JP6593585B2 - Method of recovering glass from laminated glass and processing apparatus for recovery - Google Patents

Method of recovering glass from laminated glass and processing apparatus for recovery Download PDF

Info

Publication number
JP6593585B2
JP6593585B2 JP2015182488A JP2015182488A JP6593585B2 JP 6593585 B2 JP6593585 B2 JP 6593585B2 JP 2015182488 A JP2015182488 A JP 2015182488A JP 2015182488 A JP2015182488 A JP 2015182488A JP 6593585 B2 JP6593585 B2 JP 6593585B2
Authority
JP
Japan
Prior art keywords
glass
laminated glass
oxide semiconductor
processed
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015182488A
Other languages
Japanese (ja)
Other versions
JP2016172246A (en
Inventor
仁 水口
宏雄 高橋
正彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jintec Corp
Original Assignee
Jintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jintec Corp filed Critical Jintec Corp
Publication of JP2016172246A publication Critical patent/JP2016172246A/en
Application granted granted Critical
Publication of JP6593585B2 publication Critical patent/JP6593585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、合わせガラスからガラスを回収する方法及び回収するための処理装置に関する。   The present invention relates to a method for recovering glass from laminated glass and a processing apparatus for recovering the glass.

本発明者の一人は有機物、ポリマー、ガス体等の被処理物を分解する方法として、半導体を真性電気伝導領域となる温度に加熱して電子・正孔キャリアーを大量に発生させ、被処理物を加熱処理により発現した強力な酸化力を持つ正孔に接触させ、酸素の存在下において被処理物を完全分解する処理方法(半導体の熱活性法,Thermal Activation of Semi−Conductors,以後TASCと略称する)について提案した(特許文献1、非特許文献1)。TASC法で使用できる半導体は高温、酸素雰囲気で安定な半導体であれば良い。従って、酸化物半導体が好んで用いられる。酸化物半導体の例として、BeO、CaO、CuO、CuO、SrO、BaO、MgO、NiO、CeO、MnO、GeO、PbO、TiO、VO、ZnO、FeO、PdO、AgO、TiO、MoO、PbO、IrO、RuO、Ti、ZrO、Y、Cr、ZrO、WO、MoO、WO、SnO、Co、Sb、Mn、Ta、V、Nb、MnO、Fe、YS、MgFe、NiFe、ZnFe、ZnCo、MgCr、FeCrO、CoCrO、CoCrO、ZnCr、CoAl、NiAl等がある。この中で、酸化クロム(Cr)は高温安定性(融点:約2200℃)に優れ、さらに飲料用のガラス瓶の染色にも使われる安全な材料である。また、酸化鉄(α−Fe:ヘマタイト)は安全で廉価な材料であるので実用性が高い。 One of the inventors of the present invention is a method for decomposing an object to be processed such as an organic substance, a polymer, a gas body, etc., by heating a semiconductor to a temperature that becomes an intrinsic electric conduction region to generate a large amount of electron / hole carriers, Is a treatment method (semiconductor thermal activation of semiconductor-conductors, hereinafter abbreviated TASC). (Patent Document 1, Non-Patent Document 1). A semiconductor that can be used in the TASC method may be a semiconductor that is stable in a high temperature and oxygen atmosphere. Therefore, an oxide semiconductor is preferably used. Examples of the oxide semiconductor, BeO, CaO, CuO, Cu 2 O, SrO 2, BaO, MgO, NiO, CeO 2, MnO, GeO, PbO, TiO, VO, ZnO, FeO, PdO, Ag 2 O, TiO 2 , MoO 2 , PbO 2 , IrO 2 , RuO 2 , Ti 2 O 3 , ZrO 2 , Y 2 O 3 , Cr 2 O 3 , ZrO 2 , WO 3 , MoO 3 , WO 2 , SnO 2 , Co 3 O 4 , Sb 2 O 3 , Mn 3 O 4 , Ta 2 O 5 , V 2 O 5 , Nb 2 O 5 , MnO 3 , Fe 2 O 3 , Y 2 O 2 S, MgFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4, ZnCo 2 O 4, MgCr 2 O 4, FeCrO 4, CoCrO 4, CoCrO 4, ZnCr 2 O 4, CoAl 2 O 4, NiAl 2 O 4 and the like That. Among these, chromium oxide (Cr 2 O 3 ) is excellent in high-temperature stability (melting point: about 2200 ° C.) and is a safe material used for dyeing glass bottles for beverages. In addition, iron oxide (α-Fe 2 O 3 : hematite) is a safe and inexpensive material and thus has high practicality.

TASC法において用いられる酸化物半導体は室温においては絶縁体に近い電気抵抗値を示すが、温度上昇に伴い価電子帯から伝導帯へのバンド間遷移(真性伝導)が顕著になり、350−500℃では価電子帯と伝導帯に、それぞれ、大量の正孔(電子の抜けた孔)と電子が生成される。価電子帯に発生した正孔は強力な酸化力を有し、ポリマー等から結合電子を奪い、ポリマー内に不安定なカチオン・ラジカルを形成させる。次に、このラジカルが被分解物であるポリマー内を伝播することによりポリマー全体を不安定化し、ポリマーは自滅するような形でエチレンのような小分子に裁断化(ラジカル開裂)され、空気中の酸素と反応して水と二酸化炭素に完全分解される。つまり、分解過程は正孔の酸化力によるラジカルの形成、ラジカル開裂によるフラグメント化、そして裁断化された分子と酸素との完全燃焼の3つから構成される。本手法はポリマーの厚みが20mm以上でもラジカルの伝播が起こり、被分解物の内部まで分解効果が及ぶのが特徴である。
また、繊維強化プラスチックに同じTASC法を用いて、プラスチックを完全分解し、カーボン・ファイバーやグラス・ファイバー等の強化繊維をほぼ無傷で完全回収する方法を提案した(特許文献2、非特許文献2)。この方法は、強化繊維プラスチック材の強度の源である長繊維を切断することなく、そのままの状態で回収できるので、コスト高のカーボン・ファイバー等のリサイクルには非常に有用である。さらに、強化繊維に限らず、無機物とポリマー等から構成される複合材料から、無機物だけを回収できる普遍性のある方法である。
An oxide semiconductor used in the TASC method exhibits an electrical resistance value close to that of an insulator at room temperature. However, an interband transition (intrinsic conduction) from a valence band to a conduction band becomes remarkable as the temperature rises, and 350-500 At ℃, a large number of holes (holes from which electrons have been released) and electrons are generated in the valence band and the conduction band, respectively. The holes generated in the valence band have a strong oxidizing power, take away the bonding electrons from the polymer or the like, and form unstable cation radicals in the polymer. Next, this radical propagates in the polymer that is the decomposition product, destabilizing the entire polymer, and the polymer is cut into small molecules such as ethylene (radical cleavage) in a form that self-destructs, and in the air Reacts with oxygen and completely decomposes into water and carbon dioxide. In other words, the decomposition process consists of the formation of radicals by the oxidizing power of holes, fragmentation by radical cleavage, and complete combustion of the cut molecules and oxygen. This technique is characterized in that radical propagation occurs even when the thickness of the polymer is 20 mm or more, and the decomposition effect reaches the inside of the decomposition target.
In addition, the same TASC method is used for fiber-reinforced plastics, and a method of completely disassembling the plastics and completely recovering the reinforcing fibers such as carbon fibers and glass fibers without damage is proposed (Patent Document 2, Non-Patent Document 2). ). This method is very useful for recycling high-cost carbon fibers and the like because it can be recovered as it is without cutting the long fibers that are the source of strength of the reinforcing fiber plastic material. Furthermore, it is a universal method capable of recovering not only the reinforcing fiber but also the inorganic material from the composite material composed of the inorganic material and the polymer.

建築物の窓ガラス、自動車のフロントガラス等の安全ガラスに用いられている合わせガラスは、複数枚、多くの場合は2枚のガラス板の間に合わせガラス用中間膜を配置して形成される。その中間膜としては、ポリビニルブチラール樹脂等の、接着性が高く、しかも紫外線の照射でも黄変しない熱可塑性樹脂が一般的に使用されている。   Laminated glass used for safety glass such as window glass of buildings and windshields of automobiles is formed by arranging an interlayer film for laminated glass between a plurality of glass plates, and in many cases two glass plates. As the intermediate film, a thermoplastic resin such as polyvinyl butyral resin, which has high adhesiveness and does not yellow even when irradiated with ultraviolet rays, is generally used.

使用期限が過ぎて市場から回収された合わせガラス、及び製造過程で、寸法、外観の不具合等で不要となった合わせガラスは、ガラス板と中間膜を容易に分離することができないために、そのほとんどは地中に埋め立て処理されている。また、合わせガラスを粉砕した後のガラス片が付着した中間膜については、焼却等による廃棄処分が行われることもある。しかし、上記のように、不要となった合わせガラスを地中に埋めると、環境破壊の問題を招来する。また、ガラス片が付着した中間膜を焼却処分すると、未溶融のガラスがガラス粉塵となって大気を汚染するという問題がある。一方、溶融したガラスは燃焼ストーカに堆積して燃焼装置の運転に支障をきたす等の問題がある。   Laminated glass collected from the market after the expiration date, and laminated glass that is no longer needed due to defects in dimensions, appearance, etc. in the manufacturing process cannot be easily separated from the glass plate. Most are landfilled underground. Moreover, about the intermediate film to which the glass piece after grind | pulverizing a laminated glass adhered, disposal disposal by incineration etc. may be performed. However, as described above, if laminated glass that has become unnecessary is buried in the ground, a problem of environmental destruction is caused. In addition, when the intermediate film with the glass pieces attached is incinerated, there is a problem that unmelted glass becomes glass dust and pollutes the atmosphere. On the other hand, there is a problem that the molten glass accumulates on the combustion stoker and hinders the operation of the combustion apparatus.

