JP2016093804A - Method of recovering valuable material from solar cell module and processing equipment for recovering the same - Google Patents
Method of recovering valuable material from solar cell module and processing equipment for recovering the same Download PDFInfo
- Publication number
- JP2016093804A JP2016093804A JP2015211632A JP2015211632A JP2016093804A JP 2016093804 A JP2016093804 A JP 2016093804A JP 2015211632 A JP2015211632 A JP 2015211632A JP 2015211632 A JP2015211632 A JP 2015211632A JP 2016093804 A JP2016093804 A JP 2016093804A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- cell module
- oxide semiconductor
- processed
- recovering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 77
- 239000000463 material Substances 0.000 title claims abstract description 66
- 239000004065 semiconductor Substances 0.000 claims abstract description 111
- 229920000642 polymer Polymers 0.000 claims abstract description 72
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 239000011521 glass Substances 0.000 claims abstract description 44
- 239000007789 gas Substances 0.000 claims abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 230000035699 permeability Effects 0.000 claims abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 27
- 239000010935 stainless steel Substances 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 15
- 239000000725 suspension Substances 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 238000000746 purification Methods 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 229940100890 silver compound Drugs 0.000 claims 3
- 150000003379 silver compounds Chemical class 0.000 claims 3
- 238000007599 discharging Methods 0.000 claims 1
- 238000013022 venting Methods 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 24
- 239000005038 ethylene vinyl acetate Substances 0.000 abstract description 22
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 239000001569 carbon dioxide Substances 0.000 abstract description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 12
- 239000003054 catalyst Substances 0.000 abstract description 7
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004140 cleaning Methods 0.000 abstract 1
- 239000011651 chromium Substances 0.000 description 17
- 238000000354 decomposition reaction Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 229910021607 Silver chloride Inorganic materials 0.000 description 10
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000007725 thermal activation Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000011019 hematite Substances 0.000 description 3
- 229910052595 hematite Inorganic materials 0.000 description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- -1 CaCO 3 Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910004116 SrO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 241000710779 Trina Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005346 heat strengthened glass Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/82—Recycling of waste of electrical or electronic equipment [WEEE]
Landscapes
- Photovoltaic Devices (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、太陽電池モジュールから有価物を回収する方法及び回収するための処理装置に関する。 The present invention relates to a method for recovering valuable materials from a solar cell module and a processing apparatus for recovering.
本発明者の一人は有機物、ポリマー、ガス体等の被処理物を分解する方法として、半導体を真性電気伝導領域となる温度に加熱して電子・正孔キャリアーを大量に発生させ、被処理物を加熱処理により発現した強力な酸化力を持つ正孔に接触させ、酸素の存在下において被処理物を完全分解する処理方法(半導体の熱活性法,Thermal Activation of Semi−Conductors,以後TASCと略称する)について提案した(特許文献1、非特許文献1)。TASC法で使用できる半導体は高温、酸素雰囲気で安定な半導体であれば良い。従って、酸化物半導体が好んで用いられる。酸化物半導体の例として、BeO、CaO、CuO、Cu2O、SrO2、BaO、MgO、NiO、CeO2、MnO、GeO、PbO、TiO、VO、ZnO、FeO、PdO、Ag2O、TiO2、MoO2、PbO2、IrO2、RuO2、Ti2O3、ZrO2、Y2O3、Cr2O3、ZrO2、WO3、MoO3、WO2、SnO2、Co3O4、Sb2O3、Mn3O4、Ta2O5、V2O5、Nb2O5、MnO3、Fe2O3、Y2O2S、MgFe2O4、NiFe2O4、ZnFe2O4、ZnCo2O4、MgCr2O4、FeCrO4、CoCrO4、CoCrO4、ZnCr2O4、CoAl2O4、NiAl2O4等がある。この中で、酸化クロム(Cr2O3)は高温安定性(融点:約2200℃)に優れ、さらに飲料用のガラス瓶の染色にも使われる安全な材料である。また、酸化鉄(α−Fe2O3:ヘマタイト)は安全で廉価な材料であるので実用性が高い。 One of the inventors of the present invention is a method for decomposing an object to be processed such as an organic substance, a polymer, a gas body, etc., by heating a semiconductor to a temperature that becomes an intrinsic electric conduction region to generate a large amount of electron / hole carriers, Is a treatment method (semiconductor thermal activation of semiconductor-conductors, hereinafter abbreviated TASC). (Patent Document 1, Non-Patent Document 1). A semiconductor that can be used in the TASC method may be a semiconductor that is stable in a high temperature and oxygen atmosphere. Therefore, an oxide semiconductor is preferably used. Examples of oxide semiconductors include BeO, CaO, CuO, Cu 2 O, SrO 2 , BaO, MgO, NiO, CeO 2 , MnO, GeO, PbO, TiO, VO, ZnO, FeO, PdO, Ag 2 O, TiO. 2 , MoO 2 , PbO 2 , IrO 2 , RuO 2 , Ti 2 O 3 , ZrO 2 , Y 2 O 3 , Cr 2 O 3 , ZrO 2 , WO 3 , MoO 3 , WO 2 , SnO 2 , Co 3 O 4 , Sb 2 O 3 , Mn 3 O 4 , Ta 2 O 5 , V 2 O 5 , Nb 2 O 5 , MnO 3 , Fe 2 O 3 , Y 2 O 2 S, MgFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4, ZnCo 2 O 4, MgCr 2 O 4, FeCrO 4, CoCrO 4, CoCrO 4, ZnCr 2 O 4, CoAl 2 O 4, NiAl 2 O 4 and the like That. Among these, chromium oxide (Cr 2 O 3 ) is excellent in high-temperature stability (melting point: about 2200 ° C.) and is a safe material used for dyeing glass bottles for beverages. In addition, iron oxide (α-Fe 2 O 3 : hematite) is a safe and inexpensive material and thus has high practicality.
TASC法において用いられる酸化物半導体は室温においては絶縁体であるが、350−500℃に加熱すると半導体の真性電気伝導領域に入る。その際に、価電子帯に発生する正孔が強力な酸化力を発現し、ポリマー等から結合電子を奪い、ポリマー内に不安定なカチオン・ラジカルを形成させる。次に、このラジカルが被分解物であるポリマー内を伝播することによりポリマー全体を不安定化し、ポリマーは自滅するような形でエチレンのような小分子に裁断化(ラジカル開裂)され、空気中の酸素と反応して水と二酸化炭素に完全分解される。つまり、分解過程は正孔の酸化力によるラジカルの形成、ラジカル開裂によるフラグメント化、そして裁断化された分子と酸素との完全燃焼の3つから構成される。本手法はポリマーの厚みが20mm以上でもラジカルの伝播が起こり、被分解物の内部まで分解効果が及ぶのが特徴である。
また、繊維強化プラスチックに同じTASC法を用いて、プラスチックを完全分解し、カーボン・ファイバーやグラス・ファイバー等の強化繊維をほぼ無傷で完全回収する方法を提案した(特許文献2、非特許文献2)。この方法は特にコストの高いカーボン・ファイバー等の繊維を切断するなどのダメージを与えることなく強化繊維を回収して再使用することができるので、非常に有用であり、強化繊維に限らず、無機物とポリマーを混合した複合材料から無機物だけを回収できる普遍性のある方法である。
An oxide semiconductor used in the TASC method is an insulator at room temperature, but enters an intrinsic electric conduction region of the semiconductor when heated to 350 to 500 ° C. At that time, the holes generated in the valence band develop a strong oxidizing power, take away the bonding electrons from the polymer or the like, and form unstable cation radicals in the polymer. Next, this radical propagates in the polymer that is the decomposition product, destabilizing the entire polymer, and the polymer is cut into small molecules such as ethylene (radical cleavage) in a form that self-destructs, and in the air Reacts with oxygen and completely decomposes into water and carbon dioxide. In other words, the decomposition process consists of the formation of radicals by the oxidizing power of holes, fragmentation by radical cleavage, and complete combustion of the cut molecules and oxygen. This technique is characterized in that radical propagation occurs even when the thickness of the polymer is 20 mm or more, and the decomposition effect reaches the inside of the decomposition target.
In addition, the same TASC method is used for fiber-reinforced plastics, and a method of completely disassembling the plastics and completely recovering the reinforcing fibers such as carbon fibers and glass fibers without damage is proposed (Patent Document 2, Non-Patent Document 2). ). This method is very useful because it can recover and reuse reinforcing fibers without causing damage such as cutting high-cost carbon fibers, etc., and is not limited to reinforcing fibers. It is a universal method that can recover only inorganic substances from a composite material in which a polymer and a polymer are mixed.
太陽光発電システムは燃料を必要としないので資源枯渇の心配がなく、クリーンなエネルギーを供給して環境に負荷を与えない有用な技術であり、最近急速に普及が進展している。太陽電池システムの主要構成要素である太陽電池モジュールの耐用年数は20−30年と言われ、今後大量の処理需要の発生が見込まれる。太陽電池モジュールの部品をそのまま再使用するリユースはコスト面から経済性に乏しく、不要部材を処理して有価物である強化ガラス、太陽電池セル、インター・コネクタなどを素材として回収するリサイクル技術の確立が望まれている。 Solar power generation systems do not require fuel, so there is no concern about resource depletion, and they are a useful technology that supplies clean energy and does not give an impact to the environment. The service life of the solar cell module, which is the main component of the solar cell system, is said to be 20-30 years, and a large amount of processing demand is expected in the future. Reuse of solar cell module parts as they are is not economical in terms of cost, and establishes recycling technology for processing unnecessary parts and recovering valuable materials such as tempered glass, solar cells, and inter-connectors. Is desired.
しかしながら、現状の太陽電池モジュールの大部分は、セル部とガラス基板が、例えば、熱可塑型の樹脂であるEVA(エチレン酢酸ビニル共重合樹脂:エチレンビニルアセテート)により接着された構造となっている。EVAはセルが大気にさらされて腐食することなどを防いでいるが、逆にセル部やガラスを分離して取り出そうとすると、EVAを効率的に除去する方法がないために取り出しが困難であり、リサイクル技術は実用化されていないのが実情である。一般にポリマーを室温・空気中で加熱分解すると燃焼方法にも依存するが、多くの炭化物等に由来する黒状残渣が残存することが知られている。 However, most of the present solar cell modules have a structure in which the cell portion and the glass substrate are bonded by, for example, EVA (ethylene vinyl acetate copolymer resin: ethylene vinyl acetate) which is a thermoplastic resin. . EVA prevents the cell from being exposed to the atmosphere and corroded, but conversely, if the cell part or glass is separated and taken out, it is difficult to take out because there is no way to remove EVA efficiently. In fact, recycling technology has not been put to practical use. Generally, it is known that when a polymer is thermally decomposed at room temperature and in air, a black residue derived from many carbides or the like remains, depending on the combustion method.
