JP2021079301A - Processing method and processing system of waste solar panel - Google Patents

Processing method and processing system of waste solar panel Download PDF

Info

Publication number
JP2021079301A
JP2021079301A JP2019205926A JP2019205926A JP2021079301A JP 2021079301 A JP2021079301 A JP 2021079301A JP 2019205926 A JP2019205926 A JP 2019205926A JP 2019205926 A JP2019205926 A JP 2019205926A JP 2021079301 A JP2021079301 A JP 2021079301A
Authority
JP
Japan
Prior art keywords
ceramic support
solar panel
waste solar
ceramic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019205926A
Other languages
Japanese (ja)
Other versions
JP7329421B2 (en
Inventor
優 笹井
Masaru Sasai
優 笹井
片岡 誠
Makoto Kataoka
誠 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2019205926A priority Critical patent/JP7329421B2/en
Priority to PCT/JP2020/031577 priority patent/WO2021095318A1/en
Publication of JP2021079301A publication Critical patent/JP2021079301A/en
Application granted granted Critical
Publication of JP7329421B2 publication Critical patent/JP7329421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

CONSTITUTION: To mount a waste solar panel on an air permeable ceramic support body warmed in a heat retaining storage, which blows oxygen-containing gas from a lower part of a ceramic support body in a combustion furnace, heats and melts a resin in the waste solar panel, and burns the melted resin in the ceramic support body; and carries out the ceramic support body from the combustion furnace, recovers a glass plate, and then makes the ceramic support body stand by in the heat retaining storage.EFFECT: Heat efficiency is improved by warming a ceramic support body, and cycle time of waste solar panel processing can be shortened.SELECTED DRAWING: Figure 1

Description

この発明は廃太陽光パネルを処理する方法とシステムに関する。 The present invention relates to methods and systems for treating waste solar panels.

廃太陽光パネルを商業的に処理することが必要になりつつある。太陽光パネルは、複数のセルと、セル間の配線材、及び端子ボックスを備え、セルと配線材はEVA(ポリエチレンビニルアセテート)等の易燃性樹脂により封止されている。太陽光パネルの前面には強化ガラスの板が設けられ、封止樹脂の背面側はPET(ポリエチレンテレフタレート)等の樹脂から成るバックシートにより覆われている。そしてバックシートには、酸化チタン、炭酸カルシウム等の無機物粉体が分散され、EVA層を通過した光を散乱し、セル側へ戻すようにしている。また端子ボックスはバックシートの底面側に設けられ、ガラス板と封止樹脂及びバックシートは、アルミニウム等のフレームに取り付けられている。なお以下、廃太陽光パネルを単にパネルと呼ぶことがある。またEVA等の封止樹脂を単に封止樹脂と呼ぶことがある。 There is a growing need for commercial disposal of waste solar panels. The solar panel includes a plurality of cells, a wiring material between the cells, and a terminal box, and the cells and the wiring material are sealed with a flammable resin such as EVA (polyethylene vinyl acetate). A tempered glass plate is provided on the front surface of the solar panel, and the back side of the sealing resin is covered with a back sheet made of a resin such as PET (polyethylene terephthalate). Inorganic powders such as titanium oxide and calcium carbonate are dispersed on the back sheet, and the light that has passed through the EVA layer is scattered and returned to the cell side. The terminal box is provided on the bottom surface side of the back sheet, and the glass plate, the sealing resin, and the back sheet are attached to a frame made of aluminum or the like. Hereinafter, the waste solar panel may be simply referred to as a panel. Further, a sealing resin such as EVA may be simply called a sealing resin.

廃太陽光パネルの処理に関して、特許文献1(特開2016−190177)では、セラミックハニカムの表面に遷移金属酸化物等の酸化物半導体を配置し、ハニカムにパネルを載せ、バックシートと酸化物半導体を接触させる。電気炉でパネルを加熱し、ハニカムの下方から空気を吹き込み、パネル中の樹脂を燃焼させる。ここでPETをそのまま燃焼させると多量のススが発生するが、酸化物半導体を用いることで、その触媒作用により完全に分解し燃焼する。このようにしてフレームとガラス、セル及び配線材の材料を回収し、ガラスは割れて粉粒体状に成る。 Regarding the treatment of waste solar panels, in Patent Document 1 (Japanese Patent Laid-Open No. 2016-190177), an oxide semiconductor such as a transition metal oxide is arranged on the surface of a ceramic honeycomb, a panel is placed on the honeycomb, and a back sheet and an oxide semiconductor are placed. To contact. The panel is heated in an electric furnace, air is blown from below the honeycomb, and the resin in the panel is burned. Here, if PET is burned as it is, a large amount of soot is generated, but by using an oxide semiconductor, it is completely decomposed and burned by its catalytic action. In this way, the materials of the frame and the glass, the cell and the wiring material are recovered, and the glass is broken into powder or granular material.