そこで、従来より、合わせガラスからガラスを回収する方法が種々提案されている。特開平6−345499号公報には、ガラス軟化温度以下である150〜200℃にまず加熱し、その後、合わせガラスの2枚のガラス板の間の中間膜層に、ニクロム線等の加熱線を500℃以上に加熱して押し当て、合わせガラスを移動させて溶融切断し、ガラス板と中間膜とを分離する方法が記載されている。処理速度を上げられないので、大量に処理するには適していない。また、特開2002−79209号公報には合わせガラスを破砕処理後に10Paに減圧して炉内を実質的に無酸素状態にして400℃に加熱し、分離したケイ酸塩ガラスから中間膜成分を真空蒸留装置によって液化・回収する方法が記載されている。真空度によっては中間膜の炭化が生ずるとされ、また分離後に中間膜を完全に回収するには困難が伴う。特開2007−260566号公報には切断・破砕したガラス製品を加熱処理装置によってガラス軟化点以上の温度雰囲気で加熱し、ガラス製品に付着している有機化合物又は高分子化合物を加熱分解した後、ガラス製品がガラス軟化点に達する前にガラス製品を加熱処理装置から取り出す方法が記載されている。切断・破砕機によってまず約5×15cmの短冊状に切断され、次に回転カッタの剪断力により、ガラスは破砕され、約1〜2cm角サイズのガラスカレットが中間フィルムに接着された状態の合わせカレットとなるプロセスを踏むとされており、非常に手間のかかる処理方法である。   Therefore, various methods for recovering glass from laminated glass have been proposed. In JP-A-6-345499, heating to 150 to 200 ° C., which is not higher than the glass softening temperature, is first performed, and then a heating wire such as nichrome wire is applied to the intermediate film layer between two glass plates of laminated glass at 500 ° C. The method of heating and pressing the above, moving the laminated glass to melt and cut, and separating the glass plate and the intermediate film is described. Since the processing speed cannot be increased, it is not suitable for processing in large quantities. Japanese Patent Application Laid-Open No. 2002-79209 discloses that a laminated glass is depressurized to 10 Pa after being crushed and heated in an oven in a substantially oxygen-free state at 400 ° C., and an intermediate film component is separated from the separated silicate glass. A method of liquefying and recovering with a vacuum distillation apparatus is described. Depending on the degree of vacuum, carbonization of the intermediate film occurs, and it is difficult to completely recover the intermediate film after separation. In JP 2007-260566 A, a glass product that has been cut and crushed is heated by a heat treatment apparatus in a temperature atmosphere above the glass softening point, and the organic compound or polymer compound adhering to the glass product is thermally decomposed, A method is described in which the glass product is removed from the heat treatment apparatus before the glass product reaches the glass softening point. First, it is cut into strips of about 5 x 15 cm by a cutting and crushing machine, then the glass is crushed by the shearing force of the rotating cutter, and the glass cullet of about 1 to 2 cm square size is bonded to the intermediate film. It is said that the process of cullet is taken and is a very time-consuming processing method.

そこで、合わせガラスからポリマー中間膜を除去する方法として、本出願の方法である「半導体の熱活性技術(TASC)」を適用するならば、TASC法はポリマーを水と二酸化炭素に完全分解するクリーンな技術であるので、合わせガラスからガラスを容易にかつ安価に回収するシステムを構築しうる。   Therefore, if the “thermal activation technology of semiconductor (TASC)” which is the method of the present application is applied as a method for removing the polymer interlayer from the laminated glass, the TASC method is a clean solution that completely decomposes the polymer into water and carbon dioxide. Therefore, it is possible to construct a system that easily and inexpensively collects glass from laminated glass.

特許第4517146号Japanese Patent No. 4517146 特開2013−146649号公報JP 2013-146649 A 特開平6−345499号公報JP-A-6-345499 特開2002−79209号公報JP 2002-79209 A 特開2007−260566号公報JP 2007-260566 A

T. Shinbara, T. Makino, K. Matsumoto, and J. Mizuguchi: Complete decomposition of polymers by means of thermally generated holes at high temperatures in titanium dioxide and its decomposition mechanism, J. Appl. Phys. 98, 044909 1−5 (2005)T.A. Shinbara, T .; Makino, K .; Matsumoto, and J.M. Mizuguchi: Complete decomposition of polymerics by partially generated holes at high temperatures in titanium dioxide and its decompositions. Appl. Phys. 98, 044909 1-5 (2005) 水口 仁:半導体の熱活性によるFRPの完全分解とリサイクル技術、加工技術 47巻, 37−47 (2012)Hitoshi Mizuguchi: Complete decomposition, recycling technology and processing technology of FRP by thermal activation of semiconductors 47, 37-47 (2012)

前述したように、合わせガラスのリサイクルにおいては、ガラス板と中間膜を分離して中間膜を除去することが容易にできないためにガラスを回収することが困難であり、回収の実用化を妨げていた。この問題を解決し、合わせガラス中のポリマーを完全分解してガラスを回収する方法を提供することを課題とする。   As described above, in the recycling of laminated glass, it is difficult to recover the glass because it is not easy to remove the intermediate film by separating the glass plate and the intermediate film, which hinders the practical application of recovery. It was. It is an object of the present invention to solve this problem and provide a method for completely decomposing a polymer in a laminated glass and recovering the glass.

本発明においては、半導体の熱活性技術(TASC)を合わせガラスの解体に適用し、被処理物である合わせガラスの側面、つまり、中間膜が露出している部分に酸化物半導体を接触させ、酸素存在下において、酸化物半導体が真性電気伝導領域となる温度で被処理物を加熱することにより、ポリマーを完全分解してガラスを回収する。   In the present invention, the semiconductor thermal activation technology (TASC) is applied to the dismantling of the laminated glass, the oxide semiconductor is brought into contact with the side surface of the laminated glass that is the object to be processed, that is, the portion where the intermediate film is exposed, In the presence of oxygen, the object to be processed is heated at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, whereby the polymer is completely decomposed to recover the glass.

合わせガラスは、2枚の強化ガラスの間にポリマーシートが挟まれた構造を有する。 本発明者は、このような合わせガラスからポリマーを完全分解して除去し、ガラスを回収するために、鋭意実験を重ね、以下の経緯を経て本発明に至った。
TASC法によるポリマーの分解は、
Laminated glass has a structure in which a polymer sheet is sandwiched between two tempered glasses. The present inventor has conducted extensive experiments in order to completely decompose and remove the polymer from such a laminated glass and recover the glass, and has reached the present invention through the following process.
Degradation of polymer by TASC method is

で述べたように、正孔の酸化により生成したラジカルがポリマーから結合電子を奪い、ポリマーを不安定化して小分子に裁断されるプロセスである。その際、ラジカルは20mm以上でも伝播すると述べた。本課題では、ラジカルがどの程度の距離を中間膜の中で伝播できるかが、問題解決の鍵となる。 As described above, the radical generated by the oxidation of holes takes the bonding electrons from the polymer, destabilizes the polymer, and is cut into small molecules. At that time, it was stated that radicals propagate even over 20 mm. The key to solving this problem is how far the radicals can propagate in the interlayer film.

上述した合わせガラスの構造から、仮に、上部または底部のガラス面に酸化物半導体を接触させても、無機物であるガラスには半導体の熱活性効果は働かない。ポリマーを分解するためには合わせガラス片(120×120×5mm)の側面に酸化物半導体を接触させるしかない。そこで、合わせガラスの横方向の4辺に酸化物半導体の分散膜を中間膜に接触させるように塗布し、合わせガラスを水平においてラジカルを横方向に走らせる実験を行った。当初は20mmをはるかに越える距離、例えば60mm以上までラジカルが走破するとは見通せなかった。しかし、実際のTASC処理の結果、驚くべきことに、合わせガラスの中間膜は完全分解され、ガラスが分離回収され、ポリマーに含まれていた無機物も残渣として回収できた。   Even if an oxide semiconductor is brought into contact with the upper or bottom glass surface from the structure of the laminated glass described above, the thermal activation effect of the semiconductor does not work on glass which is an inorganic substance. The only way to decompose the polymer is to bring the oxide semiconductor into contact with the side surface of a piece of laminated glass (120 × 120 × 5 mm). Therefore, an experiment was performed in which a dispersion film of an oxide semiconductor was applied to four sides in the lateral direction of the laminated glass so as to be in contact with the intermediate film, and the laminated glass was run horizontally in a lateral direction. Initially, radicals could not be expected to run far beyond 20 mm, for example 60 mm or more. However, as a result of the actual TASC treatment, surprisingly, the interlayer film of the laminated glass was completely decomposed, the glass was separated and recovered, and the inorganic substance contained in the polymer could be recovered as a residue.