EVAを除去して太陽電池素子構成材料の回収をするための方法として、特開2014−108375号公報には、炉内酸素濃度が1〜3体積%、装置炉内の温度を「予備加熱部:300℃」「熱処理部:500℃」となる様に昇温し、「予備加熱部滞在時間:20分」「熱処理部滞在時間:20分」となる周回コンベアの回転速度を合わせる。結晶Si系モジュールを連続処理装置に入れて、セル部及びガラス基板に結合したEVA封止材を爆発現象や炭化を起こすことなく除去して、太陽電池素子の構成材料を、安全に低コストで回収できる、と記載されている。爆発を抑制するためには酸素濃度を下げることが好ましいが、これはポリマーの炭化を促進することにつながり、処理速度が低下する等の問題点が残る。また、特開2004−42033号には従来の硝酸浸漬法を改良し、太陽電池モジュールを浸漬する70℃以上80℃以下に加温した硝酸に界面活性剤を添加することにより、従来100時間かかっていたEVAの分解時間を約半分の50時間に短縮することができた、と記載されている。処理中にセルが割れることなく回収できる利点はあるものの、処理時間が依然として長く、更に強酸を用いるなどから実用的とは言えない。 As a method for recovering the solar cell element constituent material by removing EVA, Japanese Patent Laid-Open No. 2014-108375 discloses that the oxygen concentration in the furnace is 1 to 3% by volume, and the temperature in the apparatus furnace is “preheating part”. : 300 ° C. ”and“ heat treatment section: 500 ° C. ”, and the rotational speed of the circulating conveyor is adjusted so that“ preheating section stay time: 20 minutes ”and“ heat treatment section stay time: 20 minutes ”. Put the crystalline Si module in the continuous processing equipment, remove the EVA sealing material bonded to the cell part and the glass substrate without causing an explosion phenomenon or carbonization, and make the constituent material of the solar cell element safe and low cost. It is described that it can be recovered. In order to suppress the explosion, it is preferable to reduce the oxygen concentration. However, this leads to promotion of carbonization of the polymer, and problems such as a reduction in processing speed remain. JP-A-2004-42033 improves the conventional nitric acid dipping method, and by adding a surfactant to nitric acid heated to 70 ° C. or higher and 80 ° C. or lower for dipping the solar cell module, it takes 100 hours conventionally. It is described that the degradation time of EVA that had been reduced could be reduced to about half of 50 hours. Although there is an advantage that the cells can be recovered without cracking during the treatment, the treatment time is still long, and further, it is not practical because a strong acid is used.
そこで、EVAの除去に、本出願の方法である「半導体の熱活性技術(TASC)」を適用するならば、TASC法はポリマーを水と二酸化炭素に完全分解するクリーンな技術であるので、太陽電池モジュールから有価物であるガラス、太陽電池セル、インター・コネクタなどを容易にかつ安価に回収するシステムを構築しうる。 Therefore, if the “semiconductor thermal activation technology (TASC)” that is the method of the present application is applied to the removal of EVA, the TASC method is a clean technology that completely decomposes the polymer into water and carbon dioxide. It is possible to construct a system that easily and inexpensively collects glass, solar battery cells, inter-connectors, and the like that are valuable materials from the battery module.
前述したように、太陽電池モジュールのリサイクルにおいては、太陽電池素子のEVA等のポリマーを除去することが困難であり、太陽電池素子構成材料の回収の実用化を妨げていた。この問題を半導体の熱活性法(TASC)で解決し、太陽電池モジュール中のEVA等のポリマーを完全分解して有価物であるガラス、太陽電池セル、インター・コネクタなどを回収する方法を提供することを課題とする。また、太陽電池セルを構成するシリコン・ウェファーと金属電極を分別して回収する方法を提供することを課題とする。 As described above, in the recycling of the solar cell module, it is difficult to remove the polymer such as EVA of the solar cell element, which hinders the practical use of the recovery of the constituent material of the solar cell element. This problem is solved by a semiconductor thermal activation method (TASC), and a method of recovering valuable glass, solar cells, inter-connectors, etc. by completely decomposing polymers such as EVA in the solar cell module. This is the issue. It is another object of the present invention to provide a method for separating and recovering silicon wafers and metal electrodes constituting solar cells.
本発明においては、半導体の熱活性技術(TASC)を太陽電池モジュールの解体に適用し、被処理物である太陽電池モジュールの表面に酸化物半導体を接触させ、酸素存在下において、酸化物半導体が真性電気伝導領域となる温度で被処理物を加熱することにより、EVA等のポリマーを完全分解して有価物であるガラス、太陽電池セル、インター・コネクタを回収する。回収した太陽電池セルを濃硝酸に浸して銀電極を溶解し、これに塩酸を滴下してAgClとして回収して、さらに残ったシリコン・ウェファーを分別・回収する。 In the present invention, the semiconductor thermal activation technology (TASC) is applied to dismantling the solar cell module, the oxide semiconductor is brought into contact with the surface of the solar cell module to be processed, and the oxide semiconductor is formed in the presence of oxygen. By heating the object to be processed at a temperature that becomes an intrinsic electric conduction region, a polymer such as EVA is completely decomposed to recover valuable glass, solar cells, and inter-connectors. The collected solar cells are immersed in concentrated nitric acid to dissolve the silver electrode, hydrochloric acid is dropped into this to collect AgCl, and the remaining silicon wafer is separated and collected.
太陽電池モジュールは、電極を介して相互に接続された太陽電池セルの受光面側に強化ガラスが配置され、太陽電池セルの周辺部分がEVA等のポリマーによって密封充填され、有機物フィルムからなるバック・シートがEVA等のポリマーの裏面側に接着された構造を有する。
本発明者は、このような太陽電池モジュールからEVA等のポリマーを完全分解して除去し、有価物を回収するために、鋭意実験を重ね、以下の経緯を経て本発明に至った。
TASC法によるポリマーの分解は、前述したように、正孔の酸化により生成したラジカルがポリマーから結合電子を奪い、ポリマーを不安定化して小分子に裁断されるプロセスである。ラジカルは20mm以上でも伝播すると述べたが、本課題ではラジカルがどの程度ポリマー内を伝播できるかが、問題解決の鍵となる。
上述した太陽電池モジュールの構造から判断すると、仮に、底部のバックシートに酸化物半導体を接触させたとすると、バックシートの上には(無機物である)太陽電池セルが一面に張り巡らされているため、ラジカルの伝播はここで途切れてしまい、太陽電池セルとガラスの界面まで及ばないと想定した。そこで、太陽電池モジュール(120×120×5mm)の横方向の4辺に酸化物半導体の分散膜を塗布し、ラジカルを横方向に走らせる実験を行った。20mmをはるかに超える60mmまでラジカルが走破するとは見通せなかったが、実際のTASC処理の結果、驚くべきことに、太陽電池モジュールはバックシートを含め、総てのポリマーは完全分解され、モジュールからガラス、シリコン・ウェーファー、インター・コネクタが分離回収され、ポリマーに充填されていた無機物も残渣として回収できた。
In the solar cell module, tempered glass is disposed on the light-receiving surface side of the solar cells connected to each other via electrodes, and the peripheral portion of the solar cell is hermetically filled with a polymer such as EVA, and is made of an organic film. The sheet has a structure bonded to the back side of a polymer such as EVA.
The present inventor has conducted extensive experiments in order to completely decompose and remove polymers such as EVA from such a solar cell module and recover valuable materials, and has reached the present invention through the following processes.
As described above, the decomposition of the polymer by the TASC method is a process in which radicals generated by hole oxidation deprive the polymer of bond electrons, destabilize the polymer and cut into small molecules. Although it has been stated that radicals propagate even when they are 20 mm or more, the extent to which radicals can propagate in the polymer is the key to solving the problem.
Judging from the structure of the solar cell module described above, if an oxide semiconductor is brought into contact with the bottom backsheet, the solar cells (which are inorganic) are stretched over the backsheet. It was assumed that the propagation of radicals was interrupted here and did not reach the interface between the solar cell and the glass. Therefore, an experiment was performed in which a dispersion film of an oxide semiconductor was applied to four lateral sides of a solar cell module (120 × 120 × 5 mm), and radicals were run in the lateral direction. Although radicals could not be expected to run through to 60 mm, much more than 20 mm, as a result of actual TASC processing, surprisingly, solar cell modules, including backsheets, all polymers were completely decomposed, and the modules were made from glass. The silicon wafer and the interconnector were separated and recovered, and the inorganic substance filled in the polymer could be recovered as a residue.
さらに驚くべきことは、モジュール4辺のコーティングを3辺、2辺、1辺としても全く同じ結果が得られたことである。つまり、ラジカルはモジュールの120mm四方の面内でも十分に伝播していたことが確認された。このことは、ラジカルはモジュールの温度さえ十分であれば、所定の大きさのモジュール全体に及ぶことが期待された。そして、長辺の長さが330mmのモジュール片の一方の短辺の端面に酸化物半導体をコーティングして水平においてTASC処理したところ、期待通り合わせモジュール中のポリマーは完全分解された。この結果を踏まえて、モジュールのバックシートを、酸化物半導体を担持したハニカムの上に載せてTASC処理を施したところ、すべてのポリマーは完全分解され、モジュールからガラス、シリコン・ウェーファー、インター・コネクタが分離回収することができた。結果として、ラジカルはバックシートの上に全面に並べられた太陽電池セルの間の僅かなスペースを通してガラス面にまで伝播し、充填されていたポリマーを完全分解することがわかった。以上の結果と考察から、本発明は完成した。モジュールのバックシートを、酸化物半導体を担持したハニカムの上に載せてTASC処理を施す手法はバックシートを下にして、モジュール片を単に触媒担持ハニカムの上に置くだけの操作であるので、酸化物半導体の塗布工程も必要なく、さらに酸化物半導体の粉が回収物に混入することがない最もクリーンな処理方法である。 What is more surprising is that the same result was obtained even when the coating on the four sides of the module was made into three sides, two sides and one side. That is, it was confirmed that radicals were sufficiently propagated even in a 120 mm square surface of the module. It was expected that radicals would span the entire module of a given size if the module temperature was sufficient. Then, when the oxide semiconductor was coated on the end surface of one short side of the module piece having a long side length of 330 mm and subjected to TASC treatment in the horizontal direction, the polymer in the combined module was completely decomposed as expected. Based on this result, the module backsheet was placed on a honeycomb supporting an oxide semiconductor and subjected to TASC treatment. As a result, all the polymers were completely decomposed, and the glass, silicon wafer, inter- The connector could be separated and recovered. As a result, it was found that the radical propagates to the glass surface through a small space between the solar cells arranged on the entire surface on the back sheet, and completely decomposes the filled polymer. Based on the above results and discussion, the present invention has been completed. The method of placing the module back sheet on the honeycomb supporting the oxide semiconductor and performing the TASC treatment is an operation of simply placing the module piece on the catalyst supporting honeycomb with the back sheet down. This is the cleanest processing method that does not require a coating process of a physical semiconductor, and further does not mix oxide semiconductor powder into the recovered material.
すなわち、本発明に係る太陽電池モジュールから有価物を回収する方法は、被処理物である太陽電池モジュールを、酸化物半導体を坦持した通気性を有する支持体の上に受光面を上にして載せることにより、前記太陽電池モジュールのバック・シートに酸化物半導体を接触させ、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱することにより、前記被処理物中のポリマーを分解除去し、解体物から有価物を回収することを特徴とする。
なお、被処理物である太陽電池モジュールは、太陽電池モジュールをユニットとしてパネル状としたものを処理対象とすることもできるし、処理しやすい大きさの個片に分離したもの、もしくは破砕したもの等を処理対象とすることができる。本発明における被処理物は太陽電池モジュールの大きさ、形態がとくに限定されるものではない。
また、本発明において、通気性を有する支持体とは、多孔質状あるいはハニカム状の良好な通気性を有する支持体を意味する。TASC法では裁断化された分子を水と炭酸ガスに完全分解するには十分な酸素が必要であり、被処理物を通気性の高い支持体上に支持して処理する方法が効果的である。
That is, in the method for recovering valuable materials from the solar cell module according to the present invention, the solar cell module that is the object to be processed is placed on the air-permeable support carrying the oxide semiconductor with the light receiving surface facing up. By placing the oxide semiconductor in contact with the back sheet of the solar cell module and heating the object to be processed at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region in the presence of oxygen, It is characterized by decomposing and removing the polymer in the treated product and recovering valuable materials from the disassembled product.
