JP2016092156A - Deposition device, deposition method and storage medium - Google Patents

Deposition device, deposition method and storage medium Download PDF

Info

Publication number
JP2016092156A
JP2016092156A JP2014223701A JP2014223701A JP2016092156A JP 2016092156 A JP2016092156 A JP 2016092156A JP 2014223701 A JP2014223701 A JP 2014223701A JP 2014223701 A JP2014223701 A JP 2014223701A JP 2016092156 A JP2016092156 A JP 2016092156A
Authority
JP
Japan
Prior art keywords
rotation
wafer
substrate
turntable
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014223701A
Other languages
Japanese (ja)
Other versions
JP6330623B2 (en
Inventor
寿 加藤
Hisashi Kato
寿 加藤
繁博 三浦
Shigehiro Miura
繁博 三浦
宏之 菊地
Hiroyuki Kikuchi
宏之 菊地
勝芳 相川
Katsuyoshi Aikawa
勝芳 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014223701A priority Critical patent/JP6330623B2/en
Priority to TW104135533A priority patent/TWI612603B/en
Priority to KR1020150151152A priority patent/KR101899634B1/en
Priority to US14/926,017 priority patent/US10072336B2/en
Priority to CN201510726329.0A priority patent/CN105568259B/en
Publication of JP2016092156A publication Critical patent/JP2016092156A/en
Application granted granted Critical
Publication of JP6330623B2 publication Critical patent/JP6330623B2/en
Priority to US16/021,888 priority patent/US11085113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft

Abstract

PROBLEM TO BE SOLVED: To provide a technique for enhancing the uniformity of thickness in the circumferential direction of the plane of a substrate, when performing deposition while revolving the substrate mounted on a turntable.SOLUTION: A deposition device is constituted to include a rotating mechanism for rotating the placement area of a substrate in a turntable, so that the substrate rotates, a process gas supply mechanism for supplying process gas to a gas supply area on ne side of the turntable, and depositing on the substrate passing through the gas supply area a plurality of times repeatedly by revolution, and a control unit calculating the rotation speed of the substrate based on the parameters including the rotational speed of the turntable, and outputting a control signal so as to rotate the substrate at the rotation speed. Since the processing can be carried out so that the orientation of the substrate changes every time when it is located in the gas supply area, uniformity of thickness can be enhanced in the circumferential direction.SELECTED DRAWING: Figure 1

Description

本発明は、処理ガスを基板に供給して薄膜を得る成膜装置、成膜方法及び記憶媒体に関する。   The present invention relates to a film forming apparatus, a film forming method, and a storage medium for obtaining a thin film by supplying a processing gas to a substrate.

半導体ウエハ(以下「ウエハ」と言う)などの基板にシリコン酸化物(SiO2)などの薄膜を成膜する手法として、例えばALD(Atomic Layer Deposition)を行う成膜装置が知られている。この成膜装置の一例として、その内部が真空雰囲気とされる処理容器内に例えばウエハが載置される回転テーブルが設けられる装置がある。回転テーブル上には、例えばシリコン酸化膜の原料となる原料ガスを吐出するガスノズルと、この原料ガスを酸化する酸化ガスを吐出するガスノズルと、が配置される。そして、回転テーブルの回転によってウエハが公転し、原料ガスが供給される吸着領域と、酸化ガスが供給される酸化領域と、をウエハが交互に繰り返し通過して、前記シリコン酸化膜が形成される。   As a technique for forming a thin film such as silicon oxide (SiO 2) on a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”), for example, a film forming apparatus that performs ALD (Atomic Layer Deposition) is known. As an example of this film forming apparatus, there is an apparatus in which a rotary table on which, for example, a wafer is placed is provided in a processing container whose inside is a vacuum atmosphere. On the turntable, for example, a gas nozzle that discharges a source gas that is a raw material of a silicon oxide film and a gas nozzle that discharges an oxidizing gas that oxidizes the source gas are arranged. Then, the wafer is revolved by the rotation of the rotary table, and the silicon oxide film is formed by alternately passing the wafer through the adsorption region to which the source gas is supplied and the oxidation region to which the oxidizing gas is supplied. .

前記ALDにおいてウエハの面内の膜厚分布を制御するためには、ウエハに吸着される原料ガスの分布を制御することが必要であり、従って、上記の成膜装置において、原料ガスのガスノズルに設けられる吐出口の数及び位置についての調整が適宜行われる。さらに、ガスノズルの形状についての選択や吸着領域と酸化領域とを区画するために供給される分離ガスの供給量の調整、原料ガス中におけるキャリアガスの濃度の調整なども適宜行われる。   In order to control the film thickness distribution in the plane of the wafer in the ALD, it is necessary to control the distribution of the source gas adsorbed on the wafer. Therefore, in the film forming apparatus, the source gas gas nozzle is controlled. Adjustment about the number and position of the discharge outlet provided is performed suitably. Furthermore, selection of the shape of the gas nozzle, adjustment of the supply amount of the separation gas supplied to partition the adsorption region and the oxidation region, adjustment of the concentration of the carrier gas in the raw material gas, and the like are also performed as appropriate.

ところで、ウエハの周縁部と中央部とについては成膜処理後に行われるエッチング処理により、夫々のエッチングレートを調整可能な場合がある。その場合は、エッチング後に周縁部と中央部とで膜厚を揃えることができるので、特にウエハの周方向について、均一性高い膜厚が得られるように求められる。しかし、上記の公転によって、ウエハの各部は回転テーブルの回転中心から所定の距離を離れた同じ軌道を繰り返し移動する。従って、吸着領域における原料ガスの分布のばらつきは、ウエハにおいて当該回転テーブルの径方向に沿って見たときの膜厚のばらつきとなって現れてしまうおそれがあり、上記の吐出口についての調整などでは、この膜厚のばらつきを十分に解消できないおそれがあった。   By the way, there are cases where the respective etching rates can be adjusted for the peripheral portion and the central portion of the wafer by an etching process performed after the film forming process. In that case, since the film thickness can be made uniform at the peripheral part and the central part after etching, it is required to obtain a highly uniform film thickness particularly in the circumferential direction of the wafer. However, due to the above revolution, each part of the wafer repeatedly moves on the same trajectory at a predetermined distance from the rotation center of the rotary table. Therefore, the variation in the distribution of the raw material gas in the adsorption region may appear as a variation in the film thickness when viewed along the radial direction of the rotary table on the wafer. Then, there was a possibility that this variation in film thickness could not be solved sufficiently.

特許文献1には、このようにウエハが公転する成膜装置が記載されており、上記の周方向における膜厚の均一性を向上させるために、回転テーブルが所定の向きで停止したときに回転テーブル上に置かれたウエハを当該回転テーブルから浮かせて向きを変更し、再度回転テーブルに置き直す機構が設けられている。しかし、この特許文献1の成膜装置によれば、ウエハの向きを変える度に回転テーブルを停止させるため、スループットが低下してしまうおそれがある。   Patent Document 1 describes a film forming apparatus in which a wafer revolves in this way, and in order to improve the film thickness uniformity in the circumferential direction, the rotating table rotates when stopped in a predetermined direction. A mechanism is provided in which the wafer placed on the table is lifted off the rotary table, changed in direction, and placed on the rotary table again. However, according to the film forming apparatus of Patent Document 1, the rotation table is stopped every time the orientation of the wafer is changed, and thus there is a risk that throughput may be reduced.

また、特許文献2においてもウエハが公転する成膜装置について記載されており、この成膜装置では回転テーブルの回転中に、当該回転テーブルに載置されたウエハが自転する旨が記載されている。しかしこのウエハの自転が、どのような回転数に設定されるかは記載されていない。ウエハの自転の回転数が適切に設定されないと、ウエハの自転と公転とが同期する。つまりウエハが前記吸着領域を通過する際に同じ向きで通過してしまい、前記ウエハの周方向における膜厚の均一性を、十分に向上させることができないおそれがある。   Also, Patent Document 2 describes a film forming apparatus in which a wafer revolves. In this film forming apparatus, it is described that a wafer placed on the rotary table rotates while the rotary table rotates. . However, it is not described what rotation speed is set for the rotation of the wafer. If the rotation speed of the rotation of the wafer is not set appropriately, the rotation and revolution of the wafer are synchronized. That is, when the wafer passes through the adsorption region, it passes in the same direction, and the film thickness uniformity in the circumferential direction of the wafer may not be sufficiently improved.

特許5093162Patent 5093162 特許4817210Patent 4817210

本発明はこのような事情の下になされたものであり、その目的は、回転テーブルに載置された基板を公転させて成膜を行うにあたり、基板の面内の周方向における膜厚の均一性を高くすることができる技術を提供することである。   The present invention has been made under such circumstances, and its purpose is to make the film thickness uniform in the circumferential direction in the plane of the substrate when the substrate placed on the turntable is revolved to form a film. It is to provide a technology that can enhance the performance.

本発明の成膜装置は、
処理ガスを基板に供給して薄膜を得る成膜装置であって、
真空容器内に配置され、その一面側に設けられる載置領域に基板を載置して公転させるための回転テーブルと、
前記基板が自転するように前記載置領域を回転させる回転機構と、
前記回転テーブルの一面側におけるガス供給領域に前記処理ガスを供給し、前記公転により当該ガス供給領域を複数回繰り返し通過する基板に成膜を行うための処理ガス供給機構と、
前記ガス供給領域に基板が位置する毎に当該基板の向きが変わるように、前記回転テーブルの回転速度を含むパラメータに基づいて、前記基板の自転速度を演算し、演算された自転速度で基板を自転させるように制御信号を出力する制御部と、
を備えたことを特徴とする。
The film forming apparatus of the present invention
A film forming apparatus for obtaining a thin film by supplying a processing gas to a substrate,
A rotary table that is placed in a vacuum vessel and placed on a placement area provided on one side thereof to revolve the substrate,
A rotation mechanism for rotating the placement area so that the substrate rotates,
A process gas supply mechanism for supplying the process gas to a gas supply region on one surface side of the turntable and performing film formation on the substrate that repeatedly passes through the gas supply region by the revolution; and
The rotation speed of the substrate is calculated based on parameters including the rotation speed of the turntable so that the orientation of the substrate changes every time the substrate is positioned in the gas supply region, and the substrate is moved at the calculated rotation speed. A control unit that outputs a control signal so as to rotate,
It is provided with.

本発明の成膜方法は、
処理ガスを基板に供給して薄膜を得る成膜方法であって、
真空容器内に配置される回転テーブルの一面側に設けられる載置領域に基板を載置して公転させる工程と、
自転機構により前記基板が自転するように載置領域を回転させる工程と、
前記回転テーブルの一面側におけるガス供給領域に処理ガス供給機構により前記処理ガスを供給し、当該ガス供給領域を複数回繰り返し通過する基板に成膜を行う工程と、
前記ガス供給領域に基板が位置する毎に当該基板の向きが変わるように、前記回転テーブルの回転速度を含むパラメータに基づいて、前記基板の自転速度を演算する工程と、
演算された自転速度で基板を自転させる工程と、
を備えたことを特徴とする。
また、本発明の記憶媒体は、処理ガスを基板に供給して薄膜を得る成膜装置に用いられるコンピュータプログラムを格納した記憶媒体において、
前記コンピュータプログラムは、上記の成膜方法を実施するようにステップが組まれていることを特徴とする。
The film forming method of the present invention comprises:
A film forming method for obtaining a thin film by supplying a processing gas to a substrate,
A step of placing and revolving a substrate on a placement region provided on one side of a rotary table disposed in a vacuum vessel;
Rotating the mounting region so that the substrate rotates by a rotation mechanism;
Supplying the processing gas to a gas supply region on one surface side of the turntable by a processing gas supply mechanism, and forming a film on a substrate that repeatedly passes through the gas supply region;
Calculating the rotation speed of the substrate based on parameters including the rotation speed of the turntable so that the orientation of the substrate changes each time the substrate is positioned in the gas supply region;
A process of rotating the substrate at the calculated rotation speed;
It is provided with.
The storage medium of the present invention is a storage medium storing a computer program used in a film forming apparatus for obtaining a thin film by supplying a processing gas to a substrate.
The computer program is characterized in that steps are set so as to implement the film forming method.

本発明によれば、回転テーブルの回転速度を含むパラメータに基づいて、前記基板の自転速度を演算し、演算された自転速度で基板を自転させる。それによって、前記回転テーブル上のガス供給領域に基板が位置する毎に、当該基板の向きを確実に変えることができる。従って、基板の周方向に均一性高い膜厚で、成膜を行うことができる。   According to the present invention, the rotation speed of the substrate is calculated based on parameters including the rotation speed of the rotary table, and the substrate is rotated at the calculated rotation speed. Thereby, every time the substrate is positioned in the gas supply region on the rotary table, the direction of the substrate can be reliably changed. Therefore, the film can be formed with a highly uniform film thickness in the circumferential direction of the substrate.

本発明に係る成膜装置の縦断側面図である。It is a vertical side view of the film-forming apparatus which concerns on this invention. 前記成膜装置の横断平面図である。It is a cross-sectional top view of the said film-forming apparatus. 前記成膜装置の内部を示す斜視図である。It is a perspective view which shows the inside of the said film-forming apparatus. 前記成膜装置の回転テーブルの表面側斜視図である。It is a surface side perspective view of the turntable of the said film-forming apparatus. 前記回転テーブルの裏面側斜視図である。It is a back surface side perspective view of the said rotation table. 前記成膜装置に設けられる制御部を構成する制御部のブロック図である。It is a block diagram of the control part which comprises the control part provided in the said film-forming apparatus. 成膜処理時におけるウエハの位置及び向きを示す説明図である。It is explanatory drawing which shows the position and orientation of a wafer at the time of a film-forming process. 成膜処理時におけるウエハの位置及び向きを示す説明図である。It is explanatory drawing which shows the position and orientation of a wafer at the time of a film-forming process. 成膜処理時におけるウエハの位置及び向きを示す説明図である。It is explanatory drawing which shows the position and orientation of a wafer at the time of a film-forming process. 成膜処理時におけるウエハの位置及び向きを示す説明図である。It is explanatory drawing which shows the position and orientation of a wafer at the time of a film-forming process. 前記成膜処理時における前記回転テーブル上のガスの流れを示す説明図である。It is explanatory drawing which shows the flow of the gas on the said rotary table at the time of the said film-forming process. 前記回転テーブルに設けられるウエハホルダの構成例を示す縦断側面図である。It is a vertical side view which shows the structural example of the wafer holder provided in the said rotation table. 前記成膜装置の真空容器の構成例を示す縦断側面図である。It is a vertical side view which shows the structural example of the vacuum vessel of the said film-forming apparatus. 本発明の他の実施形態に係る成膜装置の縦断側面図である。It is a vertical side view of the film-forming apparatus which concerns on other embodiment of this invention. 前記成膜装置の回転テーブルの表面側斜視図である。It is a surface side perspective view of the turntable of the said film-forming apparatus. 回転テーブルに載置されたウエハの自転を示す模式図である。It is a schematic diagram which shows rotation of the wafer mounted on the rotary table. 回転テーブルに載置されたウエハの自転を示す模式図である。It is a schematic diagram which shows rotation of the wafer mounted on the rotary table. 回転テーブルに載置されたウエハの自転を示す模式図である。It is a schematic diagram which shows rotation of the wafer mounted on the rotary table. さらに他の成膜装置の回転テーブルの構成を示す表面側斜視図である。It is a surface side perspective view which shows the structure of the rotary table of another film-forming apparatus. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示すグラフ図である。It is a graph which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示すグラフ図である。It is a graph which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示すグラフ図である。It is a graph which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示すグラフ図である。It is a graph which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示す模式図である。It is a schematic diagram which shows the film thickness distribution of the wafer in an evaluation test. 評価試験におけるウエハの膜厚分布を示すグラフ図である。It is a graph which shows the film thickness distribution of the wafer in an evaluation test.

本発明の真空処理装置の一実施形態であり、基板であるウエハWにALDを行う成膜装置1について説明する。この成膜装置1は、ウエハWにSi(シリコン)を含む処理ガスである原料ガスとしてBTBAS(ビスターシャルブチルアミノシラン)ガスを吸着させ、吸着されたBTBASガスを酸化する酸化ガスであるオゾン(O3)ガスを供給してSiO2(酸化シリコン)の分子層を形成し、この分子層を改質するためにプラズマ発生用ガスから発生したプラズマに曝す。この一連の処理が複数回、繰り返し行われ、SiO2膜が形成されるように構成されている。   A film forming apparatus 1 that performs ALD on a wafer W as a substrate, which is an embodiment of the vacuum processing apparatus of the present invention, will be described. The film forming apparatus 1 adsorbs BTBAS (bistar butylaminosilane) gas as a source gas, which is a processing gas containing Si (silicon), on the wafer W, and ozone (O 3), which is an oxidizing gas that oxidizes the adsorbed BTBAS gas. ) A gas is supplied to form a molecular layer of SiO2 (silicon oxide), and the molecular layer is exposed to plasma generated from a plasma generating gas in order to modify the molecular layer. This series of processes is repeated a plurality of times to form an SiO2 film.

図1、図2は成膜装置1の縦断側面図、横断平面図である。成膜装置1は、概ね円形状の扁平な真空容器(処理容器)11と、真空容器11内に設けられた円板状の水平な回転テーブル(サセプタ)2と、を備えている。真空容器11は、天板12と、真空容器11の側壁及び底部をなす容器本体13と、により構成されている。   FIG. 1 and FIG. 2 are a longitudinal side view and a transverse plan view of the film forming apparatus 1. The film forming apparatus 1 includes a substantially circular flat vacuum container (processing container) 11 and a disk-shaped horizontal rotary table (susceptor) 2 provided in the vacuum container 11. The vacuum container 11 includes a top plate 12 and a container body 13 that forms the side wall and bottom of the vacuum container 11.