さらに驚くべきことは、合わせガラス4辺のコーティングを3辺、2辺、1辺としても全く同じ結果が得られたことである。つまり、ラジカルは合わせガラスの120mm四方の面内でも十分に伝播していたことが確認された。このことは、ラジカルは中間膜の温度さえ十分であれば、所定の大きさの合わせガラス全体に及ぶことが期待された。そして、長辺の長さが330 mmの合わせガラスの一方の短辺に酸化物半導体をコーティングして水平においてTASC処理したところ、期待通り合わせガラスの中間膜は完全分解され、ガラスが分離回収された。以上の結果と考察から、本発明は完成した。   What is more surprising is that the same results were obtained even when the coating on the four sides of the laminated glass was three sides, two sides and one side. That is, it was confirmed that radicals were sufficiently propagated even in a 120 mm square surface of the laminated glass. This was expected that radicals would cover the entire laminated glass of a predetermined size as long as the temperature of the interlayer film was sufficient. When one side of the laminated glass having a long side of 330 mm is coated with an oxide semiconductor and subjected to TASC treatment in the horizontal direction, the interlayer film of the laminated glass is completely decomposed as expected, and the glass is separated and recovered. It was. Based on the above results and discussion, the present invention has been completed.

合わせガラスからガラスを回収する方法2方向のいずれの長さも120mm以上である合わせガラスを被処理物として、前記被処理物の少なくとも1つの側面に酸化物半導体を付着させる工程と、前記被処理物の側面に酸化物半導体を接触させた状態で、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で被処理物を加熱し、合わせガラスを相互に接着するポリマーを分解除去する工程と、解体物からガラスを回収する工程とを備えることを特徴とする。 The method of recovering glass from laminated glass includes a step of attaching an oxide semiconductor to at least one side surface of the object to be processed using a laminated glass having a length of 120 mm or more in any of two directions as the object to be processed; In a state where the oxide semiconductor is in contact with the side surface of the object to be processed, in the presence of oxygen, the object to be processed is heated at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, and the polymer that adheres the laminated glass to each other is decomposed. The method includes a step of removing, and a step of recovering glass from the dismantled product.

また、合わせガラスからガラスを回収する方法として、被処理物である合わせガラスの少なくとも1つの側面に酸化物半導体を付着させる工程と、前記合わせガラスが鉛直方向になるように前記合わせガラスを設置する工程と、前記被処理物の側面に酸化物半導体を接触させた状態で、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱し、前記合わせガラスを相互に接着するポリマーを分解除去する工程と、解体物からガラスを回収する工程と、を備えることを特徴とする。   In addition, as a method for recovering the glass from the laminated glass, a step of attaching an oxide semiconductor to at least one side surface of the laminated glass that is an object to be processed, and the laminated glass is installed so that the laminated glass is in a vertical direction. In a state where the oxide semiconductor is in contact with the side surface of the object to be processed, in the presence of oxygen, the object to be processed is heated at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region, The method includes a step of decomposing and removing polymers that adhere to each other, and a step of recovering glass from the dismantled product.

本発明に係る合わせガラスからガラスを回収するための処理装置は、2方向のいずれの長さも120mm以上である合わせガラスを被処理物として、前記被処理物の少なくとも1つの側面に酸化物半導体の分散膜を塗布により形成し、前記被処理物の側面に酸化物半導体を接触させた状態で、前記被処理物を一定速度で搬送する搬送装置と、前記被処理物を、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱する加熱処理部と、前記加熱処理部内にエアを供給するエアの供給機構と、前記加熱処理部において前記被処理物中のポリマーを分解除去して得られる解体物から、ガラスを回収する回収部とを備えることを特徴とする。 The processing apparatus for recovering glass from the laminated glass according to the present invention uses a laminated glass having a length of 120 mm or more in any of the two directions as an object to be processed, and an oxide semiconductor on at least one side surface of the object to be processed. A dispersion apparatus is formed by coating, and a transport device that transports the object to be processed at a constant speed in a state where the oxide semiconductor is in contact with a side surface of the object to be processed; Obtained by decomposing and removing the polymer in the object to be treated in the heat treatment unit for heating to a temperature higher than the temperature of the intrinsic electric conduction region, an air supply mechanism for supplying air into the heat treatment unit, and the heat treatment unit And a collection unit for collecting glass from the dismantled product.

また、合わせガラスからガラスを回収するための処理装置として、被処理物である合わせガラスの少なくとも1つの側面に酸化物半導体の分散膜を塗布し、前記被処理物の側面に酸化物半導体を接触させた状態で、前記合わせガラスが鉛直方向になるように前記合わせガラスを設置する加熱処理室を有し、前記加熱処理室において前記被処理物は、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱され、前記加熱処理部は外部からエアを供給するエアの導入口と加熱処理により発生するガスを排出する排気口を有し、前記加熱処理室において前記被処理物中のポリマーを分解除去して得られる解体物から、ガラスを回収することを特徴とする。 In addition, as a processing apparatus for recovering glass from laminated glass, an oxide semiconductor dispersion film is applied to at least one side surface of laminated glass that is an object to be processed, and the oxide semiconductor is brought into contact with the side surface of the object to be processed In this state, the laminated glass has a heat treatment chamber in which the laminated glass is placed so that the laminated glass is in a vertical direction. In the heat treatment chamber, the object to be processed has the oxide semiconductor as an intrinsic electric conduction region. Heated to a temperature above, the heat treatment unit has an air introduction port for supplying air from the outside and an exhaust port for discharging gas generated by the heat treatment, and the polymer in the object to be treated in the heat treatment chamber Glass is recovered from a dismantled product obtained by decomposition and removal.

本発明において、通気性を有する構造物とは、多孔質状あるいはハニカム状の良好な通気性を有する構造物を意味する。TASC法では裁断化された分子を水と炭酸ガスに完全分解するには十分な酸素が必要であり、被処理ガスを通気性の高い構造体を通して浄化する方法が効果的である。     In the present invention, the air-permeable structure means a porous or honeycomb structure having good air permeability. In the TASC method, sufficient oxygen is required to completely decompose the cut molecules into water and carbon dioxide, and a method of purifying the gas to be processed through a highly breathable structure is effective.

本発明によれば、合わせガラスを半導体の熱活性法(TASC)で処理することにより、ポリマーを完全分解して除去することができるので、解体物からガラスを低コストで短時間に回収することができる。また、ポリマーを完全分解、除去することにより、廃物サイズの縮小という効果も得られる。   According to the present invention, since the polymer can be completely decomposed and removed by treating the laminated glass with the semiconductor thermal activation method (TASC), the glass can be recovered from the disassembled material at a low cost in a short time. Can do. Further, by completely decomposing and removing the polymer, the effect of reducing the waste size can be obtained.

上面ガラス2、下面ガラス3、中間膜4からなる合わせガラス1の断面写真である。2 is a cross-sectional photograph of a laminated glass 1 composed of a top glass 2, a bottom glass 3, and an intermediate film 4. 中間膜4が分解・除去された後の、無垢のハニカム5の上で解体された上面ガラス2及び下面ガラス3を示す写真である。It is a photograph which shows the upper surface glass 2 and the lower surface glass 3 which were demolished on the solid honeycomb 5 after the intermediate film 4 was decomposed and removed. 合わせガラス処理用電気炉6の断面図である。It is sectional drawing of the electric furnace 6 for a laminated glass process. 合わせガラス1の少なくとも一つの側面に酸化物半導体10を塗布した例を示す上面図である。1 is a top view illustrating an example in which an oxide semiconductor 10 is applied to at least one side surface of a laminated glass 1. FIG. 酸化物半導体10を塗布した合わせガラス1が半導体酸化物坦持ハニカム12に包囲されている状態を示す図である。It is a figure which shows the state in which the laminated glass 1 which apply | coated the oxide semiconductor 10 is surrounded by the semiconductor oxide carrying honeycomb 12. FIG. 合わせガラスを鉛直方向に配置してTASC処理を行う前(a)と処理後(b)の様子を示す写真である。It is a photograph which shows the mode before (a) and after a process (b) which arrange | positions a laminated glass to a perpendicular direction, and performs a TASC process. 合わせガラス用TASC連続処理装置13の平面図である。It is a top view of the TASC continuous processing apparatus 13 for laminated glass. 合わせガラスを縦置き配置で処理するための装置図である。It is an apparatus figure for processing a laminated glass by vertical arrangement.

合わせガラス1は図1に示すように、上面ガラス2及び下面ガラス3の2枚の強化ガラスの間にポリマーシートが中間膜4として挟まれた構造をしている。   As shown in FIG. 1, the laminated glass 1 has a structure in which a polymer sheet is sandwiched between two tempered glasses of an upper glass 2 and a lower glass 3 as an intermediate film 4.

合わせガラス1からガラスを回収するためには、まず合わせガラスから、約120×1
20×5mmの合わせガラス片を切り出す。この合わせガラス片の側面をCr2O3等の
酸化物半導体10と接触させ、電気炉内で、空気中500℃で20−30分間保持し、ポ
リマー成分を完全分解し、合わせガラス片中のポリマーを完全解体する。合わせガラス1
に酸化物半導体を接触させるために、合わせガラス1の側面(図1)に酸化物半導体10
の分散膜を塗布により形成する。塗布する方法としては、側面を酸化物半導体の懸濁液にディップ・コーティングする方法または酸化物半導体の分散液を側面にスプレーする方法や、筆などで塗布する方法でもよい。
In order to recover the glass from the laminated glass 1, first, from the laminated glass, about 120 × 1
Cut out a 20 × 5 mm piece of laminated glass. The side surface of the laminated glass piece is brought into contact with the oxide semiconductor 10 such as Cr 2 O 3 and held in an electric furnace at 500 ° C. for 20 to 30 minutes in the air to completely decompose the polymer component, and the polymer in the laminated glass piece is completely removed. Dismantle. Laminated glass 1
In order to bring the oxide semiconductor into contact with the oxide semiconductor 10, the side surface of the laminated glass 1 (FIG. 1)
The dispersed film is formed by coating. As a method of coating, a method of dip-coating the side surface with a suspension of an oxide semiconductor, a method of spraying a dispersion of an oxide semiconductor on the side surface, or a method of coating with a brush or the like may be used.