In addition, the solar cell module which is a to-be-processed object can also use what made the solar cell module a panel shape as a processing object, and what was separated into the piece of the size which is easy to process, or what was crushed Etc. can be processed. The object to be processed in the present invention is not particularly limited in the size and form of the solar cell module.
In the present invention, the air-permeable support means a porous or honeycomb-like support having good air permeability. In the TASC method, sufficient oxygen is necessary to completely decompose the cut molecules into water and carbon dioxide gas, and a method of supporting an object to be treated on a highly breathable support is effective. .
また、太陽電池モジュールから有価物を回収する他の方法として、被処理物である太陽電池モジュールのバック・シートを酸化物半導体の懸濁液にディップ・コーティングすることにより、前記太陽電池モジュールの前記バック・シートに酸化物半導体を接触させ、前記被処理物を通気性を有する支持体の上に置いて、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱することにより、前記被処理物中のポリマーを分解除去し、解体物から有価物を回収することを特徴とし、また、被処理物である太陽電池モジュールの1ないし4つの側面を酸化物半導体の懸濁液にディップ・コーティングすることにより、前記被処理物の側面に酸化物半導体を接触させ、前記被処理物を通気性を有する支持体の上に置いて、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱することにより、前記被処理物中のポリマーを分解除去し、解体物から有価物を回収することを特徴とする。
なお、被処理物に酸化物半導体をディップ・コーティングして処理する場合に使用する支持体は、表面に酸化物半導体を担持していないものであってもよいし、酸化物半導体を担持したものであってもよい。
Further, as another method of recovering valuable materials from the solar cell module, the solar cell module suspension sheet is dip-coated on a suspension of an oxide semiconductor to dip-coating the solar cell module suspension sheet. An oxide semiconductor is brought into contact with a back sheet, the object to be processed is placed on a gas-permeable support, and the object to be processed is at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region in the presence of oxygen. The polymer in the object to be treated is decomposed and removed by heating, and valuable materials are recovered from the disassembled object, and 1 to 4 side surfaces of the solar cell module that is the object to be treated are oxidized. By dip-coating the semiconductor suspension, an oxide semiconductor is brought into contact with the side surface of the object to be treated, and the object to be treated is made of a breathable support. In the presence of oxygen, by heating the object to be processed at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, the polymer in the object to be processed is decomposed and removed, and valuable materials are removed from the dismantled material. It collects.
The support used when the object to be processed is treated by dip coating with an oxide semiconductor may be one that does not carry an oxide semiconductor on its surface, or one that carries an oxide semiconductor. It may be.
また、本発明に係る太陽電池モジュールから有価物を回収するための連続処理装置は、太陽電池モジュールに酸化物半導体を接触させた状態で、被処理物である前記太陽電池モジュールを搭載した通気性を有する支持体を、一定速度で搬送するコンベヤと、前記通気性を有する支持体に搭載された被処理物を、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱する加熱処理部と、前記加熱処理部内にエアを供給するエアの供給機構と、前記加熱処理部において前記被処理物中のポリマーを分解除去して得られる解体物から、有価物を回収する回収部とを備えることを特徴とする。
また、前記解体物から有価物を回収する回収部において、まずガラスを回収し、次に太陽電池セルおよびインター・コネクターを回収することにより、分別・回収することを特徴とする。
Further, the continuous processing apparatus for recovering valuable materials from the solar cell module according to the present invention has a breathability in which the solar cell module as the object to be processed is mounted in a state where the oxide semiconductor is brought into contact with the solar cell module. A conveyor that transports the support having a constant speed, and a heat treatment unit that heats the object to be processed mounted on the breathable support to a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, or An air supply mechanism for supplying air into the heat treatment unit, and a recovery unit for recovering valuable materials from a dismantled product obtained by decomposing and removing the polymer in the object to be processed in the heat treatment unit. It is characterized by.
In the collection unit for collecting valuable materials from the dismantled material, the glass is first collected, and then the solar battery cell and the interconnector are collected and separated and collected.
太陽電池モジュールから有価物を回収するための処理装置は、被処理物である太陽電池モジュールに酸化物半導体を接触させた状態で、前記太陽電池モジュールを設置する加熱処理室を有し、前記加熱処理室において前記被処理物は、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱され、前記加熱処理部は外部からエアを供給するエアの導入口と加熱処理により発生するガスを排出する排気口を有し、前記加熱処理室の排気口には、前記酸化物半導体を担持した通気性を有する構造体を備えたVOC浄化装置が連結され、前記構造体が、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱されることによって、前記加熱処理部または前記加熱処理室から排出され前記VOC浄化装置を通過するガスが無害のガスに浄化され、前記加熱処理室において前記被処理物中のポリマーを分解除去して得られる解体物から、有価物を回収することを特徴とする。
本発明において、通気性を有する構造物とは、多孔質状あるいはハニカム状の良好な通気性を有する構造物を意味する。TASC法では裁断化された分子を水と炭酸ガスに完全分解するには十分な酸素が必要であり、被処理ガスを通気性の高い構造体を通して浄化する方法が効果的である。
The processing apparatus for recovering valuable materials from the solar cell module has a heat treatment chamber in which the solar cell module is installed in a state where the oxide semiconductor is in contact with the solar cell module that is the object to be processed, and the heating In the processing chamber, the object to be processed is heated to a temperature higher than the temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, and the heat treatment unit exhausts an air inlet for supplying air from the outside and a gas generated by the heat treatment. A VOC purifying apparatus having a breathable structure carrying the oxide semiconductor is connected to the exhaust port of the heat treatment chamber, and the structure includes the oxide semiconductor By heating to a temperature equal to or higher than the intrinsic electric conduction region, the gas discharged from the heat treatment unit or the heat treatment chamber and passing through the VOC purification device is purified to a harmless gas. , From the heating chamber the object to be treated polymer demolition product obtained by decomposing and removing in the, and recovering a valuable substance.
In the present invention, the air-permeable structure means a porous or honeycomb structure having good air permeability. In the TASC method, sufficient oxygen is required to completely decompose the cut molecules into water and carbon dioxide, and a method of purifying the gas to be processed through a highly breathable structure is effective.
本発明によれば、太陽電池モジュールを半導体の熱活性法(TASC)で処理することにより、有機物であるEVA等のポリマーを完全分解して除去することができるので、解体物から有価物であるガラス、太陽電池セル、インター・コネクタを低コストで短時間に回収することができる。また、EVA等のポリマーを完全分解、除去することにより、廃物サイズの縮小という効果も得られる。さらに、酸処理により太陽電池セルから銀とシリコン・ウェファーを分別して回収できる。 According to the present invention, by treating the solar cell module with the semiconductor thermal activation method (TASC), it is possible to completely decompose and remove polymers such as EVA, which is an organic substance, so that it is a valuable resource from a dismantled product. Glass, solar cells, and inter-connectors can be collected in a short time at a low cost. Further, by completely decomposing and removing a polymer such as EVA, an effect of reducing the waste size can be obtained. Furthermore, silver and silicon wafers can be separated and recovered from the solar cells by acid treatment.
太陽電池は使用できる最小の単位であるセルをつなぎ合わせ、ガラスやポリマーで保護したものを太陽電池モジュールと呼び、太陽電池モジュールをアルミニウム製などの枠に入れてパネル状にしたものを太陽電池パネルと呼んでいる。さらに太陽電池パネルを並べたものは太陽電池アレイと呼ばれている。家の屋根等に設置されているものは太陽電池アレイである。本願における処理単位は、使用寿命を終えた太陽電池モジュール5または製造過程で不良品となった太陽電池モジュールである。
単結晶または多結晶のシリコンからなる太陽電池セルは、p型のシリコン・ウェファーの上部にn型シリコン層を形成し、さらに電極等を配置したものである。太陽電池セルは図1に示すように、金属のインター・コネクタ3により電極が相互に接続され、端子6を通して外部の電極に接続されている。太陽電池セル2の受光面側には3−5mm程度の厚さの強化ガラス1が配置される。結合された太陽電池セル2の周辺はEVA等のポリマー4で密閉充填される。その後、バック・シート7がEVA等のポリマー4に接着される。バック・シート7は様々な性能をもつ有機物フィルムである。
A solar cell is the smallest unit that can be used by connecting cells together and protected by glass or polymer. This is called a solar cell module, and the solar cell module is put into a panel made of aluminum or other material. It is called. Furthermore, the array of solar cell panels is called a solar cell array. What is installed on the roof of a house is a solar cell array. The processing unit in the present application is the solar cell module 5 that has finished its service life or a solar cell module that has become defective during the manufacturing process.
A solar cell made of monocrystalline or polycrystalline silicon is formed by forming an n-type silicon layer on top of a p-type silicon wafer and further arranging electrodes and the like. As shown in FIG. 1, the solar cells are connected to each other by a metal interconnector 3 and are connected to an external electrode through a terminal 6. A tempered glass 1 having a thickness of about 3 to 5 mm is disposed on the light receiving surface side of the solar battery cell 2. The periphery of the combined solar cells 2 is hermetically filled with a polymer 4 such as EVA. Thereafter, the back sheet 7 is bonded to a polymer 4 such as EVA. The back sheet 7 is an organic film having various performances.
太陽電池モジュール5から太陽電池セル2等を回収するためには、まず太陽電池パネルのアルミフレームを外し、約120×120×5mmのモジュール片を切り出す。このモジュール片を電気炉内で、空気中500℃で20−30分間Cr2O3等の酸化物半導体13と接触させ、ポリマー成分(フレームとモジュールを固定するポリマー、充填物としてのEVA等のポリマー4、下地のバック・シート7など)を完全分解し、モジュール片を完全解体する。太陽電池モジュール5に酸化物半導体を接触させる方法としては、酸化物半導体をコーティングしたハニカム(触媒担持ハニカム8)上に、太陽電池モジュール5をモジュールのバック・シート7を下(つまり、受光面を上)に置く方法、モジュール底面に酸化物半導体の分散膜を塗布する方法、太陽電池モジュール5の側面に酸化物半導体13の分散膜を塗布する方法のいずれであってもよい。図1は触媒担持ハニカム8上に太陽電池モジュール5を置いた場合を示している。 In order to collect the solar battery cells 2 and the like from the solar battery module 5, first, the aluminum frame of the solar battery panel is removed, and a module piece of about 120 × 120 × 5 mm is cut out. This module piece is brought into contact with an oxide semiconductor 13 such as Cr 2 O 3 in an electric furnace at 500 ° C. for 20-30 minutes in the air, and polymer components (polymer for fixing the frame and module, EVA as a filler, etc.) The polymer 4 and the underlying back sheet 7 are completely disassembled, and the module piece is completely disassembled. As a method of bringing the oxide semiconductor into contact with the solar cell module 5, the solar cell module 5 is placed under the module back sheet 7 (that is, the light receiving surface is placed on the honeycomb (catalyst supporting honeycomb 8) coated with the oxide semiconductor. The above method may be any one of a method of placing the oxide semiconductor 13 on the bottom surface of the module, and a method of applying a dispersion film of the oxide semiconductor 13 on the side surface of the solar cell module 5. FIG. 1 shows a case where the solar cell module 5 is placed on the catalyst supporting honeycomb 8.