回転テーブル2の中心部から鉛直下方へ伸びる中心軸21が設けられている。中心軸21は、容器本体13の底部に形成された開口部14を塞ぐように設けられた公転用回転駆動部22に接続されている。回転テーブル2は、中心軸21及び公転用回転駆動部22を介して真空容器11内に支持されると共に、平面視時計回りに回転する。図1中15は、中心軸21と容器本体13との隙間にN2(窒素)ガスを吐出するガスノズルであり、ウエハWの処理中にN2ガスを吐出して回転テーブル2の表面から裏面への原料ガス及び酸化ガスの回りこみを防ぐ役割を有する。   A central shaft 21 that extends vertically downward from the center of the turntable 2 is provided. The central shaft 21 is connected to a revolving rotation drive unit 22 provided so as to close the opening 14 formed at the bottom of the container body 13. The turntable 2 is supported in the vacuum vessel 11 via the center shaft 21 and the revolution rotation drive unit 22 and rotates clockwise in plan view. In FIG. 1, reference numeral 15 denotes a gas nozzle that discharges N2 (nitrogen) gas into the gap between the central shaft 21 and the container main body 13, and N2 gas is discharged during processing of the wafer W to move from the front surface to the back surface of the turntable 2. It has a role to prevent wraparound of raw material gas and oxidizing gas.

また、真空容器11の天板12の下面には、回転テーブル2の中心部に対向するように突出する平面視円形の中心領域形成部Cと、中心領域形成部Cから回転テーブル2の外側に向かって広がるように形成された平面視扇状の突出部17、17と、が形成されている。つまり、これら中心領域形成部C及び突出部17、17は、その外側領域に比べて低い天井面を構成している。中心領域形成部Cと回転テーブル2との中心部との隙間はN2ガスの流路18を構成している。ウエハWの処理中において、天板12に接続されるガス供給管からN2ガスが流路18に供給され、この流路18から回転テーブル2の外側全周に向かって吐出される。このN2ガスは、原料ガス及び酸化ガスが回転テーブル2の中心部上で接触することを防ぐ。   Further, on the lower surface of the top plate 12 of the vacuum vessel 11, a center region forming portion C having a circular shape in plan view protruding so as to face the center portion of the turntable 2, and from the center region forming portion C to the outside of the turntable 2. Projection portions 17 and 17 having a fan-like shape in plan view and formed so as to spread toward the top are formed. That is, the central region forming portion C and the protruding portions 17 and 17 constitute a lower ceiling surface than the outer region. The gap between the central region forming part C and the central part of the turntable 2 constitutes the N2 gas flow path 18. During processing of the wafer W, N 2 gas is supplied from the gas supply pipe connected to the top plate 12 to the flow path 18, and is discharged from the flow path 18 toward the entire outer periphery of the turntable 2. This N 2 gas prevents the source gas and the oxidizing gas from coming into contact with each other on the center portion of the turntable 2.

図3は容器本体13の内部の底面を示す斜視図である。容器本体13には、回転テーブル2の下方にて当該回転テーブル2の周に沿うように、扁平なリング状の凹部31が形成されている。そして、この凹部31の底面には、凹部31の周方向に沿ったリング状のスリット32が開口しており、当該スリット32は、容器本体13の底部を厚さ方向に貫通するように形成されている。さらに凹部31の底面上には、回転テーブル2に載置されるウエハWを加熱するためのヒーター33が7つのリング状に配設されている。なお、図3では煩雑化を避けるために、ヒーター33の一部を切り取って示している。   FIG. 3 is a perspective view showing a bottom surface inside the container body 13. A flat ring-shaped recess 31 is formed in the container main body 13 along the circumference of the turntable 2 below the turntable 2. A ring-shaped slit 32 is formed in the bottom surface of the recess 31 along the circumferential direction of the recess 31, and the slit 32 is formed so as to penetrate the bottom of the container body 13 in the thickness direction. ing. Further, on the bottom surface of the recess 31, a heater 33 for heating the wafer W placed on the turntable 2 is arranged in seven rings. In FIG. 3, in order to avoid complication, a part of the heater 33 is cut out.

ヒーター33は、回転テーブル2の回転中心を中心とする同心円に沿って配置されており、7つのヒーター33のうちの4つはスリット32の内側に、他の3つはスリット32の外側に夫々設けられている。また、各ヒーター33の上方を覆い、凹部31の上側を塞ぐように、シールド34が設けられている(図1参照)。シールド34には、スリット32に重なるようにリング状のスリット37が設けられ、後述する回転軸32及び支柱41が当該スリット37を貫通する。また、容器本体13の底面において凹部31の外側には、真空容器11内を排気する排気口35、36が開口している。排気口35、36には、真空ポンプなどにより構成された図示しない排気機構が接続されている。   The heaters 33 are arranged along concentric circles centering on the rotation center of the turntable 2, and four of the seven heaters 33 are inside the slit 32 and the other three are outside the slit 32. Is provided. Moreover, the shield 34 is provided so that the upper side of each heater 33 may be covered and the upper side of the recessed part 31 may be plugged up (refer FIG. 1). The shield 34 is provided with a ring-shaped slit 37 so as to overlap the slit 32, and a rotating shaft 32 and a column 41 described later penetrate the slit 37. Further, exhaust ports 35 and 36 for exhausting the inside of the vacuum container 11 are opened outside the recess 31 on the bottom surface of the container body 13. An exhaust mechanism (not shown) configured by a vacuum pump or the like is connected to the exhaust ports 35 and 36.

続いて回転テーブル2について、その表面側、裏面側を夫々示した図4、図5も参照しながら説明する。回転テーブル2の表面側(一面側)には、当該回転テーブル2の回転方向に沿って5つの円形の凹部が形成されており、各凹部には、円形のウエハホルダ24が設けられている。ウエハホルダ24の表面には凹部25が形成されており、凹部25内にウエハWが水平に収納される。従って、凹部25の底面は、ウエハが載置される載置領域を構成する。この例では凹部25の側壁の高さは、ウエハWの厚さと同じ、例えば1mmに構成されている。   Next, the turntable 2 will be described with reference to FIGS. 4 and 5 showing the front side and the back side, respectively. On the front surface side (one surface side) of the turntable 2, five circular recesses are formed along the rotation direction of the turntable 2, and a circular wafer holder 24 is provided in each recess. A recess 25 is formed on the surface of the wafer holder 24, and the wafer W is horizontally stored in the recess 25. Therefore, the bottom surface of the recess 25 constitutes a placement area on which the wafer is placed. In this example, the height of the side wall of the recess 25 is the same as the thickness of the wafer W, for example, 1 mm.

回転テーブル2の裏面の周方向に互いに離れた位置から鉛直下方に向けて、例えば3本の支柱41が延出されており、図1に示すように各支柱41の下端はスリット32を介して容器本体13の底部を貫通し、容器本体13の下方に設けられる接続部である支持リング42に接続されている。この支持リング42は、回転テーブル2の回転方向に沿って形成され、支柱41によって容器本体13に吊り下げられるように水平に設けられており、回転テーブル2と共に回転する。   For example, three struts 41 are extended vertically downward from positions separated from each other in the circumferential direction of the back surface of the turntable 2, and the lower ends of the respective struts 41 are formed through slits 32 as shown in FIG. The bottom of the container body 13 is penetrated and connected to a support ring 42 which is a connection part provided below the container body 13. The support ring 42 is formed along the rotation direction of the turntable 2, is provided horizontally so as to be suspended from the container body 13 by the support column 41, and rotates together with the turntable 2.

また、ウエハホルダ24の下方中心部からは自転用回転軸である回転軸26が鉛直下方へ延出されている。回転軸26の下端は回転テーブル2を貫通し、図1に示すように前記スリット32を介して容器本体13の底部を貫通し、さらに支持リング42と、当該支持リング42の下側に設けられる磁気シールユニット20と、を貫通して自転用回転駆動部27に接続されている。磁気シールユニット20は、回転軸26を支持リング42に対して回転可能に支持するための軸受けと、回転軸26の周囲の隙間をシールする磁気シール(磁性流体シール)とにより構成される。   A rotation shaft 26 that is a rotation shaft for rotation extends vertically downward from the lower center portion of the wafer holder 24. The lower end of the rotary shaft 26 passes through the rotary table 2, passes through the bottom of the container body 13 through the slit 32 as shown in FIG. 1, and is further provided on the support ring 42 and below the support ring 42. The magnetic seal unit 20 is connected to the rotation drive unit 27 for rotation. The magnetic seal unit 20 includes a bearing for rotatably supporting the rotating shaft 26 with respect to the support ring 42 and a magnetic seal (magnetic fluid seal) for sealing a gap around the rotating shaft 26.

前記磁気シールは、前記軸受けから発生するパーティクル、例えば当該軸受けに用いられる潤滑油が、磁気シールユニット20の外部の真空雰囲気へ拡散することを抑えることができるように設けられている。また、回転軸26が前記軸受けにより支持されることで、ウエハホルダ24は例えば回転テーブル2から若干浮いた状態となっている。また、自転用回転駆動部27はモーターを備え、支持リング42の下方に、磁気シールユニット20を介して支持リング42に支持されるように設けられており、前記モーターにより当該回転軸26を軸周りに回転させる。このように回転軸26が支持されると共に回転することで、ウエハホルダ24は例えば平面視反時計回りに回転される。   The magnetic seal is provided so that particles generated from the bearing, for example, lubricating oil used for the bearing can be prevented from diffusing into a vacuum atmosphere outside the magnetic seal unit 20. Further, since the rotating shaft 26 is supported by the bearing, the wafer holder 24 is slightly lifted from the rotating table 2, for example. The rotation driving unit 27 for rotation includes a motor, and is provided below the support ring 42 so as to be supported by the support ring 42 via the magnetic seal unit 20, and the rotation shaft 26 is pivoted by the motor. Rotate around. As the rotation shaft 26 is supported and rotated in this way, the wafer holder 24 is rotated, for example, counterclockwise in plan view.

上記の回転テーブル2の回転により、当該回転テーブル2の中心軸周りにウエハWが回転(公転)し、上記のウエハホルダ24の回転により、当該ウエハWがその中心周りに回転する。このウエハWの当該ウエハWの中心周りの回転を、ウエハWの自転と記載する場合がある。成膜装置1では、ウエハWへの成膜時にこれらの公転と自転とが互いに並行して行われる。なお、ウエハWの自転には、ウエハWがその中心周りに連続的に回転する場合の他に、間欠的にその中心周りに回転することも含まれる。そして、間欠的に回転する場合は、前記中心周りに1回以上回転する前にウエハWの回転が停止し、その後当該ウエハWの回転が再開されることも含まれる。   The rotation of the turntable 2 rotates (revolves) the wafer W around the center axis of the turntable 2, and the rotation of the wafer holder 24 rotates the wafer W around the center. The rotation of the wafer W around the center of the wafer W may be described as the rotation of the wafer W. In the film forming apparatus 1, these revolutions and rotations are performed in parallel with each other during film formation on the wafer W. The rotation of the wafer W includes not only the case where the wafer W is continuously rotated around the center thereof but also the intermittent rotation of the wafer W around the center thereof. In the case of rotating intermittently, the rotation of the wafer W is stopped before rotating around the center one or more times, and then the rotation of the wafer W is restarted.

図中44は、支持リング42に重なるように設けられたシールドリングであり、図4、図5では図の煩雑化を防ぐために鎖線で表示している。シールドリング44は、図1に示すように容器本体13のスリット16を、当該容器本体13の下方側から塞ぐように設けられ、回転テーブル2と共に回転するように構成されている。従って、上記の回転軸26及び支柱41は、このシールドリング44を貫通するように設けられている。シールドリング44は、自転用回転駆動部27が各ガスに曝されること及び過度に加熱されることを防ぐための遮熱板の役割を果たす。   In the figure, 44 is a shield ring provided so as to overlap the support ring 42, and in FIGS. 4 and 5, it is indicated by a chain line in order to prevent complication of the drawing. As shown in FIG. 1, the shield ring 44 is provided so as to close the slit 16 of the container body 13 from the lower side of the container body 13, and is configured to rotate together with the turntable 2. Therefore, the rotary shaft 26 and the support column 41 are provided so as to penetrate the shield ring 44. The shield ring 44 serves as a heat shield for preventing the rotation driving unit 27 for rotation from being exposed to each gas and being excessively heated.

また、図1に示すように容器本体13の下方には、断面視凹状に形成され、支持リング42、自転用回転駆動部27及びシールドリング44を囲む下方壁部45が、回転テーブル2の回転方向に沿ってリング状に形成されている。また、下方壁部45の底部には、周方向に離れて充電機構46が5つ(図1では1つのみ図示)設けられている。ウエハWに処理が行われないときに、回転テーブル2は自転用回転駆動部27が充電機構46の直下に位置するように静止し、充電機構46からの非接触給電によって、各自転用回転駆動部27の充電を行うことができるように各充電機構46が配置されている。図中47は、下方壁部45に囲まれる空間に開口するガス供給路である。図中48はガスノズルであり、ガス供給路47を介して下方壁部45に囲まれる空間に例えばウエハWの処理中にNガスを供給し、当該空間をパージする。図1では表示を省略しているが、例えば当該空間は、後に例を挙げて示すように排気口36、37と図示しない上記の排気機構とを接続する排気路に連通し、当該空間内でパーティクルが発生しても前記Nガスにより、この排気路へとパージされて除去される。 Further, as shown in FIG. 1, a lower wall portion 45 that is formed in a concave shape in a cross-sectional view and surrounds the support ring 42, the rotation drive unit 27 for rotation, and the shield ring 44 is provided below the container body 13. It is formed in a ring shape along the direction. Further, five charging mechanisms 46 (only one is shown in FIG. 1) are provided at the bottom of the lower wall portion 45 so as to be separated from each other in the circumferential direction. When processing is not performed on the wafer W, the rotary table 2 is stationary so that the rotation drive unit 27 for rotation is located immediately below the charging mechanism 46, and each rotation drive unit for rotation by non-contact power supply from the charging mechanism 46. Each charging mechanism 46 is arranged so that 27 can be charged. In the figure, reference numeral 47 denotes a gas supply path that opens into a space surrounded by the lower wall portion 45. In the figure, 48 is a gas nozzle, and N 2 gas is supplied to the space surrounded by the lower wall portion 45 through the gas supply path 47, for example, during the processing of the wafer W, and the space is purged. Although not shown in FIG. 1, for example, the space communicates with an exhaust passage that connects the exhaust ports 36 and 37 and the exhaust mechanism (not shown) as will be described later by way of example. Even if particles are generated, they are purged and removed to the exhaust passage by the N 2 gas.

容器本体13の側壁にはウエハWの搬送口37と、当該搬送口37を開閉するゲートバルブ38とが設けられ(図2参照)、搬送口37を介して真空容器11内に進入した搬送機構と凹部25との間でウエハWの受け渡しが行われる。具体的には凹部25の底面、容器本体13の底部及び回転テーブル2において、夫々互いに対応する位置に貫通孔を形成しておき、各貫通孔を介してピンの先端が凹部25上と容器本体13の下方との間で昇降するように構成される。このピンを介して、ウエハWの受け渡しが行われる。このピン及び当該ピンが貫通する各部の貫通孔の図示は省略している。   A transfer port 37 for the wafer W and a gate valve 38 for opening and closing the transfer port 37 are provided on the side wall of the container body 13 (see FIG. 2), and a transfer mechanism that enters the vacuum vessel 11 through the transfer port 37. The wafer W is transferred between the recess 25 and the recess 25. Specifically, through holes are formed at positions corresponding to each other on the bottom surface of the recess 25, the bottom of the container body 13 and the turntable 2, and the tip of the pin is located on the recess 25 and the container body via each through hole. 13 is configured to move up and down. The wafer W is transferred via these pins. The illustration of this pin and the through hole of each part through which the pin penetrates is omitted.

また、図2に示すように、回転テーブル2上には、原料ガスノズル51、分離ガスノズル52、酸化ガスノズル53、プラズマ発生用ガスノズル54、分離ガスノズル55がこの順に、回転テーブル2の回転方向に間隔をおいて配設されている。各ガスノズル51〜55は真空容器11の側壁から中心部に向かって、回転テーブル2の径に沿って水平に伸びる棒状に形成され、当該径に沿って形成された多数の吐出口56から、ガスを下方に吐出する。   As shown in FIG. 2, on the turntable 2, the source gas nozzle 51, the separation gas nozzle 52, the oxidizing gas nozzle 53, the plasma generating gas nozzle 54, and the separation gas nozzle 55 are spaced in this order in the rotation direction of the turntable 2. Arranged. Each gas nozzle 51 to 55 is formed in a bar shape extending horizontally along the diameter of the turntable 2 from the side wall of the vacuum vessel 11 toward the center, and gas is discharged from a number of discharge ports 56 formed along the diameter. Is discharged downward.