特開2016−190177JP 2016-190177

ハニカム等の連続気孔で多孔質のセラミック支持体の内部で、パネルの樹脂を燃焼させるには、セラミック支持体を例えば400℃以上に加熱する必要がある。樹脂を燃焼させ、炉から搬出したセラミック支持体を室温まで放冷すると、次回の処理でセラミック支持体を再度室温から予熱することになり、予熱に必要な熱量が増加し、また予熱時間も長くなる。 In order to burn the resin of the panel inside the ceramic support which is porous with continuous pores such as honeycomb, it is necessary to heat the ceramic support to, for example, 400 ° C. or higher. When the resin is burned and the ceramic support carried out from the furnace is allowed to cool to room temperature, the ceramic support will be preheated from room temperature again in the next treatment, the amount of heat required for preheating will increase, and the preheating time will be long. Become.

この発明の課題は、セラミック支持体の予熱に必要な熱量を減らし、廃太陽光パネルの処理での熱効率を改善すると共に、処理のサイクルタイムを短縮することにある。 An object of the present invention is to reduce the amount of heat required for preheating the ceramic support, improve the thermal efficiency in the treatment of waste solar panels, and shorten the treatment cycle time.

この発明の廃太陽光パネルの処理方法では、
連続気孔で多孔質のセラミック支持体を保温庫から搬出し、セラミック支持体上に廃太陽光パネルを載置するステップと、
廃太陽光パネルを載置したセラミック支持体を、燃焼炉内に搬入するステップと、
燃焼炉内で、セラミック支持体の下方から酸素含有ガスを吹き込むと共に、廃太陽光パネルを加熱し、廃太陽光パネル内の樹脂を加熱融解すると共に、融解した樹脂をセラミック支持体内で燃焼させるステップと、
セラミック支持体を燃焼炉から搬出すると共に、廃太陽光パネルから少なくともガラス板を回収するステップと、
少なくともガラス板を回収した後の、セラミック支持体を保温庫内で待機させるステップ、
をこの順に繰り返し実行する。
In the method for treating waste solar panels of the present invention,
The step of removing the porous ceramic support from the heat insulation chamber with continuous pores and placing the waste solar panel on the ceramic support,
The step of bringing the ceramic support on which the waste solar panel is placed into the combustion furnace, and
In the combustion furnace, oxygen-containing gas is blown from below the ceramic support, the waste solar panel is heated, the resin in the waste solar panel is heated and melted, and the melted resin is burned in the ceramic support. When,
The step of removing the ceramic support from the combustion furnace and collecting at least the glass plate from the waste solar panel,
At least after collecting the glass plate, the step of making the ceramic support stand by in the heat insulation chamber,
Is repeated in this order.

この発明の廃太陽光パネルの処理システムは、連続気孔で多孔質のセラミック支持体と、セラミック支持体上に載置された廃太陽光パネル内の樹脂を燃焼させるための燃焼炉と、保温庫と、セラミック支持体上に廃太陽光パネルを載置するための載置場と、少なくとも廃太陽光パネルのガラス板をセラミック支持体から回収するための回収場と、セラミック支持体の搬送機構、とを備え、
保温庫はセラミック支持体を保温するように構成され、
セラミック支持体の搬送機構は、保温庫から載置場、燃焼炉、回収場を経て、保温庫へセラミック支持体を戻すように構成されている。
The waste solar panel treatment system of the present invention includes a ceramic support having continuous pores and a porous structure, a combustion furnace for burning the resin in the waste solar panel mounted on the ceramic support, and a heat insulator. And a storage place for mounting the waste solar panel on the ceramic support, at least a recovery place for recovering the glass plate of the waste solar panel from the ceramic support, and a transport mechanism for the ceramic support. With
The heat insulator is configured to keep the ceramic support warm.
The transfer mechanism of the ceramic support is configured to return the ceramic support to the heat insulation chamber from the heat insulation chamber through the storage place, the combustion furnace, and the recovery place.

この発明では、セラミック支持体の下方から酸素含有ガスを吹き込んで、廃太陽光パネル内の樹脂を燃焼させる。この発明では、燃焼炉で加熱されたセラミック支持体を保温庫内で待機させるので、熱効率が高い。またセラミック支持体の予熱時間を大幅に短縮できるので、廃太陽光パネル処理のサイクルタイムを短縮し、時間当たりの処理枚数を増すことができる。 In the present invention, oxygen-containing gas is blown from below the ceramic support to burn the resin in the waste solar panel. In the present invention, the ceramic support heated in the combustion furnace is made to stand by in the heat insulating chamber, so that the thermal efficiency is high. Further, since the preheating time of the ceramic support can be significantly shortened, the cycle time of waste solar panel processing can be shortened and the number of sheets processed per hour can be increased.

好ましくは、セラミック支持体の下部に金属酸化物触媒を担持し、セラミック支持体の上部には金属酸化物触媒を担持しない。この条件では、廃太陽光パネル内の封止樹脂は、金属酸化物触媒なしにセラミック支持体の上部で穏やかに燃焼する。燃焼が穏やかなので、ガラス板は基本的に破損しない。またバックシートを構成する樹脂は、セラミック支持体の下部で金属酸化物触媒の触媒作用により燃焼し、黒煙は基本的に発生しない。このため回収したガラス板は、ススが基本的に付着していないため、容易に再生できる。 Preferably, the metal oxide catalyst is supported on the lower part of the ceramic support, and the metal oxide catalyst is not supported on the upper part of the ceramic support. Under this condition, the encapsulating resin in the waste solar panel burns gently on top of the ceramic support without a metal oxide catalyst. Since the combustion is gentle, the glass plate is basically undamaged. Further, the resin constituting the back sheet is burned by the catalytic action of the metal oxide catalyst at the lower part of the ceramic support, and black smoke is basically not generated. Therefore, the recovered glass plate is basically free of soot and can be easily regenerated.