TASC処理により、中間膜(ポリビニルブチラール、ポリウレタン、エチレン酢酸ビニル共重合体等のポリマー)は完全に分解し、2枚のガラスは分離される。
このようにして、合わせガラス1にTASC処理を施した後の解体物から、容易に上面ガラス2及び下面ガラス3が図2に示すように回収される。
By the TASC treatment, the intermediate film (polymer such as polyvinyl butyral, polyurethane, ethylene vinyl acetate copolymer) is completely decomposed, and the two glasses are separated.
In this way, the top glass 2 and the bottom glass 3 are easily recovered as shown in FIG. 2 from the dismantled product after the TASC treatment is performed on the laminated glass 1.

合わせガラス1から上面ガラス2及び下面ガラス3を回収する実用的な方法としては、
連続処理装置を用いるのが良い。これは一定速度で搬送されるコンベア上に、搬入部、予
備加熱部、TASC処理部、冷却部、搬出部、分別回収部を連結して備える。合わせガラ
ス片の側面に酸化物半導体10の分散膜を塗布により形成した状態の被処理物はハニカム上に置かれ、搬送部から搬入され、TASC処理部にてTASC処理が行われ、搬出部から搬出されて、分別回収部でガラスが分別回収される。
As a practical method for recovering the upper glass 2 and the lower glass 3 from the laminated glass 1,
It is preferable to use a continuous processing apparatus. This is provided with a carry-in unit, a preheating unit, a TASC processing unit, a cooling unit, a carry-out unit, and a sorting and collecting unit on a conveyor that is conveyed at a constant speed. The object to be processed in a state in which the dispersion film of the oxide semiconductor 10 is formed on the side surface of the laminated glass piece is placed on the honeycomb, loaded from the transport unit, subjected to TASC processing in the TASC processing unit, and from the unloading unit. It is unloaded and the glass is separated and collected at the sorting and collecting section.

また、合わせガラス1から上面ガラス2及び下面ガラス3を回収する安価で、簡便な方法としていわゆるバッチ式処理装置を採用することもできる。これは1枚または複数枚の合わせガラスを鉛直方向に配置し、加熱処理室内においてTASC処理を行うものである。
TASC処理は有機物の種類を問わず有効であることを考慮すれば、この処理装置は任意のプラスチックおよびプラスチック複合材料をTASC処理してポリマーを除去し、有価物が残る場合は効率的に回収するための装置として使用することができる。
Moreover, what is called a batch type processing apparatus can also be employ | adopted as a cheap and simple method of collect | recovering the upper surface glass 2 and the lower surface glass 3 from the laminated glass 1. FIG. In this method, one or a plurality of laminated glasses are arranged in the vertical direction, and TASC treatment is performed in the heat treatment chamber.
Considering that TASC treatment is effective regardless of the type of organic matter, this treatment equipment removes polymers by TASC treatment of any plastic and plastic composite material, and efficiently recovers valuable resources if they remain. Can be used as a device for

実施例1
トヨタ自動車株式会社の車種クラウンの合わせガラスを用いて実験を行った。まず、約800×1600×5mmの大きさの合わせガラスから、ダイヤモンド・カッターで、120×120×5mmの合わせガラス1の1片を切り出し、TASC処理の解体試料とした。合わせガラス1の上面は厚さ約2mmのガラス板2、下面には厚さ約2mm程度のガラス3があり、ガラス2とガラス3の中間には厚さ0.75mmの透明の中間膜4があった。
Example 1
An experiment was conducted using a laminated glass of a crown model of Toyota Motor Corporation. First, a piece of laminated glass 1 of 120 × 120 × 5 mm was cut out from a laminated glass having a size of about 800 × 1600 × 5 mm with a diamond cutter, and used as a dismantled sample for TASC treatment. The upper surface of the laminated glass 1 is a glass plate 2 having a thickness of about 2 mm, the lower surface is a glass 3 having a thickness of about 2 mm, and a transparent intermediate film 4 having a thickness of 0.75 mm is provided between the glass 2 and the glass 3. there were.

図4(a)に示すように、合わせガラス片の4つの側面を順次、酸化物半導体10であるCrの懸濁液に漬けてディップ・コーティングした。これを無垢(Crが塗布されていない)のコージライト(2MgO・2Al・5SiO)組成のハニカム5上に載せた。合わせガラス1を載せたハニカム5を図3の電気炉6に入れて、空気導入口8から空気を導入しながらヒーター7に通電して500℃まで昇温し、30分間500℃に制御した。この後温度制御の電源をオフにして冷却した。以上の一連のTASC処理により、合わせガラス片のポリマーは完全に分解され、2枚のガラスが図2に示すように分離して得られた。分解されたポリマーは水と炭酸ガスとなり、空気排気口9から排出される。酸化物半導体10(Cr)と合わせガラス1は側面でのみ接触しているが、酸化物半導体10に発現する酸化力により、側面でポリマーから結合電子を奪い、ポリマー内に不安定なカチオン・ラジカルが形成される。このラジカルが被分解物であるポリマー内を伝播することによりポリマー全体を不安定化し、ポリマーは自滅するような形でエチレンのような小分子に裁断化(ラジカル開裂)され、空気中の酸素と反応して水と二酸化炭素に完全分解される。これがTASC法の特徴である。つまり、側面でラジカルが一度形成されると、面内方向に次々に分解反応が続くので、ポリマーの完全分解が実現する。なお、酸化物半導体が担持されていないハニカムを用いたが、酸化物半導体が担持されているハニカムを用いても良い。また本発明においては合わせガラスの側面からのみポリマーの分解が進むので、合わせガラスを載せる台はハニカムでなくてもよく、必ずしも通気性の高い多孔質材料でなくても良い。
中間膜の分解の際には、アセトアルデヒド類の異臭が発生するが、TASC技術を使ったVOC(volatile organic compound)浄化装置で無臭化される。また、ブチラール樹脂(製造メーカーにより幅があるが、融点は約150−200℃)のTASC処理により、発火することがあるが、図5に示すように電気炉内にCr担持ハニカム12で合わせガラス1を囲むと発火は全く起こらなかった。つまり、発生する可燃ガスはCrを担持した箱を通過する際に、完全に炭酸ガスと水に分解される。
As shown in FIG. 4A, the four side surfaces of the laminated glass piece were dipped and coated in a suspension of Cr 2 O 3 as the oxide semiconductor 10 in order. This was placed on the honeycomb 5 of a cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) composition of solid (not coated with Cr 2 O 3 ). The honeycomb 5 on which the laminated glass 1 was placed was placed in the electric furnace 6 shown in FIG. 3, the heater 7 was energized while air was introduced from the air inlet 8, the temperature was raised to 500 ° C., and the temperature was controlled at 500 ° C. for 30 minutes. Thereafter, the temperature control power supply was turned off to cool. By the above series of TASC treatments, the polymer of the laminated glass pieces was completely decomposed, and two glasses were obtained as shown in FIG. The decomposed polymer becomes water and carbon dioxide gas and is discharged from the air exhaust port 9. The oxide semiconductor 10 (Cr 2 O 3 ) and the laminated glass 1 are in contact only on the side surface, but due to the oxidizing power that appears in the oxide semiconductor 10, the side surface deprives the polymer of bonding electrons and is unstable in the polymer. Cation radicals are formed. This radical propagates in the polymer, which is the decomposition target, destabilizes the whole polymer, and the polymer is cut into small molecules such as ethylene (radical cleavage) in such a way that it self-destructs. Reacts and decomposes completely into water and carbon dioxide. This is a feature of the TASC method. That is, once the radicals are formed on the side surfaces, the decomposition reaction continues in the in-plane direction, so that complete decomposition of the polymer is realized. Note that although a honeycomb in which an oxide semiconductor is not supported is used, a honeycomb in which an oxide semiconductor is supported may be used. In the present invention, since the decomposition of the polymer proceeds only from the side surface of the laminated glass, the stage on which the laminated glass is placed does not have to be a honeycomb, and does not necessarily need to be a porous material with high air permeability.
When the intermediate film is decomposed, a strange odor of acetaldehydes is generated, but it is not brominated by a VOC (volatile organic compound) purification device using TASC technology. Also, (although there is a range by manufacturers, the melting point is about 150-200 ° C.) butyral resin by TASC process, it is possible to ignite, Cr 2 O 3 supporting honeycomb in an electric furnace as shown in FIG. 5 12 When the laminated glass 1 was surrounded, no ignition occurred. That is, the generated combustible gas is completely decomposed into carbon dioxide gas and water when passing through the box carrying Cr 2 O 3 .