処理後のモジュール片は熱強化ガラス1がひび割れている状態になっているので、ガラス1、太陽電池セル2、インター・コネクタ3、残渣等を効率良く分離するためにTASC処理後の太陽電池モジュール5を網目のあるステンレス板の上に移すと良い。ステンレス網14を傾け、低周波数で振動させると、ポリマーに含有されていた無機物の白い残渣はメッシュを通して落下し、ガラス1塊、太陽電池セル2、インター・コネクタ3はステンレス網14を滑り落ちることにより、分別回収することができる。ハニカムに予め溝を設け、ステンレス網14をはめ込んでおけば、ステンレス網14上の残渣物をハニカムからとり外すことがより容易になるので好ましい。 Since the module piece after the treatment is in a state where the heat strengthened glass 1 is cracked, the solar cell module after the TASC treatment in order to efficiently separate the glass 1, the solar battery cell 2, the inter-connector 3 and the residue. It is better to move 5 onto a meshed stainless steel plate. When the stainless steel mesh 14 is tilted and vibrated at a low frequency, the inorganic white residue contained in the polymer falls through the mesh, and the glass lump, the solar battery cell 2 and the inter connector 3 slide down the stainless steel mesh 14. Can be collected separately. It is preferable to provide grooves in the honeycomb in advance and insert the stainless steel mesh 14 because the residue on the stainless steel mesh 14 can be easily removed from the honeycomb.
このようにして、太陽電池モジュール5にTASC処理を施した後の解体物から、容易に耐熱ガラス1、太陽電池セル2、インター・コネクタ3が図2に示すように回収される。
回収した太陽電池セル2の受光面には格子状の銀電極、裏面にはAlの電極が全面に形成されている。この太陽電池セル2を濃硝酸液に入れ、両金属を溶解し、その後に塩酸を滴下して、銀は塩化物(AgCl)の沈澱として単離する。残ったシリコン・ウェファーはメタル・フリーのシリコン基板として回収される。
In this manner, the heat-resistant glass 1, the solar battery cell 2, and the inter-connector 3 are easily recovered as shown in FIG. 2 from the dismantled product after the solar cell module 5 is subjected to the TASC treatment.
A grid-like silver electrode is formed on the light receiving surface of the collected solar battery cell 2 and an Al electrode is formed on the entire back surface. The solar battery cell 2 is put into a concentrated nitric acid solution to dissolve both metals, and then hydrochloric acid is added dropwise to isolate silver as a chloride (AgCl) precipitate. The remaining silicon wafer is recovered as a metal-free silicon substrate.
太陽電池モジュール5からガラス1、太陽電池セル2、インター・コネクタ3を回収する実用的な方法としては、連続処理装置を用いるのが良い。これは一定速度で搬送されるコンベア上に、搬入部、予備加熱部、TASC処理部、冷却部、搬出部、分別回収部を連結して備える。ハニカム上に置かれた太陽電池モジュール5は搬送部から搬入され、TASC処理部にてTASC処理が行われ、搬出部から搬出されて、分別回収部でガラス1、太陽電池セル2、インター・コネクタ3が分別回収される。 As a practical method for recovering the glass 1, the solar battery cell 2, and the inter connector 3 from the solar battery module 5, it is preferable to use a continuous processing apparatus. This is provided with a carry-in unit, a preheating unit, a TASC processing unit, a cooling unit, a carry-out unit, and a sorting and collecting unit on a conveyor that is conveyed at a constant speed. The solar cell module 5 placed on the honeycomb is carried in from the carrying unit, TASC processing is performed in the TASC processing unit, carried out from the carry-out unit, and the glass 1, solar cells 2, inter-connector in the sorting and collecting unit 3 is collected separately.
実施例1
ネクストエナジー・アンド・リソース株式会社製の太陽電池パネル(型式:VLXA−125)を用いて実験を行った。まず、約800×1600×40mmの大きさの太陽電池パネルからAl製の外枠をダイヤモンド・カッターで切断し、取り外した。外枠と太陽電池アレイは黒いバインダー樹脂で接着されていた。この黒い接着樹脂を含むような形で、120×120×5mmの太陽電池モジュール5の1片を切り出し、TASC処理の解体試料とした。太陽電池モジュール5の上面は約3.5mmのガラス1板、最下面には約0.5mm程度の白色のポリマー・シート(バック・シート7)があり、ガラス1板とポリマー・シートの中間には約1mm程度の透明の樹脂層(充填剤)があった。
Example 1
An experiment was performed using a solar cell panel (model: VLXA-125) manufactured by Next Energy & Resource Co., Ltd. First, an outer frame made of Al was cut from a solar cell panel having a size of about 800 × 1600 × 40 mm with a diamond cutter and removed. The outer frame and the solar cell array were bonded with a black binder resin. One piece of the solar cell module 5 having a size of 120 × 120 × 5 mm was cut out so as to contain the black adhesive resin, and used as a dismantled sample for TASC treatment. The upper surface of the solar cell module 5 has a glass plate of about 3.5 mm, and the lowermost surface has a white polymer sheet (back sheet 7) of about 0.5 mm, between the glass plate and the polymer sheet. Had a transparent resin layer (filler) of about 1 mm.
太陽電池モジュール5の1片のバック・シート7を下にして、酸化物半導体13としてCr2O3をコーティングしたコージライト(2MgO・2Al2O3・5SiO2)組成のハニカム上に載せた。酸化物半導体13はTASC処理においてそれ自体は変化・消耗することなく、これに接触している被処理物中の有機物を分解・除去する作用をするので、酸化物半導体13を担持したハニカムは触媒担持ハニカム8とも称する。太陽電池モジュール5の1片を載せた触媒担持ハニカム8を図3の電気炉9に入れて、空気導入口11から空気を導入しながらヒーター10に通電して500℃まで昇温し、30分間500℃に制御した。この後温度制御の電源をオフにして冷却した。以上の一連のTASC処理により、モジュール片のバック・シート7および充填剤を構成するポリマーは完全に分解され、下層から順に、薄いガラス・ファイバーと思われる布、インター・コネクタ3/太陽電池セル2/インター・コネクタ3、さらに細かくひび割れしたガラス1塊が得られた。分解されたポリマーは水と炭酸ガスとなり、排気口12から排出される。酸化物半導体13(Cr2O3)と太陽電池モジュール5はバック・シート7表面でのみ接触しているが、酸化物半導体13に発現する酸化力により、バック・シート7表面でポリマーから結合電子を奪い、ポリマー内に不安定なカチオン・ラジカルが形成される。このラジカルが被分解物であるポリマー内を伝播することによりポリマー全体を不安定化し、ポリマーは自滅するような形でエチレンのような小分子に裁断化(ラジカル開裂)され、空気中の酸素と反応して水と二酸化炭素に完全分解される。これがTASC法の特徴である。つまり、ポリマー表面でラジカルが一度形成されると、厚み方向に次々に分解反応が続くので、充填剤の領域まで完全分解が実現する。 The back sheet 7 of the solar cell module 5 was placed on a honeycomb of cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) composition coated with Cr 2 O 3 as the oxide semiconductor 13. Since the oxide semiconductor 13 does not change or consume itself in the TASC process, it acts to decompose and remove organic substances in the object to be processed, so that the honeycomb supporting the oxide semiconductor 13 is a catalyst. Also referred to as a supporting honeycomb 8. The catalyst-supporting honeycomb 8 on which one piece of the solar cell module 5 is placed is placed in the electric furnace 9 of FIG. 3, and the heater 10 is energized while introducing air from the air introduction port 11 to raise the temperature to 500 ° C. for 30 minutes. The temperature was controlled at 500 ° C. Thereafter, the temperature control power supply was turned off to cool. Through the series of TASC processes described above, the back sheet 7 of the module piece and the polymer constituting the filler are completely decomposed, and in order from the lower layer, a cloth that appears to be a thin glass fiber, an inter connector 3 / solar cell 2 / Interconnector 3 and a lump of glass that was further cracked were obtained. The decomposed polymer becomes water and carbon dioxide gas and is discharged from the exhaust port 12. The oxide semiconductor 13 (Cr 2 O 3 ) and the solar cell module 5 are in contact with each other only on the surface of the back sheet 7. And unstable cation radicals are formed in the polymer. This radical propagates in the polymer, which is the decomposition target, destabilizes the whole polymer, and the polymer is cut into small molecules such as ethylene (radical cleavage) in such a way that it self-destructs. Reacts and decomposes completely into water and carbon dioxide. This is a feature of the TASC method. That is, once radicals are formed on the polymer surface, the decomposition reaction continues in the thickness direction, so that complete decomposition is realized up to the filler region.
分解されたモジュールを、ガラス・ファイバーと思われる布から外し、5メッシュのステンレス網14に移した。これを約30度傾け、低周波数で振動させると、ガラス塊は転がるように落下した。次に、周波数を上げて振動させると、太陽電池セル2ならびにインター・コネクタ3も落下し、分別・回収することができた。この間に、ポリマーに含有されていた無機物の白い残渣(充填物:TiO2,CaCO3,SiO2等)はメッシュを通して落下した。以上の操作で、図2に示すように、ガラス1塊、太陽電池セル2ならびにインター・コネクタ3は容易に分別できた。ステンレス網14を傾ける角度は20度以上40度以下が好ましい。またガラス1塊を落下させるための振動数(第1の振動数)は5Hz以上で20Hz以下の範囲で、太陽電池セル2ならびにインター・コネクタ3を落下させるための振動数(第2の振動数)は10Hz以上で200Hz以下の範囲で、ガラスの厚みおよび太陽電池セルの構造などに依存して最適値に設定すればよい。振動の強さは分別・回収ができるように、適宜調整するのが良い。 The disassembled module was removed from the cloth that appeared to be glass fiber and transferred to a 5 mesh stainless steel mesh 14. When this was tilted by about 30 degrees and vibrated at a low frequency, the glass lump fell to roll. Next, when the frequency was increased, the solar battery cell 2 and the inter connector 3 were also dropped and separated and collected. During this time, inorganic white residues (filler: TiO 2 , CaCO 3 , SiO 2, etc.) contained in the polymer dropped through the mesh. Through the above operation, as shown in FIG. 2, the glass lump, the solar battery cell 2 and the interconnector 3 could be easily separated. The angle at which the stainless steel mesh 14 is inclined is preferably 20 degrees or more and 40 degrees or less. The frequency for dropping the glass lump (first frequency) is in the range of 5 Hz to 20 Hz, and the frequency (second frequency) for dropping the solar cells 2 and the interconnector 3. ) May be set to an optimum value in the range of 10 Hz to 200 Hz depending on the thickness of the glass and the structure of the solar battery cell. The intensity of vibration should be adjusted as appropriate so that it can be separated and collected.