また好ましくは、連続気孔で多孔質のセラミック板を複数個ほぼ隙間無しに配列することにより、セラミック支持体を構成し、かつ金属のカゴ上にセラミック支持体を載置して搬送する。太陽光パネルは縦横のサイズが大きなものが多く、例えば縦1600mm程度、幅1000mm程度、厚さが40〜50mm程度のものが使用されている。1枚のセラミック板で大きなサイズのセラミック支持体を作成すると、セラミック支持体の製造コストが大きくなる。そこで、複数のセラミック板を配列して1個のセラミック支持体とし、金属のカゴにより支持すると、製造しやすいサイズのセラミック板を用いることができる。またセラミック支持体を金属カゴに載せて搬送するので、セラミック支持体の取扱いが容易になる。 Further, preferably, a plurality of porous ceramic plates having continuous pores are arranged with almost no gap to form a ceramic support, and the ceramic support is placed and conveyed on a metal basket. Many solar panels have a large vertical and horizontal size. For example, solar panels having a length of about 1600 mm, a width of about 1000 mm, and a thickness of about 40 to 50 mm are used. If a large-sized ceramic support is produced from one ceramic plate, the manufacturing cost of the ceramic support increases. Therefore, if a plurality of ceramic plates are arranged to form one ceramic support and supported by a metal basket, a ceramic plate having a size that is easy to manufacture can be used. Further, since the ceramic support is placed on the metal basket and transported, the ceramic support can be easily handled.

実施例の廃太陽光パネルの処理システムの平面図Top view of the waste solar panel treatment system of the embodiment 実施例で用いたセラミックフィルタ(セラミック支持体)と金属カゴの断面図Cross-sectional view of the ceramic filter (ceramic support) and metal basket used in the examples 太陽光パネルの模式的部分断面図Schematic partial sectional view of a solar panel

以下に本発明を実施するための実施例を示す。この発明の範囲は、特許請求の範囲の記載に基づき、明細書の記載とこの分野での周知技術とを参酌し、当業者の理解に従って定められるべきである。 Examples for carrying out the present invention are shown below. The scope of the present invention should be determined according to the understanding of those skilled in the art, based on the description of the scope of claims, taking into consideration the description of the specification and well-known techniques in this field.

図1に実施例の廃太陽光パネルの処理システム2を示す。4は燃焼炉で、セラミック支持体24上に載置した廃太陽光パネル中の、樹脂を燃焼させる。6は保温庫で、燃焼炉4で加熱されたセラミック支持体24を保温し待機させる。8は搬送機構で、載置場15、燃焼炉4,回収場18,保温庫6の順に、セラミック支持体24を搬送する。搬送機構8は例えばチェーン駆動のローラウェイで構成されているが、燃焼炉4と保温庫6以外の個所では無人搬送車を用いるなど、搬送機構8の種類は任意である。 FIG. 1 shows the waste solar panel processing system 2 of the embodiment. Reference numeral 4 denotes a combustion furnace, which burns the resin in the waste solar panel placed on the ceramic support 24. Reference numeral 6 denotes a heat insulating chamber, in which the ceramic support 24 heated in the combustion furnace 4 is kept warm and put on standby. Reference numeral 8 denotes a transfer mechanism, which conveys the ceramic support 24 in the order of the loading place 15, the combustion furnace 4, the recovery place 18, and the heat insulating chamber 6. The transport mechanism 8 is composed of, for example, a chain-driven roller way, but the type of the transport mechanism 8 is arbitrary, such as using an automatic guided vehicle at a location other than the combustion furnace 4 and the heat insulating chamber 6.