実施例2
実施例1で使用した合わせガラスから、同様の合わせガラス1の1片を切り出した。酸化物半導体13として、実施例1で使用したCrの代わりにα−Fe(酸化鉄:ヘマタイト)を用い、実施例1と同様のTASC処理を行った。その結果、実施例1と同様に合わせガラス片のポリマーは完全に分解され、2枚のガラスが分離して得られた。
Example 2
A piece of the same laminated glass 1 was cut out from the laminated glass used in Example 1. As the oxide semiconductor 13, α-Fe 2 O 3 (iron oxide: hematite) was used instead of Cr 2 O 3 used in Example 1, and the same TASC treatment as in Example 1 was performed. As a result, as in Example 1, the polymer of the laminated glass pieces was completely decomposed, and two glasses were obtained.

実施例3
実施例3において、合わせガラス1の1片の4つの側面の代わりに、図4(b)に示すように、3辺を順次、酸化物半導体10であるCrの懸濁液に漬けてディップ・コーティングした。これを無垢のハニカム5の上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例1と同様に合わせガラス片のポリマーは完全に分解され、2枚のガラスが分離して得られた。
Example 3
In Example 3, instead of the four side surfaces of one piece of the laminated glass 1, three sides are immersed in a suspension of Cr 2 O 3 that is the oxide semiconductor 10 sequentially as shown in FIG. Dip coated. This was placed on a solid honeycomb 5 and subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, as in Example 1, the polymer of the laminated glass pieces was completely decomposed, and two glasses were obtained.

実施例4
図4(c)に示すように、合わせガラス1の1片の4つの側面の内、相対する2つのエッジを順次、酸化物半導体10であるCrの懸濁液に漬けてディップ・コーティングし、これを無垢のハニカム5の上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例1と同様に合わせガラス片のポリマーは完全に分解され、2枚のガラスが分離して得られた。
Example 4
As shown in FIG. 4 (c), two opposite edges of the four side surfaces of one piece of the laminated glass 1 are sequentially immersed in a suspension of Cr 2 O 3 that is the oxide semiconductor 10 to dip the This was coated and placed on the solid honeycomb 5 and subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, as in Example 1, the polymer of the laminated glass pieces was completely decomposed, and two glasses were obtained.

実施例5
図4(d)に示すように、合わせガラス5の1片の4つの側面の内、1つのエッジを酸化物半導体13であるCrの懸濁液に漬けてディップ・コーティングし、これを無垢のハニカム5の上に置き、空気中、500℃で30分TASC処理を行った。その結果、実施例3と同様に合わせガラス片のポリマーは完全に分解され、2枚のガラスが分離して得られた。
このように、ポリマーの表面でのみ酸化物半導体と接触させておけば、TASC法の特徴により、120mm離れた端までポリマーの完全分解が自動的に進行することが実証された。
Example 5
As shown in FIG. 4 (d), one edge of the four side surfaces of the laminated glass 5 is immersed in a suspension of Cr 2 O 3 which is an oxide semiconductor 13, and is dip coated. Was placed on the solid honeycomb 5 and subjected to TASC treatment in air at 500 ° C. for 30 minutes. As a result, as in Example 3, the polymer of the laminated glass pieces was completely decomposed and two glasses were obtained.
Thus, it has been demonstrated that the complete decomposition of the polymer automatically proceeds to the end 120 mm away by the feature of the TASC method if the oxide semiconductor is brought into contact only on the surface of the polymer.

実施例6
実施例1で使用した合わせガラスから、同様の合わせガラス1の1片を切り出した。合わせガラス片の4つの側面を順次、酸化物半導体10であるCrの懸濁液に漬けてディップ・コーティングした。これを図6(a)のように、無垢のコージライト組成のハニカム5上に載せ、かつ左右2枚の無垢のコージライト組成のハニカム5に挟まれるように、合わせガラスを鉛直方向に配置した。実施例1と同様の条件で処理を行ったところ、合わせガラス片のポリマーは完全に分解され、2枚のガラスが図6(b)のように分離して得られた。
実施例1ないし5においては、合わせガラスを水平に配置(横置き)して処理を行った。横置きの場合には、ポリマー中間膜が溶融状態になると、上面ガラスの自重で、中間膜が押し潰され、空気(酸素)がガラス面間に入り込むことが困難になる傾向があった。言い換えれば、端面から裁断・ガス化された分子が放出され、端面の近傍で空気中の酸素と反応し、炭酸ガスと水に変化していた。それでも、ポリマーで中間膜はTASC効果により、完全に2枚のガラスに分離することが出来た。合わせガラスを鉛直方向に配置(縦置き)した本実施例では横置きに対して以下の改善点が認められた。
温度が上昇し、さらにTASC処理が始まると、中間膜で貼り合わされていた2枚(あるいは2枚以上のガラス)は自重により、自動的に分離される。
分離されると、2枚のガラス上にあるラジカルが伝播している溶融ポリマー膜は露出する。その結果、TASC効果により、裁断・ガス化された分子は空気中の酸素と速やかに反応して、炭酸ガスと水になる。つまり、処理速度が速くなる。
TASC処理後に分離されたガラスは(横置きの重なったガラスに比べ)取り出し操作が簡単である。
横置きの(積層型の)処理設備に比べ、縦置きの処理設備は簡単である。
Example 6
A piece of the same laminated glass 1 was cut out from the laminated glass used in Example 1. The four side surfaces of the laminated glass pieces were sequentially dipped and coated in a suspension of Cr 2 O 3 as the oxide semiconductor 10. As shown in FIG. 6 (a), the laminated glass is arranged in the vertical direction so as to be placed on the honeycomb 5 of the solid cordierite composition and sandwiched between the two honeycombs 5 of the solid cordierite composition. . When the treatment was performed under the same conditions as in Example 1, the polymer of the laminated glass piece was completely decomposed, and two glasses were obtained as shown in FIG. 6B.
In Examples 1 to 5, the laminated glass was disposed horizontally (sideways) for processing. In the case of the horizontal placement, when the polymer intermediate film is in a molten state, the intermediate film is crushed by the weight of the upper glass, and air (oxygen) tends to be difficult to enter between the glass surfaces. In other words, the cut and gasified molecules are released from the end face, react with oxygen in the air near the end face, and change into carbon dioxide and water. Even so, the polymer intermediate film could be completely separated into two sheets of glass by the TASC effect. In the present example in which the laminated glass was arranged in the vertical direction (vertical placement), the following improvements were observed with respect to the horizontal placement.
When the temperature rises and the TASC process starts, the two sheets (or two or more glasses) bonded together with the intermediate film are automatically separated by their own weight.
When separated, the molten polymer film on which the radicals on the two pieces of glass are propagated is exposed. As a result, due to the TASC effect, the cut and gasified molecules quickly react with oxygen in the air to become carbon dioxide and water. That is, the processing speed is increased.
The glass separated after the TASC treatment is easy to take out (compared to horizontally stacked glasses).
Compared to horizontal (stacked) processing equipment, vertical processing equipment is simple.

実施例7
実施例1で使用した合わせガラスから、同様の合わせガラス1の1片を切り出した。酸化物半導体13として、実施例6で使用したCrの代わりにα−Fe(酸化鉄:ヘマタイト)を用い、実施例6と同様に合わせガラスを鉛直方向に配置してTASC処理を行った。その結果、実施例6と同様に合わせガラス片のポリマーは完全に分解され、2枚のガラスが分離して得られた。
Example 7
A piece of the same laminated glass 1 was cut out from the laminated glass used in Example 1. As the oxide semiconductor 13, α-Fe 2 O 3 (iron oxide: hematite) was used instead of Cr 2 O 3 used in Example 6, and the laminated glass was arranged in the vertical direction in the same manner as in Example 6 to achieve TASC. Processed. As a result, as in Example 6, the polymer of the laminated glass pieces was completely decomposed, and two glasses were obtained.