処理ガス供給機構をなす原料ガスノズル51は、上記のBTBAS(ビスターシャルブチルアミノシラン)ガスを吐出する。図中57は原料ガスノズル51を覆うノズルカバーであり、原料ガスノズル51から回転テーブル2の回転方向上流側及び下流側に向けて夫々広がる扇状に形成されている。ノズルカバー57は、その下方におけるBTBASガスの濃度を高めて、ウエハWへのBTBASガスの吸着性を高くする役割を有する。また、酸化ガスノズル53は、上記のオゾンガスを吐出する。分離ガスノズル52、55はN2ガスを吐出するガスノズルであり、上記の天板12の扇状の突出部17、17を夫々周方向に分割するように配置されている。   A raw material gas nozzle 51 that forms a processing gas supply mechanism discharges the above-described BTBAS (Bistal Butylaminosilane) gas. In the figure, reference numeral 57 denotes a nozzle cover that covers the source gas nozzle 51 and is formed in a fan shape that spreads from the source gas nozzle 51 toward the upstream side and the downstream side in the rotation direction of the turntable 2. The nozzle cover 57 has a role of increasing the concentration of the BTBAS gas below the nozzle cover 57 to increase the adsorption property of the BTBAS gas to the wafer W. The oxidizing gas nozzle 53 discharges the ozone gas. The separation gas nozzles 52 and 55 are gas nozzles that discharge N 2 gas, and are arranged so as to divide the fan-shaped protrusions 17 and 17 of the top plate 12 in the circumferential direction.

プラズマ発生用ガスノズル54は、例えばアルゴン(Ar)ガスと酸素(O2)ガスとの混合ガスからなるプラズマ発生用ガスを吐出する。前記天板12には回転テーブル2の回転方向に沿った扇状の開口部が設けられており、この開口部を塞ぐように当該開口部の形状に対応した、石英などの誘電体からなるカップ状のプラズマ形成部61が設けられている。このプラズマ形成部61は、回転テーブル2の回転方向に見て、酸化ガスノズル53と突状部14との間に設けられている。図2ではプラズマ形成部61が設けられる位置を鎖線で示している。   The plasma generating gas nozzle 54 discharges a plasma generating gas made of, for example, a mixed gas of argon (Ar) gas and oxygen (O 2) gas. The top plate 12 is provided with a fan-shaped opening along the direction of rotation of the turntable 2, and a cup shape made of a dielectric material such as quartz corresponding to the shape of the opening so as to close the opening. The plasma forming part 61 is provided. The plasma forming unit 61 is provided between the oxidizing gas nozzle 53 and the protruding portion 14 when viewed in the rotation direction of the turntable 2. In FIG. 2, the position where the plasma forming unit 61 is provided is indicated by a chain line.

プラズマ形成部61の下面には、当該プラズマ形成部61の周縁部に沿って突条部62が設けられており、上記のプラズマ発生用ガスノズル54の先端部は、この突条部62に囲まれる領域にガスを吐出できるように、回転テーブル2の外周側から当該突条部62を貫通している。突条部62は、プラズマ形成部61の下方へのN2ガス、オゾンガス及びBTBASガスの進入を抑え、プラズマ発生用ガスの濃度の低下を抑える役割を有する。   A protrusion 62 is provided on the lower surface of the plasma forming part 61 along the peripheral edge of the plasma forming part 61, and the tip of the plasma generating gas nozzle 54 is surrounded by the protrusion 62. The protrusion 62 is penetrated from the outer peripheral side of the turntable 2 so that gas can be discharged to the region. The protruding portion 62 has a role of suppressing the entry of N 2 gas, ozone gas, and BTBAS gas below the plasma forming portion 61 and suppressing a decrease in the concentration of the plasma generating gas.

プラズマ形成部61の上方側には窪みが形成され、この窪みには上方側に開口する箱型のファラデーシールド63が配置されている。ファラデーシールド63の底面上には、絶縁用の板部材64を介して、金属線を鉛直軸周りにコイル状に巻回したアンテナ65が設けられており、アンテナ65には高周波電源66が接続されている。上記のファラデーシールド63の底面には、アンテナ65への高周波印加時に当該アンテナ65において発生する電磁界のうち電界成分が下方に向かうことを阻止すると共に、磁界成分を下方に向かわせるためのスリット67が形成されている。このスリット67は、アンテナ65の巻回方向に対して直交(交差)する方向に伸び、アンテナ65の巻回方向に沿って多数形成されている。このように各部が構成されることで、高周波電源66をオンにしてアンテナ65に高周波が印加されると、プラズマ形成部61の下方に供給されたプラズマ発生用ガスをプラズマ化することができる。   A depression is formed on the upper side of the plasma forming portion 61, and a box-shaped Faraday shield 63 that opens upward is disposed in the depression. On the bottom surface of the Faraday shield 63, an antenna 65 in which a metal wire is wound around a vertical axis in a coil shape is provided via an insulating plate member 64. A high frequency power supply 66 is connected to the antenna 65. ing. The bottom surface of the Faraday shield 63 has a slit 67 for preventing the electric field component from moving downward in the electromagnetic field generated in the antenna 65 when a high frequency is applied to the antenna 65 and for directing the magnetic field component downward. Is formed. The slits 67 extend in a direction perpendicular to (intersect) the winding direction of the antenna 65, and a large number of slits 67 are formed along the winding direction of the antenna 65. By configuring each unit in this manner, when the high frequency power supply 66 is turned on and a high frequency is applied to the antenna 65, the plasma generating gas supplied below the plasma forming unit 61 can be turned into plasma.

回転テーブル2上において、原料ガスノズル51のノズルカバー57の下方領域を、原料ガスであるBTBASガスの吸着が行われる吸着領域R1とし、酸化ガスノズル53の下方領域を、オゾンガスによるBTBASガスの酸化が行われる酸化領域R2とする。また、プラズマ形成部61の下方領域を、プラズマによるSiO2膜の改質が行われるプラズマ形成領域R3とする。突出部17、17の下方領域は、分離ガスノズル52、55から吐出されるN2ガスにより、吸着領域R1と酸化領域R2とを互いに分離して、原料ガスと酸化ガスとの混合を防ぐための分離領域D、Dを夫々構成する。   On the turntable 2, the lower region of the nozzle cover 57 of the source gas nozzle 51 is an adsorption region R1 where the BTBAS gas as the source gas is adsorbed, and the lower region of the oxidizing gas nozzle 53 is oxidized by the BTBAS gas with ozone gas. This is referred to as oxidized region R2. Further, the lower region of the plasma forming unit 61 is a plasma forming region R3 in which the SiO2 film is modified by plasma. The lower region of the protrusions 17 and 17 is separated to separate the adsorption region R1 and the oxidation region R2 from each other by the N2 gas discharged from the separation gas nozzles 52 and 55 to prevent mixing of the source gas and the oxidation gas. Regions D and D are configured, respectively.

上記の排気口35は吸着領域R1と、当該吸着領域R1に対して前記回転方向下流側に隣接する分離領域Dとの間の外側に開口しており、余剰のBTBASガスを排気する。排気口36は、プラズマ形成領域R3と、当該プラズマ形成領域R3に対して前記回転方向下流側に隣接する分離領域Dとの境界付近の外側に開口しており、余剰のO3ガス及びプラズマ発生用ガスを排気する。各排気口35、36からは、各分離領域D、回転テーブル2の下方のガス供給管15、回転テーブル2の中心領域形成部Cから夫々供給されるN2ガスも排気される。   The exhaust port 35 is opened to the outside between the adsorption region R1 and the separation region D adjacent to the adsorption region R1 on the downstream side in the rotation direction, and exhausts excess BTBAS gas. The exhaust port 36 is opened outside the vicinity of the boundary between the plasma formation region R3 and the separation region D adjacent to the plasma formation region R3 on the downstream side in the rotation direction, and is used for generating excess O3 gas and plasma. Exhaust the gas. From each exhaust port 35, 36, N 2 gas supplied from each separation region D, the gas supply pipe 15 below the turntable 2, and the center region forming portion C of the turntable 2 is also exhausted.

この成膜装置1には、装置全体の動作のコントロールを行うためのコンピュータからなる制御部100が設けられている(図1参照)。この制御部100には、後述のように成膜処理を実行するプログラムが格納されている。前記プログラムは、成膜装置1の各部に制御信号を送信して各部の動作を制御する。具体的には、各ガスノズル51〜56からのガス供給量、ヒーター33によるウエハWの温度、ガス供給管15及び中心領域形成部CからのN2ガスの供給量、公転用回転駆動部22による回転テーブル2の回転速度、自転用回転駆動部27によるウエハホルダ24の回転速度などが、制御信号に従って制御される。上記のプログラムにおいてはこれらの制御を行い、後述の各処理が実行されるようにステップ群が組まれている。当該プログラムは、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの記憶媒体から制御部100内にインストールされる。   The film forming apparatus 1 is provided with a control unit 100 including a computer for controlling the operation of the entire apparatus (see FIG. 1). The control unit 100 stores a program for executing a film forming process as will be described later. The program controls the operation of each unit by transmitting a control signal to each unit of the film forming apparatus 1. Specifically, the amount of gas supplied from each of the gas nozzles 51 to 56, the temperature of the wafer W by the heater 33, the amount of N2 gas supplied from the gas supply pipe 15 and the center region forming unit C, and the rotation by the revolution rotation drive unit 22 The rotation speed of the table 2, the rotation speed of the wafer holder 24 by the rotation driving unit 27 for rotation, and the like are controlled according to the control signal. In the above program, these controls are performed, and a group of steps is set so that each process described later is executed. The program is installed in the control unit 100 from a storage medium such as a hard disk, a compact disk, a magneto-optical disk, a memory card, or a flexible disk.

この成膜装置1においては、回転テーブル2が回転することで、ウエハWが公転して処理が行われる。上記のように当該回転テーブル2の回転と並行して、ウエハホルダ24の回転によるウエハWの自転が行われるが、回転テーブル2の回転とウエハホルダ24の回転とは同期しない。より具体的には、真空容器11内の所定の位置に第1の向きを向いた状態から回転テーブル2が1回転し、再度所定の位置に位置したときに、ウエハWが第1の向きとは異なる第2の向きに向けられるような回転速度(自転速度)でウエハWが自転する。このウエハWの自転速度A(単位:rpm)の設定が、オペレータが入力するパラメータに基づき、制御部100によってなされる。   In the film forming apparatus 1, the wafer W is revolved and processed by rotating the turntable 2. As described above, the rotation of the wafer W by the rotation of the wafer holder 24 is performed in parallel with the rotation of the rotation table 2, but the rotation of the rotation table 2 and the rotation of the wafer holder 24 are not synchronized. More specifically, when the turntable 2 rotates once from a state in which the first direction is directed to a predetermined position in the vacuum vessel 11 and is again positioned at the predetermined position, the wafer W is set to the first direction. The wafer W rotates at a rotation speed (rotation speed) that is directed in a different second direction. The rotation speed A (unit: rpm) of the wafer W is set by the controller 100 based on parameters input by the operator.

制御部100のブロック図である図6を参照しながら、説明を続ける。制御部100は、オペレータがパラメータを入力して設定するための例えばボタンなどを備えた操作パネルからなる設定部101と、複数の処理レシピが格納されたメモリ102と、サイクルレートR(単位:nm/回)が記憶されたメモリ103と、を備えている。処理レシピは例えば、ウエハWに形成するSiO2膜の目標膜厚T(単位:nm)と、成膜装置1の各部から供給されるガスの流量と、回転テーブル2の回転速度V(単位:rpm)と、が互いに対応付けられたデータである。サイクルレートRは、上記の原料ガスの供給、酸化ガスの供給、プラズマによる改質からなるALDのサイクルが1つ実施される毎の膜厚の増加量であり、従って、回転テーブル2の1回転あたりの膜厚の増加量である。   The description will be continued with reference to FIG. 6, which is a block diagram of the control unit 100. The control unit 100 includes a setting unit 101 including an operation panel provided with buttons or the like for an operator to input and set parameters, a memory 102 storing a plurality of processing recipes, and a cycle rate R (unit: nm). / Times) is stored. The processing recipe includes, for example, a target film thickness T (unit: nm) of the SiO 2 film formed on the wafer W, a flow rate of gas supplied from each part of the film forming apparatus 1, and a rotation speed V (unit: rpm) of the turntable 2. ) And data associated with each other. The cycle rate R is the amount of increase in film thickness every time one ALD cycle consisting of the above-mentioned supply of raw material gas, supply of oxidizing gas, and modification by plasma is carried out. The amount of increase in the film thickness per unit.

また、制御部100にはワークメモリ104、表示部105が設けられる。ワークメモリ104においては、メモリ102、103から各種のパラメータが入力され、当該パラメータに基づいて上記のウエハホルダ24の回転速度の演算が行われる。表示部105には、ワークメモリ104における演算結果が表示される。   The control unit 100 is provided with a work memory 104 and a display unit 105. In the work memory 104, various parameters are input from the memories 102 and 103, and the rotation speed of the wafer holder 24 is calculated based on the parameters. The display unit 105 displays the calculation result in the work memory 104.

オペレータが設定部101から所定の操作を行うと、複数の処理レシピのうちの一つが選択され、メモリ102から選択された処理レシピに含まれる目標膜厚T及び回転テーブル2の回転速度Vが、ワークメモリ104に読み出される。さらに、オペレータが設定部101から所定の操作を行うと、メモリ103からサイクルレートRが、ワークメモリ104に読み出される。   When the operator performs a predetermined operation from the setting unit 101, one of the plurality of processing recipes is selected, and the target film thickness T and the rotation speed V of the turntable 2 included in the processing recipe selected from the memory 102 are Read to work memory 104. Further, when the operator performs a predetermined operation from the setting unit 101, the cycle rate R is read from the memory 103 to the work memory 104.

ワークメモリ104においては、読み出された目標膜厚T及びサイクルレートRから、成膜処理の開始時から成膜処理の終了時までに回転テーブル2が回転する回転回数T/R=Mが算出される。成膜処理の開始時とは、回転テーブル2の回転及び原料ガスノズル51からのガスの供給が共に行われる時点である。成膜処理の終了時とは、回転テーブル2の回転及び原料ガスノズル51からのガスの供給のうちの少なくとも一方が停止する時点である。算出された、回転テーブル2の回転回数Mについては、表示部105に表示される。この表示に基づいて、オペレータは、ウエハホルダ24の自転回数N(N=自然数)を設定部101から設定する。自転回数Nは、上記の成膜処理の開始時から成膜処理の終了時までにウエハホルダ24が回転する回数である。   In the work memory 104, from the read target film thickness T and cycle rate R, the number of rotations T / R = M at which the turntable 2 rotates from the start of the film formation process to the end of the film formation process is calculated. Is done. The time of starting the film forming process is a time point when the rotation of the turntable 2 and the supply of gas from the source gas nozzle 51 are both performed. The end of the film forming process is a time when at least one of the rotation of the turntable 2 and the supply of gas from the source gas nozzle 51 stops. The calculated number M of rotations of the rotary table 2 is displayed on the display unit 105. Based on this display, the operator sets the number of rotations N (N = natural number) of the wafer holder 24 from the setting unit 101. The number N of rotations is the number of rotations of the wafer holder 24 from the start of the film formation process to the end of the film formation process.

この自転回数Nとしては、回転テーブル2の回転回数Mの整数倍の数値とは異なる数値が設定される。そのように設定するのは、回転テーブル2の回転とウエハWの自転との同期を防ぐためである。Nとしては1以上の整数を設定することが好ましい。この理由としては、上記の自転及び公転によってウエハWは原料ガスの吸着領域R1を様々な向きで通過することになるが、各向きで通過する回数を均一にして、ウエハWの周方向における膜厚分布の均一性を、より高くするためである。   As the number of rotations N, a value different from a value that is an integral multiple of the number of rotations M of the turntable 2 is set. The reason for this setting is to prevent synchronization between the rotation of the turntable 2 and the rotation of the wafer W. It is preferable to set an integer of 1 or more as N. The reason for this is that the wafer W passes through the raw material gas adsorption region R1 in various directions by the above-mentioned rotation and revolution, but the number of times of passing in each direction is made uniform, and the film in the circumferential direction of the wafer W is This is to increase the uniformity of the thickness distribution.

自転回数Nが設定されると、当該自転回数Nと、回転テーブル2の回転速度Vと、回転テーブル2の回転回数と、からウエハWの自転速度A(rpm)が演算される。具体的には、ウエハの自転速度A(rpm)=回転テーブル2の回転速度V(rpm)×1/M(回)×Nが演算され、その演算結果が画面105に表示される。また、この自転速度Aが算出されると、例えばウエハWの自転速度が基準値以下、例えば10rpm以下であるか否かが判定され、基準値以下であると判定された場合は、処理可能である旨が画面105に表示され、設定部101から所定の操作を行うことで成膜処理を開始することができる。基準値を超えると判定された場合は、例えば各パラメータの再設定が必要である旨が画面105に表示される。   When the number N of rotations is set, the rotation speed A (rpm) of the wafer W is calculated from the number N of rotations, the rotation speed V of the turntable 2, and the number of rotations of the turntable 2. Specifically, the rotation speed A (rpm) of the wafer = the rotation speed V (rpm) of the turntable 2 × 1 / M (times) × N is calculated, and the calculation result is displayed on the screen 105. Further, when the rotation speed A is calculated, for example, it is determined whether or not the rotation speed of the wafer W is equal to or less than a reference value, for example, 10 rpm or less. If it is determined that the rotation speed A is equal to or less than the reference value, processing is possible. A message to that effect is displayed on the screen 105, and a film forming process can be started by performing a predetermined operation from the setting unit 101. If it is determined that the reference value is exceeded, for example, the screen 105 displays that each parameter needs to be reset.