好ましくは、保温のため燃焼炉4に入口と出口に扉9を設け、保温庫6にも入口と出口に扉10を設ける。11は燃焼炉4に附属のバーナで、LPG等の燃料に過剰の空気を加えて燃焼させ、酸素濃度が好ましくは15〜18%で、温度が好ましくは450℃以上600℃以下の酸素含有ガスを生成させる。燃焼炉4の床面でかつ搬送機構8の下部に設けたガス吹き込み口12から、セラミック支持体24の下部へ酸素含有ガスを吹き込む。なお空気を熱交換器とバーナの排ガスで加熱し、ガス吹き込み口から加熱空気を供給しても良い。吹き込む酸素含有ガスの温度と酸素濃度は一様である必要はなく、燃焼炉4の入口側の予熱部では温度が高いことが好ましく、酸素濃度は低くても良い。予熱部よりも出口側の燃焼部では、酸素濃度が高いことが好ましく、火炎によりセラミック支持体24等が加熱されるので、吹き込むガスの温度は低くても良い。14は排ガス処理装置で設けなくても良く、好ましくは処理済みの排ガスの一部を保温庫6に供給し、保温庫6内を例えば400℃〜500℃程度で、例えば450℃程度に加熱する。排ガスを保温庫6へ供給しない場合、保温庫6の庫内温度は例えば300〜400℃程度となる。 Preferably, the combustion furnace 4 is provided with doors 9 at the inlet and outlet, and the heat insulator 6 is also provided with doors 10 at the inlet and outlet for heat retention. Reference numeral 11 denotes a burner attached to the combustion furnace 4, which burns fuel such as LPG by adding excess air to an oxygen-containing gas having an oxygen concentration of preferably 15 to 18% and a temperature of preferably 450 ° C. or higher and 600 ° C. or lower. To generate. Oxygen-containing gas is blown into the lower part of the ceramic support 24 from the gas blowing port 12 provided on the floor surface of the combustion furnace 4 and in the lower part of the transport mechanism 8. The air may be heated by the exhaust gas of the heat exchanger and the burner, and the heated air may be supplied from the gas inlet. The temperature and oxygen concentration of the oxygen-containing gas to be blown do not have to be uniform, and the temperature is preferably high in the preheating portion on the inlet side of the combustion furnace 4, and the oxygen concentration may be low. The oxygen concentration is preferably high in the combustion portion on the outlet side of the preheating portion, and the ceramic support 24 and the like are heated by the flame, so that the temperature of the blown gas may be low. No. 14 does not have to be provided by an exhaust gas treatment device, and preferably a part of the treated exhaust gas is supplied to the heat insulating chamber 6 and the inside of the heat insulating chamber 6 is heated to, for example, about 400 ° C. to 500 ° C., for example, about 450 ° C. .. When the exhaust gas is not supplied to the heat insulating chamber 6, the temperature inside the heat insulating chamber 6 is, for example, about 300 to 400 ° C.

保温庫6の内容積は、例えば高さが150〜200mm程度、幅が1500〜2500mm程度で、長さがセラミック支持体の収容台数×1500〜2500mm程度である。保温庫6の床面には、セラミックあるいは金属のチェーン駆動のローラを、搬送機構8の一部として設ける。保温庫の壁と天井は断熱性を備えていることが好ましい。 The internal volume of the heat insulating chamber 6 is, for example, a height of about 150 to 200 mm, a width of about 1500 to 2500 mm, and a length of about 1500 to 2500 mm of the number of ceramic supports accommodated. A ceramic or metal chain-driven roller is provided on the floor of the heat insulating chamber 6 as a part of the transport mechanism 8. It is preferable that the walls and ceiling of the heat insulator have heat insulating properties.

廃太陽光パネル26では、アルミニウム等のフレームは回収する価値があり、他にガラス板、セル等も価値がある。ただしこの発明は、セラミック支持体24の保温による、熱効率の改善と処理時間の短縮を課題とし、何を回収するかは任意である。実施例では、廃太陽光パネル26から予めフレームと端子ボックスとを取り外し、ガラス板と封止樹脂及びバックシートを燃焼炉4で処理する。ただしフレームを取り付けたまま燃焼炉4で処理しても良い。 In the waste solar panel 26, a frame made of aluminum or the like is worth collecting, and a glass plate, a cell or the like is also worth collecting. However, the present invention has an object of improving thermal efficiency and shortening the processing time by keeping the ceramic support 24 warm, and what is recovered is arbitrary. In the embodiment, the frame and the terminal box are removed from the waste solar panel 26 in advance, and the glass plate, the sealing resin, and the back sheet are processed in the combustion furnace 4. However, it may be processed in the combustion furnace 4 with the frame attached.

載置場15に沿って移載装置16を設け、例えばローラコンベヤの先端に設けた置き場17から、廃太陽光パネル26を1枚ずつ例えば真空吸引し、セラミック支持体24上に移載する。また回収場18では、移載装置19によりガラス板をセラミック支持体24から置き場21へ1枚ずつ移載する。移載装置19は例えば真空吸引型で、種類は任意で、400〜450℃程度に加熱されたガラス板を吸引するので、ガラス板を吸着する部分を耐熱性にする。また吸引装置20により、セラミック支持体24上に残ったセル、配線材、及び酸化チタン等の無機粉末を吸引し、分離装置22により、セルと、金属材料、及び無機粉末に分離する。 A transfer device 16 is provided along the loading space 15, and the waste solar panels 26 are vacuum-sucked one by one from the storage space 17 provided at the tip of the roller conveyor, for example, and transferred onto the ceramic support 24. Further, at the collection site 18, the transfer device 19 transfers the glass plates one by one from the ceramic support 24 to the storage site 21. The transfer device 19 is, for example, a vacuum suction type, and the type is arbitrary. Since the glass plate heated to about 400 to 450 ° C. is sucked, the portion that adsorbs the glass plate is made heat resistant. Further, the suction device 20 sucks the inorganic powder such as the cell, the wiring material, and titanium oxide remaining on the ceramic support 24, and the separation device 22 separates the cell, the metal material, and the inorganic powder.