(処理装置の構成例)
実施例8
合わせガラス1のTASC処理を連続的に行うには図7に示した合わせガラス用TASC連続処理装置13を用いるのが良い。ハニカムの上に、合わせガラス1の1片の側面に酸化物半導体をディップコートした被処理物を載せて、装置入口側の搬入部14に置く。ハニカムの替わりに合わせガラス片を支持する任意形状、材質の台を用いてもよい。ハニカムの上に置かれた合わせガラス1の1片は搬入部14から搬出部18に渡って設置されているコンベヤにより、約100mm/minの搬送速度で連続的に搬送される。予備加熱部15、TASC処理部16、冷却部17には空気が外部から導入される。ハニカムと合わせガラス1の1片は予備加熱部15を通過する間に500℃に加熱される。約1000mmに渡って500℃に制御された加熱処理部であるTASC処理部16を通過するときにTASC処理が行われ、合わせガラス片の中の有機物成分が完全に分解除去される。加熱処理部16から廃棄されるガスはまだ完全には炭酸ガスと水にはなっておらず、低分子化された有機物が含まれる場合もあるため、排気口の外側にTASC法によるVOC浄化装置を配置するのが良い。これは酸化物半導体を担持したハニカムにヒーターを埋め込んだものを複数枚直列に配列した装置であり、ヒーターで500℃に加熱することにより、通過する低分子有機物は完全に炭酸ガスと水に分解され、無害のガスとして大気に放出される。図5に示すように、被処理物である合わせガラス片が酸化物半導体10を担持したハニカム構造体12によって、加熱処理部において包囲されるようにすると、500℃に加熱されたハニカム構造体12を通過する低分子有機物ガスが炭酸ガスと水に分解されるのでさらに良い。ハニカムは他の通気性のある構造体で代替できる。また、加熱処理部16において被処理物がハニカム構造体12によって包囲されるようにするには、被処理物をハニカム構造体12の箱に入れて搬入部に置いても良いし、加熱処理部の中にハニカム構造体12を、被処理物を覆うように組み込んであってもよい。冷却部17を通過する間に冷却が行われる。なお、室温まで冷却される必要はなく、冷却される温度は適宜でよい。冷却部17から出てきたハニカム上の解体物からは有機物がTASC処理により完全に分解除去されており、搬出部20を経て分別回収部19に送られると分別回収部19において、ガラスが分別・回収される。特開2006−206654号公報に記載されているように、中間膜に特定の機能を与える無機物の有価物が含まれ、これを回収したい場合もある。このような場合、TASC処理により有機物のみが分解除去されるので、無機粒子は残存し、分別回収部においてガラスと共に有価物として分別・回収される。
(Configuration example of processing equipment)
Example 8
In order to perform the TASC process of the laminated glass 1 continuously, it is preferable to use the TASC continuous processing apparatus 13 for laminated glass shown in FIG. On the honeycomb, a workpiece to be treated with dip coating of an oxide semiconductor is placed on the side surface of a piece of laminated glass 1 and placed in the carrying-in portion 14 on the apparatus inlet side. Instead of a honeycomb, a base having an arbitrary shape and material for supporting a glass piece may be used. One piece of the laminated glass 1 placed on the honeycomb is continuously transported at a transport speed of about 100 mm / min by a conveyor installed from the carry-in section 14 to the carry-out section 18. Air is introduced into the preheating unit 15, the TASC processing unit 16, and the cooling unit 17 from the outside. One piece of the honeycomb and the laminated glass 1 is heated to 500 ° C. while passing through the preheating unit 15. TASC processing is performed when passing through the TASC processing section 16 which is a heat processing section controlled to 500 ° C. over about 1000 mm, and the organic component in the laminated glass piece is completely decomposed and removed. Since the gas discarded from the heat treatment unit 16 is not completely carbon dioxide and water and may contain low molecular weight organic matter, a VOC purifying apparatus based on the TASC method is provided outside the exhaust port. Good to place. This is an apparatus in which multiple honeycomb semiconductor wafers with heaters embedded are arranged in series. By heating to 500 ° C with the heater, the low-molecular organic substances that pass through are completely decomposed into carbon dioxide and water. And released into the atmosphere as a harmless gas. As shown in FIG. 5, when the laminated glass piece as the object to be processed is surrounded by the honeycomb structure 12 supporting the oxide semiconductor 10 in the heat treatment section, the honeycomb structure 12 heated to 500 ° C. It is even better because the low molecular weight organic gas passing through the gas is decomposed into carbon dioxide and water. The honeycomb can be replaced with other breathable structures. In addition, in order that the object to be processed is surrounded by the honeycomb structure 12 in the heat treatment unit 16, the object to be treated may be placed in the box of the honeycomb structure 12 and placed in the carry-in part. The honeycomb structure 12 may be incorporated so as to cover the workpiece. Cooling is performed while passing through the cooling unit 17. Note that it is not necessary to cool to room temperature, and the temperature to be cooled may be appropriate. Organic matter is completely decomposed and removed from the disassembled material on the honeycomb that has come out of the cooling unit 17 by the TASC treatment. When the organic matter is sent to the separation and recovery unit 19 through the carry-out unit 20, the separation and recovery unit 19 separates the glass. Collected. As described in Japanese Patent Application Laid-Open No. 2006-206654, there is a case where an inorganic valuable material that gives a specific function to the intermediate film is included and it is desired to collect this. In such a case, since only the organic substance is decomposed and removed by the TASC treatment, the inorganic particles remain, and are separated and collected as valuables together with the glass in the separation and collection unit.

連続処理装置において搬入部14から搬出部18に至るすべての経路を一定速度で搬送すると述べたが、搬入部14、搬出部18及び分別回収部19では合わせガラスを載せたハニカムを一定速度で連続的に搬送し、予備加熱部15、TASC処理部16及び冷却部17を一体化したTASC処理室では停止状態でTASC処理を行うシステムでもよい。この場合、TASC処理室には入口・出口の扉を持った電気炉が中央に置かれており、合わせガラスを載せたハニカムの搬入の際には、入口の扉が開き、炉内に被処理物が運ばれ、入口が閉じられる。そして、処理後には出口側の扉が開き、TASC処理されたハニカム上の解体物が搬出される。バッチ方式を踏襲した本システムは搬送制御がやや複雑になるが、メリットは温度管理がし易いこと、必要な酸素を制御できることであり、着実なTASC処理が可能である。   In the continuous processing apparatus, it has been described that all paths from the carry-in unit 14 to the carry-out unit 18 are conveyed at a constant speed. In the TASC processing chamber in which the preliminary heating unit 15, the TASC processing unit 16, and the cooling unit 17 are integrated, the TASC processing may be performed in a stopped state. In this case, an electric furnace with an entrance / exit door is placed in the center in the TASC processing chamber, and when the honeycomb with laminated glass is loaded, the entrance door opens and the furnace is treated. Things are carried and the entrance is closed. After the treatment, the door on the outlet side is opened, and the dismantled material on the honeycomb subjected to the TASC treatment is carried out. This system, which is based on the batch method, is slightly complicated in transport control, but the advantages are that it is easy to manage temperature and that it can control the necessary oxygen, so that steady TASC processing is possible.

実施例9
合わせガラスを縦置き配置して連続処理装置で処理を行おうとすると、装置が大型化してしまうことが避けられない。そのため図8に示したいわゆるバッチ炉方式にて処理を行うのが良い。130mmx130mmに切り出した合わせガラス片の四つの側面にCrをディップ・コーティングし、合わせガラス片を電気炉である加熱処理室6内に縦置き配置した。加熱処理室6は空気導入口8と排気口9を有する。加熱処理室6を500℃に加熱すると、TASC処理により合わせガラスの中間膜である有機物は分解され、生じた高温のガスは上昇するので、排気口9は加熱処理室6の天井内に設けるのが良い。加熱処理室6から廃棄されるガスはまだ完全には炭酸ガスと水にはなっておらず、低分子化された有機物が含まれる場合もあるため、排気口9の外側にTASC法によるVOC浄化装置20を配置するのが良い。酸化物半導体10を担持したハニカム12にヒーターを埋め込んだものを複数枚直列に配列したVOC浄化装置20を通過する低分子有機物は完全に炭酸ガスと水に分解され、無害のガスとして大気に放出される。酸化物半導体10を担持したハニカム構造体12を、加熱処理室内で天井の排気口9付近に配置すると、500℃に加熱されたハニカム構造体12を通過する低分子有機物ガスが炭酸ガスと水に分解されるのでさらに良い。このような装置によりTASC処理を行うと、合わせガラスの中間膜は完全に分解除去され、電気炉内の解体物から分離した2枚のガラスを容易に回収することができる。電気炉内に複数枚、たとえば5枚程度の合わせガラスを縦置きで並べて配置することはスペース的に十分可能であり、こうすることにより一枚当たりの処理速度を上げることができる。図8のバッチ処理方式は連続処理炉に比べて小型、安価、低消費電力との特徴を有する。そのため、合わせガラスを横置き配置した場合でも少量処理なら優位性がある。
Example 9
If the laminated glass is placed vertically and processing is to be performed by a continuous processing apparatus, it is inevitable that the apparatus becomes large. Therefore, it is preferable to perform the processing by the so-called batch furnace method shown in FIG. Cr 4 O 3 was dip-coated on four sides of the laminated glass piece cut out to 130 mm × 130 mm, and the laminated glass piece was placed vertically in the heat treatment chamber 6 which is an electric furnace. The heat treatment chamber 6 has an air introduction port 8 and an exhaust port 9. When the heat treatment chamber 6 is heated to 500 ° C., the organic substance that is the interlayer film of the laminated glass is decomposed by the TASC treatment, and the generated high-temperature gas rises. Is good. Since the gas discarded from the heat treatment chamber 6 is not completely carbon dioxide and water and may contain low molecular weight organic matter, VOC purification by the TASC method is performed outside the exhaust port 9. The device 20 may be arranged. Low molecular organic substances passing through the VOC purification device 20 in which a plurality of honeycomb heaters 12 in which the oxide semiconductor 10 is supported and in which heaters are embedded are arranged in series are completely decomposed into carbon dioxide gas and water and released into the atmosphere as harmless gases. Is done. When the honeycomb structure 12 supporting the oxide semiconductor 10 is disposed in the vicinity of the ceiling exhaust port 9 in the heat treatment chamber, the low molecular organic gas that passes through the honeycomb structure 12 heated to 500 ° C. is converted into carbon dioxide gas and water. Better because it is decomposed. When the TASC treatment is performed with such an apparatus, the interlayer film of the laminated glass is completely decomposed and removed, and the two glasses separated from the dismantled product in the electric furnace can be easily recovered. It is possible to arrange a plurality of, for example, about 5 laminated glasses side by side in an electric furnace, and it is possible to increase the processing speed per sheet. The batch processing system shown in FIG. 8 is characterized by small size, low cost, and low power consumption compared to a continuous processing furnace. Therefore, even when the laminated glass is placed horizontally, there is an advantage if a small amount is processed.