ウエハWの自転速度Aが高い方が、吸着領域R1を通過中にウエハWの向きが大きく変化することで、この吸着領域R1内における原料ガスの分布に関わらず、ウエハWの周方向における膜厚分布の均一性を高くすることができるが、ウエハWの自転速度Aが高すぎると遠心力によってウエハWがウエハホルダ24から浮き上がり、脱離しやすくなる。そのため、ウエハWの自転速度Aについては、このように基準値以下となるように制限されることが好ましい。   When the rotation speed A of the wafer W is higher, the orientation of the wafer W changes greatly while passing through the adsorption region R1, so that the film in the circumferential direction of the wafer W is independent of the distribution of the source gas in the adsorption region R1. Although the uniformity of the thickness distribution can be increased, if the rotation speed A of the wafer W is too high, the wafer W is lifted from the wafer holder 24 by the centrifugal force and easily detached. For this reason, the rotation speed A of the wafer W is preferably limited to be equal to or less than the reference value.

上記のウエハWの自転速度A(rpm)の算出について、具体的に例を挙げて説明する。例えば選択された処理レシピにおける目標膜厚T、回転テーブル2の回転速度Vが、夫々32nm、60rpmであり、サイクルレートRが0.095nm/回であるものとする。ワークメモリ104においては、回転テーブルの回転回数M=T/R=32(nm)/0.095(nm/回)≒337回として算出される。そして、ウエハWの自転回数N(回)が設定されると、ウエハWの自転速度A(rpm)=V(rpm)×1/M(回)×N=60×1/337×N≒0.178rpmのように演算される。回転テーブル2の回転回数Mが337回であるため、上記のように同期を防ぐために自転回数Nとしては、337回以外の自然数が設定される。なお、上記の各演算や判定は、制御部100のプログラムにより実行される。   The calculation of the rotation speed A (rpm) of the wafer W will be described with a specific example. For example, it is assumed that the target film thickness T and the rotation speed V of the turntable 2 in the selected processing recipe are 32 nm and 60 rpm, respectively, and the cycle rate R is 0.095 nm / time. In the work memory 104, the number of rotations of the rotary table is calculated as M = T / R = 32 (nm) /0.095 (nm / time) ≈337 times. When the number of rotations N (times) of the wafer W is set, the rotation speed A (rpm) of the wafer W = V (rpm) × 1 / M (times) × N = 60 × 1/337 × N≈0. Calculated as 178 rpm. Since the number of rotations M of the turntable 2 is 337, a natural number other than 337 is set as the number of rotations N to prevent synchronization as described above. In addition, each said calculation and determination are performed by the program of the control part 100. FIG.

上記の成膜装置1によるウエハWへの成膜処理について説明する。図6で説明したように処理レシピが選択されて、目標膜厚T及び回転テーブル2の回転速度が設定されると共に、サイクルレートRの読み出し、自転回数Nの設定が行われ、ウエハWの自転速度について設定される。そして、図示しない搬送機構によりウエハWが、各ウエハホルダ24に載置される(図7)。以降、回転テーブル2に載置されたウエハWを模式的に示した図7〜図10を適宜参照して説明する。図7〜図10では、図示の便宜上、各ウエハWをW1〜W5として示している。また、成膜処理中に変位するウエハWの向きを示すために、成膜処理前のこれらウエハW1〜W5の直径について、回転テーブル2の直径と一致する領域に回転テーブル2の中心へ向かう矢印A1〜A5を付して示している。   A film forming process on the wafer W by the film forming apparatus 1 will be described. As described with reference to FIG. 6, the processing recipe is selected, the target film thickness T and the rotation speed of the turntable 2 are set, the cycle rate R is read, and the number of rotations N is set. Set for speed. Then, the wafer W is placed on each wafer holder 24 by a transfer mechanism (not shown) (FIG. 7). Hereinafter, description will be made with reference to FIGS. 7 to 10 schematically showing the wafer W placed on the turntable 2. 7 to 10, the wafers W are shown as W1 to W5 for convenience of illustration. Further, in order to indicate the direction of the wafer W that is displaced during the film forming process, the arrows directed to the center of the turntable 2 in the region that matches the diameter of the turntable 2 with respect to the diameters of the wafers W1 to W5 before the film forming process. A1 to A5 are attached.

上記のウエハW1〜W5の載置後にゲートバルブ38が閉じられ、排気口35、36からの排気により真空容器11内が所定の圧力の真空雰囲気となり、分離ガスノズル52、55からN2ガスが回転テーブル2に供給される。また、回転テーブル2の中心領域形成部C及び回転テーブル2の下方側のガス供給管15からパージガスとしてN2ガスが供給され、回転テーブル2の中心部側から周縁部側へ流れる。さらに、ヒーター33の温度が上昇し、ヒーター33からの輻射熱により回転テーブル2及びウエハホルダ24が加熱され、ウエハホルダ24からの伝熱によって各ウエハW1〜W5が所定の温度に加熱される。   After placing the wafers W1 to W5, the gate valve 38 is closed, and the vacuum chamber 11 is evacuated to a predetermined pressure by the exhaust from the exhaust ports 35 and 36, and the N2 gas is supplied from the separation gas nozzles 52 and 55 to the rotary table. 2 is supplied. Further, N 2 gas is supplied as a purge gas from the central region forming part C of the turntable 2 and the gas supply pipe 15 below the turntable 2 and flows from the center side of the turntable 2 to the peripheral side. Further, the temperature of the heater 33 rises, the rotary table 2 and the wafer holder 24 are heated by the radiant heat from the heater 33, and the wafers W <b> 1 to W <b> 5 are heated to a predetermined temperature by the heat transfer from the wafer holder 24.

然る後、オペレータが設定した回転速度Vによる回転テーブル2の回転と、算出されたウエハWの自転速度Aによるウエハホルダ24の回転とが、共に開始される。即ちウエハWの公転と自転とが開始される。例えばこれら公転及び自転の開始と同時に、原料ガスノズル51、酸化ガスノズル53、プラズマ発生用ガスノズル54からの各ガスの供給と、高周波電源66からアンテナ65への高周波の印加によるプラズマの形成と、が開始される。各ガスは、選択した処理レシピに従った流量で供給される。図8は、そのように成膜が開始されてから時間が経過し、回転テーブル2が成膜開始から180°回転し、前記自転によってウエハWの向きが変わった状態を示している。   Thereafter, the rotation of the turntable 2 at the rotation speed V set by the operator and the rotation of the wafer holder 24 at the calculated rotation speed A of the wafer W are both started. That is, the revolution and rotation of the wafer W are started. For example, simultaneously with the start of these revolutions and rotations, the supply of each gas from the source gas nozzle 51, the oxidizing gas nozzle 53, and the plasma generating gas nozzle 54 and the formation of plasma by applying a high frequency from the high frequency power source 66 to the antenna 65 are started. Is done. Each gas is supplied at a flow rate according to the selected processing recipe. FIG. 8 shows a state in which the time has elapsed since the start of film formation, the rotary table 2 is rotated 180 ° from the start of film formation, and the orientation of the wafer W is changed by the rotation.

図11は、真空容器11内の各ガスの流れを矢印で示している。吸着領域R1と酸化領域R2との間にN2ガスが供給される分離領域Dを設けているので、吸着領域R1に供給される原料ガス及び酸化領域R2に供給される酸化ガスは、回転テーブル2上で互いに混合されずに前記N2ガスと共に排気口35から排気される。また、吸着領域R1とプラズマ形成領域R3との間にもN2ガスが供給される分離領域Dを設けているので、原料ガスと、プラズマ形成領域R3に供給されるプラズマ発生用ガス及びプラズマ形成領域R3の回転方向上流側から当該分離領域Dに向かう酸化ガスとは、回転テーブル2上で互いに混合されずに、前記N2ガスと共に排気口36から排気される。上記の中心領域形成部C及びガス供給管15から供給されたN2ガスも、排気口35、36から除去される。   FIG. 11 shows the flow of each gas in the vacuum vessel 11 with arrows. Since the separation region D to which the N2 gas is supplied is provided between the adsorption region R1 and the oxidation region R2, the source gas supplied to the adsorption region R1 and the oxidation gas supplied to the oxidation region R2 are the turntable 2 The exhaust gas is exhausted from the exhaust port 35 together with the N2 gas without being mixed with each other. Further, since the separation region D to which N2 gas is supplied is also provided between the adsorption region R1 and the plasma formation region R3, the source gas, the plasma generating gas and the plasma formation region to be supplied to the plasma formation region R3 are provided. The oxidizing gas from the upstream side in the rotation direction of R3 toward the separation region D is exhausted from the exhaust port 36 together with the N2 gas without being mixed with each other on the rotary table 2. The N 2 gas supplied from the central region forming part C and the gas supply pipe 15 is also removed from the exhaust ports 35 and 36.

上記のように各ガスの供給と排気とが行われた状態で、ウエハW1〜W5は、自転しながら原料ガスノズル51のノズルカバー57の下方の吸着領域R1、酸化ガスノズル53の下方の酸化領域R2、プラズマ形成部61の下方のプラズマ形成領域R3を、順番に繰り返し移動する。吸着領域R1では原料ガスノズル51から吐出されたBTBASガスがウエハWに吸着され、酸化領域R2では吸着されたBTBASガスが、酸化ガスノズル53から供給されたOガスにより酸化されて、酸化シリコンの分子層が1層あるいは複数層形成される。プラズマ形成領域R3では、前記酸化シリコンの分子層がプラズマに曝されて改質される。 With the supply and exhaust of each gas as described above, the wafers W1 to W5 rotate while rotating while the adsorption region R1 below the nozzle cover 57 of the source gas nozzle 51 and the oxidation region R2 below the oxidation gas nozzle 53. The plasma forming region R3 below the plasma forming unit 61 is repeatedly moved in order. In the adsorption region R1, the BTBAS gas discharged from the source gas nozzle 51 is adsorbed by the wafer W, and in the oxidation region R2, the adsorbed BTBAS gas is oxidized by the O 3 gas supplied from the oxidation gas nozzle 53, and molecules of silicon oxide are obtained. One or more layers are formed. In the plasma formation region R3, the molecular layer of silicon oxide is exposed to plasma and modified.

上記のようにウエハホルダ24は回転テーブル2の回転と同期せずに回転し、各ウエハW1〜W5は、吸着領域R1の所定の位置に位置する度に、異なる向きに向けられる。図9は成膜処理開始から回転テーブル2が1回転した状態を示している。そして、図10は、図9に示す状態からさらに回転テーブル2の回転が続けられ、一例としてウエハW1〜W5の向きが成膜処理開始時の向きから180°回転した向きに向けられた状態を示している。このようにウエハW1〜W5の向きが変化することで、ウエハWの周方向における各部が、吸着領域R1内の互いに異なる各位置を通過する。従って、吸着領域R1内の前記各位置で原料ガスの濃度分布にばらつきが生じていても、成膜処理開始から成膜処理終了までにウエハWに吸着される原料ガスの量をウエハWの周方向における各部で揃えられる。結果として、前記ウエハWの周方向における各部で、ウエハWに形成されるSiO2膜の膜厚の偏りを抑えることができる。   As described above, the wafer holder 24 rotates without being synchronized with the rotation of the turntable 2, and each wafer W1 to W5 is directed in a different direction each time it is located at a predetermined position in the suction region R1. FIG. 9 shows a state where the turntable 2 has made one rotation since the start of the film forming process. FIG. 10 shows a state in which the rotation of the turntable 2 is further continued from the state shown in FIG. 9 and the direction of the wafers W1 to W5 is directed to the direction rotated 180 ° from the direction at the start of the film forming process. Show. As the orientation of the wafers W1 to W5 changes in this way, each part in the circumferential direction of the wafer W passes through different positions in the suction region R1. Therefore, even if the concentration distribution of the source gas varies at each position in the adsorption region R1, the amount of the source gas adsorbed on the wafer W from the start of the film formation process to the end of the film formation process is determined. Aligned at each part in the direction. As a result, it is possible to suppress the uneven thickness of the SiO 2 film formed on the wafer W at each portion in the circumferential direction of the wafer W.

このように回転テーブル2の回転が続けられて酸化シリコンの分子層が順次積層され、酸化シリコン膜が形成されると共にその膜厚が次第に大きくなる。そして、設定された目標膜厚が得られるように成膜処理が行われると、つまり設定されたパラメータに基づいて算出される回数分、回転テーブル2が回転すると、回転テーブル2の回転とウエハホルダ24の回転とが停止し、成膜処理が終了する。この成膜処理終了時には、ウエハW1〜W5は成膜処理開始時と同じ位置に位置し、また図6で説明したようにウエハ自転回数Nが整数として設定されているため、各ウエハW1〜W5の向きは、成膜処理開始時と同じ向きに向けられる。従って、ウエハW1〜W5は、図7で示した位置、向きに置かれる。この成膜処理終了時には、ガスノズル51〜ガスノズル55からの各ガスの供給及びプラズマの形成についても停止される。然る後、ウエハW1〜W5が搬送機構により真空容器11内から搬出される。   In this way, the rotation of the turntable 2 is continued and the silicon oxide molecular layers are sequentially stacked to form the silicon oxide film and the film thickness gradually increases. When the film forming process is performed so as to obtain the set target film thickness, that is, when the turntable 2 is rotated by the number of times calculated based on the set parameters, the rotation of the turntable 2 and the wafer holder 24 are rotated. Rotation stops, and the film forming process ends. At the end of the film forming process, the wafers W1 to W5 are located at the same position as when the film forming process is started, and the wafer rotation number N is set as an integer as described with reference to FIG. Is directed in the same direction as at the start of the film forming process. Accordingly, the wafers W1 to W5 are placed at the positions and orientations shown in FIG. At the end of the film forming process, the supply of each gas from the gas nozzle 51 to the gas nozzle 55 and the formation of plasma are also stopped. Thereafter, the wafers W1 to W5 are unloaded from the vacuum container 11 by the transfer mechanism.

上記の成膜装置1においては、回転テーブル2の回転速度V、SiO2の目標膜厚T、サイクルレートR及びウエハWの自転回数Nがパラメータとして設定され、設定されたこれらパラメータに基づいて、吸着領域R1にウエハWが位置する度に異なる向きを向くように、ウエハWの自転速度Aが算出され、その自転速度AでウエハWが回転する。従って、ウエハWの周方向におけるSiO2膜の膜厚の均一性を高くすることができる。   In the film forming apparatus 1, the rotation speed V of the turntable 2, the target film thickness T of SiO 2, the cycle rate R, and the number of rotations N of the wafer W are set as parameters, and suction is performed based on the set parameters. Each time the wafer W is positioned in the region R1, the rotation speed A of the wafer W is calculated so as to face different directions, and the wafer W rotates at the rotation speed A. Accordingly, the uniformity of the SiO 2 film thickness in the circumferential direction of the wafer W can be increased.

また、この成膜装置1では、上記のように自転回数Nをオペレータが自由に設定することができる。自転回数Nを小さくするほど、ウエハWが吸着領域R1に位置してから、次に吸着領域R1に位置するまでの向きの変化が小さくなる。つまり、成膜処理終了までに吸着領域R1に位置するときのウエハWの向きの分散度合が大きくなる。即ち、この成膜装置1では、この向きの分散度合を容易且つ確実に設定することができるという利点がある。Nの設定の一例としては、上記のように整数とすることで、ウエハWが各向きで吸着領域R1を通過する回数を揃え、より確実に前記周方向における膜厚の均一性を高くすることができる。なお、ウエハ自転回数Nとしてはそのように整数とすることが好ましいが、小数を含む数が設定されるようにしても、周方向における膜厚分布の偏りを軽減することができるため、例えば小数を含む1以上の自然数を設定してもよい。   In the film forming apparatus 1, the operator can freely set the number of rotations N as described above. The smaller the number N of rotations, the smaller the change in orientation from when the wafer W is positioned in the suction region R1 until it is next positioned in the suction region R1. That is, the degree of dispersion of the orientation of the wafer W when it is positioned in the suction region R1 by the end of the film forming process is increased. That is, the film forming apparatus 1 has an advantage that the degree of dispersion in this direction can be set easily and reliably. As an example of setting N, the number of times that the wafer W passes through the suction region R1 in each direction is made uniform by setting an integer as described above, and the uniformity of the film thickness in the circumferential direction is more reliably increased. Can do. The number N of rotations of the wafer is preferably an integer as described above. However, even if a number including a decimal number is set, the deviation of the film thickness distribution in the circumferential direction can be reduced. One or more natural numbers including may be set.

また、この成膜装置1によれば回転テーブル2に支柱41を介して支持された支持リング42にウエハホルダ24を支持するための回転軸26が支持されるように構成され、回転テーブル2の回転による支柱41及び回転軸26の移動路の内側、外側に夫々ヒーター33を配置している。このような構成によって、ヒーター33が支柱41及び回転軸26の移動を妨げることなく、回転テーブル2を介してウエハWを加熱することができる。   In addition, according to the film forming apparatus 1, the rotary shaft 26 for supporting the wafer holder 24 is supported by the support ring 42 supported by the rotary table 2 via the support column 41. The heaters 33 are arranged on the inner side and the outer side of the moving path of the support column 41 and the rotary shaft 26, respectively. With such a configuration, the heater 33 can heat the wafer W via the turntable 2 without hindering the movement of the support column 41 and the rotation shaft 26.