セラミック支持体24は燃焼炉4内で例えば450℃以上に加熱され、保温庫6に350〜400℃程度で戻り、保温庫6内で保温される。保温庫6の収容能力は、セラミック支持体24が無い空きスペースが燃焼炉4内に生じない程度に定め、例えばセラミック支持体24を1〜3個程度保管できるようにする。 The ceramic support 24 is heated to, for example, 450 ° C. or higher in the combustion furnace 4, returns to the heat insulating chamber 6 at about 350 to 400 ° C., and is kept warm in the heat insulating chamber 6. The accommodating capacity of the heat insulating chamber 6 is set so that an empty space without the ceramic support 24 is not generated in the combustion furnace 4, and for example, about 1 to 3 ceramic supports 24 can be stored.

廃太陽光パネル26は縦横のサイズに比べ高さが小さいので、図1のシステム2を高さ方向に沿って複数段設けても良い。この場合、1個の保温庫6内に、高さ方向に沿って複数段のローラウェイを設けても良い。また保温庫6を燃焼炉4の上部に設けても良い。 Since the height of the waste solar panel 26 is smaller than the vertical and horizontal sizes, the system 2 of FIG. 1 may be provided in a plurality of stages along the height direction. In this case, a plurality of roller ways may be provided along the height direction in one heat insulating chamber 6. Further, the heat insulating chamber 6 may be provided above the combustion furnace 4.

図2に、セラミック支持体24とその底部の金属カゴ30を示す。1枚の廃太陽光パネル26分のサイズのセラミック板を設けると、セラミック板の製造コストが増す。そこでセラミック支持体24を複数のセラミック板に分割し、これらをほぼ隙間無しに配列してセラミック支持体24とする。 FIG. 2 shows the ceramic support 24 and the metal basket 30 at the bottom thereof. Providing a ceramic plate with a size of 26 minutes for one waste solar panel increases the manufacturing cost of the ceramic plate. Therefore, the ceramic support 24 is divided into a plurality of ceramic plates, and these are arranged with almost no gap to form the ceramic support 24.

廃太陽光パネル26中の樹脂をほぼ完全にかつ穏やかに燃焼させるため、易燃性の封止樹脂はセラミック支持体24内で無触媒で燃焼させ、バックシート構成樹脂はセラミック支持体24内で触媒を用いて燃焼させる。そこで上側の無触媒のセラミック板28と、下側の触媒担持のセラミック板29とを積層する。触媒の種類は任意であるが、安価な酸化物触媒が好ましく、特に酸化クロム、酸化鉄等の遷移金属酸化物触媒が好ましい。触媒は、触媒元素の金属塩の溶液へのセラミック板29の含浸と乾燥、焼成などにより担持し、担持方法は任意である。なお1枚のセラミック板の下部のみを触媒元素の金属塩の溶液に含浸すると、上下1枚のセラミック板で良い。 In order to burn the resin in the waste solar panel 26 almost completely and gently, the flammable sealing resin is burned in the ceramic support 24 without a catalyst, and the backsheet constituent resin is burned in the ceramic support 24. Burn with a catalyst. Therefore, the upper catalyst-free ceramic plate 28 and the lower catalyst-supported ceramic plate 29 are laminated. The type of catalyst is arbitrary, but an inexpensive oxide catalyst is preferable, and a transition metal oxide catalyst such as chromium oxide and iron oxide is particularly preferable. The catalyst is supported by impregnating the ceramic plate 29 with a solution of a metal salt of the catalyst element, drying, firing, or the like, and the supporting method is arbitrary. If only the lower part of one ceramic plate is impregnated with the solution of the metal salt of the catalyst element, one upper and lower ceramic plate may be used.

セラミック板28,29は連続気孔でかつ多孔質とし、ハニカムなどでも良いが、セラミックフィルタ、セラミックフォームフィルタなどとして知られる、安価で通気性が高くかつ軽量な、連続気孔の多孔質セラミックが好ましい。またセラミック板28,29の厚さは任意で、例えば各50mm厚とする。 The ceramic plates 28 and 29 have continuous pores and are porous, and may be honeycombs or the like. However, inexpensive, highly breathable and lightweight porous ceramics with continuous pores known as ceramic filters, ceramic foam filters and the like are preferable. The thickness of the ceramic plates 28 and 29 is arbitrary, for example, 50 mm each.