実施例10
図8に示したバッチ炉方式は合わせガラスに限らず、プラスチックおよびプラスチック複合材料なら広範囲の材料に適用して、その中に含まれるポリマーを完全分解して除去することができる。残渣物に有価物が含まれる場合は効率的に回収できる。まず被処理物であるプラスチックまたはプラスチック複合材料の表面にのみ酸化物半導体10を接触させた状態で、被処理物を加熱処理室6内に設置する。プラスチック複合材料には、繊維強化プラスチック、ボンド磁石、太陽電池パネル、合わせガラスなどが含まれる。プラスチックまたはプラスチック複合材料の表面にのみ酸化物半導体10を接触させる方法としては、酸化物半導体10を担持したハニカム12に被処理物を載せる方法、酸化物半導体10の懸濁液に被処理物をディップ・コーティングする方法、酸化物半導体10を含む溶液を被処理物にスプレーする方法、酸化物半導体10を含む溶液を被処理物にはけで塗る方法などがある。加熱処理室6にはエアの導入口8を通して外部からエアが供給され、加熱処理により発生するガスは排気口9から排出される。加熱処理室6において被処理物は、被処理物と接触している酸化物半導体10が真性電気伝導領域となる温度以上に加熱されると、TASC処理により被処理物中のポリマーは分解され低分子のガス状態となって排出口9へ向かう。加熱処理室内6の排気口9の近くには酸化物半導体10を坦持したハニカム12が配置されているので、TASC効果によりハニカムを通過するガスが浄化される。さらに加熱処理室の排気口には、酸化物半導体10を担持したハニカム12を備えたVOC浄化装置20が連結されており、TASC効果により、加熱処理室6から排出されVOC浄化装置20を通過するガスは水と二酸化炭素に分解され、大気には無害のガスだけが放出される。
Example 10
The batch furnace system shown in FIG. 8 is not limited to laminated glass, and plastics and plastic composite materials can be applied to a wide range of materials to completely decompose and remove the polymer contained therein. When valuables are contained in the residue, it can be efficiently recovered. First, the object to be processed is placed in the heat treatment chamber 6 with the oxide semiconductor 10 being in contact only with the surface of the plastic or plastic composite material that is the object to be processed. Plastic composite materials include fiber reinforced plastics, bonded magnets, solar cell panels, laminated glass and the like. As a method of bringing the oxide semiconductor 10 into contact only with the surface of the plastic or the plastic composite material, a method of placing the object to be processed on the honeycomb 12 supporting the oxide semiconductor 10, There are a dip coating method, a method in which a solution containing the oxide semiconductor 10 is sprayed on the object to be processed, a method in which a solution containing the oxide semiconductor 10 is applied to the object to be processed, and the like. Air is supplied to the heat treatment chamber 6 from the outside through an air introduction port 8, and gas generated by the heat treatment is discharged from the exhaust port 9. In the heat treatment chamber 6, when the oxide semiconductor 10 that is in contact with the object to be processed is heated to a temperature at which the oxide semiconductor 10 becomes an intrinsic electric conduction region or higher, the polymer in the object to be processed is decomposed by the TASC treatment. It goes to the discharge port 9 in the molecular gas state. Since the honeycomb 12 carrying the oxide semiconductor 10 is disposed near the exhaust port 9 in the heat treatment chamber 6, the gas passing through the honeycomb is purified by the TASC effect. Further, a VOC purification device 20 including a honeycomb 12 supporting the oxide semiconductor 10 is connected to an exhaust port of the heat treatment chamber, and is discharged from the heat treatment chamber 6 and passes through the VOC purification device 20 by the TASC effect. The gas is broken down into water and carbon dioxide, and only harmless gases are released to the atmosphere.

本発明によれば、半導体の熱活性(TASC)法を用いて合わせガラスからガラスを低コストで短時間に回収することができるので、今後大量の処理需要の発生が見込まれる太陽光発電システムの廃棄物に対して、従来実現されていなかったリサイクルを実用的な事業として成立させえて、産業上の利用可能性は大きい。   According to the present invention, glass can be recovered from laminated glass at a low cost in a short time using a semiconductor thermal activation (TASC) method, so that a large amount of processing demand is expected in the future. For waste, recycling that has not been realized in the past can be established as a practical business, and industrial applicability is great.

1 合わせガラス
2 上面ガラス
3 下面ガラス
4 中間膜
5 無垢のハニカム
6 電気炉
7 ヒーター
8 空気導入口
9 排気口
10 酸化物半導体
11 台
12 酸化物半導体坦持ハニカム
13 合わせガラス用TASC連続処理装置
14 搬入部
15 予備加熱部
16 TASC処理部
17 冷却部
18 搬出部
19 分別回収部
20 VOC浄化装置
1 Laminated glass 2 Top glass
3 Bottom glass
4 Intermediate Film 5 Solid Honeycomb 6 Electric Furnace 7 Heater 8 Air Inlet 9 Exhaust Port 10 Oxide Semiconductor 11 Stand 12 Oxide Semiconductor-Supporting Honeycomb 13 TASC Continuous Processing Device 14 for Laminated Glass Carry-in Unit 15 Preheating Unit 16 TASC Treatment Unit 17 Cooling unit 18 Unloading unit 19 Sorting and collecting unit 20 VOC purification device

Claims (12)