インター・コネクタ3は幅2mm、厚みが0.2mm、長さが100mm程度の金属であり、蛍光X線分析の結果、銅と錫が主成分であることが分かった。また、太陽電池セル2の受光面には格子状の電極がスクリーン印刷されていた。太陽電池セル2ならびに格子状の電極材料は、蛍光X線分析の結果、それぞれシリコンならびに銀が主成分であることが判明した。太陽電池セル2の受光面上の銀電極は以下の手順により、AgClとして回収した。まず、銀電極のついた太陽電池セル2を濃硝酸で溶解し、薄黄色の溶液を得た。次に、これに塩酸を滴下し、銀をAgClとして沈殿させた。水洗後にろ過・乾燥させ、AgClの粉末を得た。9.6gの太陽電池セルから、0.3gのAgClを回収した(約3.2重量%)。 The inter-connector 3 is a metal having a width of 2 mm, a thickness of 0.2 mm, and a length of about 100 mm. As a result of fluorescent X-ray analysis, it was found that copper and tin are the main components. Further, a grid-like electrode was screen-printed on the light receiving surface of the solar battery cell 2. As a result of fluorescent X-ray analysis, it was found that the solar cell 2 and the grid-like electrode material are mainly composed of silicon and silver, respectively. The silver electrode on the light receiving surface of the solar battery cell 2 was collected as AgCl by the following procedure. First, the solar cell 2 with a silver electrode was dissolved with concentrated nitric acid to obtain a light yellow solution. Next, hydrochloric acid was added dropwise thereto to precipitate silver as AgCl. After washing with water, filtration and drying were performed to obtain AgCl powder. From 9.6 g of solar cells, 0.3 g of AgCl was recovered (about 3.2% by weight).
実施例2
実施例1で使用した太陽電池パネルから、同様の太陽電池モジュール5の1片を切り出した。酸化物半導体13として、実施例1で使用したCr2O3の代わりにα−Fe2O3(酸化鉄:ヘマタイト)を用い、実施例1と同様のTASC処理を行った。その結果、実施例1と同様に良好な結果が得られた。
Example 2
A piece of the same solar cell module 5 was cut out from the solar cell panel used in Example 1. As the oxide semiconductor 13, α-Fe 2 O 3 (iron oxide: hematite) was used instead of Cr 2 O 3 used in Example 1, and the same TASC treatment as in Example 1 was performed. As a result, the same good results as in Example 1 were obtained.
実施例3
実施例1で使用した太陽電池パネルから、同様の太陽電池モジュール5の1片を切り出した。モジュールの下面のポリマー・シート(バック・シート)の上に、Cr2O3の懸濁液をスプレー・コーティング法で5−10ミクロン程度コーティングした。この面を下にして、無垢(Cr2O3が未コート)のコージライト組成のハニカム上に載せ、空気中、500℃で30分加熱した(TASC処理)。モジュール片のポリマーは実施例1と同様に完全に分解され、ガラス1、太陽電池セル2、インター・コネクタ3も容易に分別され、格子状の銀電極もAgClの形で回収した。なお、酸化物半導体が担持されていないハニカムを用いたが、酸化物半導体が担持されているハニカムを用いても良い。またハニカムでなくてもモジュール片を載せる支持体であれば良いが、TASC法では裁断化された分子を水と炭酸ガスに完全分解するには十分な酸素が必要であるので、通気性の高い多孔質の支持体が好ましい。
Example 3
A piece of the same solar cell module 5 was cut out from the solar cell panel used in Example 1. On the polymer sheet (back sheet) on the lower surface of the module, a suspension of Cr 2 O 3 was coated by about 5 to 10 microns by spray coating. With this surface facing down, it was placed on a honeycomb of cordierite composition of solid (Cr 2 O 3 not coated) and heated in air at 500 ° C. for 30 minutes (TASC treatment). The polymer of the module piece was completely decomposed in the same manner as in Example 1, the glass 1, the solar battery cell 2, and the interconnector 3 were easily separated, and the grid-like silver electrode was also recovered in the form of AgCl. Note that although a honeycomb in which an oxide semiconductor is not supported is used, a honeycomb in which an oxide semiconductor is supported may be used. In addition, a support body on which module pieces are placed may be used as long as it is not a honeycomb, but the TASC method requires sufficient oxygen to completely decompose the cut molecules into water and carbon dioxide gas. A porous support is preferred.
実施例4
実施例3において、太陽電池モジュール5の1片の底辺部に酸化物半導体13であるCr2O3を塗膜する代わりに、図4(a)に示すように、モジュール片の4つの側面を順次、酸化物半導体13であるCr2O3の懸濁液に漬けてディップ・コーティングした。これを無垢のハニカム(Cr2O3が塗布されていないハニカム)の上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例3と同様に良好な結果を得た。なお、酸化物半導体が担持されていないハニカムを用いたが、酸化物半導体が担持されているハニカムを用いても良い。またハニカムでなくてもモジュール片を載せる支持体であれば良いが、TASC法では裁断化された分子を水と炭酸ガスに完全分解するには十分な酸素が必要であるので、通気性の高い多孔質の支持体が好ましい。
Example 4
In Example 3, instead of coating the bottom side of one piece of the solar cell module 5 with Cr 2 O 3 which is the oxide semiconductor 13, as shown in FIG. Sequentially, the oxide semiconductor 13 was immersed in a suspension of Cr 2 O 3 and dip-coated. This was placed on a solid honeycomb (honeycomb not coated with Cr 2 O 3 ), and was subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, good results were obtained as in Example 3. Note that although a honeycomb in which an oxide semiconductor is not supported is used, a honeycomb in which an oxide semiconductor is supported may be used. In addition, a support body on which module pieces are placed may be used as long as it is not a honeycomb, but the TASC method requires sufficient oxygen to completely decompose the cut molecules into water and carbon dioxide gas. A porous support is preferred.
実施例5
実施例4において、太陽電池モジュール5の1片の4つの側面の代わりに、図4(b)に示すように、3辺を順次、酸化物半導体13であるCr2O3の懸濁液に漬けてディップ・コーティングした。これを無垢のハニカムの上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例3と同様に良好な結果を得た。
Example 5
In Example 4, instead of the four side surfaces of one piece of the solar cell module 5, as shown in FIG. 4B, the three sides are successively made into a suspension of Cr 2 O 3 that is the oxide semiconductor 13. Pickled and dip coated. This was placed on a solid honeycomb and subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, good results were obtained as in Example 3.
実施例6
図4(c)に示すように、太陽電池モジュール5の1片の4つの側面の内、相対する2つのエッジを順次、酸化物半導体13であるCr2O3のCr2O3懸濁液に漬けてディップ・コーティングし、これを無垢のハニカムの上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例3と同様に良好な結果を得た。
Example 6
As shown in FIG. 4 (c), of the four sides of a piece of the solar cell module 5, opposite the two edges successively, Cr 2 O 3 suspension of Cr 2 O 3 is an oxide semiconductor 13 It was immersed in dip coating, placed on a solid honeycomb, and subjected to TASC treatment at 500 ° C. for 30 minutes in air. As a result, good results were obtained as in Example 3.
実施例7
図4(d)に示すように、太陽電池モジュール5の1片の4つの側面の内、1つのエッジを酸化物半導体13であるCr2O3の懸濁液に漬けてディップ・コーティングし、これを無垢のハニカムの上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例3と同様に良好な結果を得た。
このように、ポリマーの表面でのみ酸化物半導体と接触させておけば、TASC法の特徴により、120mm離れた端までポリマーの完全分解が自動的に進行することが実証された。
Example 7
As shown in FIG. 4 (d), one edge of the four side surfaces of one piece of the solar cell module 5 is immersed in a suspension of Cr 2 O 3 that is the oxide semiconductor 13 and is dip coated. This was placed on a solid honeycomb and subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, good results were obtained as in Example 3.
Thus, it has been demonstrated that the complete decomposition of the polymer automatically proceeds to the end 120 mm away by the feature of the TASC method if the oxide semiconductor is brought into contact only on the surface of the polymer.
実施例1−7で述べたように、TASC法のためには酸化物半導体13が有機物の表面でのみ接触していればよい。従って、接触させる方法は酸化物半導体13を坦持したハニカムに太陽電池モジュール5のバック・シート7が接触するようにモジュールを載せる方法、バック・シート7に酸化物半導体13の懸濁液をコーティングして無垢のハニカムにモジュールを載せる方法、モジュール片の4辺の少なくとも一辺に酸化物半導体13の懸濁液をコーティングして無垢のハニカムにモジュールを載せる方法のいずれであってもよい。しかしながら、有機物表面に酸化物半導体13の懸濁液をコーティングした場合は、回収物(ガラス1、太陽電池セル2、インター・コネクタ3等)に酸化物半導体13の粉が微少ではあるが混入することは避けられない。一方、酸化物半導体13を坦持したハニカムに太陽電池モジュール5のバック・シート7が接触するようにモジュールを載せる方法では回収物に酸化物半導体13が混入しないことや処理操作が極めて容易である点で好ましい方法である。 As described in Example 1-7, for the TASC method, the oxide semiconductor 13 only needs to be in contact with the surface of the organic substance. Therefore, the contacting method is a method of placing the module so that the back sheet 7 of the solar cell module 5 is in contact with the honeycomb carrying the oxide semiconductor 13, and coating the suspension of the oxide semiconductor 13 on the back sheet 7. Then, either a method of placing a module on a solid honeycomb or a method of placing a module on a solid honeycomb by coating a suspension of the oxide semiconductor 13 on at least one of the four sides of the module piece may be used. However, when the suspension of the oxide semiconductor 13 is coated on the surface of the organic substance, the collected oxide (glass 1, solar battery cell 2, inter-connector 3, etc.) is mixed with a small amount of oxide semiconductor 13 powder. It is inevitable. On the other hand, in the method of placing the module so that the back sheet 7 of the solar cell module 5 is in contact with the honeycomb carrying the oxide semiconductor 13, the oxide semiconductor 13 is not mixed into the recovered material and the processing operation is extremely easy. This is a preferable method.
実施例8
Changzhou Trina Solar Energy Co. Ltd.製の太陽電池パネル(型式:TSM−05DC80.08)を用いた。この太陽電池パネルはAl製の外枠と太陽電池アレイの固定には、太陽電池モジュール5の1片のベース体と同じポリマー・バインダーが使用されていた。実施例1の方法で、太陽電池モジュール5の1片(120×120×5 mm)を切り出し、実施例1と同様のTASC処理を行った。実施例1と同様に、太陽電池モジュール5の1片のポリマーは完全に分解され、下層から、インター・コネクタ3/太陽電池セル2/インター・コネクタ3/細かくひび割れしたガラス1塊、が得られた。これらは容易に分別できた。太陽電池セルならびに格子状の電極材料は、蛍光X線分析の結果、それぞれ、シリコンならびに銀が主成分であることが判明した。実施例1と同様の手法で、AgClを回収した。5.5gの太陽電池セルから、0.08gのAgClを回収した(1.48重量%)。
Example 8
Changzhou Trina Solar Energy Co. Ltd .. A solar cell panel (model: TSM-05DC80.08) was used. In this solar cell panel, the same polymer binder as that of the single base body of the solar cell module 5 was used for fixing the outer frame made of Al and the solar cell array. One piece (120 × 120 × 5 mm) of the solar cell module 5 was cut out by the method of Example 1, and the same TASC treatment as in Example 1 was performed. As in Example 1, one piece of polymer of the solar cell module 5 is completely decomposed, and from the lower layer, an inter connector 3 / a solar cell 2 / an inter connector 3 / a lump of finely cracked glass is obtained. It was. These could be easily separated. As a result of fluorescent X-ray analysis, it was found that the solar cell and the grid-like electrode material are mainly composed of silicon and silver, respectively. AgCl was recovered in the same manner as in Example 1. From 5.5 g of solar cells, 0.08 g of AgCl was recovered (1.48% by weight).