セラミック板28,29を配列したものを取り扱いやすくするため、金属カゴ30上にこれらを載置する。31は金属カゴのフレームで、例えばセラミック支持体24の4周を囲み、フレーム31上に縦横に配列した金属棒32,33により下部のセラミック板29の底面を支持する。金属カゴ30の底面は、フレーム31と金属棒32,33以外は開放されており、燃焼炉4内では酸素含有ガスが金属カゴ30底面の開口を通りセラミック支持体24の底面へ吹き込む。金属カゴ30の材質は燃焼炉4での加熱に耐えるものであれば任意で、構造は酸素含有ガスの吹き込みを妨げずかつセラミック板28,29を支持できるものであれば任意である。 In order to make it easier to handle the arrangement of the ceramic plates 28 and 29, these are placed on the metal basket 30. Reference numeral 31 denotes a frame of a metal basket, for example, surrounding four circumferences of the ceramic support 24, and supporting the bottom surface of the lower ceramic plate 29 by metal rods 32 and 33 arranged vertically and horizontally on the frame 31. The bottom surface of the metal basket 30 is open except for the frame 31 and the metal rods 32 and 33, and oxygen-containing gas is blown into the bottom surface of the ceramic support 24 through the opening on the bottom surface of the metal basket 30 in the combustion furnace 4. The material of the metal basket 30 is arbitrary as long as it can withstand heating in the combustion furnace 4, and the structure is arbitrary as long as it does not interfere with the blowing of oxygen-containing gas and can support the ceramic plates 28 and 29.

図3に、処理対象の廃太陽光パネル26を示す。40はセルで、材質と構造は任意で、パネル26内に複数枚設けられ、セル40間の配線材41はCu,Al等から成る。セル40と配線材41を封止する封止樹脂42はEVA等の易燃性の樹脂で、パネル26の前面のガラス板43は例えば強化ガラスである。フレーム44は例えばアルミニウム製で、実施例では載置場15で載置する前に廃太陽光パネル26から取り外すが、フレーム44を付けたまま燃焼炉4で廃太陽光パネル26を処理しても良い。45はPET等から成るバックシートで、酸化チタン、炭酸カルシウム等の無機粉体を含んでいる。46はバックシート45の底面の端子ボックスで、太陽光パネルを外部と接続する端子を内蔵している。端子ボックス46も、載置場15で載置する前に廃太陽光パネル26から取り外すことが好ましい。 FIG. 3 shows the waste solar panel 26 to be treated. Reference numeral 40 denotes a cell, the material and structure of which are arbitrary, a plurality of sheets are provided in the panel 26, and the wiring material 41 between the cells 40 is made of Cu, Al, or the like. The sealing resin 42 that seals the cell 40 and the wiring material 41 is a flammable resin such as EVA, and the glass plate 43 on the front surface of the panel 26 is, for example, tempered glass. The frame 44 is made of aluminum, for example, and is removed from the waste solar panel 26 before being mounted in the mounting place 15 in the embodiment, but the waste solar panel 26 may be treated in the combustion furnace 4 with the frame 44 attached. .. Reference numeral 45 denotes a back sheet made of PET or the like, which contains inorganic powders such as titanium oxide and calcium carbonate. Reference numeral 46 denotes a terminal box on the bottom surface of the back sheet 45, which has a built-in terminal for connecting the solar panel to the outside. It is preferable that the terminal box 46 is also removed from the waste solar panel 26 before being mounted in the mounting space 15.

廃太陽光パネル26からフレーム44と端子ボックス46を取り外し、載置場15でセラミック支持体24上に廃太陽光パネル26を載置する。この時、セラミック支持体24は保温庫6で300〜400℃程度、好ましくは350℃程度に保温されている。セラミック支持体24により昇温しながら、廃太陽光パネル26は燃焼炉4に入り、酸素含有ガスにより予熱される。 The frame 44 and the terminal box 46 are removed from the waste solar panel 26, and the waste solar panel 26 is placed on the ceramic support 24 at the mounting place 15. At this time, the ceramic support 24 is kept warm in the heat insulating chamber 6 at about 300 to 400 ° C., preferably about 350 ° C. While the temperature is raised by the ceramic support 24, the waste solar panel 26 enters the combustion furnace 4 and is preheated by the oxygen-containing gas.

封止樹脂42とバックシート45の構成樹脂は300〜400℃程度で融解し、易燃性のEVA等の樹脂は上部のセラミック板28内で、PET等の樹脂は下部のセラミック板29内で金属酸化物触媒の助けにより燃焼する。樹脂は厚さ50mm程度のセラミック板28,29内を通過する間に燃焼するので、燃焼時間は長く、黒煙は発生せず、また樹脂はほぼ完全に燃焼し、樹脂自体の残渣は残らない。樹脂の燃焼が始まると、燃焼熱により廃太陽光パネル26とセラミック板28,29が加熱されるので、酸素含有ガスの吹き込み温度を下げても良い。燃焼炉4内でのガラス板43及びセラミック板28,29の最高温度は例えば450〜600℃程度である。 The resin of the sealing resin 42 and the back sheet 45 melts at about 300 to 400 ° C., the flame-retardant resin such as EVA is in the upper ceramic plate 28, and the resin such as PET is in the lower ceramic plate 29. Burns with the help of a metal oxide catalyst. Since the resin burns while passing through the ceramic plates 28 and 29 having a thickness of about 50 mm, the burning time is long, black smoke is not generated, the resin burns almost completely, and no residue of the resin itself remains. .. When the combustion of the resin starts, the waste solar panel 26 and the ceramic plates 28 and 29 are heated by the heat of combustion, so that the blowing temperature of the oxygen-containing gas may be lowered. The maximum temperature of the glass plate 43 and the ceramic plates 28, 29 in the combustion furnace 4 is, for example, about 450 to 600 ° C.