2方向のいずれの長さも120mm以上である合わせガラスを被処理物として、前記被処理物の少なくとも1つの側面に酸化物半導体を付着させる工程と、前記被処理物の側面に前記酸化物半導体を接触させた状態で、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱し、前記合わせガラスを相互に接着するポリマーを分解除去する工程と、解体物からガラスを回収する工程と、を備えることを特徴とする合わせガラスからガラスを回収する方法。 Any length in two directions also the laminated glass is 120mm or more as an object to be treated, a step of depositing an oxide semiconductor in at least one side of the object to be treated, the oxide semiconductor on the side surface of the object to be processed A step of heating the object to be processed at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region in the presence of oxygen in the contact state, and decomposing and removing the polymer that adheres the laminated glass to each other; Recovering the glass from the glass, and a method of recovering the glass from the laminated glass. 被処理物である合わせガラスの少なくとも1つの側面に酸化物半導体を付着させる工程と、前記合わせガラスが鉛直方向になるように前記合わせガラスを設置する工程と、前記被処理物の側面に酸化物半導体を接触させた状態で、酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度で前記被処理物を加熱し、前記合わせガラスを相互に接着するポリマーを分解除去する工程と、解体物からガラスを回収する工程と、を備えることを特徴とする合わせガラスからガラスを回収する方法。   A step of attaching an oxide semiconductor to at least one side surface of a laminated glass that is an object to be treated; a step of installing the laminated glass so that the laminated glass is in a vertical direction; and an oxide on the side surface of the object to be treated Heating the object to be processed at a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region in the presence of oxygen in a state where the semiconductor is brought into contact, and decomposing and removing the polymer that adheres the laminated glass to each other; A step of recovering the glass from the dismantled product, and a method of recovering the glass from the laminated glass. 前記合わせガラスの側面を前記酸化物半導体の懸濁液にディップ・コーティングする方法により、前記合わせガラスの側面に酸化物半導体を付着させることを特徴とする請求項1または2に記載の合わせガラスからガラスを回収する方法。   From the laminated glass according to claim 1 or 2, wherein the oxide semiconductor is adhered to the side surface of the laminated glass by a method of dip coating the side surface of the laminated glass on the suspension of the oxide semiconductor. A method of collecting glass. 前記被処理物は前記酸化物半導体を担持した通気性を有する構造体に包囲され、前記構造体は酸素存在下において、前記酸化物半導体が真性電気伝導領域となる温度に加熱されることを特徴とする請求項1ないし3に記載の合わせガラスからガラスを回収する方法。 The object to be treated is enclosed in a structure having gas permeability carrying the oxide semiconductor, wherein the structure in the presence of oxygen, wherein the oxide semiconductor is heated to a temperature at which the intrinsic conductive region A method for recovering glass from the laminated glass according to claim 1. 酸素存在下において、前記被処理物を加熱することにより、前記被処理物中のポリマーを分解除去する工程は、前記被処理物を一定速度で搬送する連続処理装置に導入し、前記連続処理装置内の前記酸化物半導体が真性電気伝導領域となる温度領域に滞在する期間において行われ、
前記解体物からガラスを回収する工程は、前記連続処理装置内の分別回収部において、ガラスを回収することにより、分別・回収されることを特徴とする請求項1または請求項3ないしに記載の合わせガラスからガラスを回収する方法。
The step of decomposing and removing the polymer in the object to be processed by heating the object to be processed in the presence of oxygen is introduced into a continuous processing apparatus that conveys the object to be processed at a constant speed, and the continuous processing apparatus In the period during which the oxide semiconductor stays in a temperature region that becomes an intrinsic electric conduction region,
Recovering glass from the dismantling thereof is described in separate collection portion in the continuous processing apparatus, by recovering the glass, to claim 1 or claims 3 to 4, characterized in that it is separated and recovered To recover glass from laminated glass.
2方向のいずれの長さも120mm以上である合わせガラスを被処理物として、前記被処理物の少なくとも1つの側面に酸化物半導体の分散膜を塗布により形成し、前記被処理物の側面に前記酸化物半導体を接触させた状態で、前記被処理物を一定速度で搬送する搬送装置と、
前記被処理物を、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱する加熱処理部と、
前記加熱処理部内にエアを供給するエアの供給機構と、
前記加熱処理部において前記被処理物中のポリマーを分解除去して得られる解体物から、ガラスを回収する回収部とを備えることを特徴とする合わせガラスからガラスを回収するための処理装置。
Using a laminated glass having a length of 120 mm or more in any of the two directions as an object to be processed, a dispersion film of an oxide semiconductor is formed by coating on at least one side surface of the object to be processed, and the oxidation is performed on the side surface of the object to be processed. A transport device that transports the object to be processed at a constant speed in a state in which a physical semiconductor is in contact;
A heat treatment unit that heats the object to be processed to a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region;
An air supply mechanism for supplying air into the heat treatment unit;
A processing apparatus for recovering glass from laminated glass, comprising: a recovery unit that recovers glass from a dismantled product obtained by decomposing and removing the polymer in the object to be processed in the heat treatment unit.
被処理物である合わせガラスの少なくとも1つの側面に酸化物半導体を接触させた状態で、前記合わせガラスが鉛直方向になるように前記合わせガラスを設置する加熱処理室を有し、
前記加熱処理室において前記被処理物は、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱され、
前記加熱処理室は外部からエアを供給するエアの導入口と加熱処理により発生するガスを排出する排気口を有し、
前記加熱処理室において前記被処理物中のポリマーを分解除去して得られる解体物から、ガラスを回収することを特徴とする合わせガラスからガラスを回収するための処理装置。
In a state where the oxide semiconductor is in contact with at least one side surface of the laminated glass that is the object to be processed, the laminated glass has a heat treatment chamber in which the laminated glass is placed so that the laminated glass is in a vertical direction.
In the heat treatment chamber, the object to be processed is heated to a temperature higher than the temperature at which the oxide semiconductor becomes an intrinsic electric conduction region,
The heat treatment chamber has an air introduction port for supplying air from the outside and an exhaust port for discharging gas generated by the heat treatment,
A processing apparatus for recovering glass from laminated glass, wherein the glass is recovered from a dismantled product obtained by decomposing and removing the polymer in the object to be processed in the heat treatment chamber.
前記加熱処理部または前記加熱処理室の排気口には、前記酸化物半導体を担持した通気性を有する構造体を備えたVOC浄化装置が連結され、前記構造体が、前記酸化物半導体が真性電気伝導領域となる温度以上に加熱されることによって、前記加熱処理部または前記加熱処理室から排出され前記VOC浄化装置を通過するガスが無害のガスに浄化されることを特徴とする請求項6または7に記載の合わせガラスからガラスを回収するための処理装置。   A VOC purifying apparatus including a gas-permeable structure supporting the oxide semiconductor is connected to an exhaust port of the heat treatment unit or the heat treatment chamber, and the structure is configured so that the oxide semiconductor is intrinsically electric. The gas discharged from the heat treatment unit or the heat treatment chamber and passing through the VOC purification device is purified to a harmless gas by being heated to a temperature that is a conduction region or higher. The processing apparatus for collect | recovering glass from the laminated glass of 7. 前記被処理物は前記酸化物半導体を坦持した通気性を有する構造体に包囲され、前記構造体は前記加熱処理部または前記加熱処理室内において、前記酸化物半導体が真性電気伝導領域となる温度に加熱されることを特徴とする請求項6ないし8に記載の合わせガラスからガラスを回収するための処理装置。 The object to be processed is surrounded by a gas permeable structure supporting the oxide semiconductor, and the structure is a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region in the heat treatment portion or the heat treatment chamber. The processing apparatus for recovering glass from the laminated glass according to claim 6, wherein the glass is recovered by heating. 前記加熱処理部または前記加熱処理室はエアの導入口と排気口および被処理物を通過させる入口扉と出口扉を有する処理室であり、前記入口扉から前記被処理物が導入された後に前記入口扉が閉じ、前記入口扉と前記出口扉が閉じ、前記被処理物が停止した状態で前記被処理物中のポリマーが分解除去され、得られた解体物は出口扉から搬出されることを特徴とする請求項6ないし9に記載の合わせガラスからガラスを回収するための処理装置。   The heat treatment section or the heat treatment chamber is a treatment chamber having an inlet and an outlet for air and an inlet door and an outlet door through which the object to be processed passes, and after the object to be processed is introduced from the inlet door, The entrance door is closed, the entrance door and the exit door are closed, and the polymer in the object to be processed is decomposed and removed in a state where the object to be processed is stopped, and the dismantled product obtained is carried out from the exit door. The processing apparatus for collect | recovering glass from the laminated glass of Claim 6 thru | or 9 characterized by the above-mentioned. 前記加熱処理室内の前記排気口の近くに前記酸化物半導体を坦持した通気性を有する構造体が配置され、前記構造体は、前記酸化物半導体が真性電気伝導領域となる温度に加熱されることにより排気口へ導かれるガスを浄化することを特徴とする請求項7または8に記載の合わせガラスからガラスを回収するための処理装置。 An air-permeable structure supporting the oxide semiconductor is disposed near the exhaust port in the heat treatment chamber, and the structure is heated to a temperature at which the oxide semiconductor becomes an intrinsic electric conduction region. The processing apparatus for recovering glass from laminated glass according to claim 7 or 8, wherein the gas guided to the exhaust port is purified. 1つの側面に前記酸化物半導体の分散膜を塗布により形成した前記合わせガラスが、鉛直方向になるように前記加熱処理室内に複数枚数設置されることを特徴とする請求項7若しくは8または請求項11に記載の合わせガラスからガラスを回収するための処理装置。 9. The plurality of laminated glasses in which the oxide semiconductor dispersion film is formed on one side surface by coating are disposed in the heat treatment chamber so as to be in a vertical direction. The processing apparatus for collect | recovering glass from the laminated glass of 11.
JP2015182488A 2015-03-17 2015-09-16 Method of recovering glass from laminated glass and processing apparatus for recovery Active JP6593585B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015052995 2015-03-17
JP2015052995 2015-03-17

Publications (2)

Publication Number Publication Date
JP2016172246A JP2016172246A (en) 2016-09-29
JP6593585B2 true JP6593585B2 (en) 2019-10-23

Family

ID=57007878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182488A Active JP6593585B2 (en) 2015-03-17 2015-09-16 Method of recovering glass from laminated glass and processing apparatus for recovery

Country Status (1)

Country Link
JP (1) JP6593585B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106807731B (en) * 2017-02-14 2023-03-17 上海甬兴塑胶有限公司 Recovery unit of metal insert in working of plastics
JP7148109B2 (en) * 2018-04-18 2022-10-05 株式会社ジンテク Method for processing laminated chip-like or plate-like plastic composites
CN112469514B (en) * 2018-08-06 2023-02-24 株式会社德山 Method for recovering valuable substances from solar cell module
JP2023072515A (en) * 2021-11-12 2023-05-24 株式会社トクヤマ Method for treating waste solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731160C2 (en) * 1997-07-21 1999-05-27 Pilkington Solar Int Gmbh Process for separating the components of a laminated glass pane
JP5904487B2 (en) * 2012-01-17 2016-04-13 国立大学法人信州大学 Processing method and processing apparatus for plastic or plastic composite material
JP2014000513A (en) * 2012-06-18 2014-01-09 Tanabe Sangyo Kk Glass panel separation method and heat treatment device
JP6297254B2 (en) * 2012-11-30 2018-03-20 株式会社新菱 Method for collecting solar cell element constituent materials
JP6164581B2 (en) * 2013-03-14 2017-07-19 国立大学法人信州大学 Method and apparatus for processing plastic composite material

Also Published As

Publication number Publication date
JP2016172246A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6593585B2 (en) Method of recovering glass from laminated glass and processing apparatus for recovery
JP6596735B2 (en) Method of recovering valuable material from solar cell module and processing device for recovery
JP6596732B2 (en) Method for recovering valuable material from solar cell panel and processing device for recovery
JP5904487B2 (en) Processing method and processing apparatus for plastic or plastic composite material
JP6164581B2 (en) Method and apparatus for processing plastic composite material
CN112469514B (en) Method for recovering valuable substances from solar cell module
JP2014024037A (en) Decomposition method for solar battery panel
CN102416401A (en) Process and equipment for recovering photovoltaic component through thermal high-speed centrifugal decomposition
CN114769272B (en) Pyrolysis recovery device of waste photovoltaic module
JP7148109B2 (en) Method for processing laminated chip-like or plate-like plastic composites
JP6154924B1 (en) Transparent cover layer separation and collection method
DK3140093T3 (en) Method and apparatus for recycling laminated glass
CN202316492U (en) Device for recycling photovoltaic assembly by high-speed centrifugal thermal decomposition
CN116001411A (en) Automatic paving production line and production method for ceramic plate back net
JP7197909B2 (en) Method and apparatus for treating mixtures containing various waste polymers, waste metals, and waste organic/inorganic substances
US20230241655A1 (en) Waste Photovoltaic Module Processing Method
KR20130086754A (en) Method for cleaning semiconductor and display panel during manufacturing process of semiconductor and display panel and apparatus thereof
JP7402676B2 (en) Heat treatment equipment and method for manufacturing heat-treated products
JP2002079209A (en) Method for separating deposit from inorganic glass
KR100724722B1 (en) Organic matter pyrolyzing combustion apparatus under atmosphere environment
WO2024048618A1 (en) Pyrolyzer
JP2018131341A (en) Method and apparatus for recycling glass laminate
JP2017140618A (en) Separating and recovering method of cover glass layer
CZ37320U1 (en) A device for separating usable materials from waste silicon solar panels
WO2023246961A1 (en) Method and line for extracting reusable components from photovoltaic panels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190910

R150 Certificate of patent or registration of utility model

Ref document number: 6593585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250