実施例9
実施例8で使用した太陽電池パネルから、同様の太陽電池モジュール5の1片を切り出した。酸化物半導体13として、実施例8で使用したCr2O3の代わりにα−Fe2O3(ヘマタイト)を用い、実施例8と同様のTASC処理を行った。その結果、実施例8と同様に良好な結果が得られた。
Example 9
One piece of the same solar cell module 5 was cut out from the solar cell panel used in Example 8. The same TASC treatment as in Example 8 was performed using α-Fe 2 O 3 (hematite) instead of Cr 2 O 3 used in Example 8 as the oxide semiconductor 13. As a result, good results were obtained as in Example 8.
実施例10
実施例8で使用した太陽電池パネルから、同様の太陽電池モジュール5の1片を切り出した。このモジュール片を用いて、実施例3と同様に、モジュールの下面のバック・シート7の上に、Cr2O3の懸濁液をスプレー・コーティング法で5−10ミクロン程度コーティングした。この面を下にして、無垢(Cr2O3が未コート)のコージライト組成のハニカム上に載せ、空気中、500℃で30分加熱した(TASC処理)。モジュール片のポリマーは実施例8と同様に完全に分解され、ガラス、太陽電池セル2、インター・コネクタ3も容易に分別され、格子状の銀電極もAgClの形で回収した。
Example 10
One piece of the same solar cell module 5 was cut out from the solar cell panel used in Example 8. Using this module piece, as in Example 3, a suspension of Cr 2 O 3 was coated on the back sheet 7 on the lower surface of the module by a spray coating method to about 5 to 10 microns. With this surface facing down, it was placed on a honeycomb of cordierite composition of solid (Cr 2 O 3 not coated) and heated in air at 500 ° C. for 30 minutes (TASC treatment). The polymer of the module piece was completely decomposed in the same manner as in Example 8, the glass, the solar battery cell 2 and the interconnector 3 were easily separated, and the grid-like silver electrode was also recovered in the form of AgCl.
実施例11
実施例8の太陽電池モジュール5の1片を用いて、実施例4と同様な実験を行った(4辺処理、図4(a))。その結果、実施例8と同様に良好な結果を得た。
Example 11
An experiment similar to that of Example 4 was performed using one piece of the solar cell module 5 of Example 8 (4-side treatment, FIG. 4A). As a result, good results were obtained as in Example 8.
実施例12
実施例8の太陽電池モジュール5の1片を用いて、実施例5と同様な実験を行った(3辺処理、図4(b))。その結果、実施例8と同様に良好な結果を得た。
Example 12
An experiment similar to that of Example 5 was performed using one piece of the solar cell module 5 of Example 8 (3-side treatment, FIG. 4B). As a result, good results were obtained as in Example 8.
実施例13
実施例8の太陽電池モジュール5の1片を用いて、実施例6と同様な実験を行った(2辺処理、図4(c))。その結果、実施例8と同様に良好な結果を得た。
Example 13
An experiment similar to that in Example 6 was performed using one piece of the solar cell module 5 in Example 8 (two-sided processing, FIG. 4C). As a result, good results were obtained as in Example 8.
実施例14
実施例8の太陽電池モジュール5の1片を用いて、実施例7と同様な実験を行った(1辺処理、図4(d))。その結果、実施例8と同様に良好な結果を得た。
Example 14
Using one piece of the solar cell module 5 of Example 8, an experiment similar to that of Example 7 was performed (one-side treatment, FIG. 4D). As a result, good results were obtained as in Example 8.
実施例15
実施例1もしくは実施例2または実施例8もしくは実施例9において、太陽電池モジュール5の1片のバック・シート7を下にして、酸化物半導体13をコーティングしたハニカム上に載せる際に、ガラス等を回収する便宜のために図5のようにステンレス網14を挿入する。予め、ハニカムには溝を掘っておき、溝深さ以下の厚みをもつステンレス網14をはめ込めるようにしておく。こうすれば、ハニカムに坦持された酸化物半導体13はモジュール片のバック・シート7表面と接触するので、TASC処理には支障がなく、かつTASC処理後に解体物を別途用意したステンレス網14に移す工程を経ることなく、ステンレス網14とステンレス網14上の解体物をハニカムから外し、実施例1に記載した方法でガラス塊、太陽電池セル2ならびにインター・コネクタ3を容易に分別することができる。
Example 15
In Example 1 or Example 2 or Example 8 or Example 9, when placing a piece of the back sheet 7 of the solar cell module 5 on the honeycomb coated with the oxide semiconductor 13, glass or the like As shown in FIG. 5, the stainless steel mesh 14 is inserted for the convenience of collecting. In advance, a groove is dug in the honeycomb so that a stainless mesh 14 having a thickness equal to or less than the groove depth can be fitted. In this way, since the oxide semiconductor 13 carried on the honeycomb contacts the surface of the back sheet 7 of the module piece, there is no problem in the TASC process, and the dismantled material is separately prepared after the TASC process. Without passing through the transfer step, the stainless steel mesh 14 and the dismantled material on the stainless steel mesh 14 are removed from the honeycomb, and the glass lump, the solar battery cell 2 and the inter connector 3 can be easily separated by the method described in the first embodiment. it can.
実施例16
実施例3もしくは実施例7または実施例10もしくは実施例14において、太陽電池モジュール5の1片を、酸化物半導体13が担持されていないハニカムの上に載せる際に、ガラス等を回収する便宜のために、実施例15と同様にステンレス網14を挿入する。ただし、太陽電池モジュール5の1片には既に酸化物半導体13が塗布されているから、ハニカムに溝を掘っておく必要はなく、単にハニカムの上にステンレス網14、太陽電池モジュール5の1片の順に載せればよい。こうすれば、TASC処理には支障がなく、かつTASC処理後に解体物を別途用意したステンレス網14に移す工程を経ることなく、ステンレス網14とステンレス網14上の解体物をハニカムから外し、実施例1に記載した方法でガラス塊、太陽電池セル2ならびにインター・コネクタ3を容易に分別することができる。
Example 16
In Example 3 or Example 7 or Example 10 or Example 14, when one piece of the solar cell module 5 is placed on the honeycomb on which the oxide semiconductor 13 is not supported, it is convenient to collect glass or the like. Therefore, the stainless steel mesh 14 is inserted as in the fifteenth embodiment. However, since the oxide semiconductor 13 is already applied to one piece of the solar cell module 5, there is no need to dig a groove in the honeycomb, and the stainless net 14 and one piece of the solar cell module 5 are simply formed on the honeycomb. Should be placed in the order. In this way, there is no hindrance to the TASC treatment, and the dismantled material on the stainless steel mesh 14 and the stainless steel mesh 14 is removed from the honeycomb without passing through the step of transferring the dismantled material to the separately prepared stainless steel mesh 14 after the TASC treatment. The glass lump, the solar battery cell 2 and the inter connector 3 can be easily separated by the method described in Example 1.
実施例17
太陽電池モジュール5のTASC処理を連続的に行うには図6に示した太陽電池モジュール用TASC連続処理装置15を用いるのが良い。ハニカムの上に、ステンレス網14、太陽電池モジュール5の1片を順に載せて、装置入口側の搬入部16に置く。酸化物半導体13坦持ハニカムを用いる場合は、実施例15に従い溝を掘ったハニカムとし、ハニカムの上にステンレス網14を、さらに太陽電池モジュール5の1片をバック・シート7が下になるようにして載せる。太陽電池モジュール5の1片のバックシート表面または太陽電池モジュール5の1片の側面に酸化物半導体13を塗布した場合は、酸化物半導体13を坦持しないハニカムを用いて、実施例16に従ってステンレス網14、太陽電池モジュール5の1片を載せる。ハニカムと一体となってその上に置かれたステンレス網14、太陽電池モジュール5の1片は搬入部16から搬出部20に渡って設置されているコンベヤにより、約100mm/minの搬送速度で連続的に搬送される。予備加熱部17、TASC処理部18、冷却部19には空気が外部から導入される。ハニカムと太陽電池モジュール5の1片は予備加熱部17を通過する間に500℃に加熱される。約1000mmに渡って500℃に制御された加熱処理部であるTASC処理部18を通過するときにTASC処理が行われ、モジュール片の中の有機物成分が完全に分解除去される。冷却部19を通過する間に冷却が行われる。なお、室温まで冷却される必要はなく、冷却される温度は適宜でよい。冷却部19から出てきたハニカム上の解体物からは有機物がTASC処理により完全に分解除去されており、搬出部20においてハニカムが除かれ、ステンレス網14とその上の解体物が搬出部20に戻される。搬出部20を経て分別回収部に送られると分別回収部21において、実施例1に記載された方法により無機物の白い残渣を、メッシュを通して落下させる。第一振動によりステンレス網14から滑り落ちたガラスと第2振動によりステンレス網14から滑り落ちた太陽電池セル2およびインター・コネクタ3は分別・回収される。
Example 17
In order to continuously perform the TASC processing of the solar cell module 5, it is preferable to use the TASC continuous processing device 15 for solar cell modules shown in FIG. On the honeycomb, one piece of the stainless steel mesh 14 and the solar cell module 5 is placed in this order and placed in the carrying-in portion 16 on the apparatus entrance side. When the oxide semiconductor 13-supported honeycomb is used, the honeycomb is formed by grooving according to Example 15, the stainless steel mesh 14 is placed on the honeycomb, and one piece of the solar cell module 5 is placed on the back sheet 7 below. And put it on. When the oxide semiconductor 13 is applied to the back sheet surface of one piece of the solar cell module 5 or the side surface of one piece of the solar cell module 5, stainless steel is used according to Example 16 using a honeycomb that does not carry the oxide semiconductor 13. The net 14 and one piece of the solar cell module 5 are placed. One piece of the stainless steel mesh 14 and the solar cell module 5 that are integrally formed with the honeycomb is continuously transferred at a transfer speed of about 100 mm / min by a conveyor installed from the carry-in section 16 to the carry-out section 20. Is conveyed. Air is introduced into the preheating unit 17, the TASC processing unit 18, and the cooling unit 19 from the outside. One piece of the honeycomb and the solar cell module 5 is heated to 500 ° C. while passing through the preheating unit 17. The TASC process is performed when passing through the TASC processing unit 18 which is a heat processing unit controlled to 500 ° C. over about 1000 mm, and the organic component in the module piece is completely decomposed and removed. Cooling is performed while passing through the cooling unit 19. Note that it is not necessary to cool to room temperature, and the temperature to be cooled may be appropriate. Organic matter is completely decomposed and removed from the dismantled material on the honeycomb that has come out of the cooling unit 19 by the TASC process, and the honeycomb is removed in the carry-out unit 20, so that the stainless steel mesh 14 and the dismantled material thereon are transferred to the carry-out unit 20. Returned. When sent to the sorting and collecting unit through the carry-out unit 20, the sorting and collecting unit 21 causes the white residue of the inorganic substance to fall through the mesh by the method described in the first embodiment. The glass slipped from the stainless steel mesh 14 by the first vibration and the solar battery cell 2 and the interconnector 3 slid from the stainless steel mesh 14 by the second vibration are separated and collected.
