給電装置
US20140140103A1 (en) Switching power supply
WO2012093423A1 (ja) 非接触充電システムの給電装置
WO2014141661A1 (ja) 非接触充電装置の給電装置、給電方法、及び非接触充電装置
JPH08130873A (ja) 電流共振型スイッチング電源回路
WO2016006066A1 (ja) 非接触給電装置
JP6675094B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
US9705409B2 (en) Equations for an LLC converter having increased power output capabilities