上記の例では、回転テーブル2の回転速度V、SiO2の目標膜厚T、サイクルレートRがメモリ102、103からワークメモリ104に読み出される構成となっているが、これらのパラメータの少なくとも一つが、設定部101からオペレータにより入力されることで、ワークメモリ104に入力されて、ウエハWの自転速度Aが演算される構成となっていてもよい。
また、例えばオペレータが設定部101から、回転テーブル2の回転速度Vと、Vに乗算されることでウエハWの回転速度Aを決定する比率Kとを設定することができ、ワークメモリ104にて、A=V×Kが演算され、ウエハWの自転速度Aが設定される構成としてもよい。比率Kとしては、ウエハWの自転が、ウエハWの公転と非同期となるような数値が設定され、例えばK=0.1、0.2、0.3・・・1.1、1.2、1.3・・・などの数値から選択される。
In the above example, the rotation speed V of the turntable 2, the target film thickness T of SiO2, and the cycle rate R are read from the memories 102 and 103 to the work memory 104, but at least one of these parameters is By inputting from the setting unit 101 by an operator, the rotation speed A of the wafer W may be calculated by being input to the work memory 104.
Further, for example, the operator can set the rotation speed V of the turntable 2 and the ratio K for determining the rotation speed A of the wafer W by multiplying V from the setting unit 101. A = V × K may be calculated, and the rotation speed A of the wafer W may be set. As the ratio K, a numerical value is set such that the rotation of the wafer W is asynchronous with the revolution of the wafer W, for example, K = 0.1, 0.2, 0.3... 1.1, 1.2. It is selected from numerical values such as 1.3.

ところで、図12に示すように、上記の成膜装置1においてウエハホルダ24の凹部25の側壁の高さH1、即ち凹部25の深さを、ウエハWの厚さH2よりも大きく形成してもよい。この例ではH1は、H2の1.8倍であり、H1は1.8mm、H2は1mmである。このような構成とする理由を説明すると、図9で示したように中心領域形成部C及び分離ガスノズル52、55から吐出されたN2ガスは、回転テーブル2の表面を横方向に流れて、排気される。図12ではこれらのN2ガスのうち、代表して中心領域形成部Cから供給されるN2ガスを矢印で示している。上記のようにH1>H2であるため、凹部25の側壁の頂部とウエハW表面の周縁部との間に段差が形成されている。吸着領域R1の外側において、凹部25上を上記の横方向に流れるN2ガスは、当該凹部25においてN2ガスが流れる方向の上流側の段差にて澱み、後述する図25、図26に示すような膜厚の厚い部分を形成する。即ち、当該段差にてガスの溜り71を形成する。   Incidentally, as shown in FIG. 12, in the film forming apparatus 1 described above, the height H1 of the side wall of the recess 25 of the wafer holder 24, that is, the depth of the recess 25 may be formed larger than the thickness H2 of the wafer W. . In this example, H1 is 1.8 times H2, H1 is 1.8 mm, and H2 is 1 mm. Explaining the reason for such a configuration, as shown in FIG. 9, the N 2 gas discharged from the central region forming portion C and the separation gas nozzles 52 and 55 flows laterally on the surface of the turntable 2 and is exhausted. Is done. In FIG. 12, among these N 2 gases, the N 2 gas supplied from the central region forming portion C is shown by arrows. Since H1> H2 as described above, a step is formed between the top of the sidewall of the recess 25 and the peripheral edge of the wafer W surface. Outside the adsorption region R1, the N2 gas flowing in the lateral direction above the recess 25 stagnates at a step on the upstream side in the direction in which the N2 gas flows in the recess 25, as shown in FIGS. A thick part is formed. That is, the gas reservoir 71 is formed at the step.

吸着領域R1の外側から吸着領域R1に凹部25が移動すると、ウエハWの表面の雰囲気がN2ガスから原料ガスに置換され、ウエハW表面の原料ガスの濃度が高くなり、当該原料ガスがウエハWに吸着される。しかし、N2ガスの溜り71が形成された領域は、その外側の領域に比べて前記置換による原料ガスの濃度上昇が抑えられるため、原料ガスの吸着量が小さくなる。上記のようにウエハWは自転しているため、吸着領域R1に位置したときに、ウエハWの周縁部において前記N2ガスの溜まり71が形成された箇所、ないしは比較的大きく形成された箇所は、ウエハWが当該吸着領域R1に位置する度に異なるので、ウエハWの全周において周縁部の膜厚をウエハWの中央部の膜厚に対して小さくすることができる。例えば成膜後のエッチング処理にて、ウエハWの中央部のエッチングレートが周縁部のエッチングレートよりも高くなる装置が用いられ、このエッチング処理の終了時にウエハWの周縁部と中央部とで膜厚の均一性を高くしたい場合に、上記のようにH1>H2となる凹部25を形成することが有効である。   When the concave portion 25 moves from the outside of the adsorption region R1 to the adsorption region R1, the atmosphere on the surface of the wafer W is replaced with the source gas from the N2 gas, the concentration of the source gas on the surface of the wafer W increases, and the source gas is transferred to the wafer W. To be adsorbed. However, since the increase in the concentration of the source gas due to the substitution is suppressed in the region where the N2 gas reservoir 71 is formed compared to the region outside the N2 gas reservoir 71, the amount of the source gas adsorbed is small. Since the wafer W is rotating as described above, when the wafer W is positioned in the adsorption region R1, the location where the N2 gas reservoir 71 is formed at the peripheral portion of the wafer W or the location where it is formed relatively large is: Since the wafer W is different each time it is positioned in the adsorption region R1, the film thickness of the peripheral edge can be made smaller than the film thickness of the central part of the wafer W over the entire circumference of the wafer W. For example, in an etching process after film formation, an apparatus is used in which the etching rate at the center of the wafer W is higher than the etching rate at the periphery, and at the end of the etching process, the film is formed between the periphery and the center of the wafer W. When it is desired to increase the uniformity of the thickness, it is effective to form the recess 25 where H1> H2 as described above.

図13は、成膜装置1の他の構成例を示している。図1に示す既述の成膜装置1との差異点を説明すると、容器本体13のヒーター33が設けられる凹部31の下方に回転テーブル2の回転方向に沿って空間72が設けられ、この空間72に支持リング42及び自転用回転駆動部27が収納されている。凹部31と空間72との間の壁部は、図中73としている。また、容器本体13において排気口36の下流側に形成される流路74に対して、凹部31内の空間、空間72がバルブV1、V2を介して夫々接続されており、成膜処理中にバルブV1、V2は適切な開度で開かれる。   FIG. 13 shows another configuration example of the film forming apparatus 1. The difference from the above-described film forming apparatus 1 shown in FIG. 1 will be described. A space 72 is provided along the rotation direction of the turntable 2 below the recess 31 in which the heater 33 of the container body 13 is provided. 72 includes a support ring 42 and a rotation driving unit 27 for rotation. A wall portion between the recess 31 and the space 72 is indicated by 73 in the figure. In addition, the space in the recess 31 and the space 72 are connected to the flow path 74 formed on the downstream side of the exhaust port 36 in the container body 13 via valves V1 and V2, respectively. The valves V1 and V2 are opened at an appropriate opening degree.

図13中、ガス供給管15から供給されるN2ガスの流れを矢印で示している。ガス供給管15から回転テーブル2の裏面中心部側に供給されたN2ガスの一部は、回転テーブル2の裏面に沿って排気口36へ流れて、回転テーブル2の表面から流れた各ガスと共に除去される。前記N2ガスの他の一部は、回転軸26とシールド34との隙間、壁部73との回転軸26との隙間を夫々介して、凹部31内、空間72内に夫々流入し、流路74へ流入する。そして、排気口36に流れ込んだ各ガスと共に除去される。   In FIG. 13, the flow of N 2 gas supplied from the gas supply pipe 15 is indicated by arrows. A part of the N 2 gas supplied from the gas supply pipe 15 to the center of the back surface of the turntable 2 flows to the exhaust port 36 along the back surface of the turntable 2, together with each gas flowing from the surface of the turntable 2. Removed. The other part of the N2 gas flows into the recess 31 and the space 72 through the gap between the rotary shaft 26 and the shield 34 and the gap between the wall portion 73 and the rotary shaft 26, respectively. It flows into 74. Then, it is removed together with each gas flowing into the exhaust port 36.

このようにガス供給管15から供給されたN2ガスにより、凹部31内と空間72とがパージされる。これによって空間72にて自転用回転駆動部27から発生したパーティクルが流路74から除去され、周囲への飛散がより確実に抑えられる。また、ヒーター33に原料ガス及び酸化ガスが付着し、当該ヒーター33が劣化することを防ぐことができる。ガス供給管15とは別に、凹部31、空間72内にN2ガスを供給する供給管を設けてもよい。   Thus, the inside of the recess 31 and the space 72 are purged by the N 2 gas supplied from the gas supply pipe 15. As a result, particles generated from the rotation drive unit 27 for rotation in the space 72 are removed from the flow path 74, and scattering to the surroundings is more reliably suppressed. Moreover, it can prevent that source gas and oxidizing gas adhere to the heater 33, and the said heater 33 deteriorates. In addition to the gas supply pipe 15, a supply pipe for supplying N 2 gas may be provided in the recess 31 and the space 72.

上記の例では、ガスノズル51はALDの原料ガスを供給しているが、CVD(Chemical Vapor Deposition)により成膜を行うための成膜ガスを供給し、この成膜ガスが供給される領域にウエハWが移動する度にウエハWの自転により向きが変更されるようにしてもよい。つまり酸化ガスノズルや分離ガスノズルが設けられない装置構成としてもよい。   In the above example, the gas nozzle 51 supplies the ALD source gas. However, a film forming gas for film formation is supplied by CVD (Chemical Vapor Deposition), and the wafer is supplied to the region where the film forming gas is supplied. The orientation may be changed by the rotation of the wafer W each time W moves. That is, it is good also as an apparatus structure in which neither an oxidizing gas nozzle nor a separation gas nozzle is provided.

図14には、さらに他の成膜装置の構成例として成膜装置8を示しており、図15には成膜装置8の回転テーブル2の斜視図を示している。この成膜装置8について、成膜装置1との差異点を中心に説明する。成膜装置8の回転テーブル2におけるウエハホルダ24の回転軸26は、上記の支持リング42及び磁気シールユニット20と、を上下方向に貫通するように設けられている。そして、図13で説明した空間72内において回転軸26の下端には、水平な円板状に形成された第1の回転体である磁気ギア81が接続されている。磁気ギア81は、その回転方向である周方向に沿って複数配列された磁石からなり、各磁石はN極とS極とが前記周方向において交互に位置されるように配列される。磁気ギア81の回転によって回転軸26は、軸周りに回転する。   FIG. 14 shows a film forming apparatus 8 as still another structural example of the film forming apparatus, and FIG. 15 shows a perspective view of the turntable 2 of the film forming apparatus 8. The film forming apparatus 8 will be described focusing on differences from the film forming apparatus 1. The rotation shaft 26 of the wafer holder 24 in the turntable 2 of the film forming apparatus 8 is provided so as to penetrate the support ring 42 and the magnetic seal unit 20 in the vertical direction. In the space 72 described with reference to FIG. 13, a magnetic gear 81, which is a first rotating body formed in a horizontal disk shape, is connected to the lower end of the rotating shaft 26. The magnetic gear 81 is composed of a plurality of magnets arranged along a circumferential direction that is the rotation direction thereof, and each magnet is arranged such that N poles and S poles are alternately positioned in the circumferential direction. The rotation shaft 26 rotates around the axis by the rotation of the magnetic gear 81.

また空間72内において磁気ギア81の下方には、水平な円板状の第2の回転体である磁気ギア82が設けられている。磁気ギア82は例えば、その大きさ及び磁極の数が異なることを除いて磁気ギア81と同様に、複数の磁石により構成されている。後述するように磁気ギア82によって磁気ギア81を回転させることができるように、磁気ギア82の中心は、磁気ギア81の中心よりも回転テーブル2の周端寄りに位置している。この磁気ギア82は、回転軸83を介して成膜装置8の底部13に設けられる回転駆動部84に接続されている。回転駆動部84は、回転軸83を介して磁気ギア82を回転させる。   Further, a magnetic gear 82 that is a horizontal disk-shaped second rotating body is provided below the magnetic gear 81 in the space 72. The magnetic gear 82 is constituted by a plurality of magnets, for example, like the magnetic gear 81 except that the size and the number of magnetic poles are different. As will be described later, the center of the magnetic gear 82 is located closer to the peripheral edge of the rotary table 2 than the center of the magnetic gear 81 so that the magnetic gear 81 can be rotated by the magnetic gear 82. The magnetic gear 82 is connected to a rotation drive unit 84 provided on the bottom 13 of the film forming apparatus 8 via a rotation shaft 83. The rotation drive unit 84 rotates the magnetic gear 82 via the rotation shaft 83.

また、回転駆動部84は、磁気シールユニット85と図示しないモーターとを含んでいる。磁気シールユニット85は回転軸83の軸受けと、当該回転軸83の周囲の隙間をシールする磁気シールとを備えており、前記軸受けから発生したパーティクルが真空雰囲気である空間72に飛散することを抑えることができるように構成されている。具体的には、例えば当該軸受けに用いられる潤滑油の前記空間72への飛散を防ぐことができる。また、この磁気シールユニット85は、空間72の真空雰囲気と、真空容器11の外部の大気雰囲気とを区画する役割も有する。成膜装置8においては、図13で説明したように凹部31内及び空間72にガスノズル15からのN2ガスが流入して、パージをすることができる。また、成膜装置1と同様に空間72には、ガスノズル48からN2ガスが供給されるガス流路47が開口しており、当該N2ガスにより空間72内をパージできるように構成されている。   Further, the rotation drive unit 84 includes a magnetic seal unit 85 and a motor (not shown). The magnetic seal unit 85 includes a bearing of the rotary shaft 83 and a magnetic seal that seals a gap around the rotary shaft 83, and suppresses particles generated from the bearing from being scattered in the space 72 that is a vacuum atmosphere. It is configured to be able to. Specifically, for example, the lubricant used for the bearing can be prevented from scattering into the space 72. The magnetic seal unit 85 also has a role of partitioning the vacuum atmosphere in the space 72 and the air atmosphere outside the vacuum vessel 11. In the film forming apparatus 8, as described with reference to FIG. 13, the N 2 gas from the gas nozzle 15 flows into the recess 31 and the space 72 and can be purged. Similarly to the film forming apparatus 1, a gas flow path 47 to which N 2 gas is supplied from the gas nozzle 48 is opened in the space 72, and the inside of the space 72 can be purged with the N 2 gas.

ウエハホルダ24の公転と共に磁気ギア81は公転し、回転する磁気ギア82の上方を、その周縁部が磁気ギア82の周縁部に重なるように通過する。そのように磁気ギア81の周縁部と磁気ギア82の周縁部とが重なる間、磁気ギア81及び磁気ギア82間に作用する磁力によって、磁気ギア82の回転数に応じた回転数で磁気ギア81が当該磁気ギア82に対して非接触で回転する。そして、この磁気ギア81の回転によってウエハホルダ24が回転し、ウエハWが自転する。即ち、この成膜装置8では、磁気ギア82が磁気ギア81に重なる間に、限定的にウエハWの自転が行われるため、公転中にウエハWの自転は間欠的に行われる。この例では、磁気ギア82の回転速度に対して、磁気ギア81の回転速度が小さくなるように、各磁気ギア81、82の大きさ及び磁極の数が設定されている。   The magnetic gear 81 revolves with the revolution of the wafer holder 24, and passes above the rotating magnetic gear 82 so that the peripheral edge thereof overlaps the peripheral edge of the magnetic gear 82. Thus, while the peripheral edge of the magnetic gear 81 and the peripheral edge of the magnetic gear 82 overlap, the magnetic gear 81 is rotated at a rotational speed corresponding to the rotational speed of the magnetic gear 82 by the magnetic force acting between the magnetic gear 81 and the magnetic gear 82. Rotates without contact with the magnetic gear 82. The wafer holder 24 is rotated by the rotation of the magnetic gear 81, and the wafer W is rotated. That is, in the film forming apparatus 8, the rotation of the wafer W is limitedly performed while the magnetic gear 82 overlaps the magnetic gear 81, so that the rotation of the wafer W is intermittently performed during the revolution. In this example, the sizes of the magnetic gears 81 and 82 and the number of magnetic poles are set so that the rotational speed of the magnetic gear 81 is smaller than the rotational speed of the magnetic gear 82.

この成膜装置8においては、例えば成膜装置1と同様にオペレータが設定部101からレシピ(目標膜厚T及び回転テーブル2の回転速度V)、サイクルレートR、自転回数Nを選択することで、ウエハの自転速度A(rpm)が算出される。そして、算出された自転速度となるように、磁気ギア82を回転させる回転駆動部84を構成するモーターの回転数が制御される。   In the film forming apparatus 8, for example, as in the film forming apparatus 1, the operator selects a recipe (target film thickness T and rotation speed V of the turntable 2), cycle rate R, and number of rotations N from the setting unit 101. Then, the rotation speed A (rpm) of the wafer is calculated. And the rotation speed of the motor which comprises the rotation drive part 84 which rotates the magnetic gear 82 is controlled so that it may become the calculated autorotation speed.