樹脂の燃焼が完了すると、セラミック支持体24を回収場18へ搬送し、ガラス板43を移載装置19により移載し、吸引装置20によりセル40,配線材41,端子ボックス46の材料、酸化チタン等の無機粉末を吸引する。回収場18を出た時点でのセラミック支持体24の温度は例えば400℃〜450℃で、保温庫6内で例えば300〜400℃程度に保温する。そして載置場15で次の廃太陽光パネル26を載置するタイミングに合わせて、保温庫6からセラミック支持体24を搬出する。 When the combustion of the resin is completed, the ceramic support 24 is transported to the collection site 18, the glass plate 43 is transferred by the transfer device 19, and the cell 40, the wiring material 41, the material of the terminal box 46, and the oxidation are carried out by the suction device 20. Aspirate inorganic powder such as titanium. The temperature of the ceramic support 24 at the time of leaving the collection site 18 is, for example, 400 ° C. to 450 ° C., and the temperature is kept at, for example, 300 to 400 ° C. in the heat insulating chamber 6. Then, the ceramic support 24 is carried out from the heat insulating chamber 6 at the timing when the next waste solar panel 26 is placed in the storage place 15.

実施例では、セラミック支持体24を保温庫6で保温する。このため燃焼炉4でセラミック支持体24の予熱エネルギーを少なくし、また予熱時間を短縮できる。
In the embodiment, the ceramic support 24 is kept warm in the heat insulating chamber 6. Therefore, the preheating energy of the ceramic support 24 in the combustion furnace 4 can be reduced, and the preheating time can be shortened.

2 処理システム
4 燃焼炉
6 保温庫
8 搬送機構
9,10 扉
11 バーナ
12 ガス吹き込み口
14 排ガス処理装置
15 載置場
16,19 移載装置
17,21 置き場
18 回収場
20 吸引装置
22 分離装置
24 セラミック支持体
26 廃太陽光パネル
28,29 セラミック板
30 金属カゴ
31 フレーム
32,33 金属棒
40 セル
41 配線材
42 封止樹脂
43 ガラス板
44 フレーム
45 バックシート
46 端子ボックス
2 Treatment system 4 Combustion furnace 6 Heat insulation chamber 8 Conveyance mechanism 9, 10 Door 11 Burner 12 Gas inlet 14 Exhaust gas treatment device 15 Storage site 16, 19 Transfer device 17, 21 Storage site 18 Recovery site 20 Suction device 22 Separation device 24 Ceramic Support 26 Waste solar panel 28,29 Ceramic plate 30 Metal basket 31 Frame 32,33 Metal rod 40 Cell 41 Wiring material 42 Encapsulating resin 43 Glass plate 44 Frame 45 Back sheet 46 Terminal box

Claims (4)

連続気孔で多孔質のセラミック支持体を保温庫から搬出し、セラミック支持体上に廃太陽光パネルを載置するステップと、
廃太陽光パネルを載置したセラミック支持体を、燃焼炉内に搬入するステップと、
燃焼炉内で、セラミック支持体の下方から酸素含有ガスを吹き込むと共に、廃太陽光パネルを加熱し、廃太陽光パネル内の樹脂を加熱融解すると共に、融解した樹脂をセラミック支持体内で燃焼させるステップと、
セラミック支持体を燃焼炉から搬出すると共に、廃太陽光パネルから少なくともガラス板を回収するステップと、
少なくともガラス板を回収した後の、セラミック支持体を保温庫内で待機させるステップ、
をこの順に繰り返し実行する、廃太陽光パネルの処理方法。
The step of removing the porous ceramic support from the heat insulation chamber with continuous pores and placing the waste solar panel on the ceramic support,
The step of bringing the ceramic support on which the waste solar panel is placed into the combustion furnace, and
In the combustion furnace, oxygen-containing gas is blown from below the ceramic support, the waste solar panel is heated, the resin in the waste solar panel is heated and melted, and the melted resin is burned in the ceramic support. When,
The step of removing the ceramic support from the combustion furnace and collecting at least the glass plate from the waste solar panel,
At least after collecting the glass plate, the step of making the ceramic support stand by in the heat insulation chamber,
A method of treating waste solar panels, which is repeated in this order.
セラミック支持体の下部には金属酸化物触媒が担持され、セラミック支持体の上部には金属酸化物触媒が担持されておらず、
廃太陽光パネル内のセルを封止している樹脂をセラミック支持体の上部で燃焼させ、廃太陽光パネルのバックシートを構成する樹脂をセラミック支持体の下部で燃焼させることを特徴とする、請求項1の廃太陽光パネルの処理方法。
A metal oxide catalyst is supported on the lower part of the ceramic support, and no metal oxide catalyst is supported on the upper part of the ceramic support.
The resin that seals the cells in the waste solar panel is burned in the upper part of the ceramic support, and the resin that constitutes the back sheet of the waste solar panel is burned in the lower part of the ceramic support. The method for treating a waste solar panel according to claim 1.
連続気孔で多孔質のセラミック板が複数配列されることにより、セラミック支持体が構成され、
かつ金属のカゴ上にセラミック支持体が載置されていることを特徴とする、請求項1または2の廃太陽光パネルの処理方法。
A ceramic support is formed by arranging a plurality of porous ceramic plates with continuous pores.
The method for treating a waste solar panel according to claim 1 or 2, wherein a ceramic support is placed on a metal basket.
連続気孔で多孔質のセラミック支持体と、セラミック支持体上に載置された廃太陽光パネル内の樹脂を燃焼させるための燃焼炉と、保温庫と、セラミック支持体上に廃太陽光パネルを載置するための載置場と、少なくとも廃太陽光パネルのガラス板をセラミック支持体から回収するための回収場と、セラミック支持体の搬送機構、とを備え、
保温庫はセラミック支持体を保温するように構成され、
セラミック支持体の搬送機構は、保温庫から載置場、燃焼炉、回収場を経て、保温庫へセラミック支持体を戻すように構成されている、廃太陽光パネルの処理システム。
A ceramic support that is porous with continuous pores, a combustion furnace for burning the resin in the waste solar panel placed on the ceramic support, a heat insulator, and a waste solar panel on the ceramic support. It is provided with a mounting place for mounting, at least a collecting place for recovering the glass plate of the waste solar panel from the ceramic support, and a transport mechanism for the ceramic support.
The heat insulator is configured to keep the ceramic support warm.
The transport mechanism of the ceramic support is a waste solar panel treatment system that is configured to return the ceramic support from the heat insulation chamber to the heat insulation chamber via a storage place, a combustion furnace, and a recovery place.
JP2019205926A 2019-11-14 2019-11-14 Waste solar panel processing method and processing system Active JP7329421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019205926A JP7329421B2 (en) 2019-11-14 2019-11-14 Waste solar panel processing method and processing system
PCT/JP2020/031577 WO2021095318A1 (en) 2019-11-14 2020-08-21 Waste solar panel processing method and processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019205926A JP7329421B2 (en) 2019-11-14 2019-11-14 Waste solar panel processing method and processing system

Publications (2)

Publication Number Publication Date
JP2021079301A true JP2021079301A (en) 2021-05-27
JP7329421B2 JP7329421B2 (en) 2023-08-18

Family

ID=75912614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019205926A Active JP7329421B2 (en) 2019-11-14 2019-11-14 Waste solar panel processing method and processing system

Country Status (2)

Country Link
JP (1) JP7329421B2 (en)
WO (1) WO2021095318A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115591540B (en) * 2022-10-24 2023-10-31 中山大学 Method for preparing hydrolysis hydrogen production catalyst by recycling waste solar panels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858125B1 (en) * 2013-10-01 2021-07-21 Korea Institute of Energy Research Method for disassembling photovoltaic module
JP6596735B2 (en) * 2014-11-10 2019-10-30 株式会社ジンテク Method of recovering valuable material from solar cell module and processing device for recovery
JP6596732B2 (en) 2015-03-31 2019-10-30 株式会社ジンテク Method for recovering valuable material from solar cell panel and processing device for recovery
EP3834955A4 (en) 2018-08-06 2022-04-20 Tokuyama Corporation Method for recovering valuable object from solar cell module

Also Published As

Publication number Publication date
WO2021095318A1 (en) 2021-05-20
JP7329421B2 (en) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2023013403A1 (en) Heat treatment apparatus and heat treatment method
CN112469514B (en) Method for recovering valuable substances from solar cell module
JPH0549916B2 (en)
JP6596735B2 (en) Method of recovering valuable material from solar cell module and processing device for recovery
WO2021095318A1 (en) Waste solar panel processing method and processing system
CN205127970U (en) Vertical continuous regenerator of useless active carbon
CN215336354U (en) High-efficient useless device that burns of danger
JP4387326B2 (en) Trolley tunnel furnace
CN108147646B (en) Gas supply unit that discharges fume is used in microcrystalline glass preparation
WO2024061222A1 (en) Workpiece water-removal device and drying system
CN209782688U (en) boiler waste heat recycling device
CN101391864A (en) Basal plate heat treatment furnace
JP2014173813A (en) Hot air circulation type heating device
CN205535860U (en) Energy -saving dangerous waste incineration system
CN213421804U (en) Firing furnace with turntable structure for ceramic production
CN213273819U (en) Kiln flue gas waste heat recovery device
CN107289750A (en) A kind of root of kudzu vine grain drying unit
JP4730882B2 (en) Carbon material raw material drying method and carbon material raw material drying furnace
JP2020142218A (en) Disassembling apparatus of solar cell panel, and disassembling method of solar cell panel
JPH0953887A (en) Vacuum/gas ambient heat-treatment furnace
CN109985517A (en) A kind of printing VOCs catalysis thermal oxidation cycle device
CN217764390U (en) Device of rock wool board is solidified in circulation of closed electric heat wind
CN218410757U (en) Sagger production is with heat recovery mechanism of automatic cellar for storing things stove for lithium cell
CN214664432U (en) Device for treating animal carcasses
CN215524174U (en) Sintering device for producing ceramic flux

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7329421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150