連続処理装置において搬入部から搬出部に至るすべての経路を一定速度で搬送すると述べたが、搬入部、搬出部及び分別回収部では太陽電池モジュールを載せたハニカムを一定速度で連続的に搬送し、予備加熱部、TASC処理部及び冷却部を一体化したTASC処理室では停止状態でTASC処理を行うシステムでもよい。この場合、TASC処理室には入口・出口の扉を持った電気炉が中央に置かれており、太陽電池モジュールを載せたハニカムの搬入の際には、入口の扉が開き、炉内に被処理物が運ばれ、入口が閉じられる。そして、処理後には出口側の扉が開き、TASC処理されたハニカム上の解体物が搬出される。バッチ方式を踏襲した本システムは搬送制御がやや複雑になるが、メリットは温度管理がし易いこと、必要な酸素を制御できることであり、着実なTASC処理が可能である。 Although it has been stated that all the routes from the carry-in part to the carry-out part are transported at a constant speed in the continuous processing device, the carry-in part, the carry-out part and the separation recovery part continuously transport the honeycomb with the solar cell module at a constant speed. The TASC processing chamber in which the preheating unit, the TASC processing unit, and the cooling unit are integrated may be a system that performs the TASC processing in a stopped state. In this case, an electric furnace having an inlet / outlet door is placed in the center in the TASC processing chamber, and when the honeycomb loaded with the solar cell module is loaded, the inlet door opens and the furnace is covered in the furnace. The workpiece is carried and the inlet is closed. After the treatment, the door on the outlet side is opened, and the dismantled material on the honeycomb subjected to the TASC treatment is carried out. This system, which is based on the batch method, is slightly complicated in transport control, but the advantages are that it is easy to manage temperature and that it can control the necessary oxygen, so that steady TASC processing is possible.
実施例18
さらに段落46で述べた半自動装置から搬入部、搬出部を取り払い、完全バッチ方式によってもTASC処理による太陽電池モジュールからの有価物の回収を行うことができる。図7において、太陽電池モジュールに酸化物半導体を接触させた状態で、太陽電池モジュールを電気炉9である加熱処理室内に配置する。加熱処理室9は空気導入口11と排気口12を有する。加熱処理室9を約500℃に加熱すると、TASC処理により太陽電池モジュール5中の有機物は分解され、生じた高温のガスは上昇するので、排気口12は加熱処理室9の天井内に設けるのが良い。加熱処理室9から廃棄されるガスはまだ完全には炭酸ガスと水にはなっておらず、低分子化された有機物が含まれることもあるため、排気口12の外側にTASC法によるVOC浄化装置23を配置する。これは酸化物半導体13を担持したハニカム8にヒーターを埋め込んだものを複数枚直列に配列した装置であり、ヒーターで約500℃に加熱することにより、通過する低分子有機物は完全に炭酸ガスと水に分解され、無害のガスとして大気に放出される。酸化物半導体を担持したハニカム構造体8を、加熱処理室9内で天井の排気口12付近に配置すると、約500℃に加熱されたハニカム構造体8を通過する低分子有機物ガスが炭酸ガスと水に分解されるのでさらに良い。酸化物半導体を担持したハニカム構造体8を側面にも付加的に設けて太陽電池モジュール5を取り囲むように配置してもよい。このような装置によりTASC処理を行うと、太陽電池モジュール5中の有機物は完全に分解除去され、電気炉9内の解体物から有価物を容易に回収することができる。連続処理炉および半自動処理炉においては複数枚の太陽電池モジュールを同時に処理するには装置を非常に大がかりにする必要があるが、完全バッチ炉においては電気炉9内に複数枚、たとえば5枚程度の太陽電池モジュール5を並べて無理なく配置することはスペース的に十分可能であり、こうすることにより一枚当たりの処理速度を上げることができる。図7のバッチ処理方式は連続処理炉に比べて小型、安価、低消費電力との特徴を有する。
Example 18
Further, the carry-in section and the carry-out section are removed from the semi-automatic apparatus described in paragraph 46, and valuable materials can be recovered from the solar cell module by the TASC process even by a complete batch system. In FIG. 7, the solar cell module is placed in the heat treatment chamber that is the electric furnace 9 with the oxide semiconductor in contact with the solar cell module. The heat treatment chamber 9 has an air introduction port 11 and an exhaust port 12. When the heat treatment chamber 9 is heated to about 500 ° C., the organic matter in the solar cell module 5 is decomposed by the TASC treatment, and the generated high temperature gas rises. Therefore, the exhaust port 12 is provided in the ceiling of the heat treatment chamber 9. Is good. Since the gas discarded from the heat treatment chamber 9 is not completely carbon dioxide and water and may contain low molecular weight organic substances, VOC purification by the TASC method is performed outside the exhaust port 12. The device 23 is arranged. This is a device in which a plurality of honeycomb-embedded honeycomb semiconductors 8 carrying heaters are arranged in series. By heating to about 500 ° C. with a heater, the low-molecular organic matter passing through is completely carbon dioxide gas. It is decomposed into water and released into the atmosphere as a harmless gas. When the honeycomb structure 8 supporting an oxide semiconductor is disposed in the vicinity of the ceiling exhaust port 12 in the heat treatment chamber 9, the low molecular organic gas passing through the honeycomb structure 8 heated to about 500 ° C. is combined with carbon dioxide gas. Even better because it breaks down into water. A honeycomb structure 8 supporting an oxide semiconductor may be additionally provided on the side surface so as to surround the solar cell module 5. When the TASC treatment is performed by such an apparatus, the organic matter in the solar cell module 5 is completely decomposed and removed, and valuable materials can be easily recovered from the dismantled product in the electric furnace 9. In a continuous processing furnace and a semi-automatic processing furnace, it is necessary to make the apparatus very large in order to process a plurality of solar cell modules at the same time. It is possible to arrange the solar cell modules 5 side by side without difficulty, and in this way, the processing speed per sheet can be increased. The batch processing system shown in FIG. 7 is characterized by small size, low cost, and low power consumption compared to a continuous processing furnace.
本発明によれば、半導体の熱活性(TASC)法を用いて太陽電池モジュールから有価物であるガラス、太陽電池セル、インター・コネクタを低コストで短時間に回収することができるので、今後大量の処理需要の発生が見込まれる太陽光発電システムの廃棄物に対して、従来実現されていなかったリサイクルを実用的な事業として成立させえて、産業上の利用可能性は大きい。 According to the present invention, glass, solar battery cells, and interconnectors, which are valuable materials, can be recovered from solar battery modules in a short time at a low cost using a semiconductor thermal activation (TASC) method. Recycling, which has not been realized in the past, can be established as a practical business for the waste of the photovoltaic power generation system that is expected to generate a large amount of processing demand, and the industrial applicability is great.
1 ガラス
2 太陽電池セル
3 インター・コネクタ
4 EVA等のポリマー
5 太陽電池モジュール
6 端子
7 バック・シート
8 触媒担持ハニカム
9 電気炉
10 ヒーター
11 空気導入口
12 排気口
13 酸化物半導体
14 ステンレス網
15 太陽電池モジュール用TASC連続処理装置
16 搬入部
17 予備加熱部
18 TASC処理部
19 冷却部
20 搬出部
21 分別回収部
22 太陽電池モジュール用TASC処理装置
23 VOC浄化装置
DESCRIPTION OF SYMBOLS 1 Glass 2 Solar cell 3 Inter connector 4 Polymers, such as EVA 5 Solar cell module 6 Terminal 7 Back sheet 8 Catalyst supporting honeycomb 9 Electric furnace 10 Heater 11 Air inlet 12 Exhaust port 13 Oxide semiconductor 14 Stainless steel net 15 Sun TASC continuous processing device 16 for battery modules Loading-in unit 17 Preheating unit 18 TASC processing unit 19 Cooling unit 20 Unloading unit 21 Sorting recovery unit 22 TASC processing unit 23 for solar cell module VOC purification device
Claims (16)
回収物の中の太陽電池セルを硝酸に浸漬することにより、前記太陽電池セルの電極である銀または銀の化合物を溶解し、さらに塩酸を滴下することによって銀または銀の化合物の塩化物を生じさせ、銀または銀の化合物を回収することを特徴とする請求項1ないし請求項3に記載の太陽電池モジュールから有価物を回収する方法。 After decomposing the polymer in the object to be processed and recovering valuable materials from the disassembled material,
By immersing the solar cells in the recovered material in nitric acid, the silver or silver compound that is the electrode of the solar cell is dissolved, and further, hydrochloric acid is added dropwise to produce a chloride of silver or a silver compound. The method for recovering valuable materials from the solar cell module according to claim 1, wherein silver or a silver compound is recovered.
前記解体物をステンレス網上に移し、20度以上40度以下の範囲で基板を傾け、第1の振動数で振動させ、まずガラス塊を落下・分離させ、次に、第2の振動数で振動させて、太陽電池セルとインター・コネクターを落下・分離させることを特徴とする請求項1ないし請求項4に記載の太陽電池モジュールから有価物を回収する方法。 As a method of decomposing and removing the polymer in the object to be processed and recovering valuable materials from the dismantled product,
The dismantled product is transferred onto a stainless steel net, the substrate is tilted within a range of 20 degrees to 40 degrees, and is vibrated at a first frequency. First, the glass block is dropped and separated, and then at a second frequency. The method for recovering valuable materials from the solar cell module according to claim 1, wherein the solar cell and the interconnector are dropped and separated by vibration.
前記ステンレス網の上に前記被処理物を載せて処理することを特徴とする請求項1に記載の太陽電池モジュールから有価物を回収する方法。 As the air-permeable support supporting the oxide semiconductor, a stainless steel net having a shape equal to the groove and having a thickness equal to or less than the groove depth is placed on a honeycomb having a plurality of grooves vertically and horizontally. Use
The method for recovering valuable materials from the solar cell module according to claim 1, wherein the object to be processed is placed on the stainless steel net and processed.
前記ハニカムの上にステンレス網を載せ、さらにその上に前記被処理物を置いて処理することを特徴とする請求項2または3に記載の太陽電池モジュールから有価物を回収する方法。 As the air-permeable support, using a honeycomb on which the oxide semiconductor is not supported,
The method for recovering valuable materials from the solar cell module according to claim 2 or 3, wherein a stainless steel net is placed on the honeycomb and the object to be processed is further placed on the honeycomb.
前記解体物から有価物を回収する過程は、前記連続処理装置内の分別回収部において、まずガラスを回収し、次に太陽電池セルおよびインター・コネクターを回収することにより、分別・回収されることを特徴とする請求項1ないし請求項4および請求項6ないし請求項9に記載の太陽電池モジュールから有価物を回収する方法。 The process of decomposing and removing the polymer in the object to be processed by heating the object to be processed in the presence of oxygen is introduced into a continuous processing apparatus that conveys the support carrying the object to be processed at a constant speed. And during the period in which the oxide semiconductor in the continuous processing apparatus stays in the heat treatment unit heated to a temperature equal to or higher than the temperature that becomes the intrinsic electric conduction region,
The process of recovering valuable materials from the dismantled material is to be separated and recovered by first recovering the glass and then recovering the solar cells and the interconnector in the separation and recovery unit in the continuous processing apparatus. A method for recovering valuable materials from the solar cell module according to any one of claims 1 to 4 and claims 6 to 9.