図16〜図18は、成膜処理中におけるウエハWが自転及び公転する様子を示した模式図である。これらの模式図では、図7〜図10と同様にウエハWをW1〜W5で示し、これらウエハW1〜W5の向きを矢印A1〜A5で示している。成膜処理時には、成膜装置1で説明したように各ガスが供給される。そして、上記のようにオペレータが設定した回転速度で回転テーブル2が回転し、ウエハWが公転する。この公転と共に、上記のようにこの回転テーブル2の回転速度に基づいて算出された回転速度で回転駆動部84のモーターが回転し、磁気ギア82を回転させる(図16)。   16 to 18 are schematic diagrams showing how the wafer W rotates and revolves during the film forming process. In these schematic diagrams, the wafers W are indicated by W1 to W5 as in FIGS. 7 to 10, and the directions of the wafers W1 to W5 are indicated by arrows A1 to A5. During the film forming process, each gas is supplied as described in the film forming apparatus 1. Then, the rotary table 2 rotates at the rotation speed set by the operator as described above, and the wafer W revolves. Along with this revolution, the motor of the rotation drive unit 84 rotates at the rotation speed calculated based on the rotation speed of the turntable 2 as described above, thereby rotating the magnetic gear 82 (FIG. 16).

回転テーブル2の回転によって、例えばウエハW1を保持したウエハホルダ24に接続される磁気ギア81が、回転方向上流側から磁気ギア82の上方に移動し、当該磁気ギア82に重なるように位置すると、磁気ギア81、82間の磁力によって当該磁気ギア81の回転が開始され、ウエハW1が自転する(図17)。さらに回転テーブル2の回転が続けられ、前記磁気ギア81が磁気ギア82に対して回転方向下流側に移動すると、前記磁力が弱まり、ウエハW1の自転が停止する。既述のように回転テーブル2の回転速度に基づいてウエハWの自転速度が算出されていることにより、この自転停止時におけるウエハW1の向きは、自転開始時における向きとは異なる向きとされ、そのように向きが変化した状態で当該ウエハW1は、公転によって吸着領域R1に移動する。この向きの変化量は、上記のように算出されたウエハWの自転速度に従ったものとなる。   When, for example, the magnetic gear 81 connected to the wafer holder 24 holding the wafer W1 moves from the upstream side in the rotational direction to the upper side of the magnetic gear 82 by the rotation of the rotary table 2, the magnetic gear 81 is positioned so as to overlap the magnetic gear 82. The rotation of the magnetic gear 81 is started by the magnetic force between the gears 81 and 82, and the wafer W1 rotates (FIG. 17). When the rotation table 2 continues to rotate and the magnetic gear 81 moves downstream in the rotation direction with respect to the magnetic gear 82, the magnetic force is weakened and the rotation of the wafer W1 is stopped. Since the rotation speed of the wafer W is calculated based on the rotation speed of the turntable 2 as described above, the direction of the wafer W1 when the rotation is stopped is different from the direction when the rotation starts. With the orientation changed in this way, the wafer W1 moves to the suction region R1 by revolution. The amount of change in this direction follows the rotation speed of the wafer W calculated as described above.

さらに公転が続けられ、前記磁気ギア81が磁気ギア82上に移動する度にウエハW1が自転し、その向きが上記のように変更されて、吸着領域R1に移動する。ウエハW2〜W5についてもウエハW1と同様に、1回公転する度に自転によりその向きが変更されて、吸着領域R1に移動する。従って、成膜装置8においても、成膜装置1と同様にウエハWの周方向における膜厚均一性を高くすることができる。また、この成膜装置8ではウエハW1〜W5を自転させるための回転駆動部84を複数設ける必要が無いため、装置の製造コストを抑えることができる。さらに、この回転駆動部84の動力をウエハホルダ24に伝達するための磁気ギア81、82間は非接触であるため、パーティクルの発生が抑えられる。そして、ウエハWを自転させるための回転軸26と当該回転軸26を支持する支持リング42との間でパーティクルが発生しても、これら自転軸24及び支持リング42は、図13で説明したように、成膜処理時にN2ガスによりパージされる空間72に設けられているため、当該パーティクルがウエハWに付着することを防ぐことができる。   Further, the revolution is continued, and whenever the magnetic gear 81 moves onto the magnetic gear 82, the wafer W1 rotates, its direction is changed as described above, and it moves to the attracting region R1. Similarly to the wafer W1, the orientation of the wafers W2 to W5 is changed by rotation each time it revolves once and moves to the suction region R1. Accordingly, in the film forming apparatus 8 as well, the film thickness uniformity in the circumferential direction of the wafer W can be increased as in the film forming apparatus 1. Further, in this film forming apparatus 8, it is not necessary to provide a plurality of rotation driving units 84 for rotating the wafers W1 to W5, so that the manufacturing cost of the apparatus can be suppressed. Further, since the magnetic gears 81 and 82 for transmitting the power of the rotational drive unit 84 to the wafer holder 24 are not in contact with each other, generation of particles can be suppressed. Even if particles are generated between the rotation shaft 26 for rotating the wafer W and the support ring 42 that supports the rotation shaft 26, the rotation shaft 24 and the support ring 42 are described with reference to FIG. In addition, since it is provided in the space 72 purged by the N 2 gas during the film forming process, the particles can be prevented from adhering to the wafer W.

成膜装置8では、磁気ギア82及び回転駆動部84を1つのみ設けているが、これらを複数設け、ウエハWが1回公転する間に複数箇所で自転するようにしてもよい。また、磁気ギア81、82は図19に示すように互いに横方向に配置し、公転によって磁気ギア82に近接した磁気ギア81が選択的に回転されることで、各ウエハWが間欠的に自転するようにしてもよい。なお、図19に示す例では、磁気ギア81、82を円柱状に示しているが、図14、図15で示した円板状の磁気ギア81、82と同様に磁石が配列されることで構成される。また、上記の例では磁気ギア81、82の両方を磁石により構成しているが、いずれか一方を磁石では無い磁性体により構成してもよい。例えば磁気ギア82を磁石、磁気ギア81を鉄などの磁性体により夫々構成する。それによって、上記の例のように磁気ギア81が磁気ギア82に接近しているときに磁気ギア82の回転に追従して磁気ギア81が回転するようにして、ウエハWを自転させてもよい。磁気ギア81を磁性体、磁気ギア82を磁石としてもよい。   In the film forming apparatus 8, only one magnetic gear 82 and one rotation drive unit 84 are provided. However, a plurality of these may be provided, and the wafer W may rotate at a plurality of locations while the wafer W revolves once. Further, the magnetic gears 81 and 82 are arranged in a lateral direction as shown in FIG. 19, and the magnetic gear 81 close to the magnetic gear 82 is selectively rotated by revolution, whereby each wafer W rotates intermittently. You may make it do. In the example shown in FIG. 19, the magnetic gears 81 and 82 are shown in a cylindrical shape, but the magnets are arranged in the same manner as the disk-like magnetic gears 81 and 82 shown in FIGS. 14 and 15. Composed. In the above example, both of the magnetic gears 81 and 82 are made of magnets, but one of them may be made of a magnetic material that is not a magnet. For example, the magnetic gear 82 is composed of a magnet, and the magnetic gear 81 is composed of a magnetic material such as iron. Accordingly, as in the above example, when the magnetic gear 81 is approaching the magnetic gear 82, the magnetic gear 81 may be rotated following the rotation of the magnetic gear 82 to rotate the wafer W. . The magnetic gear 81 may be a magnetic material, and the magnetic gear 82 may be a magnet.

(評価試験)
本発明に関連した評価試験について説明する。各評価試験の説明では、ウエハホルダ24に載置されたウエハWについて、成膜処理開始時において回転テーブル2の直径に一致するウエハWの直径をYラインと記載する。従って、Yラインは図7中に矢印A1〜A5として示した領域である。そして、このYラインに対して直交するウエハWの直径をXラインと記載する。
(Evaluation test)
An evaluation test related to the present invention will be described. In the description of each evaluation test, for the wafer W placed on the wafer holder 24, the diameter of the wafer W that coincides with the diameter of the turntable 2 at the start of the film forming process is described as a Y line. Accordingly, the Y line is a region indicated by arrows A1 to A5 in FIG. And the diameter of the wafer W orthogonal to this Y line is described as X line.

評価試験1
直径が300mmのウエハWの自転による膜厚分布の変化を調べる試験を行った。評価試験1−1として、成膜装置1においてウエハWを自転させずに成膜するシミュレーションを実施した。また、評価試験1−2として、ウエハWの自転を行うことを除いては、評価試験1−1と同じ条件で成膜を行うシミュレーションを実施した。ただし、この評価試験1−2では実施の形態と異なり、成膜処理開始から成膜処理終了までにウエハWは180°だけ自転するように設定している。また、評価試験1−3として評価試験1−2と同様の試験を行ったが、差異点としてウエハWは45°だけ自転するように設定した。さらに評価試験1−4として、実施の形態と同様にウエハWが整数回、自転するように設定した他は評価試験1−1〜1−3と同じ条件でシミュレーションを実施した。評価試験1−1〜1−4の夫々において、ウエハWの面内における膜厚分布を測定した。
Evaluation test 1
A test was conducted to examine the change in film thickness distribution due to rotation of the wafer W having a diameter of 300 mm. As the evaluation test 1-1, a simulation for forming a film without rotating the wafer W in the film forming apparatus 1 was performed. In addition, as evaluation test 1-2, a simulation was performed in which film formation was performed under the same conditions as in evaluation test 1-1 except that the wafer W was rotated. However, in this evaluation test 1-2, unlike the embodiment, the wafer W is set to rotate by 180 ° from the start of the film formation process to the end of the film formation process. Further, a test similar to the evaluation test 1-2 was performed as the evaluation test 1-3, but the wafer W was set to rotate by 45 ° as a difference. Further, as an evaluation test 1-4, a simulation was performed under the same conditions as the evaluation tests 1-1 to 1-3 except that the wafer W was set to rotate an integer number of times as in the embodiment. In each of the evaluation tests 1-1 to 1-4, the film thickness distribution in the plane of the wafer W was measured.

図20の上段、下段は夫々評価試験1−1、1−2のウエハWの面内の膜厚分布を模式的に示し、図21の上段、下段は夫々評価試験1−3、1−4のウエハWの面内の膜厚分布を模式的に示している。実際に取得された試験結果は、ウエハWの面内に膜厚に応じた色が付されたコンピュータグラフィクスであるが、図20、図21では図示の便宜上、ウエハWの面内を、膜厚が所定の範囲となった領域ごとに等高線で囲み、模様を付して示している。   The upper and lower stages of FIG. 20 schematically show the in-plane film thickness distributions of the evaluation tests 1-1 and 1-2, respectively. The upper and lower stages of FIG. 21 show the evaluation tests 1-3 and 1-4, respectively. 2 schematically shows the in-plane film thickness distribution of the wafer W. The actually obtained test results are computer graphics in which a color corresponding to the film thickness is attached to the surface of the wafer W. In FIG. 20 and FIG. Each of the regions in which is a predetermined range is surrounded by contour lines and shown with a pattern.

また、図22の上段は、評価試験1−1、1−4の各Yラインの膜厚分布を示すグラフであり、下段は評価試験1−1、1−4の各Xラインの膜厚分布を示すグラフである。各グラフの横軸はウエハWの一端からの距離(単位:mm)を示している。YラインのグラフにおけるウエハWの一端とは、回転テーブル2の中心軸側の端である。各グラフの縦軸は膜厚(単位:nm)を示している。図23の上段は、評価試験1−2、1−3の各Yラインの膜厚分布を示すグラフであり、下段は、評価試験1−2、1−3の各Xラインの膜厚分布を示すグラフである。   Moreover, the upper part of FIG. 22 is a graph showing the film thickness distribution of each Y line of the evaluation tests 1-1 and 1-4, and the lower part is a film thickness distribution of each X line of the evaluation tests 1-1 and 1-4. It is a graph which shows. The horizontal axis of each graph indicates the distance (unit: mm) from one end of the wafer W. One end of the wafer W in the Y-line graph is the end on the central axis side of the turntable 2. The vertical axis of each graph represents the film thickness (unit: nm). The upper part of FIG. 23 is a graph showing the film thickness distribution of each Y line of evaluation tests 1-2 and 1-3, and the lower part is the film thickness distribution of each X line of evaluation tests 1-2 and 1-3. It is a graph to show.

図20、図21のウエハWの模式図から、ウエハWを自転させることでウエハWの周方向における膜厚分布の均一性が高くなり、整数回回転させた評価試験1−4では当該周方向の均一性が極めて高くなっていることが分かる。また、各グラフについて見ると、Xラインの膜厚分布は、評価試験1−1〜1−4で大きな差は見られない。Yラインの膜厚分布については、評価試験1−1で見られるYラインの一端部と他端部との間の膜厚の若干の差が、評価試験1−2、1−3では小さくなっており、評価試験1−4では殆ど無くなっている。従って、各グラフからもウエハWの周方向の膜厚分布について均一性が高くなっていることが分かる。   20 and 21, the uniformity of the film thickness distribution in the circumferential direction of the wafer W is increased by rotating the wafer W, and in the evaluation test 1-4 rotated by an integer number of times, the circumferential direction of the wafer W is rotated. It can be seen that the uniformity of is extremely high. Moreover, when it sees about each graph, the big difference is not seen by the film thickness distribution of X line by the evaluation tests 1-1 to 1-4. Regarding the film thickness distribution of the Y line, a slight difference in film thickness between one end and the other end of the Y line seen in the evaluation test 1-1 is small in the evaluation tests 1-2 and 1-3. It is almost lost in Evaluation Test 1-4. Therefore, it can be seen from each graph that the film thickness distribution in the circumferential direction of the wafer W is highly uniform.

また、評価試験1−1〜1−4の夫々について、Xライン上及びYライン上の各測定位置を含む、ウエハWの面内の49箇所の位置で測定された膜厚から算出された、膜厚の平均値、膜厚の最大値、膜厚の最小値、膜厚の最大値と最小値との差、及び面内均一性を表す指標であるWinWを下記の表1に示す。WinWとは、±{(膜厚の最大値-膜厚の最小値)/(膜厚の平均値)}/2×100(%)であり、表1ではその絶対値を表示している。この絶対値が小さいほど面内均一性が高い。評価試験1−1〜1−4のWinWを比較して、ウエハWを自転させることによって、周方向のみならずウエハWの面内全体において膜厚の均一性が高くなっていること、及び評価試験1−4が最も面内全体で膜厚の均一性が高くなっていることが分かる。従って、この評価試験1からは、実施の形態で説明したようにウエハWを自転させることがウエハWの面内の膜厚の均一性を高くするために有効であることが分かり、自転の回数は整数とすることが特に有効であることが分かる。

Figure 2016092156
Further, for each of the evaluation tests 1-1 to 1-4, it was calculated from the film thickness measured at 49 positions in the plane of the wafer W including the measurement positions on the X line and the Y line. Table 1 below shows the average value of the film thickness, the maximum value of the film thickness, the minimum value of the film thickness, the difference between the maximum value and the minimum value of the film thickness, and WinW which is an index representing the in-plane uniformity. WinW is ± {(maximum value of film thickness−minimum value of film thickness) / (average value of film thickness)} / 2 × 100 (%), and Table 1 shows the absolute value. The smaller the absolute value, the higher the in-plane uniformity. By comparing the WinW of the evaluation tests 1-1 to 1-4 and rotating the wafer W, the uniformity of the film thickness is increased not only in the circumferential direction but also in the entire surface of the wafer W, and the evaluation It can be seen that Test 1-4 has the highest uniformity of film thickness across the entire surface. Therefore, from this evaluation test 1, it is understood that rotating the wafer W as described in the embodiment is effective for increasing the uniformity of the film thickness in the surface of the wafer W, and the number of rotations. It can be seen that it is particularly effective to use an integer.
Figure 2016092156

評価試験2
評価試験2として、図12で説明したウエハホルダ24の凹部25における側壁の高さH1、及びウエハWの自転による膜厚分布の影響を調べるための試験を行った。評価試験2−1として前記側壁の高さH1をウエハWの厚さH2と同じ1.0mmとして設定し、評価試験1−1と同様にウエハWを自転させずに成膜装置1による成膜処理を行うシミュレーションを行った。回転テーブル2の回転数は120rpmに設定した。また、評価試験2−2として、ウエハWの公転中にウエハWを自転させたことを除いては評価試験2−1と同様の条件でシミュレーションを行い、ウエハWの各部の膜厚を測定した。評価試験2−3、2−4として、側壁の高さH1を図12に示したように1.8mmとした他は、評価試験2−1、2−2と夫々同様の条件でシミュレーションを行った。評価試験2−1〜2−4について、成膜されたウエハWの各部の膜厚を測定した。
Evaluation test 2
As the evaluation test 2, a test for examining the influence of the height H1 of the side wall in the recess 25 of the wafer holder 24 described with reference to FIG. In the evaluation test 2-1, the height H1 of the side wall is set to 1.0 mm which is the same as the thickness H2 of the wafer W, and the film formation by the film formation apparatus 1 is performed without rotating the wafer W as in the evaluation test 1-1. A simulation of processing was performed. The rotation speed of the turntable 2 was set to 120 rpm. Further, as evaluation test 2-2, simulation was performed under the same conditions as in evaluation test 2-1, except that the wafer W was rotated during the revolution of the wafer W, and the film thickness of each part of the wafer W was measured. . As evaluation tests 2-3 and 2-4, simulation was performed under the same conditions as evaluation tests 2-1 and 2-2 except that the height H1 of the side wall was set to 1.8 mm as shown in FIG. It was. About the evaluation tests 2-1 to 2-4, the film thickness of each part of the formed wafer W was measured.

図24の上段、下段は夫々評価試験2−1、2−2のウエハWの膜厚分布について得られた画像を、評価試験1と同様に模式図として示している。図25の上段、下段は、図24と同様に、評価試験2−3、2−4についてのウエハWの模式図を示している。また、図26の上段のグラフは評価試験2−1、2−2のXラインの膜厚分布を示し、図26の下段のグラフは評価試験2−1、2−2のYラインの膜厚分布を示している。図27の上段のグラフは評価試験2−3、2−4のXラインの膜厚分布を示し、図27の下段のグラフは評価試験2−3、2−4のYラインの膜厚分布を示している。図26、図27の各グラフの横軸は、評価試験1の各グラフの横軸と同じく、ウエハWの一端からの距離を示している。ただし、縦軸は、膜厚の代わりに、デポレート(単位:nm/分)を示している。   The upper and lower sections of FIG. 24 show images obtained for the film thickness distributions of the wafers W in the evaluation tests 2-1 and 2-2, respectively, as in the case of the evaluation test 1, as a schematic diagram. The upper part and the lower part of FIG. 25 show schematic views of the wafer W for the evaluation tests 2-3 and 2-4, as in FIG. The upper graph of FIG. 26 shows the film thickness distribution of the X line of evaluation tests 2-1 and 2-2, and the lower graph of FIG. 26 shows the film thickness of the Y line of evaluation tests 2-1 and 2-2. Distribution is shown. The upper graph in FIG. 27 shows the film thickness distribution in the X line of evaluation tests 2-3 and 2-4, and the lower graph in FIG. 27 shows the film thickness distribution in the Y line in evaluation tests 2-3 and 2-4. Show. The horizontal axis of each graph in FIGS. 26 and 27 indicates the distance from one end of the wafer W, similarly to the horizontal axis of each graph of the evaluation test 1. FIG. However, the vertical axis represents the deposition rate (unit: nm / min) instead of the film thickness.

図24〜図27の各模式図及び各グラフから、側壁の高さH1の大きさに関わらずウエハWを自転させることで、ウエハWの周方向における膜厚の均一性が高くなることが分かる。また、Xライン及びYラインの両端部の膜厚について見ると、側壁の高さH1が1mmの評価試験2−2では5.5mm程度、側壁の高さH1が1.8mmの評価試験2−4では5.0mm程度であり、評価試験2−4の方が低くなっていることが分かる。従って、ウエハWの周縁部の膜厚を小さくするためには、ウエハWの厚さよりも側壁の高さH1を大きくし、実施の形態で説明したように凹部25とウエハWの表面とに段差を形成することが有効である。   24 to 27, it can be seen that the uniformity of the film thickness in the circumferential direction of the wafer W is increased by rotating the wafer W regardless of the height H1 of the side wall. . Further, regarding the film thickness at both ends of the X line and the Y line, the evaluation test 2-2 in which the side wall height H1 is about 5.5 mm in the side wall height H1 and the side wall height H1 is 1.8 mm. 4, it is about 5.0 mm, and it can be seen that the evaluation test 2-4 is lower. Therefore, in order to reduce the film thickness of the peripheral portion of the wafer W, the height H1 of the side wall is made larger than the thickness of the wafer W, and a step is formed between the recess 25 and the surface of the wafer W as described in the embodiment. It is effective to form

また、評価試験1と同様に評価試験2−1〜2−4について、ウエハWの各測定箇所の膜厚から算出された、膜厚の平均値、膜厚の最大値、膜厚の最小値、膜厚の最大値と最小値との差、及びWinWを下記の表2に示す。評価試験2−1、2−2の各試験結果の比較と、評価試験2−3、2−4の各試験結果の比較とから、ウエハWを自転させることでWinWが小さくなることが分かる。従って、ウエハWを自転させることによって、周方向のみならずウエハWの面内全体において膜厚の均一性を高くできることが分かる。

Figure 2016092156
Similarly to evaluation test 1, for evaluation tests 2-1 to 2-4, the average value of the film thickness, the maximum value of the film thickness, and the minimum value of the film thickness calculated from the film thickness of each measurement location on the wafer W Table 2 below shows the difference between the maximum value and the minimum value of the film thickness, and WinW. It can be seen from the comparison of the test results of the evaluation tests 2-1 and 2-2 and the comparison of the test results of the evaluation tests 2-3 and 2-4 that the WinW is reduced by rotating the wafer W. Accordingly, it can be seen that by rotating the wafer W, the uniformity of the film thickness can be enhanced not only in the circumferential direction but also in the entire in-plane of the wafer W.
Figure 2016092156

評価試験3
ウエハホルダ24の凹部25が膜厚分布に与える影響を調べた。この評価試験3では、ウエハWを自転させずに成膜処理を行うシミュレーションを行い、ウエハWの各部の膜厚を測定した。評価試験3−1〜3−3では凹部25の側壁の高さH1を1.0mmに設定し、評価試験3−4〜3−6では凹部25の側壁の高さH1を1.8mmに設定した。評価試験3−1、3−4では回転テーブル2の回転数を20rpm、評価試験3−2、3−5では回転テーブル2の回転数を60rpm、評価試験3−3、3−6では回転テーブル2の回転数を120rpmに夫々設定した。成膜処理時のウエハWの温度は600℃、真空容器11内の圧力は1.8Torr(240.0Pa)、原料ガスの流量は200sccm(0.34Pa・m/秒)、酸化ガスであるO3ガスの流量は6slm(1.01Pa・m/秒)、中心領域形成部CからのN2ガスの流量は0sccm、成膜処理を行う時間は10分に夫々設定した。
Evaluation test 3
The influence of the recess 25 of the wafer holder 24 on the film thickness distribution was examined. In this evaluation test 3, a simulation for performing a film forming process without rotating the wafer W was performed, and the film thickness of each part of the wafer W was measured. In evaluation tests 3-1 to 3-3, the height H1 of the side wall of the recess 25 is set to 1.0 mm, and in evaluation tests 3-4 to 3-6, the height H1 of the side wall of the recess 25 is set to 1.8 mm. did. In evaluation tests 3-1 and 3-4, the rotational speed of the rotary table 2 is 20 rpm, in evaluation tests 3-2 and 3-5, the rotational speed of the rotary table 2 is 60 rpm, and in the evaluation tests 3-3 and 3-6, the rotary table. The rotational speed of 2 was set to 120 rpm. During the film formation process, the temperature of the wafer W is 600 ° C., the pressure in the vacuum vessel 11 is 1.8 Torr (240.0 Pa), the flow rate of the source gas is 200 sccm (0.34 Pa · m 3 / sec), and an oxidizing gas. The flow rate of O 3 gas was set to 6 slm (1.01 Pa · m 3 / sec), the flow rate of N 2 gas from the central region forming portion C was set to 0 sccm, and the film forming time was set to 10 minutes.

図28の上段、中段、下段は、夫々評価試験3−1、3−2、3−3のウエハWの膜厚分布について得られた画像を、評価試験1の図20、図21と同様に模式図として示している。図28と同様に、図29の上段、中段、下段は、夫々評価試験3−1、3−2、3−3のウエハWの膜厚分布について得られた画像を、模式図として示している。また、図30の上段、下段のグラフは、評価試験3−2〜3−6における夫々Xライン、Yラインの膜厚分布を示している。図30の各グラフの横軸、縦軸は評価試験2の図26、図27の各グラフの横軸、縦軸と同じく、ウエハWの一端からの距離、デポレートを夫々示している。評価試験3−1のXライン及びYラインの各膜厚分布は、評価試験3−4のXライン及びYラインの各膜厚分布と略同様の結果になったため、グラフ中の表示を省略している。   In the upper, middle, and lower stages of FIG. 28, images obtained for the film thickness distributions of the wafers W in the evaluation tests 3-1, 3-2, and 3-3 are shown in the same manner as FIGS. 20 and 21 in the evaluation test 1, respectively. It is shown as a schematic diagram. Similarly to FIG. 28, the upper, middle, and lower stages in FIG. 29 show images obtained for the film thickness distribution of the wafer W in the evaluation tests 3-1, 3-2, and 3-3 as schematic diagrams. . Further, the upper and lower graphs of FIG. 30 show the film thickness distributions of the X line and the Y line in the evaluation tests 3-2 to 3-6, respectively. The horizontal axis and vertical axis of each graph in FIG. 30 indicate the distance from one end of the wafer W and the deposition rate, respectively, as in the horizontal axis and vertical axis of each graph of FIG. 26 and FIG. Since the film thickness distributions of the X line and Y line of the evaluation test 3-1 are substantially the same as the film thickness distributions of the X line and Y line of the evaluation test 3-4, the display in the graph is omitted. ing.

グラフ及び模式図から、回転テーブル2の回転数が比較的高く、且つ凹部25の側壁の高さH1を1.8mmにした評価試験3−5、3−6では、ウエハWの周縁部の内の一部の膜厚が他の領域の膜厚に比べて小さくなることが分かる。ウエハWを自転させることによって、ウエハWの周方向に膜厚分布の勾配が均されるので、このように凹部の側壁の高さH1を設定した上でウエハWを自転させ、回転テーブル2の回転数を比較的高くすることで、ウエハWの全周で周縁部の膜厚を小さくできると推定される。   From the graphs and schematic diagrams, in the evaluation tests 3-5 and 3-6 in which the rotation speed of the turntable 2 is relatively high and the height H1 of the side wall of the recess 25 is 1.8 mm, It can be seen that a part of the film thickness is smaller than the film thickness of other regions. By rotating the wafer W, the gradient of the film thickness distribution is made uniform in the circumferential direction of the wafer W. Thus, after setting the height H1 of the side wall of the recess, the wafer W is rotated and the rotation table 2 is rotated. It is presumed that the film thickness at the peripheral edge can be reduced over the entire circumference of the wafer W by making the rotational speed relatively high.

W ウエハ
1 成膜装置
11 真空容器
2 回転テーブル
22 公転用回転駆動部
24 ウエハホルダ
25 凹部
26 回転軸
27 自転用回転駆動部
33 ヒーター
41 支柱
51 原料ガス供給ノズル
100 制御部
101 設定部
W Wafer 1 Film forming apparatus 11 Vacuum container 2 Revolving table 22 Revolving rotary drive unit 24 Wafer holder 25 Recess 26 Revolving shaft 27 Rotating rotary drive unit 33 Heater 41 Support column 51 Source gas supply nozzle 100 Control unit 101 Setting unit

Claims (13)

処理ガスを基板に供給して薄膜を得る成膜装置であって、
真空容器内に配置され、その一面側に設けられる載置領域に基板を載置して公転させるための回転テーブルと、
前記基板が自転するように前記載置領域を回転させる回転機構と、
前記回転テーブルの一面側におけるガス供給領域に前記処理ガスを供給し、前記公転により当該ガス供給領域を複数回繰り返し通過する基板に成膜を行うための処理ガス供給機構と、
前記ガス供給領域に基板が位置する毎に当該基板の向きが変わるように、前記回転テーブルの回転速度を含むパラメータに基づいて、前記基板の自転速度を演算し、演算された自転速度で基板を自転させるように制御信号を出力する制御部と、
を備えたことを特徴とする成膜装置。
A film forming apparatus for obtaining a thin film by supplying a processing gas to a substrate,
A rotary table that is placed in a vacuum vessel and placed on a placement area provided on one side thereof to revolve the substrate,
A rotation mechanism for rotating the placement area so that the substrate rotates,
A process gas supply mechanism for supplying the process gas to a gas supply region on one surface side of the turntable and performing film formation on the substrate that repeatedly passes through the gas supply region by the revolution; and
The rotation speed of the substrate is calculated based on parameters including the rotation speed of the turntable so that the orientation of the substrate changes every time the substrate is positioned in the gas supply region, and the substrate is moved at the calculated rotation speed. A control unit that outputs a control signal so as to rotate,
A film forming apparatus comprising:
前記演算は、前記回転テーブルの回転速度と、回転テーブルの1回転当たりの膜厚の増加量を目標膜厚で除算した値と、の掛け算を含むことを特徴とする請求項1記載の成膜装置。   The film formation according to claim 1, wherein the calculation includes a multiplication of a rotation speed of the turntable and a value obtained by dividing an increase in film thickness per rotation of the turntable by a target film thickness. apparatus. 前記演算は、前記回転テーブルの回転速度と、回転テーブルの1回転当たりの膜厚の増加量を目標膜厚で除算した値と、1以上の自然数Nと、の掛け算を含み、
前記自然数Nの値をオペレータが設定するための設定部を備えていることを特徴とする請求項2記載の成膜装置。
The calculation includes a multiplication of a rotation speed of the turntable, a value obtained by dividing an increase in film thickness per rotation of the turntable by a target film thickness, and a natural number N of 1 or more,
The film forming apparatus according to claim 2, further comprising a setting unit for an operator to set the natural number N.
前記自転機構は、前記回転テーブルの他面側に設けられると共に、前記回転テーブルの回転によって公転する自転用回転軸を備え、
前記自転用回転軸を前記回転テーブルに対して支持するために回転テーブルの他面側に設けられる支持部材が設けられ、
前記回転テーブルを他面側から加熱するためのヒーターが、前記自転用回転軸及び支持部材の移動路の内側、外側に夫々当該回転テーブルの回転方向に沿って設けられることを特徴とする請求項1ないし3のいずれか一つに記載の成膜装置。
The rotation mechanism is provided on the other surface side of the rotary table, and includes a rotation shaft for rotation that revolves by rotation of the rotary table,
A support member provided on the other surface side of the rotary table to support the rotary shaft for rotation with respect to the rotary table;
The heater for heating the rotary table from the other surface side is provided along the rotation direction of the rotary table on the inner side and the outer side of the moving path of the rotary shaft for rotation and the support member, respectively. The film forming apparatus according to any one of 1 to 3.
前記支持部材は、回転テーブルの他面側において前記自転用回転軸に対して回転テーブルの回転方向に離れて設けられる支柱と、前記ヒーターの下方側にて前記前記支柱と前記自転機構とを接続して支柱に対して前記自転機構を支持する接続部と、
を備えたことを特徴とする請求項4記載の成膜装置。
The support member connects the support column and the rotation mechanism on the lower side of the heater, and a support column provided on the other surface side of the rotation table away from the rotation shaft for rotation in the rotation direction of the rotation table. And a connecting portion for supporting the rotation mechanism with respect to the support,
The film forming apparatus according to claim 4, further comprising:
前記載置領域と共に公転し、且つその回転によって前記載置領域を回転させる磁石または磁性体からなる第1の回転体と、
前記回転機構は、磁石または磁性体からなる第2の回転体を備え、
前記第1の回転体及び前記第2の回転体のうち少なくとも一方は磁石からなり、
公転する前記第1の回転体を、当該第1の回転体と第2の回転体との間の磁力により、非接触で間欠的に回転させることを特徴とする請求項1ないし5のいずれか一つに記載の成膜装置。
A first rotating body made of a magnet or a magnetic body that revolves together with the mounting area and rotates the mounting area by rotation thereof;
The rotating mechanism includes a second rotating body made of a magnet or a magnetic body,
At least one of the first rotating body and the second rotating body is made of a magnet,
The first rotating body that revolves is intermittently rotated in a non-contact manner by a magnetic force between the first rotating body and the second rotating body. The film-forming apparatus as described in one.
前記処理ガス供給領域に対して前記回転テーブルの周方向に離間して設けられる反応ガス供給領域に、前記処理ガスと反応する反応ガスを供給する反応ガス供給機構と、
前記反応ガス供給領域と前記処理ガス供給領域との間に設けられた分離領域に対して分離ガスを供給するための分離ガス供給部と、を備え
前記載置領域は凹部の底面により構成され、凹部の深さは基板の厚さよりも大きいことを特徴とする請求項1ないし6のいずれか一つに記載の成膜装置。
A reaction gas supply mechanism that supplies a reaction gas that reacts with the processing gas to a reaction gas supply region that is provided apart from the processing gas supply region in the circumferential direction of the turntable;
A separation gas supply unit for supplying a separation gas to a separation region provided between the reaction gas supply region and the processing gas supply region, and the mounting region is configured by a bottom surface of a recess, 7. The film forming apparatus according to claim 1, wherein the depth of the recess is greater than the thickness of the substrate.
前記凹部の深さは、基板の厚さの1.8倍であることを特徴とする請求項7記載の成膜装置。   8. The film forming apparatus according to claim 7, wherein the depth of the concave portion is 1.8 times the thickness of the substrate. 処理ガスを基板に供給して薄膜を得る成膜方法であって、
真空容器内に配置される回転テーブルの一面側に設けられる載置領域に基板を載置して公転させる工程と、
回転機構により前記基板が自転するように載置領域を回転させる工程と、
前記回転テーブルの一面側におけるガス供給領域に処理ガス供給機構により前記処理ガスを供給し、当該ガス供給領域を複数回繰り返し通過する基板に成膜を行う工程と、
前記ガス供給領域に基板が位置する毎に当該基板の向きが変わるように、前記回転テーブルの回転速度を含むパラメータに基づいて、前記基板の自転速度を演算する工程と、
演算された自転速度で基板を自転させる工程と、
を備えたことを特徴とする成膜方法。
A film forming method for obtaining a thin film by supplying a processing gas to a substrate,
A step of placing and revolving a substrate on a placement region provided on one side of a rotary table disposed in a vacuum vessel;
A step of rotating the placement region so that the substrate rotates by a rotation mechanism;
Supplying the processing gas to a gas supply region on one surface side of the turntable by a processing gas supply mechanism, and forming a film on a substrate that repeatedly passes through the gas supply region;
Calculating the rotation speed of the substrate based on parameters including the rotation speed of the turntable so that the orientation of the substrate changes each time the substrate is positioned in the gas supply region;
A process of rotating the substrate at the calculated rotation speed;
A film forming method comprising:
前記基板の自転速度を演算する工程は、
前記回転テーブルの回転速度と、回転テーブルの1回転当たりの膜厚の増加量を目標膜厚で除算した値と、の掛け算を行う工程を含むことを特徴とする請求項9記載の成膜方法。
The step of calculating the rotation speed of the substrate includes:
The film forming method according to claim 9, further comprising a step of multiplying the rotation speed of the turntable by a value obtained by dividing the amount of increase in film thickness per rotation of the turntable by the target film thickness. .
前記基板の自転速度を演算する工程は、
前記演算は、前記回転テーブルの回転速度と、回転テーブルの1回転当たりの膜厚の増加量を目標膜厚で除算した値と、1以上の自然数Nと、の掛け算を行う工程と、
前記自然数Nの値を設定する工程と、
を含むことを特徴とする請求項10記載の成膜方法。
The step of calculating the rotation speed of the substrate includes:
The calculation is performed by multiplying the rotation speed of the turntable, a value obtained by dividing the increase in film thickness per rotation of the turntable by the target film thickness, and a natural number N of 1 or more;
Setting the value of the natural number N;
The film forming method according to claim 10, comprising:
前記載置領域を回転させる工程は、
磁石からなる第1の回転体を、当該載置領域と共に公転させる工程と、
前記回転機構を構成すると共に磁石からなる第2の回転体と、前記第1の回転体との間に作用する磁力により、当該第1の回転体を非接触で間欠的に回転させる工程と、
前記第1の回転体の回転によって前記載置領域を回転させる工程と、
を含むことを特徴とする請求項9ないし11のいずれか一つに記載の成膜方法。
The step of rotating the mounting area is as follows:
Revolving the first rotating body made of a magnet together with the placement area;
A step of intermittently rotating the first rotating body in a non-contact manner by a magnetic force acting between the second rotating body including the magnet and the second rotating body, which constitutes the rotating mechanism; and
Rotating the placement area by rotating the first rotating body;
The film forming method according to claim 9, further comprising:
処理ガスを基板に供給して薄膜を得る成膜装置に用いられるコンピュータプログラムを格納した記憶媒体において、
前記コンピュータプログラムは、請求項9ないし12のいずれか一つに記載の成膜方法を実施するようにステップが組まれていることを特徴とする記憶媒体。
In a storage medium storing a computer program used in a film forming apparatus for supplying a processing gas to a substrate to obtain a thin film,
A storage medium, wherein the computer program includes steps so as to perform the film forming method according to any one of claims 9 to 12.
JP2014223701A 2014-10-31 2014-10-31 Film forming apparatus, film forming method, and storage medium Active JP6330623B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014223701A JP6330623B2 (en) 2014-10-31 2014-10-31 Film forming apparatus, film forming method, and storage medium
TW104135533A TWI612603B (en) 2014-10-31 2015-10-29 Film forming apparatus, and film forming method
KR1020150151152A KR101899634B1 (en) 2014-10-31 2015-10-29 Film forming apparatus, film forming method, and recording medium
US14/926,017 US10072336B2 (en) 2014-10-31 2015-10-29 Film forming apparatus, film forming method, and recording medium
CN201510726329.0A CN105568259B (en) 2014-10-31 2015-10-30 Film formation device and film build method
US16/021,888 US11085113B2 (en) 2014-10-31 2018-06-28 Film forming method and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223701A JP6330623B2 (en) 2014-10-31 2014-10-31 Film forming apparatus, film forming method, and storage medium

Publications (2)

Publication Number Publication Date
JP2016092156A true JP2016092156A (en) 2016-05-23
JP6330623B2 JP6330623B2 (en) 2018-05-30

Family

ID=55852021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223701A Active JP6330623B2 (en) 2014-10-31 2014-10-31 Film forming apparatus, film forming method, and storage medium

Country Status (5)

Country Link
US (2) US10072336B2 (en)
JP (1) JP6330623B2 (en)
KR (1) KR101899634B1 (en)
CN (1) CN105568259B (en)
TW (1) TWI612603B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832253B1 (en) * 2016-11-24 2018-02-26 주식회사 한화 Apparatus for processing substrate
KR20180082958A (en) 2017-01-11 2018-07-19 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
KR20180100477A (en) 2017-03-01 2018-09-11 도쿄엘렉트론가부시키가이샤 Rotation detection jig, substrate processing apparatus and method of operating the substrate processing apparatus
JP2018527749A (en) * 2015-08-20 2018-09-20 ジュスン エンジニアリング カンパニー リミテッド Substrate processing apparatus and substrate processing method
KR20180127195A (en) 2017-05-18 2018-11-28 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
WO2019087715A1 (en) * 2017-11-02 2019-05-09 東京エレクトロン株式会社 Film formation device, and film formation method
JP2019114711A (en) * 2017-12-25 2019-07-11 株式会社Sumco Susceptor and manufacturing method of epitaxial wafer using the same
JP2021093462A (en) * 2019-12-11 2021-06-17 東京エレクトロン株式会社 Rotary drive device, substrate processing device and rotary drive method
KR20220157887A (en) 2021-05-21 2022-11-29 도쿄엘렉트론가부시키가이샤 Control apparatus and control method for film forming apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869742B2 (en) * 2010-08-04 2014-10-28 Lam Research Corporation Plasma processing chamber with dual axial gas injection and exhaust
JP6507953B2 (en) * 2015-09-08 2019-05-08 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
CN107022754B (en) * 2016-02-02 2020-06-02 东京毅力科创株式会社 Substrate processing apparatus
KR102620773B1 (en) * 2016-07-19 2024-01-04 주성엔지니어링(주) Substrate treatment apparatus
KR102125512B1 (en) * 2016-10-18 2020-06-23 주식회사 원익아이피에스 Substrate processing device and method
JP6817883B2 (en) * 2017-04-25 2021-01-20 東京エレクトロン株式会社 Film formation method
JP6935741B2 (en) * 2017-12-20 2021-09-15 東京エレクトロン株式会社 Film deposition equipment
US10109517B1 (en) * 2018-01-10 2018-10-23 Lam Research Corporation Rotational indexer with additional rotational axes
CN108217166B (en) 2018-01-15 2021-01-08 京东方科技集团股份有限公司 UV curing transmission method and system
JP6981356B2 (en) * 2018-04-24 2021-12-15 東京エレクトロン株式会社 Film forming equipment and film forming method
KR102597602B1 (en) * 2018-05-18 2023-11-02 삼성전자주식회사 thin film formation apparatus and thin film formation apparatus using the same
JP7048433B2 (en) * 2018-06-22 2022-04-05 東京エレクトロン株式会社 Film formation method and film formation equipment
JP7080152B2 (en) * 2018-10-11 2022-06-03 東京エレクトロン株式会社 Rotation angle detection device and rotation angle detection method, and substrate processing device and substrate processing method using these.
JP7296732B2 (en) * 2019-01-18 2023-06-23 東京エレクトロン株式会社 Substrate processing method
US10998209B2 (en) 2019-05-31 2021-05-04 Applied Materials, Inc. Substrate processing platforms including multiple processing chambers
CN114450782A (en) * 2019-10-08 2022-05-06 瑞士艾发科技 Substrate supporting unit and apparatus and method for depositing layer using the same
JP7382836B2 (en) * 2020-01-15 2023-11-17 東京エレクトロン株式会社 Substrate processing equipment and rotational drive method
JP7353199B2 (en) * 2020-02-06 2023-09-29 東京エレクトロン株式会社 Film forming equipment
JP7370270B2 (en) * 2020-02-07 2023-10-27 東京エレクトロン株式会社 Substrate holding mechanism and substrate processing equipment
US11817331B2 (en) 2020-07-27 2023-11-14 Applied Materials, Inc. Substrate holder replacement with protective disk during pasting process
US11749542B2 (en) 2020-07-27 2023-09-05 Applied Materials, Inc. Apparatus, system, and method for non-contact temperature monitoring of substrate supports
US11600507B2 (en) 2020-09-09 2023-03-07 Applied Materials, Inc. Pedestal assembly for a substrate processing chamber
US11610799B2 (en) 2020-09-18 2023-03-21 Applied Materials, Inc. Electrostatic chuck having a heating and chucking capabilities
JP2022071355A (en) * 2020-10-28 2022-05-16 東京エレクトロン株式会社 Substrate processing apparatus
US11674227B2 (en) 2021-02-03 2023-06-13 Applied Materials, Inc. Symmetric pump down mini-volume with laminar flow cavity gas injection for high and low pressure
CN115110038B (en) * 2022-06-29 2024-01-12 北海惠科半导体科技有限公司 Evaporation coating device and coating method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302138A (en) * 1991-03-29 1992-10-26 Furukawa Electric Co Ltd:The Vapor growth device for semiconductor wafer
JPH07292471A (en) * 1994-04-26 1995-11-07 Mitsubishi Chem Corp Sputtering method
JPH08239760A (en) * 1995-03-01 1996-09-17 Toshiba Corp Sputtering device and sputtering method
JPH10116789A (en) * 1995-12-08 1998-05-06 Materials Res Corp Substrate rotating device and substrate rotating method
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method
JP2006093275A (en) * 2004-09-22 2006-04-06 Hitachi Cable Ltd Vapor phase epitaxial method
JP2008130916A (en) * 2006-11-22 2008-06-05 Hitachi Cable Ltd Vapor-phase epitaxial growth method
JP2010206025A (en) * 2009-03-04 2010-09-16 Tokyo Electron Ltd Film forming device, film forming method, program, and computer readable storage medium
JP2013206978A (en) * 2012-03-27 2013-10-07 Sharp Corp Vapor phase growth device and vapor phase growth method
JP2013214581A (en) * 2012-03-30 2013-10-17 Sumitomo Chemical Co Ltd Control method for substrate support mechanism, thin film formation method, and program

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817210B1 (en) 1969-12-25 1973-05-28
AU4652993A (en) * 1992-06-26 1994-01-24 Materials Research Corporation Transport system for wafer processing line
US6524449B1 (en) * 1999-12-03 2003-02-25 James A. Folta Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients
US6576062B2 (en) * 2000-01-06 2003-06-10 Tokyo Electron Limited Film forming apparatus and film forming method
US6592675B2 (en) * 2001-08-09 2003-07-15 Moore Epitaxial, Inc. Rotating susceptor
JP5139107B2 (en) * 2008-02-13 2013-02-06 大陽日酸株式会社 Vapor growth equipment
JP5276388B2 (en) * 2008-09-04 2013-08-28 東京エレクトロン株式会社 Film forming apparatus and substrate processing apparatus
JP5062143B2 (en) * 2008-11-10 2012-10-31 東京エレクトロン株式会社 Deposition equipment
JP5445044B2 (en) * 2008-11-14 2014-03-19 東京エレクトロン株式会社 Deposition equipment
JP5093162B2 (en) 2009-03-12 2012-12-05 東京エレクトロン株式会社 Film forming apparatus, film forming method, and storage medium
JP5107285B2 (en) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 Film forming apparatus, film forming method, program, and computer-readable storage medium
US20100227059A1 (en) 2009-03-04 2010-09-09 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP5181100B2 (en) * 2009-04-09 2013-04-10 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP5553588B2 (en) * 2009-12-10 2014-07-16 東京エレクトロン株式会社 Deposition equipment
JP2011171589A (en) 2010-02-19 2011-09-01 Shin Etsu Handotai Co Ltd Vapor phase deposition apparatus and manufacturing method of compound semiconductor substrate
JP2012084598A (en) * 2010-10-07 2012-04-26 Tokyo Electron Ltd Film deposition device, film deposition method, and storage medium
US20130153054A1 (en) * 2011-12-19 2013-06-20 Intermolecular, Inc. Combinatorial Processing Tool
JP5884500B2 (en) * 2012-01-18 2016-03-15 東京エレクトロン株式会社 Deposition equipment
JP6134191B2 (en) * 2013-04-07 2017-05-24 村川 惠美 Rotary semi-batch ALD equipment
JP6330630B2 (en) * 2014-11-13 2018-05-30 東京エレクトロン株式会社 Deposition equipment
CN107022754B (en) * 2016-02-02 2020-06-02 东京毅力科创株式会社 Substrate processing apparatus
JP6809392B2 (en) * 2017-06-19 2021-01-06 東京エレクトロン株式会社 Film formation method, film deposition equipment and storage medium

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302138A (en) * 1991-03-29 1992-10-26 Furukawa Electric Co Ltd:The Vapor growth device for semiconductor wafer
JPH07292471A (en) * 1994-04-26 1995-11-07 Mitsubishi Chem Corp Sputtering method
JPH08239760A (en) * 1995-03-01 1996-09-17 Toshiba Corp Sputtering device and sputtering method
JPH10116789A (en) * 1995-12-08 1998-05-06 Materials Res Corp Substrate rotating device and substrate rotating method
JP2001254181A (en) * 2000-01-06 2001-09-18 Tokyo Electron Ltd Film depositing apparatus and film depositing method
JP2006093275A (en) * 2004-09-22 2006-04-06 Hitachi Cable Ltd Vapor phase epitaxial method
JP2008130916A (en) * 2006-11-22 2008-06-05 Hitachi Cable Ltd Vapor-phase epitaxial growth method
JP2010206025A (en) * 2009-03-04 2010-09-16 Tokyo Electron Ltd Film forming device, film forming method, program, and computer readable storage medium
JP2013206978A (en) * 2012-03-27 2013-10-07 Sharp Corp Vapor phase growth device and vapor phase growth method
JP2013214581A (en) * 2012-03-30 2013-10-17 Sumitomo Chemical Co Ltd Control method for substrate support mechanism, thin film formation method, and program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527749A (en) * 2015-08-20 2018-09-20 ジュスン エンジニアリング カンパニー リミテッド Substrate processing apparatus and substrate processing method
KR101832253B1 (en) * 2016-11-24 2018-02-26 주식회사 한화 Apparatus for processing substrate
TWI694516B (en) * 2017-01-11 2020-05-21 日商東京威力科創股份有限公司 Substrate processing device
KR20180082958A (en) 2017-01-11 2018-07-19 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
US11674225B2 (en) 2017-01-11 2023-06-13 Tokyo Electron Limted Substrate processing apparatus
KR20180100477A (en) 2017-03-01 2018-09-11 도쿄엘렉트론가부시키가이샤 Rotation detection jig, substrate processing apparatus and method of operating the substrate processing apparatus
JP2018147939A (en) * 2017-03-01 2018-09-20 東京エレクトロン株式会社 Auto-rotation detection jig, substrate processing apparatus and operation method of substrate processing apparatus
US11572625B2 (en) 2017-03-01 2023-02-07 Tokyo Electron Limited Rotation detection jig, substrate processing apparatus and method of operating the substrate processing apparatus
US11248294B2 (en) 2017-05-18 2022-02-15 Tokyo Electron Limited Substrate processing apparatus
JP2018195733A (en) * 2017-05-18 2018-12-06 東京エレクトロン株式会社 Substrate processing apparatus
KR20180127195A (en) 2017-05-18 2018-11-28 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
WO2019087715A1 (en) * 2017-11-02 2019-05-09 東京エレクトロン株式会社 Film formation device, and film formation method
JP2019114711A (en) * 2017-12-25 2019-07-11 株式会社Sumco Susceptor and manufacturing method of epitaxial wafer using the same
JP2021093462A (en) * 2019-12-11 2021-06-17 東京エレクトロン株式会社 Rotary drive device, substrate processing device and rotary drive method
KR20210074189A (en) 2019-12-11 2021-06-21 도쿄엘렉트론가부시키가이샤 Rotational drive device, substrate processing apparatus, and rotational driving method
JP7325313B2 (en) 2019-12-11 2023-08-14 東京エレクトロン株式会社 Rotation drive device, substrate processing device, and rotation drive method
US11885003B2 (en) 2019-12-11 2024-01-30 Tokyo Electron Limited Rotational drive device, substrate processing apparatus, and rotational driving method
KR20220157887A (en) 2021-05-21 2022-11-29 도쿄엘렉트론가부시키가이샤 Control apparatus and control method for film forming apparatus

Also Published As

Publication number Publication date
KR20160051650A (en) 2016-05-11
KR101899634B1 (en) 2018-09-17
US20180327906A1 (en) 2018-11-15
CN105568259A (en) 2016-05-11
US10072336B2 (en) 2018-09-11
TWI612603B (en) 2018-01-21
US20160122872A1 (en) 2016-05-05
US11085113B2 (en) 2021-08-10
JP6330623B2 (en) 2018-05-30
TW201626489A (en) 2016-07-16
CN105568259B (en) 2019-05-14

Similar Documents

Publication Publication Date Title
JP6330623B2 (en) Film forming apparatus, film forming method, and storage medium
JP6330630B2 (en) Deposition equipment
US11674225B2 (en) Substrate processing apparatus
US10584416B2 (en) Substrate processing apparatus
KR102022153B1 (en) Substrate processing apparatus and substrate processing method
US11248294B2 (en) Substrate processing apparatus
TWI695907B (en) Substrate processing apparatus
JP6412466B2 (en) Substrate processing apparatus and substrate processing method
JP2015060936A (en) Substrate processing apparatus and substrate processing method
JP6388552B2 (en) Substrate processing apparatus and substrate processing method
US11136669B2 (en) Film formation apparatus
JP2017054880A (en) Substrate processing apparatus and substrate processing method
JP2017084970A (en) Deposition device
JP2016157724A (en) Deposition device
KR102293635B1 (en) Film forming method, film forming apparatus, and storage medium
JP2022178875A (en) Control device and control method for film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250