前記通気性を有する支持体に搭載された被処理物を、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱することにより、前記被処理物中のポリマーを分解する加熱処理部と、
前記加熱処理部内にエアを供給するエアの供給機構とを有し、加熱処理により前記加熱処理部内に発生するガスを排出する排気口には、前記酸化物半導体を担持した通気性を有する構造体を備えたVOC浄化装置が連結され、前記酸化物半導体が真性電気伝導領域となる温度以上に前記構造体が加熱されることによって、前記加熱処理部から排出され前記VOC浄化装置を通過するガスが無害のガスに浄化され、前記加熱処理部において前記被処理物中の前記ポリマーを分解除去して得られる解体物から、有価物を回収する回収部とを備えることを特徴とする太陽電池モジュールから有価物を回収するための処理装置。 In a state where the oxide semiconductor is brought into contact with the solar cell module, a conveyor that carries the air-permeable support on which the solar cell module as the object to be processed is mounted at a constant speed, and
A heat treatment unit for decomposing a polymer in the object to be processed by heating the object to be processed mounted on the air-permeable support to a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region;
An air supply mechanism for supplying air into the heat treatment unit, and a gas-permeable structure carrying the oxide semiconductor in an exhaust port for discharging gas generated in the heat treatment unit by heat treatment Are connected to each other, and the structure is heated to a temperature higher than the temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, whereby the gas discharged from the heat treatment unit and passing through the VOC purification device From a solar cell module comprising a recovery unit that recovers a valuable material from a dismantled product that is purified by harmless gas and is obtained by decomposing and removing the polymer in the object to be processed in the heat treatment unit Processing equipment for recovering valuable materials.
A breathable structure carrying the oxide semiconductor is disposed near the exhaust port in the heat treatment chamber, and the structure is heated to a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region. The processing apparatus for recovering valuable materials from the solar cell module according to claim 15, wherein the gas guided to the exhaust port is purified by the process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014227701 | 2014-11-10 | ||
JP2014227701 | 2014-11-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016093804A true JP2016093804A (en) | 2016-05-26 |
JP6596735B2 JP6596735B2 (en) | 2019-10-30 |
Family
ID=56069999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015211632A Active JP6596735B2 (en) | 2014-11-10 | 2015-10-28 | Method of recovering valuable material from solar cell module and processing device for recovery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6596735B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6254748B1 (en) * | 2016-11-14 | 2017-12-27 | 信越化学工業株式会社 | High photoelectric conversion efficiency solar cell manufacturing method and high photoelectric conversion efficiency solar cell |
JP2018021774A (en) * | 2016-08-01 | 2018-02-08 | 東芝環境ソリューション株式会社 | Method for measuring concentration of metal component contained in solar battery module |
CN108527730A (en) * | 2018-07-04 | 2018-09-14 | 南京工程学院 | A kind of device and method of carbon fibre composite renewable resources |
WO2020031661A1 (en) | 2018-08-06 | 2020-02-13 | 株式会社トクヤマ | Method for recovering valuable object from solar cell module |
JP2020142218A (en) * | 2019-03-08 | 2020-09-10 | 株式会社綿谷製作所 | Disassembling apparatus of solar cell panel, and disassembling method of solar cell panel |
JP2020189267A (en) * | 2019-05-21 | 2020-11-26 | 株式会社ジンテク | Method of and device for treating mixture including various waste polymer, waste metal and waste organic/inorganic material |
WO2021095318A1 (en) * | 2019-11-14 | 2021-05-20 | 株式会社トクヤマ | Waste solar panel processing method and processing system |
WO2023188791A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社トクヤマ | Solar cell module recycling system and solar cell module recycling method |
JP7497263B2 (en) | 2020-09-24 | 2024-06-10 | 株式会社トクヤマ | Waste solar panel heat treatment basket and waste solar panel heat treatment method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11165150A (en) * | 1997-07-21 | 1999-06-22 | Angewandte Solarenergie Ase Gmbh | Separating method for laminated glass constituting member |
WO2010061854A1 (en) * | 2008-11-26 | 2010-06-03 | 国立大学法人横浜国立大学 | System for degrading and removing toxic substance by means of thermal excitation of chromium oxide or nickel oxide |
JP2011140675A (en) * | 2010-01-05 | 2011-07-21 | Okuchi Denshi Kk | Method for collecting silver and palladium from waste scrap of conductive paste |
JP2013146649A (en) * | 2012-01-17 | 2013-08-01 | Shinshu Univ | Treatment method and treatment apparatus for plastic or plastic composite material |
JP2013211234A (en) * | 2012-03-30 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material |
JP2014000513A (en) * | 2012-06-18 | 2014-01-09 | Tanabe Sangyo Kk | Glass panel separation method and heat treatment device |
JP2014024037A (en) * | 2012-07-27 | 2014-02-06 | Mitsubishi Materials Corp | Decomposition method for solar battery panel |
JP2014108375A (en) * | 2012-11-30 | 2014-06-12 | Shinryo Corp | Method of recovering constituent material of solar cell element |
JP2014177523A (en) * | 2013-03-14 | 2014-09-25 | Shinshu Univ | Method and device for treating plastic composite material |
-
2015
- 2015-10-28 JP JP2015211632A patent/JP6596735B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11165150A (en) * | 1997-07-21 | 1999-06-22 | Angewandte Solarenergie Ase Gmbh | Separating method for laminated glass constituting member |
WO2010061854A1 (en) * | 2008-11-26 | 2010-06-03 | 国立大学法人横浜国立大学 | System for degrading and removing toxic substance by means of thermal excitation of chromium oxide or nickel oxide |
JP2011140675A (en) * | 2010-01-05 | 2011-07-21 | Okuchi Denshi Kk | Method for collecting silver and palladium from waste scrap of conductive paste |
JP2013146649A (en) * | 2012-01-17 | 2013-08-01 | Shinshu Univ | Treatment method and treatment apparatus for plastic or plastic composite material |
JP2013211234A (en) * | 2012-03-30 | 2013-10-10 | Jx Nippon Mining & Metals Corp | Method for separating and recovering positive electrode active material from lithium ion battery positive electrode material |
JP2014000513A (en) * | 2012-06-18 | 2014-01-09 | Tanabe Sangyo Kk | Glass panel separation method and heat treatment device |
JP2014024037A (en) * | 2012-07-27 | 2014-02-06 | Mitsubishi Materials Corp | Decomposition method for solar battery panel |
JP2014108375A (en) * | 2012-11-30 | 2014-06-12 | Shinryo Corp | Method of recovering constituent material of solar cell element |
JP2014177523A (en) * | 2013-03-14 | 2014-09-25 | Shinshu Univ | Method and device for treating plastic composite material |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018021774A (en) * | 2016-08-01 | 2018-02-08 | 東芝環境ソリューション株式会社 | Method for measuring concentration of metal component contained in solar battery module |
CN107677695A (en) * | 2016-08-01 | 2018-02-09 | 东芝环境解决方案株式会社 | The measuring method of the contained metal ingredient concentration of solar cell module |
US10692736B2 (en) | 2016-11-14 | 2020-06-23 | Shin-Etsu Chemical Co., Ltd. | Method for producing high-photoelectric-conversion-efficiency solar cell and high-photoelectric-conversion-efficiency solar cell |
JP6254748B1 (en) * | 2016-11-14 | 2017-12-27 | 信越化学工業株式会社 | High photoelectric conversion efficiency solar cell manufacturing method and high photoelectric conversion efficiency solar cell |
CN108527730A (en) * | 2018-07-04 | 2018-09-14 | 南京工程学院 | A kind of device and method of carbon fibre composite renewable resources |
CN112469514A (en) * | 2018-08-06 | 2021-03-09 | 株式会社德山 | Method for recovering valuable substances from solar cell module |
WO2020031661A1 (en) | 2018-08-06 | 2020-02-13 | 株式会社トクヤマ | Method for recovering valuable object from solar cell module |
JPWO2020031661A1 (en) * | 2018-08-06 | 2021-08-26 | 株式会社トクヤマ | How to recover valuables from solar cell modules |
EP3834955A4 (en) * | 2018-08-06 | 2022-04-20 | Tokuyama Corporation | Method for recovering valuable object from solar cell module |
CN112469514B (en) * | 2018-08-06 | 2023-02-24 | 株式会社德山 | Method for recovering valuable substances from solar cell module |
US11908969B2 (en) | 2018-08-06 | 2024-02-20 | Tokuyama Corporation | Method of recovering valuable materials from photovoltaic module |
JP2020142218A (en) * | 2019-03-08 | 2020-09-10 | 株式会社綿谷製作所 | Disassembling apparatus of solar cell panel, and disassembling method of solar cell panel |
JP2020189267A (en) * | 2019-05-21 | 2020-11-26 | 株式会社ジンテク | Method of and device for treating mixture including various waste polymer, waste metal and waste organic/inorganic material |
JP7197909B2 (en) | 2019-05-21 | 2022-12-28 | 株式会社ジンテク | Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances |
WO2021095318A1 (en) * | 2019-11-14 | 2021-05-20 | 株式会社トクヤマ | Waste solar panel processing method and processing system |
JP2021079301A (en) * | 2019-11-14 | 2021-05-27 | 株式会社トクヤマ | Processing method and processing system of waste solar panel |
JP7497263B2 (en) | 2020-09-24 | 2024-06-10 | 株式会社トクヤマ | Waste solar panel heat treatment basket and waste solar panel heat treatment method |
WO2023188791A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社トクヤマ | Solar cell module recycling system and solar cell module recycling method |
Also Published As
Publication number | Publication date |
---|---|
JP6596735B2 (en) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596735B2 (en) | Method of recovering valuable material from solar cell module and processing device for recovery | |
JP6596732B2 (en) | Method for recovering valuable material from solar cell panel and processing device for recovery | |
CN112469514B (en) | Method for recovering valuable substances from solar cell module | |
JP6297254B2 (en) | Method for collecting solar cell element constituent materials | |
JP2014024037A (en) | Decomposition method for solar battery panel | |
US20230241655A1 (en) | Waste Photovoltaic Module Processing Method | |
CN102629644A (en) | Reworking technology of finished crystalline silicon solar cell | |
JP6593585B2 (en) | Method of recovering glass from laminated glass and processing apparatus for recovery | |
JPH11165150A (en) | Separating method for laminated glass constituting member | |
Komoto et al. | Recycling of PV modules and its environmental impacts | |
Sasai et al. | Development of low-temperature thermal decomposition recycling technology from photovoltaic modules to flat glass applications | |
JP7148109B2 (en) | Method for processing laminated chip-like or plate-like plastic composites | |
CN111076176B (en) | Pyrolysis device | |
CN111014229B (en) | Pyrolysis recovery device utilizing waste heat of fuel cell and working method | |
WO2024162190A1 (en) | Solar cell module recycling system | |
KR20130086754A (en) | Method for cleaning semiconductor and display panel during manufacturing process of semiconductor and display panel and apparatus thereof | |
TWI476835B (en) | High-temperature activation process | |
TW202208080A (en) | Photovoltaic panel Encapsulant treatment system to decompose and carbonize the Encapsulant in the photovoltaic panel into carbon residue for maintaining the structural integrity | |
Mizuguchi et al. | Recent Advances in TASC (Thermal Activation of Semi-Conductors) Technology for Environmental Issues Focused on the Disassembly and Recycling of Solar Panels and Laminated Glass—A New Technology Characterized by Radical Propagation in Giant Molecules— | |
WO2024048618A1 (en) | Pyrolyzer | |
KR20240110552A (en) | How to dispose of waste solar cells | |
TW201921704A (en) | Method for manufacturing high-efficiency solar cell | |
KR102419718B1 (en) | Apparatus for disassembling solar cell module | |
JPH09186128A (en) | Apparatus and method for treating object | |
KR20230077046A (en) | Apparatus for disassembling solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180831 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6596735 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |