JP2001254181A - Film depositing apparatus and film depositing method - Google Patents

Film depositing apparatus and film depositing method

Info

Publication number
JP2001254181A
JP2001254181A JP2001000183A JP2001000183A JP2001254181A JP 2001254181 A JP2001254181 A JP 2001254181A JP 2001000183 A JP2001000183 A JP 2001000183A JP 2001000183 A JP2001000183 A JP 2001000183A JP 2001254181 A JP2001254181 A JP 2001254181A
Authority
JP
Japan
Prior art keywords
processing gas
substrate
film forming
gas
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001000183A
Other languages
Japanese (ja)
Other versions
JP2001254181A5 (en
JP4817210B2 (en
Inventor
Kimihiro Matsuse
公裕 松瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001000183A priority Critical patent/JP4817210B2/en
Publication of JP2001254181A publication Critical patent/JP2001254181A/en
Publication of JP2001254181A5 publication Critical patent/JP2001254181A5/ja
Application granted granted Critical
Publication of JP4817210B2 publication Critical patent/JP4817210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments

Abstract

PROBLEM TO BE SOLVED: To provide a film depositing apparatus and a film depositing method in which an ALD method can be used with a high productivity without using any high-speed switching valve. SOLUTION: The film depositing apparatus comprises a chamber 11 which houses a substrate W, a substrate support member 12 to support a plurality of substrate W in one plane in the chamber 11, a first treatment gas ejecting nozzle 20 which is provided in the chamber 11 and ejects TiCl4, a second treatment gas ejecting nozzle 21 which ejects NH3, a rotary mechanism 14 to rotate the substrate support member 12, and a heater 16 to heat the substrate W, and a Ti monatomic layer and a N monatomic layer are alternately formed on the substrate W while rotating the substrate support member 12 to revolve the substrate W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、TiN膜等をAL
D(Atomic Layer Deposition)法を利用して成膜する
成膜装置および成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a film forming apparatus and a film forming method for forming a film using a D (Atomic Layer Deposition) method.

【0002】[0002]

【従来の技術】半導体製造工程においては、被処理体で
ある半導体ウエハ(以下、単にウエハと記す)に形成さ
れた配線間のホールを埋め込むために、あるいはバリア
層として、WSi(タングステンシリサイド)、TiN
(チタンナイトライド)、TiSi(チタンシリサイ
ド)等の金属化合物を堆積させて薄膜を形成している。
2. Description of the Related Art In a semiconductor manufacturing process, WSi (tungsten silicide), WSi (tungsten silicide), TiN
A thin film is formed by depositing a metal compound such as (titanium nitride) and TiSi (titanium silicide).

【0003】従来、これら金属化合物薄膜は物理的蒸着
(PVD)を用いて成膜されていたが、最近のようにデ
バイスの微細化および高集積化が特に要求され、デザイ
ンルールが特に厳しくなっており、埋め込み性の悪いP
VDでは十分な特性を得ることが困難となっている。そ
こで、TiN膜をより良質の膜を形成することが期待で
きる化学的蒸着(CVD)で成膜することが行われてい
る。
Conventionally, these metal compound thin films have been formed by physical vapor deposition (PVD). However, recently, finer and higher integration of devices has been particularly required, and design rules have become particularly strict. P
It is difficult to obtain sufficient characteristics with VD. Therefore, a TiN film is formed by chemical vapor deposition (CVD), which can be expected to form a higher quality film.

【0004】しかしながら、CVDによっても、膜質、
ステップカバレージ、膜の密着性が必ずしも十分とはい
えなくなっている。また、10nm以下の超薄膜を形成
する際の膜厚制御が非常に困難である。
[0004] However, the film quality,
Step coverage and film adhesion are not always sufficient. Further, it is very difficult to control the film thickness when forming an ultrathin film of 10 nm or less.

【0005】一方、良好な膜質の金属化合物薄膜を密着
性およびステップカバレージ良く形成する技術として、
近時、ALD法が注目されている(特開昭55−130
896号公報等)。したがって、上記金属化合物の堆積
においてもALD法を利用することが考えられる。具体
的には、例えばTiN膜を成膜する際には、チャンバー
内に1枚のウエハを配置し、まずチャンバー内にTiC
ガスを供給してTiの単原子層を吸着させ、次いで
NHガスを供給してその上にNの単原子層を堆積させ
てこれらを反応させる。この操作を所定回数繰り返すこ
とにより、所定厚さのTiN膜を得る。
On the other hand, a technique for forming a metal compound thin film having good film quality with good adhesion and step coverage is as follows.
Recently, the ALD method has attracted attention (Japanese Patent Laid-Open No. 55-130).
896, etc.). Therefore, it is conceivable to use the ALD method also in depositing the metal compound. Specifically, for example, when forming a TiN film, one wafer is placed in a chamber, and first a TiC
by supplying l 4 gas is adsorbed monolayer Ti, then the deposition of the monolayer N on to react them by supplying NH 3 gas. By repeating this operation a predetermined number of times, a TiN film having a predetermined thickness is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ALD
法を利用して金属化合物薄膜を形成する際には、供給す
るガスの切り替えを高速で行わなければならず、そのた
めに高速スイッチングバルブを用いるが、このような高
速スイッチングバルブは寿命が短いという問題点があ
る。また、このように単原子層を積層する際には、一方
のガスを供給してから他方のガスを供給する間にパージ
ガスを供給して前のガスをパージする必要があるため、
成膜に時間がかかり生産性が悪いという問題点もある。
However, ALD
When forming a metal compound thin film by using the method, the gas to be supplied must be switched at a high speed, and a high-speed switching valve is used for this purpose. There is a point. In addition, when laminating a monoatomic layer in this manner, it is necessary to supply a purge gas and supply a purge gas between the supply of one gas and the other gas to purge the previous gas.
There is also a problem that film formation takes time and productivity is poor.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、高速スイッチングバルブを用いずにかつ高い
生産性で、ALD法を利用することができる成膜装置お
よび成膜方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a film forming apparatus and a film forming method capable of utilizing the ALD method without using a high-speed switching valve and with high productivity. With the goal.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、基板を収容するチャンバーと、前記チャ
ンバー内で複数の基板を平面的に支持する基板支持部材
と、前記チャンバー内に設けられ、第1の処理ガスを吐
出する第1の処理ガス吐出部と、前記チャンバー内の第
1の処理ガス吐出部とは異なる位置に設けられ、第2の
処理ガスを吐出する第2の処理ガス吐出部と、前記基板
支持部材を回転させる回転機構と、前記基板を加熱する
加熱手段とを具備し、前記基板支持部材を回転させて基
板を公転させながら、基板上に、第1の処理ガスによる
単原子層と、第2の処理ガスによる単原子層とを交互に
形成することを特徴とする成膜装置を提供する。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a chamber for accommodating a substrate, a substrate support member for supporting a plurality of substrates in the chamber in a plane, and A first processing gas discharge unit that discharges a first processing gas and a second processing gas discharge unit that is provided at a different position from the first processing gas discharge unit in the chamber and discharges a second processing gas. A processing gas discharge unit, a rotation mechanism for rotating the substrate support member, and a heating unit for heating the substrate, wherein the substrate support member is rotated to revolve the substrate; A film forming apparatus is provided, wherein a monoatomic layer formed by a processing gas and a monoatomic layer formed by a second processing gas are alternately formed.

【0009】また、本発明は、チャンバー内に吐出した
ガス流のエアカーテンでチャンバー内を複数の空間に分
割する工程と、前記空間のそれぞれに所定の処理ガスを
導入してなる処理ガス雰囲気の複数を通過するように、
基板を繰り返し移動させる工程と、これにより前記基板
上に単原子層を連続的に形成して堆積させ、これを熱的
に反応させて化合物の膜を形成する工程とを具備するこ
とを特徴とする成膜方法を提供する。
The present invention also provides a step of dividing the inside of the chamber into a plurality of spaces by an air curtain of a gas flow discharged into the chamber, and a step of introducing a predetermined processing gas into each of the spaces. Like passing through multiple
A step of repeatedly moving the substrate, thereby continuously forming and depositing a monoatomic layer on the substrate, and thermally reacting this to form a compound film. To provide a film forming method.

【0010】さらに、本発明は、チャンバー内で複数の
基板を平面的に配置し、基板を公転させながら、チャン
バー内の互いに異なる位置に設けられた第1の処理ガス
吐出部および第2の処理ガス吐出部からそれぞれ第1の
処理ガスおよび第2の処理ガスを吐出して、基板上に、
第1の処理ガスによる単原子層と、第2の処理ガスによ
る単原子層とを交互に形成することを特徴とする成膜方
法を提供する。
Further, according to the present invention, a plurality of substrates are arranged in a plane in a chamber, and the first processing gas discharge section and the second processing gas provided at different positions in the chamber while revolving the substrates. The first processing gas and the second processing gas are respectively discharged from the gas discharge unit, and
There is provided a film formation method characterized by alternately forming a monoatomic layer with a first processing gas and a monoatomic layer with a second processing gas.

【0011】本発明によれば、ALD法を利用して成膜
を行うにあたり、互いに異なる位置に設けられた第1の
処理ガス吐出部および第2の処理ガスを吐出する第2の
処理ガス吐出部からそれぞれ第1の処理ガスおよび第2
の処理ガスを吐出し、基板支持部材を回転させて基板を
公転させるので、高速スイッチングバルブを用いること
なく、基板上に第1の処理ガスと第2の処理ガスとを交
互に供給して、第1の処理ガスによる単原子層と、第2
の処理ガスによる単原子層とを交互に形成することがで
きる。また、基板支持部材に複数の基板を支持した状態
で処理を行うので、一度に複数枚数の基板の成膜処理を
行うことができ、生産性を高めることができる。
According to the present invention, in forming a film by using the ALD method, a first processing gas discharge unit and a second processing gas discharge for discharging a second processing gas are provided at different positions. From the first processing gas and the second
The first processing gas and the second processing gas are alternately supplied onto the substrate without using a high-speed switching valve because the processing gas is discharged and the substrate is rotated by rotating the substrate supporting member. A monoatomic layer with a first process gas,
And a monoatomic layer by the processing gas of (1) can be formed alternately. Further, since the processing is performed in a state where a plurality of substrates are supported by the substrate support member, the film formation processing of a plurality of substrates can be performed at one time, and the productivity can be improved.

【0012】前記成膜装置において、前記第1の処理ガ
ス吐出部と前記第2の処理ガス吐出部とを複数備え、こ
れらが円周状に交互に配置されていることが好ましい。
これにより、より高効率で成膜を行うことができる。
In the film forming apparatus, it is preferable that a plurality of the first processing gas discharge units and a plurality of the second processing gas discharge units are provided, and these are arranged circumferentially alternately.
Thereby, film formation can be performed with higher efficiency.

【0013】前記第1の処理ガス吐出部と前記第2の処
理ガス吐出部との間にパージガスを吐出するパージガス
吐出部を有することが好ましい。これにより第1の処理
ガスと第2の処理ガスとの分離性を高めることができ
る。
It is preferable that a purge gas discharge section for discharging a purge gas is provided between the first processing gas discharge section and the second processing gas discharge section. Thereby, the separation between the first processing gas and the second processing gas can be improved.

【0014】前記回転機構は、前記基板支持部材に支持
された基板が前記第1の処理ガス吐出部および第2の処
理ガス吐出部の直下を通過するように前記基板支持部材
を回転させることが好ましい。これにより、基板上に確
実に単原子層を形成することができる。
The rotating mechanism may rotate the substrate supporting member such that the substrate supported by the substrate supporting member passes directly below the first processing gas discharge unit and the second processing gas discharge unit. preferable. Thereby, a monoatomic layer can be reliably formed on the substrate.

【0015】前記基板を自転させる基板回転機構をさら
に有することが好ましい。このように基板を自転させる
ことにより、成膜の均一性をより高めることができる。
Preferably, the apparatus further comprises a substrate rotating mechanism for rotating the substrate. By rotating the substrate in this way, the uniformity of film formation can be further improved.

【0016】前記加熱手段は、前記基板支持部材の下方
から基板を加熱するようにしてもよいし、前記基板支持
部材に支持された基板の上方から基板を加熱するように
してもよい。
The heating means may heat the substrate from below the substrate support member, or may heat the substrate from above the substrate supported by the substrate support member.

【0017】前記成膜方法において、さらに基板を自転
させることが好ましい。また、第1および第2の処理ガ
スの吸着速度合わせて基板を公転させることが好まし
い。
In the film forming method, it is preferable that the substrate is further rotated. Further, it is preferable to revolve the substrate in accordance with the adsorption speed of the first and second processing gases.

【0018】前記第1の処理ガスは、Al、Zr、T
i、Ta、Si、WおよびRuのうちいずれか1種を含
むものを用いることができ、前記第2の処理ガスはNま
たはOを含むものを用いることができる。
The first processing gas includes Al, Zr, T
A gas containing any one of i, Ta, Si, W, and Ru can be used, and the second processing gas can contain N or O.

【0019】前記成膜装置および前記成膜方法は、Al
、ZrO、TiN、TaN、SiO、Si
N、SiON、SiOF、WN、WSiおよびRuO
のうちいずれか1種の成膜に適用することができる。
The film forming apparatus and the film forming method may include Al.
2 O 3 , ZrO 2 , TiN, TaN, SiO 2 , Si
N, SiON, SiOF, WN, WSi and RuO 2
It can be applied to any one type of film formation.

【0020】[0020]

【発明の実施の形態】以下、添付図面を参照して、本発
明の実施の形態について詳細に説明する。図1は、本発
明の一実施形態に係る成膜装置を示す断面図、図2はそ
の内部の平面図である。ここではALD法を利用したC
VD成膜装置によりTiN膜を成膜する場合について説
明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing a film forming apparatus according to an embodiment of the present invention, and FIG. 2 is a plan view showing the inside thereof. Here, C using ALD method
A case where a TiN film is formed by a VD film forming apparatus will be described.

【0021】このCVD成膜装置10は、真空引き可能
に構成された略円筒状のチャンバー11を有しており、
その中には被処理体であるウエハWを水平に4枚支持可
能なウエハ支持部材12が設けられている。ウエハ支持
部材12は、図2に示すように、4つのウエハ支持部1
2aを有しており、これらにウエハWが支持されるよう
になっている。また、ウエハ支持部材12の中心には下
方に延びる回転軸13が設けられており、この回転軸1
3はモーター14の軸に取り付けられている。そして、
このモーター14を回転させることにより、回転軸13
を介してウエハ支持部材12が図2の矢印方向に沿って
回転されるようになっている。したがって、ウエハ支持
部12aに支持されたウエハWは、ウエハ支持部材12
の回転によって回転軸13の回りを公転するようになっ
ている。
This CVD film forming apparatus 10 has a substantially cylindrical chamber 11 which can be evacuated.
A wafer support member 12 capable of horizontally supporting four wafers W as objects to be processed is provided therein. As shown in FIG. 2, the wafer support member 12 has four wafer support portions 1.
2a, on which the wafer W is supported. A rotating shaft 13 extending downward is provided at the center of the wafer support member 12.
3 is attached to the shaft of the motor 14. And
By rotating this motor 14, the rotation shaft 13
2, the wafer support member 12 is rotated in the direction of the arrow in FIG. Therefore, the wafer W supported by the wafer support portion 12a is
Is revolved around the rotation shaft 13 by the rotation of.

【0022】ウエハ支持部材12の下方には、ヒーター
支持部材15が設けられており、このヒーター支持部材
15には、ウエハWの移動軌跡に沿って内側および外側
2つの円環状のヒーター16が支持されている。
Below the wafer support member 12, a heater support member 15 is provided. The heater support member 15 supports two annular heaters 16 inside and outside along the movement locus of the wafer W. Have been.

【0023】チャンバー11の天壁11aには、第1の
処理ガス吐出ノズル(第1の処理ガス吐出部)20およ
び第2の処理ガス吐出ノズル(第2の処理ガス吐出部)
21が、そのガス吐出口20a,20bをウエハ支持部
材12の上面に対向させた状態で設けられている。これ
ら第1の処理ガス吐出ノズル20および第2の処理ガス
吐出ノズル21は、図2に示すように2つずつ設けられ
ており、これらは交互にウエハWの移動軌跡に沿って円
周状に配置されている。また、隣接する第1の処理ガス
吐出ノズル20および第2の処理ガス吐出ノズル21は
回転軸13を中心として90°の角度で配置されてい
る。また、チャンバー11の天壁11aには、4つのパ
ージガス吐出ノズル(パージガス吐出部)22が隣接す
る第1の処理ガス吐出ノズル20および第2の処理ガス
吐出ノズル21の間に位置するように設けられている。
A first processing gas discharge nozzle (first processing gas discharge part) 20 and a second processing gas discharge nozzle (second processing gas discharge part) are provided on the top wall 11a of the chamber 11.
21 is provided in a state where the gas discharge ports 20 a and 20 b face the upper surface of the wafer support member 12. The first processing gas discharge nozzle 20 and the second processing gas discharge nozzle 21 are provided two by two as shown in FIG. 2, and these are alternately formed in a circumferential shape along the movement locus of the wafer W. Are located. Further, the adjacent first processing gas discharge nozzle 20 and second processing gas discharge nozzle 21 are arranged at an angle of 90 ° about the rotation axis 13. Further, on the top wall 11a of the chamber 11, four purge gas discharge nozzles (purge gas discharge units) 22 are provided so as to be located between the adjacent first process gas discharge nozzle 20 and second process gas discharge nozzle 21. Have been.

【0024】図3(a)は第1の処理ガス吐出ノズル2
0および第2の処理ガス吐出ノズル21の断面図であ
る。図3(a)に示すように、第1および第2の処理ガ
ス吐出ノズル20,21は、それぞれ多数のガス吐出口
20a,21aを有しており、この多数の吐出口20
a,21aからチャンバー11内にシャワー状に処理ガ
スを吐出するように構成されている。また、図3(b)
はパージガス吐出ノズル22の断面図である。図3
(b)に示すように、パージガス吐出ノズル22は、内
部に設けられた多数の吐出口22aと、この多数の吐出
口22aの下方に設けられたスカート部22bとを有し
ており、吐出口20aからチャンバー11内にシャワー
状に処理ガスを吐出するとともに、スカート部22bに
よりシャワー状に吐出されたパージガスの流れが拡散す
ることを防止しており、これによりパージガスのダウン
フローがエアカーテンをなすように構成されている。
FIG. 3A shows the first processing gas discharge nozzle 2.
FIG. 4 is a cross-sectional view of a 0th and second processing gas discharge nozzle 21; As shown in FIG. 3A, the first and second processing gas discharge nozzles 20 and 21 have a large number of gas discharge ports 20a and 21a, respectively.
The processing gas is discharged from the a and 21a into the chamber 11 like a shower. FIG. 3 (b)
3 is a sectional view of a purge gas discharge nozzle 22. FIG. FIG.
As shown in (b), the purge gas discharge nozzle 22 has a plurality of discharge ports 22a provided therein and a skirt portion 22b provided below the plurality of discharge ports 22a. The processing gas is discharged from the chamber 20a into the chamber 11 in the form of a shower, and the flow of the purge gas discharged in the form of a shower is prevented from being diffused by the skirt portion 22b. It is configured as follows.

【0025】また、パージガス吐出ノズル22のガス吐
出口22aは、第1の処理ガス吐出ノズル20および第
2の処理ガス吐出ノズル21のガス吐出口20a,21
aよりも上方に設けられており、これにより第1の処理
ガス雰囲気と第2の処理ガス雰囲気とをパージガスのエ
アカーテンにより分離可能になっている。これらノズル
20,21,22からは、後述するガス供給機構30か
ら所定のガスが供給されるようになっている。
The gas discharge ports 22a of the first processing gas discharge nozzle 20 and the gas discharge ports 20a, 21 of the second processing gas discharge nozzle 21
The first processing gas atmosphere and the second processing gas atmosphere can be separated by an air curtain of a purge gas. A predetermined gas is supplied from these nozzles 20, 21, 22 from a gas supply mechanism 30 described later.

【0026】ガス供給機構30は、クリーニングガスで
あるClFを供給するClF供給源31、Arを供
給するAr供給源32、TiClを供給するTiCl
供給源33、NHを供給するNH供給源34を有
している。そして、ClF供給源31にはClF
スライン35が、Ar供給源32にはArガスライン3
6が、TiCl供給源33にはTiClガスライン
37が、NH供給源34にはNHガスライン38が
それぞれ接続されている。そして、各ラインにはバルブ
40およびマスフローコントローラ41が設けられてい
る。
The gas supply mechanism 30, TiCl supplies Ar supply source 32, TiCl 4 supplies ClF 3 supply source 31, Ar supplies ClF 3 as a cleaning gas
4 a source 33, NH 3 and a NH 3 supply source 34 supplies. The ClF 3 supply source 31 has a ClF 3 gas line 35, and the Ar supply source 32 has an Ar gas line 3.
6, TiCl 4 gas line 37 to the TiCl 4 supply source 33 is, NH 3 gas line 38 is connected to the NH 3 supply 34. Each line is provided with a valve 40 and a mass flow controller 41.

【0027】TiCl供給源33から延びるTiCl
ガスライン37は、第1の処理ガス吐出ノズル20か
ら延びるガス配管42に接続されている。また、TiC
ガスライン37にはArガスライン36から延びる
配管45が接続されており、Arガスにキャリアされた
TiClガスが配管42を通って第1の処理ガス吐出
ノズル20から吐出される。また、NH供給源34か
ら延びるNHガスライン38は、第2の処理ガス吐出
ノズル21から延びるガス配管43に接続されており、
NHガスがNHガスライン38およびガス配管43
を通って第2の処理ガス吐出ノズル21から吐出され
る。さらに、Ar供給源32から延びるArガスライン
36は、パージガス吐出ノズル22から延びる配管44
に接続されており、ArガスがArガスライン36およ
び配管44を通ってパージガス吐出ノズル22から吐出
される。さらにまた、ClF供給源31から延びるC
lF ガスライン35には、配管46,47,48が接
続されており、これら配管46,47,48から配管4
2,43,44を介して第1の処理ガス吐出ノズル2
0、第2の処理ガス吐出ノズル21、およびパージガス
吐出ノズル22からクリーニングガスであるClF
スを吐出可能となっている。なお、配管45,46,4
7,48には、それぞれバルブ45a,46a,47
a,48aが設けられている。
TiCl4TiCl extending from source 33
4The gas line 37 is connected to the first processing gas discharge nozzle 20.
Connected to a gas pipe 42 extending therefrom. Also, TiC
l4The gas line 37 extends from the Ar gas line 36
The pipe 45 is connected and carried by Ar gas.
TiCl4Gas is discharged through the pipe 42 for the first process gas
It is discharged from the nozzle 20. Also, NH3Source 34
Extending NH3The gas line 38 is used to discharge the second processing gas.
Connected to a gas pipe 43 extending from the nozzle 21;
NH3Gas is NH3Gas line 38 and gas pipe 43
From the second processing gas discharge nozzle 21
You. Further, an Ar gas line extending from the Ar supply source 32
36 is a pipe 44 extending from the purge gas discharge nozzle 22
Ar gas is connected to the Ar gas line 36 and
From the purge gas discharge nozzle 22 through the pipe 44
Is done. Furthermore, ClF3C extending from source 31
IF 3Pipes 46, 47 and 48 are connected to the gas line 35.
The pipes 46, 47, and 48
2, 43, 44 through the first processing gas discharge nozzle 2
0, second processing gas discharge nozzle 21, and purge gas
The cleaning gas ClF from the discharge nozzle 223Moth
Can be discharged. The pipes 45, 46, 4
7, 48 have valves 45a, 46a, 47, respectively.
a, 48a are provided.

【0028】チャンバー11の底壁11bには、その中
央部に排気口25が設けられており、この排気口25に
は排気管26が接続されている。この排気管26には排
気装置28が接続されており、排気装置28を作動させ
ることによりチャンバー11内を所定の真空度まで減圧
することができる。
An exhaust port 25 is provided at the center of the bottom wall 11b of the chamber 11, and an exhaust pipe 26 is connected to the exhaust port 25. An exhaust device 28 is connected to the exhaust pipe 26. By operating the exhaust device 28, the pressure in the chamber 11 can be reduced to a predetermined degree of vacuum.

【0029】なお、排気管26は排気口25から垂直方
向下方に延び途中で水平方向に屈曲しており、前記回転
軸13は排気管26の垂直部の中を通って、排気管26
の水平部の管壁を貫通して下方へ延びており、その管壁
と回転軸13との間には、流体シール27が設けられて
いる。
The exhaust pipe 26 extends vertically downward from the exhaust port 25 and is bent horizontally in the middle. The rotating shaft 13 passes through a vertical portion of the exhaust pipe 26 and passes through the exhaust pipe 26.
The fluid seal 27 is provided between the rotating shaft 13 and the tube wall so as to extend downward through the tube wall of the horizontal portion.

【0030】このように構成されたCVD成膜装置にお
いては、まず、チャンバー11内に半導体ウエハWを装
入し、ウエハ支持部材12のウエハ支持部12aにウエ
ハWを載置する。次いで、ヒーター16よりウエハWを
加熱しながらウエハ支持部材12を回転させ、排気装置
28によりチャンバー11内を排気してチャンバー11
内を所定の真空状態にする。引き続き、第1の処理ガス
吐出ノズル20からArにキャリアさせたTiCl
スを、第2の処理ガス吐出ノズル21からNH ガス
を、パージガス吐出ノズル22からパージガスとしての
Arガスをそれぞれ吐出させる。
In the CVD film forming apparatus having the above-described structure,
First, the semiconductor wafer W is loaded into the chamber 11.
Into the wafer support portion 12a of the wafer support member 12.
Place W. Next, the wafer W is supplied from the heater 16.
Rotating the wafer support member 12 while heating, the exhaust device
The inside of the chamber 11 is evacuated by 28
The inside is set to a predetermined vacuum state. Continuously, the first processing gas
TiCl carried out by Ar from the discharge nozzle 204Moth
From the second processing gas discharge nozzle 21 to NH 3. 3gas
From the purge gas discharge nozzle 22 as a purge gas.
Ar gas is respectively discharged.

【0031】ウエハ支持部材12のウエハ支持部12a
のウエハWのうち、最初に第1の処理ガス吐出ノズル2
0から吐出されたTiClガスが供給される2枚につ
いては、供給されたTiClガスによりTiの単原子
層が吸着した後、ウエハ支持部材12の回転により、パ
ージガス吐出ノズル22から吐出されたArガスのエア
カーテンを通過して、第2の処理ガス吐出ノズル21か
ら吐出されたNHガスによりTiの単原子層の上にN
の単原子層が堆積され、これらが反応してTiNが形成
される。さらに、パージガス吐出ノズル22から吐出さ
れたArガスのエアカーテンを通過した後、同様にして
Tiの単原子層およびNの単原子層が供給され、これが
所定回数繰り返されて所定厚さのTiN膜が形成され
る。また、最初に第2の処理ガス吐出ノズル21から吐
出されたNHガスが供給される他の2枚については、
供給されたNHガスによりNの単原子層が吸着した
後、ウエハ支持部材12の回転により、パージガス吐出
ノズル22から吐出されたArガスのエアカーテンを通
過して、第1の処理ガス吐出ノズル20から吐出された
TiClガスによりNの単原子層の上にTiの単原子
層が堆積され、これらが反応してTiNが形成される。
さらに、パージガス吐出ノズル22から吐出されたAr
ガスのエアカーテンを通過した後、同様にしてNの単原
子層およびTiの単原子層が供給され、これが所定回数
繰り返されて所定厚さのTiN膜が形成される。この場
合に、ウエハ支持部材12の回転速度は、処理ガスであ
るTiCl ガスおよびNHガスの吸着速度に応じて
決定される。
The wafer support portion 12a of the wafer support member 12
Of the first processing gas discharge nozzle 2
TiCl discharged from 04Two sheets to which gas is supplied
In addition, the supplied TiCl4Single atom of Ti by gas
After the layer is adsorbed, the rotation of the wafer support member 12 causes the
Of Ar gas discharged from the storage gas discharge nozzle 22
After passing through the curtain, the second processing gas discharge nozzle 21
NH discharged from3The gas is used to deposit N on the Ti monolayer.
Monolayers are deposited and react to form TiN
Is done. Further, the gas discharged from the purge gas discharge nozzle 22 is
After passing through the air curtain of Ar gas
A monolayer of Ti and a monolayer of N are provided,
Repeated a predetermined number of times to form a TiN film of a predetermined thickness
You. First, the second processing gas discharge nozzle 21 discharges the gas.
NH issued3For the other two cards supplied with gas,
NH supplied3Monolayer of N adsorbed by gas
Thereafter, the purge gas is discharged by the rotation of the wafer support member 12.
Ar gas discharged from the nozzle 22 passes through the air curtain.
And discharged from the first processing gas discharge nozzle 20
TiCl4Ti mono-atom on N mono-layer by gas
Layers are deposited and they react to form TiN.
Further, the Ar gas discharged from the purge gas discharge nozzle 22
After passing through the gas air curtain, similarly,
A child layer and a monoatomic layer of Ti are supplied.
This is repeated to form a TiN film having a predetermined thickness. This place
In this case, the rotation speed of the wafer support member 12 is the processing gas.
TiCl 4Gas and NH3Depending on the gas adsorption speed
It is determined.

【0032】また、この場合における第1の処理ガス吐
出ノズル20および第2の処理ガス吐出ノズル21の形
状およびウエハWとの間隔、さらにはガス流量は、ウエ
ハWに均等に単原子層が吸着するような流れを形成する
ことができるように設定される。また、パージガス吐出
ノズル22とウエハWとの間隔、さらにはガス流量は、
パージガスがTiClガス雰囲気およびNHガス雰
囲気を十分に分離可能なエアカーテンとして機能する流
れを形成することができるように設定される。また、ヒ
ーター16の加熱温度はTiとNとの反応に適した適宜
の温度に設定される。以下、これらの設定値について具
体的に述べる。
In this case, the shapes of the first processing gas discharge nozzle 20 and the second processing gas discharge nozzle 21 and the distance between the first processing gas discharge nozzle 21 and the wafer W and the gas flow rate are such that the monoatomic layer is uniformly adsorbed on the wafer W The flow is set so that the flow can be formed. Further, the distance between the purge gas discharge nozzle 22 and the wafer W, and further, the gas flow rate is
The purge gas is set so as to form a flow functioning as an air curtain capable of sufficiently separating the TiCl 4 gas atmosphere and the NH 3 gas atmosphere. The heating temperature of the heater 16 is set to an appropriate temperature suitable for the reaction between Ti and N. Hereinafter, these set values will be specifically described.

【0033】図3(a)に示した構造を有する第1の処
理ガス吐出ノズル20および第2の処理ガス吐出ノズル
21は、吐出口20a,21aとその下方に位置する基
板支持部材12に保持されたウエハW表面との間の距離
が0.1〜10mmとなるように配置することがで
きる。また、図3(b)に示した構造を有するパージガ
ス吐出ノズル22は、吐出口22aとその下方に位置す
る基板支持部材12に保持されたウエハW表面との間の
距離hが0.1〜50mmとなるように配置すること
ができ、その下端と基板支持部材12上面との間の距離
が1.1〜50mmとなるように配置することがで
きる。好ましくは、hが0.1〜5mm、hが0.
2〜10mm、hが1.2〜11mmとなるようにノ
ズル20,21,22を配置する。
The first processing gas discharge nozzle 20 and the second processing gas discharge nozzle 21 having the structure shown in FIG. 3A are held by the discharge ports 20a, 21a and the substrate support member 12 located therebelow. It can be arranged so that the distance h1 between the set surface and the surface of the wafer W is 0.1 to 10 mm. Also, purge gas discharge nozzle 22 having the structure shown in FIG. 3 (b), the distance h 2 between the discharge port 22a and the wafer W held by the surface of the substrate support member 12 positioned below 0.1 it can be arranged so that the ~50Mm, can be the distance h 3 between the lower end and the substrate support member 12 top surface is arranged to be 1.1~50Mm. Preferably, h 1 is 0.1~5mm, h 2 0.
2 to 10 mm, h 3 is disposed a nozzle 20, 21, 22 so that 1.2~11Mm.

【0034】また、TiN成膜時におけるそれぞれのガ
ス流量、チャンバー内圧力および加熱温度は、以下のよ
うに設定することができる。 TiClガス流量:1〜50sccm(0.001〜
0.05L/min)、好ましくは5〜20sccm
(0.005〜0.02L/min) Arガス(キャリアガス)流量:10〜100sccm
(0.01〜0.1L/min)、TiClガスが低
流量の場合にはキャリアガスは用いなくてもよい NHガス流量:50〜1000sccm(0.05〜
1L/min)、好ましくは50〜500sccm
(0.05〜0.5L/min) パージガス流量:100〜1000sccm(0.1〜
1L/min) チャンバー内圧力:100mTorr〜5Torr(1
3.3Pa〜665Pa)、好ましくは100mTor
r〜1Torr(13.3Pa〜133Pa) 加熱温度:300〜700℃、好ましくは400〜60
0℃
The respective gas flow rates, chamber pressures, and heating temperatures during TiN film formation can be set as follows. TiCl 4 gas flow rate: 1 to 50 sccm (0.001 to
0.05 L / min), preferably 5 to 20 sccm
(0.005 to 0.02 L / min) Ar gas (carrier gas) flow rate: 10 to 100 sccm
(0.01 to 0.1 L / min), the carrier gas need not be used when the TiCl 4 gas has a low flow rate. NH 3 gas flow rate: 50 to 1000 sccm (0.05 to 1000 sccm)
1 L / min), preferably 50 to 500 sccm
(0.05-0.5 L / min) Purge gas flow rate: 100-1000 sccm (0.1-
1 L / min) In-chamber pressure: 100 mTorr to 5 Torr (1
3.3 Pa to 665 Pa), preferably 100 mTorr
r to 1 Torr (13.3 Pa to 133 Pa) Heating temperature: 300 to 700 ° C, preferably 400 to 60
0 ° C

【0035】以上のようにして、交互に配置された第1
の処理ガス吐出ノズル20および第2の処理ガス吐出ノ
ズル21からそれぞれTiClガスおよびNHガス
を供給しつつ、ウエハ支持部材12を回転させて、ウエ
ハWにTiClガスおよびNHガスを交互に供給す
るので、高速スイッチングバルブを用いることなく、A
LD法によりTiの単原子層およびNの単原子層を交互
に形成して所望のTiN膜を形成することができる。ま
た、このようにウエハ支持部材12に複数枚のウエハW
を載置し、一回の処理で複数枚の成膜処理を行うから、
生産性が高い。また、パージガス吐出ノズル22からパ
ージガスとしてのArガスを吐出してエアカーテンを形
成することにより、TiClガスおよびNHガスが
混合することを極力防止することができ、また、パージ
ガスであるArガスを吐出することにより、ウエハWの
単原子層の形成が終了した部分の処理ガスを速やかに除
去して余分な反応を防止することができるので、より良
質の膜を形成することができる。
As described above, the first alternately arranged first
While supplying the TiCl 4 gas and the NH 3 gas from the processing gas discharge nozzle 20 and the second processing gas discharge nozzle 21, respectively, the wafer support member 12 is rotated to alternately supply the TiCl 4 gas and the NH 3 gas to the wafer W. Without using a high-speed switching valve.
A desired TiN film can be formed by alternately forming monolayers of Ti and monolayers of N by the LD method. Further, as described above, a plurality of wafers W
Is mounted, and a plurality of films are formed in one process.
High productivity. By discharging Ar gas as a purge gas from the purge gas discharge nozzle 22 to form an air curtain, mixing of TiCl 4 gas and NH 3 gas can be prevented as much as possible. By discharging, the processing gas in the portion where the formation of the monoatomic layer of the wafer W has been completed can be promptly removed to prevent an unnecessary reaction, so that a higher quality film can be formed.

【0036】このようなTiN膜の形成を繰り返し行
い、所定枚数のウエハWの成膜処理が終了した時点で、
ClF源31からガスライン35、配管46,47,
48および配管42,43,44を介してノズル20,
21,22からClFガスを吐出させてチャンバー1
1内をクリーニングする。
The formation of such a TiN film is repeated, and when the film forming process for a predetermined number of wafers W is completed,
Gas line 35 from the ClF 3 source 31, pipes 46 and 47,
48 and pipes 42, 43, 44
By discharging ClF 3 gas from the chambers 21 and 22, the chamber 1
Clean inside 1.

【0037】このクリーニング時におけるClFガス
流量、チャンバー内圧力、クリーニング温度は、例えば
以下に示すように設定することができる。 ClFガス流量:100〜500sccm(0.1〜
0.5L/min)、好ましくは200〜300scc
m(0.2〜0.3L/min) チャンバー内圧力:1〜10Torr(133〜133
0Pa)、好ましくは1〜5Torr(133〜665
Pa) クリーニング温度:200〜500℃、好ましくは20
0〜300℃
The ClF 3 gas flow rate, chamber pressure, and cleaning temperature during this cleaning can be set, for example, as follows. ClF 3 gas flow rate: 100~500sccm (0.1~
0.5 L / min), preferably 200 to 300 scc
m (0.2-0.3 L / min) Chamber pressure: 1-10 Torr (133-133)
0 Pa), preferably 1 to 5 Torr (133 to 665).
Pa) Cleaning temperature: 200 to 500 ° C., preferably 20
0-300 ° C

【0038】次に、他の実施形態に係るCVD成膜装置
について説明する。図4は他の実施形態に係るCVD成
膜装置を部分的に示す断面図である。ここでは、ウエハ
支持部材12の代わりにウエハ支持部材12’を用いて
ウエハWを自転させる構成となっている。すなわち、ウ
エハ支持部材12’は、ベース部材51の上に、4つ
(図4では2つのみ図示)のウエハテーブル52が回転
可能に設けられ、これらウエハテーブル52をモーター
53により回転させることにより、ウエハテーブル52
上のウエハWを自転させる。これにより、処理ガスとし
てのTiClガスおよびNHガスをより一層均一に
ウエハWに供給することができ、より均一な単原子層を
形成することができる。この場合に、図1のようにヒー
ター16がウエハ支持部材の下にあると、加熱効率が悪
くなるため、図4のようにウエハWの上方にヒーター1
6’を設けることが好ましい。15’はヒーター16’
を支持するヒーター支持部材である。このようにヒータ
ーを設けた場合には、処理ガスがウエハWに有効に供給
されるようにヒーター16’およびヒーター支持部材1
5’にガス通過可能な多数の孔を設けることが好まし
い。
Next, a CVD film forming apparatus according to another embodiment will be described. FIG. 4 is a sectional view partially showing a CVD film forming apparatus according to another embodiment. Here, the wafer W is rotated on its own using a wafer support member 12 ′ instead of the wafer support member 12. That is, the wafer support member 12 ′ has four (only two are shown in FIG. 4) wafer tables 52 rotatably provided on the base member 51, and these wafer tables 52 are rotated by the motor 53. , Wafer table 52
The upper wafer W is rotated. Thereby, the TiCl 4 gas and the NH 3 gas as the processing gas can be more uniformly supplied to the wafer W, and a more uniform monoatomic layer can be formed. In this case, if the heater 16 is located below the wafer support member as shown in FIG. 1, the heating efficiency is deteriorated. Therefore, as shown in FIG.
It is preferable to provide 6 ′. 15 'is a heater 16'
This is a heater supporting member for supporting. When the heater is provided as described above, the heater 16 ′ and the heater support member 1 are provided so that the processing gas is effectively supplied to the wafer W.
It is preferable to provide a number of holes through which gas can pass through 5 '.

【0039】さらに、図5の実施形態では、処理ガスと
してのTiClガスおよびNHガスをそれぞれシャ
ワーヘッド60およびシャワーヘッド61から供給する
ようにしている。シャワーヘッド60は、図6に示すよ
うに、ディスク状をなす中空の本体60aの下面に多数
のガス吐出孔60bが形成されており、このガス吐出孔
60bから均一にガスを吐出する。シャワーヘッド61
も同様に構成されている。このようにノズルの代わりに
シャワーヘッドを用いることによってもウエハWに均一
にTiClガスおよびNHガスを供給することがで
きる。
Further, in the embodiment of FIG. 5, TiCl 4 gas and NH 3 gas as processing gases are supplied from the shower head 60 and the shower head 61, respectively. As shown in FIG. 6, the shower head 60 has a large number of gas discharge holes 60b formed on the lower surface of a hollow main body 60a having a disk shape, and discharges gas uniformly from the gas discharge holes 60b. Shower head 61
Are similarly configured. By using a shower head instead of the nozzle as described above, the TiCl 4 gas and the NH 3 gas can be uniformly supplied to the wafer W.

【0040】さらにまた、図7の実施形態では、第1の
処理ガス吐出ノズル20および第2の処理ガス吐出ノズ
ル21の直下に排気口70を設けている(第1の処理ガ
ス吐出ノズル20に対応する排気口のみ図示)。このよ
うにすることにより、不要なTiClガスおよびNH
ガスを排気口70に接続された排気管71を介して速
やかに排出することができる。
Further, in the embodiment of FIG. 7, an exhaust port 70 is provided immediately below the first processing gas discharge nozzle 20 and the second processing gas discharge nozzle 21 (the first processing gas discharge nozzle 20 has Only the corresponding exhaust port is shown). By doing so, unnecessary TiCl 4 gas and NH 3
The three gases can be quickly discharged through the exhaust pipe 71 connected to the exhaust port 70.

【0041】なお、本発明は、上記実施の形態に限定さ
れることなく種々変形可能である。例えば、上記実施形
態では、TiN膜を成膜する例について示したが、Al
、ZrO、TaN、SiO、SiN、SiO
N、WN、WSi、RuO等、他の金属化合物も同様
にして成膜することができる。また、上記実施形態で
は、第1の処理ガスとしてTiClを用い、第2の処
理ガスとしてNHガスを用いたが、第1の処理ガスと
第2の処理ガスとは成膜する金属化合物膜に応じた適宜
のガスを用いることができる。このような場合における
第1の処理ガスとしては、TiClの他に、TaBr
、Ta(OC、SiCl、SiH、S
、SiHCl、WF等のAl、Zr、T
i、Ta、Si、WおよびRuのうち1種を含むものを
挙げることができ、第2の処理ガスとしては、NH
他に、NH(N)、O、O、NO、NO、N
、N等のNまたはOを含むものを挙げるこ
とができる。
The present invention is limited to the above embodiment.
Various modifications can be made without being performed. For example, the above embodiment
In the embodiment, an example in which a TiN film is formed has been described.
2O 3, ZrO2, TaN, SiO2, SiN, SiO
N, WN, WSi, RuO2And other metal compounds
To form a film. In the above embodiment,
Is TiCl as the first processing gas.4And the second processing
NH as natural gas3Although gas was used, the first processing gas and
The second processing gas is an appropriate gas depending on the metal compound film to be formed.
Can be used. In such a case
The first processing gas is TiCl4In addition, TaBr
5, Ta (OC2H5)5, SiCl4, SiH4, S
i2H6, SiH2Cl2, WF6Al, Zr, T
one containing one of i, Ta, Si, W and Ru
And the second processing gas is NH 33of
Besides, NH3(N2), O2, O3, NO, N2O, N
2O 3, N2O5What contains N or O such as
Can be.

【0042】また、ヒーターの位置を図1の例ではウエ
ハの下方に、図4の例ではウエハの上方に設けたが、こ
れら両方に設けてもよいし、均一に加熱することができ
れば他の位置に設けてもよい。さらに、パージガスとし
てArガスを用いたが、Nガス等他のガスであっても
よい。また、2つの処理ガスを有効に遮断することがで
きれば、パージガスを用いなくてもよい。さらにまた、
用いる基板としては、半導体ウエハに限らず他のもので
あってもよく、また、表面上に他の層を形成した基板で
あってもよい。
Although the position of the heater is provided below the wafer in the example of FIG. 1 and above the wafer in the example of FIG. 4, it may be provided on both of them. It may be provided at a position. Further, although Ar gas was used as the purge gas may be N 2 gas or the like other gases. Further, if the two processing gases can be effectively shut off, the purge gas need not be used. Furthermore,
The substrate used is not limited to a semiconductor wafer, but may be another substrate, or may be a substrate having another layer formed on the surface.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
ALD法を利用した成膜を行うにあたり、互いに異なる
位置に設けられた第1の処理ガス吐出部および第2の処
理ガスを吐出する第2の処理ガス吐出部からそれぞれ第
1の処理ガスおよび第2の処理ガスを吐出し、基板支持
部材を回転させて基板を公転させるので、高速スイッチ
ングバルブを用いることなく、第1の処理ガスによる単
原子層と、第2の処理ガスによる単原子層とを交互に形
成することができる。また、基板支持部材に複数の基板
を支持した状態で処理を行うので、一度に複数枚数の基
板の成膜処理を行うことができ、生産性を高めることが
できる。
As described above, according to the present invention,
In performing film formation using the ALD method, a first processing gas and a second processing gas are discharged from a first processing gas discharge unit and a second processing gas discharge unit discharging a second processing gas provided at different positions. Since the processing gas of No. 2 is discharged and the substrate is revolved by rotating the substrate supporting member, the monoatomic layer of the first processing gas and the monoatomic layer of the second processing gas can be used without using a high-speed switching valve. Can be formed alternately. Further, since the processing is performed in a state where a plurality of substrates are supported by the substrate support member, the film formation processing of a plurality of substrates can be performed at one time, and the productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るCVD成膜装置を示
す断面図。
FIG. 1 is a sectional view showing a CVD film forming apparatus according to an embodiment of the present invention.

【図2】図1のCVD成膜装置の内部を示す平面図。FIG. 2 is a plan view showing the inside of the CVD film forming apparatus of FIG.

【図3】図1のCVD成膜装置における第1の処理ガス
吐出ノズルおよびパージガス吐出ノズルの断面図。
FIG. 3 is a sectional view of a first processing gas discharge nozzle and a purge gas discharge nozzle in the CVD film forming apparatus of FIG.

【図4】本発明の他の実施形態に係るCVD成膜装置を
部分的に示す断面図。
FIG. 4 is a cross-sectional view partially showing a CVD film forming apparatus according to another embodiment of the present invention.

【図5】本発明のさらに他の実施形態に係るCVD成膜
装置を部分的に示す断面図。
FIG. 5 is a cross-sectional view partially showing a CVD film forming apparatus according to still another embodiment of the present invention.

【図6】図4の装置に用いたシャワーヘッドを示す斜視
図。
FIG. 6 is a perspective view showing a shower head used in the apparatus of FIG.

【図7】本発明のさらに他の実施形態に係るCVD成膜
装置を部分的に示す断面図。
FIG. 7 is a sectional view partially showing a CVD film forming apparatus according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11;チャンバー 12,12’;ウエハ支持部材 12a;ウエハ支持部 13;回転軸 14;モーター 16,16’;ヒーター 20,21;処理ガス吐出ノズル 22;パージガス吐出ノズル 30;ガス供給機構 25,70;排気口 26,71;排気管 28;排気装置 52;ウエハテーブル 53;モーター 60,61;シャワーヘッド W;半導体ウエハ 11; chamber 12, 12 '; wafer support member 12a; wafer support portion 13; rotating shaft 14; motors 16, 16'; heaters 20, 21, processing gas discharge nozzle 22, purge gas discharge nozzle 30, gas supply mechanism 25, 70 Exhaust ports 26 and 71; exhaust pipe 28; exhaust device 52; wafer table 53; motors 60 and 61; shower head W;

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/31 H01L 21/31 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/31 H01L 21/31 B

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 基板を収容するチャンバーと、 前記チャンバー内で複数の基板を平面的に支持する基板
支持部材と、 前記チャンバー内に設けられ、第1の処理ガスを吐出す
る第1の処理ガス吐出部と、 前記チャンバー内の第1の処理ガス吐出部とは異なる位
置に設けられ、第2の処理ガスを吐出する第2の処理ガ
ス吐出部と、 前記基板支持部材を回転させる回転機構と、 前記基板を加熱する加熱手段とを具備し、 前記基板支持部材を回転させて基板を公転させながら、
基板上に、第1の処理ガスによる単原子層と、第2の処
理ガスによる単原子層とを交互に形成することを特徴と
する成膜装置。
1. A chamber for accommodating a substrate, a substrate support member for supporting a plurality of substrates in the chamber in a planar manner, and a first processing gas provided in the chamber and discharging a first processing gas. A discharge unit, a second processing gas discharge unit that is provided at a position different from the first processing gas discharge unit in the chamber, and discharges a second processing gas, and a rotation mechanism that rotates the substrate support member. And heating means for heating the substrate, while rotating the substrate support member to revolve the substrate,
A film formation apparatus, wherein a monoatomic layer formed by a first processing gas and a monoatomic layer formed by a second processing gas are alternately formed on a substrate.
【請求項2】 前記第1の処理ガス吐出部と前記第2の
処理ガス吐出部とを複数備え、これらが円周状に交互に
配置されていることを特徴とする請求項1に記載の成膜
装置。
2. The apparatus according to claim 1, wherein a plurality of the first processing gas discharge sections and a plurality of the second processing gas discharge sections are provided, and these are arranged circumferentially alternately. Film forming equipment.
【請求項3】 前記第1の処理ガス吐出部と前記第2の
処理ガス吐出部との間にパージガスを吐出するパージガ
ス吐出部を有することを特徴とする請求項2に記載の成
膜装置。
3. The film forming apparatus according to claim 2, further comprising a purge gas discharge unit that discharges a purge gas between the first processing gas discharge unit and the second processing gas discharge unit.
【請求項4】 前記回転機構は、前記基板支持部材に支
持された基板が前記第1の処理ガス吐出部および第2の
処理ガス吐出部の直下を通過するように前記基板支持部
材を回転させることを特徴とする請求項1から請求項3
のいずれか1項に記載の成膜装置。
4. The rotation mechanism rotates the substrate support member such that a substrate supported by the substrate support member passes directly below the first processing gas discharge unit and the second processing gas discharge unit. 4. The method according to claim 1, wherein
The film forming apparatus according to any one of the above.
【請求項5】 前記基板を自転させる基板回転機構をさ
らに有することを特徴とする請求項1から請求項4のい
ずれか1項に記載の成膜装置。
5. The film forming apparatus according to claim 1, further comprising a substrate rotating mechanism for rotating the substrate.
【請求項6】 前記加熱手段は、前記基板支持部材の下
方から基板を加熱することを特徴とする請求項1から請
求項5のいずれか1項に記載の成膜装置。
6. The film forming apparatus according to claim 1, wherein the heating unit heats the substrate from below the substrate supporting member.
【請求項7】 前記加熱手段は、前記基板支持部材に支
持された基板の上方から基板を加熱することを特徴とす
る請求項1から請求項6のいずれか1項に記載の成膜装
置。
7. The film forming apparatus according to claim 1, wherein the heating unit heats the substrate from above the substrate supported by the substrate supporting member.
【請求項8】 前記第1の処理ガスは、Al、Zr、T
i、Ta、Si、WおよびRuのうちいずれか1種を含
み、前記第2の処理ガスはNまたはOを含むことを特徴
とする請求項1から請求項7のいずれか1項に記載の成
膜装置。
8. The first processing gas includes Al, Zr, T
8. The method according to claim 1, wherein the second processing gas contains N, O, or i, Ta, Si, W, or Ru. 9. Film forming equipment.
【請求項9】 Al、ZrO、TiN、Ta
N、SiO、SiN、SiON、SiOF、WN、W
SiおよびRuOのうちいずれか1種を成膜すること
を特徴とする請求項1から請求項7のいずれか1項に記
載の成膜装置。
9. An Al 2 O 3 , ZrO 2 , TiN, Ta
N, SiO 2 , SiN, SiON, SiOF, WN, W
The film forming apparatus according to claim 1, wherein one of Si and RuO 2 is formed.
【請求項10】 チャンバー内に吐出したガス流のエア
カーテンでチャンバー内を複数の空間に分割する工程
と、 前記空間のそれぞれに所定の処理ガスを導入してなる処
理ガス雰囲気の複数を通過するように、基板を繰り返し
移動させる工程と、 これにより前記基板上に単原子層を連続的に形成して堆
積させ、これを熱的に反応させて化合物の膜を形成する
工程とを具備することを特徴とする成膜方法。
10. A step of dividing the inside of the chamber into a plurality of spaces by an air curtain of a gas flow discharged into the chamber, and passing through a plurality of processing gas atmospheres in which a predetermined processing gas is introduced into each of the spaces. And a step of continuously forming and depositing a monoatomic layer on the substrate, and thermally reacting the monoatomic layer to form a compound film. A film forming method characterized by the above-mentioned.
【請求項11】 前記処理ガスは、Al、Zr、Ti、
Ta、Si、WおよびRuのうちいずれか1種の元素を
含む第1の処理ガスと、NまたはOを含む第2の処理ガ
スとを有することを特徴とする請求項10に記載の成膜
方法。
11. The processing gas includes Al, Zr, Ti,
11. The film forming method according to claim 10, comprising a first processing gas containing any one of Ta, Si, W and Ru, and a second processing gas containing N or O. Method.
【請求項12】 チャンバー内で複数の基板を平面的に
配置し、基板を公転させながら、チャンバー内の互いに
異なる位置に設けられた第1の処理ガス吐出部および第
2の処理ガス吐出部からそれぞれ第1の処理ガスおよび
第2の処理ガスを吐出して、基板上に、第1の処理ガス
による単原子層と、第2の処理ガスによる単原子層とを
交互に形成することを特徴とする成膜方法。
12. A plurality of substrates are arranged in a plane in a chamber, and while revolving the substrates, a first processing gas discharge unit and a second processing gas discharge unit provided at different positions in the chamber are used. A first processing gas and a second processing gas are respectively discharged to alternately form a monoatomic layer of the first processing gas and a monoatomic layer of the second processing gas on the substrate. Film forming method.
【請求項13】 さらに基板を自転させることを特徴と
する請求項12に記載の成膜方法。
13. The method according to claim 12, further comprising rotating the substrate.
【請求項14】 第1および第2の処理ガスの吸着速度
合わせて基板を公転させることを特徴とする請求項12
または請求項13に記載の成膜方法。
14. The substrate is revolved according to the adsorption speed of the first and second processing gases.
Alternatively, the film forming method according to claim 13.
【請求項15】 前記第1の処理ガスは、Al、Zr、
Ti、Ta、Si、WおよびRuのうちいずれか1種を
含み、前記第2の処理ガスはNまたはOを含むことを特
徴とする請求項12から請求項14のいずれか1項に記
載の成膜方法。
15. The first processing gas may include Al, Zr,
The method according to any one of claims 12 to 14, wherein the second processing gas includes one of Ti, Ta, Si, W, and Ru, and the second processing gas includes N or O. Film formation method.
【請求項16】 Al、ZrO、TiN、Ta
N、SiO、SiN、SiON、SiOF、WN、W
SiおよびRuOのうちいずれか1種を成膜すること
を特徴とする請求項10から請求項15のいずれか1項
に記載の成膜方法。
16. Al 2 O 3 , ZrO 2 , TiN, Ta
N, SiO 2 , SiN, SiON, SiOF, WN, W
16. The film forming method according to claim 10, wherein one of Si and RuO 2 is formed.
JP2001000183A 2000-01-06 2001-01-04 Film forming apparatus and film forming method Expired - Fee Related JP4817210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000183A JP4817210B2 (en) 2000-01-06 2001-01-04 Film forming apparatus and film forming method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000000590 2000-01-06
JP2000000590 2000-01-06
JP2000-590 2000-01-06
JP2001000183A JP4817210B2 (en) 2000-01-06 2001-01-04 Film forming apparatus and film forming method

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2008089538A Division JP2008208462A (en) 2000-01-06 2008-03-31 Film depositing apparatus and film depositing method
JP2008089537A Division JP4817268B2 (en) 2000-01-06 2008-03-31 Film forming apparatus and film forming method
JP2008089535A Division JP4817266B2 (en) 2000-01-06 2008-03-31 Film forming apparatus and film forming method
JP2008089536A Division JP4817267B2 (en) 2000-01-06 2008-03-31 Film forming apparatus and film forming method

Publications (3)

Publication Number Publication Date
JP2001254181A true JP2001254181A (en) 2001-09-18
JP2001254181A5 JP2001254181A5 (en) 2011-04-07
JP4817210B2 JP4817210B2 (en) 2011-11-16

Family

ID=26583182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000183A Expired - Fee Related JP4817210B2 (en) 2000-01-06 2001-01-04 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP4817210B2 (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217206A (en) * 1999-12-08 2001-08-10 Samsung Electronics Co Ltd Method of forming metallic layer utilizing atomic layer vapor deposition method and semiconductor element using the same
JP2002222875A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
JP2003324070A (en) * 2002-04-30 2003-11-14 Suzuki Motor Corp Method and device of manufacturing thin film
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
JP2004124193A (en) * 2002-10-03 2004-04-22 Tokyo Electron Ltd Treatment apparatus
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
JP2004146787A (en) * 2002-07-18 2004-05-20 Air Products & Chemicals Inc Method for etching high dielectric constant material, and for cleaning deposition chamber for high dielectric constant material
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
JP2004218053A (en) * 2003-01-17 2004-08-05 Tokyo Electron Ltd Thin film deposition method, and thin film deposition system
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
KR100476370B1 (en) * 2002-07-19 2005-03-16 주식회사 하이닉스반도체 Batch type Atomic Layer Deposition and method for insitu-cleaning in the batch type atomic layer deposition
JP2005089781A (en) * 2003-09-12 2005-04-07 Mitsui Eng & Shipbuild Co Ltd Thin film deposition system
KR100498609B1 (en) * 2002-05-18 2005-07-01 주식회사 하이닉스반도체 Batch type atomic layer deposition equipment
JP2005528776A (en) * 2001-09-26 2005-09-22 アプライド マテリアルズ インコーポレイテッド Integration of barrier layer and seed layer
WO2005101473A1 (en) * 2004-04-12 2005-10-27 Ulvac, Inc. Method of forming barrier film and method of forming electrode film
JP2005534180A (en) * 2002-07-19 2005-11-10 アヴィザ テクノロジー インコーポレイテッド In-situ formation of metal insulator metal capacitor
JP2006028577A (en) * 2004-07-15 2006-02-02 Canon Anelva Corp Cvd system
JP2006140424A (en) * 2004-11-15 2006-06-01 Furukawa Co Ltd Vapor growth apparatus
JP2006222468A (en) * 2002-03-26 2006-08-24 Tokyo Electron Ltd Substrate processing device, substrate processing method and cleaning method
JP2007112677A (en) * 2005-10-21 2007-05-10 Takao Kamiyama Continuous manufacturing apparatus of nano carbon and its continuous manufacture method
JP2007277723A (en) * 2006-04-05 2007-10-25 Genus Inc Method and apparatus for providing uniform gas delivery to reactor
KR100794657B1 (en) 2006-06-28 2008-01-14 삼성전자주식회사 Methods Of Forming Barrier Metal Layer Of Semiconductor Device
US7387686B2 (en) 2003-03-25 2008-06-17 Rohm Co., Ltd. Film formation apparatus
JP2009516777A (en) * 2005-11-22 2009-04-23 アイクストロン、アーゲー Multilayer thin film deposition method in CVD reactor and gas inlet part of CVD reactor
EP2138604A2 (en) 2008-06-27 2009-12-30 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
US7647886B2 (en) 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US7670945B2 (en) 1998-10-01 2010-03-02 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
CN101665926A (en) * 2008-09-04 2010-03-10 东京毅力科创株式会社 Film deposition apparatus exposing substrate to plural gases in sequence
US7682946B2 (en) 2005-11-04 2010-03-23 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
WO2010038734A1 (en) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 Film forming apparatus
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
US7709385B2 (en) 2000-06-28 2010-05-04 Applied Materials, Inc. Method for depositing tungsten-containing layers by vapor deposition techniques
WO2010055926A1 (en) * 2008-11-14 2010-05-20 東京エレクトロン株式会社 Film forming apparatus
JP2010518259A (en) * 2007-02-12 2010-05-27 東京エレクトロン株式会社 Atomic layer deposition system and method
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
JP2010153805A (en) * 2008-11-19 2010-07-08 Tokyo Electron Ltd Film deposition apparatus, cleaning method for the same, and computer storage medium for storing program
US7771537B2 (en) 2003-12-10 2010-08-10 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, E.G. CVD deposition
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
JP2010206025A (en) * 2009-03-04 2010-09-16 Tokyo Electron Ltd Film forming device, film forming method, program, and computer readable storage medium
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
JP2010212627A (en) * 2009-03-12 2010-09-24 Tokyo Electron Ltd Film forming apparatus, film forming method, and storage medium
JP2010219125A (en) * 2009-03-13 2010-09-30 Tokyo Electron Ltd Film forming device
JP2010245448A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Film depositing device, film depositing method, and storage medium
JP2010245449A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium
US7838441B2 (en) 2006-10-09 2010-11-23 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7892602B2 (en) 2001-12-07 2011-02-22 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US7906393B2 (en) 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
JP2011096986A (en) * 2009-11-02 2011-05-12 Tokyo Electron Ltd Film forming device, film forming method and storage medium
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
JP2011124384A (en) * 2009-12-10 2011-06-23 Tokyo Electron Ltd Film deposition apparatus
CN102108496A (en) * 2009-12-25 2011-06-29 东京毅力科创株式会社 Film deposition apparatus and film deposition method
JP2011134996A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
JP2011135004A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
KR101070353B1 (en) * 2003-06-25 2011-10-05 주성엔지니어링(주) Gas injector for use in semiconductor fabrication apparatus
US8034723B2 (en) 2009-12-25 2011-10-11 Tokyo Electron Limited Film deposition apparatus and film deposition method
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
JP2012182499A (en) * 2012-06-15 2012-09-20 Tokyo Electron Ltd Film formation device
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
JP2013503498A (en) * 2009-08-31 2013-01-31 ウォニック アイピーエス カンパニー リミテッド Gas injection apparatus and substrate processing apparatus using the same
JP2013503971A (en) * 2009-09-02 2013-02-04 ウォニック アイピーエス カンパニー リミテッド Gas injection apparatus and substrate processing apparatus using the same
US8372202B2 (en) 2008-08-29 2013-02-12 Tokyo Electron Limited Film deposition apparatus
JP2013042008A (en) * 2011-08-17 2013-02-28 Tokyo Electron Ltd Deposition apparatus
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US8518183B2 (en) 2008-09-04 2013-08-27 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
JP2013535833A (en) * 2010-07-28 2013-09-12 クックジェ エレクトリック コリア カンパニー リミテッド Substrate susceptor and vapor deposition apparatus having the same
WO2013141490A1 (en) * 2012-03-21 2013-09-26 주식회사 윈텔 Substrate-processing apparatus and substrate-processing method
US8642487B2 (en) 2011-05-18 2014-02-04 Tokyo Electron Limited Film deposition method and film deposition apparatus
US8673079B2 (en) 2008-09-04 2014-03-18 Tokyo Electron Limited Film deposition apparatus and substrate processing apparatus
US8808456B2 (en) 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US8840727B2 (en) 2008-09-04 2014-09-23 Tokyo Electron Limited Film deposition apparatus, substrate processor, film deposition method, and computer-readable storage medium
US8961691B2 (en) 2008-09-04 2015-02-24 Tokyo Electron Limited Film deposition apparatus, film deposition method, computer readable storage medium for storing a program causing the apparatus to perform the method
JP2015507097A (en) * 2012-01-31 2015-03-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rotary substrate processing system
JP2015512144A (en) * 2012-01-31 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Multi-chamber substrate processing system
US9053909B2 (en) 2008-08-29 2015-06-09 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US9103030B2 (en) 2008-12-02 2015-08-11 Tokyo Electron Limited Film deposition apparatus
JP2015209557A (en) * 2014-04-24 2015-11-24 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, program, and recording medium
KR101576302B1 (en) * 2009-03-04 2015-12-09 도쿄엘렉트론가부시키가이샤 Film deposition apparatus, film deposition method and computer readable storage medium
TWI513850B (en) * 2012-07-06 2015-12-21 Tokyo Electron Ltd Film deposition apparatus, and method of depositing a film
US9267204B2 (en) 2008-09-04 2016-02-23 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and storage medium
US9297072B2 (en) 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
JP2016065268A (en) * 2014-09-24 2016-04-28 株式会社日立国際電気 Substrate processing apparatus, gas introduction shaft, and gas supply plate
JP2016092156A (en) * 2014-10-31 2016-05-23 東京エレクトロン株式会社 Deposition device, deposition method and storage medium
JP2016096220A (en) * 2014-11-13 2016-05-26 東京エレクトロン株式会社 Film formation apparatus
JP2016105440A (en) * 2014-12-01 2016-06-09 東京エレクトロン株式会社 Film deposition method
US9416448B2 (en) 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
JP2016156066A (en) * 2015-02-25 2016-09-01 東京エレクトロン株式会社 Film deposition apparatus, film deposition method, and storage medium
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
JP2017054881A (en) * 2015-09-08 2017-03-16 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US9714467B2 (en) 2014-02-10 2017-07-25 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
KR20180009384A (en) * 2015-06-17 2018-01-26 어플라이드 머티어리얼스, 인코포레이티드 Gas control in process chamber
KR20180015578A (en) * 2016-08-03 2018-02-13 도쿄엘렉트론가부시키가이샤 Film forming apparatus, method of forming film, and storage medium
KR20180053242A (en) * 2016-11-11 2018-05-21 도쿄엘렉트론가부시키가이샤 Film forming device and film forming method
JPWO2017145261A1 (en) * 2016-02-23 2018-12-13 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and computer-readable recording medium
US10480067B2 (en) 2016-02-03 2019-11-19 Tokyo Electron Limited Film deposition method
US10900121B2 (en) 2016-11-21 2021-01-26 Tokyo Electron Limited Method of manufacturing semiconductor device and apparatus of manufacturing semiconductor device
JP2021093462A (en) * 2019-12-11 2021-06-17 東京エレクトロン株式会社 Rotary drive device, substrate processing device and rotary drive method
US11124875B2 (en) 2016-08-26 2021-09-21 Industry-University Cooperation Foundation Hanyang University Atomic layer deposition apparatus and atomic layer deposition method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226811A (en) * 1985-07-26 1987-02-04 Fujitsu Ltd Semiconductor manufacturing equipment
JPH04287912A (en) * 1991-02-19 1992-10-13 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH05251701A (en) * 1992-03-04 1993-09-28 Fujitsu Ltd Formation of thin film transistor
JPH0786171A (en) * 1993-09-17 1995-03-31 Tokyo Electron Ltd Batch cold wall processing system and leaning method therefor
JPH10330944A (en) * 1997-05-27 1998-12-15 Anelva Corp Substrate treating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226811A (en) * 1985-07-26 1987-02-04 Fujitsu Ltd Semiconductor manufacturing equipment
JPH04287912A (en) * 1991-02-19 1992-10-13 Mitsubishi Electric Corp Semiconductor manufacturing device
JPH05251701A (en) * 1992-03-04 1993-09-28 Fujitsu Ltd Formation of thin film transistor
JPH0786171A (en) * 1993-09-17 1995-03-31 Tokyo Electron Ltd Batch cold wall processing system and leaning method therefor
JPH10330944A (en) * 1997-05-27 1998-12-15 Anelva Corp Substrate treating device

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670945B2 (en) 1998-10-01 2010-03-02 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
JP2001217206A (en) * 1999-12-08 2001-08-10 Samsung Electronics Co Ltd Method of forming metallic layer utilizing atomic layer vapor deposition method and semiconductor element using the same
US6831004B2 (en) 2000-06-27 2004-12-14 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7846840B2 (en) 2000-06-28 2010-12-07 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7674715B2 (en) 2000-06-28 2010-03-09 Applied Materials, Inc. Method for forming tungsten materials during vapor deposition processes
US7745333B2 (en) 2000-06-28 2010-06-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7709385B2 (en) 2000-06-28 2010-05-04 Applied Materials, Inc. Method for depositing tungsten-containing layers by vapor deposition techniques
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
JP4590744B2 (en) * 2001-01-25 2010-12-01 ソニー株式会社 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2002222875A (en) * 2001-01-25 2002-08-09 Sony Corp Non-volatile semiconductor memory device and method of manufacturing the same
US9012334B2 (en) 2001-02-02 2015-04-21 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8114789B2 (en) 2001-02-02 2012-02-14 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US9587310B2 (en) 2001-03-02 2017-03-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7695563B2 (en) 2001-07-13 2010-04-13 Applied Materials, Inc. Pulsed deposition process for tungsten nucleation
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US8187970B2 (en) 2001-07-25 2012-05-29 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US9209074B2 (en) 2001-07-25 2015-12-08 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8563424B2 (en) 2001-07-25 2013-10-22 Applied Materials, Inc. Process for forming cobalt and cobalt silicide materials in tungsten contact applications
JP2005528776A (en) * 2001-09-26 2005-09-22 アプライド マテリアルズ インコーポレイテッド Integration of barrier layer and seed layer
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US8318266B2 (en) 2001-10-26 2012-11-27 Applied Materials, Inc. Enhanced copper growth with ultrathin barrier layer for high performance interconnects
US8293328B2 (en) 2001-10-26 2012-10-23 Applied Materials, Inc. Enhanced copper growth with ultrathin barrier layer for high performance interconnects
US7780788B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US8668776B2 (en) 2001-10-26 2014-03-11 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7892602B2 (en) 2001-12-07 2011-02-22 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7779784B2 (en) 2002-01-26 2010-08-24 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7745329B2 (en) 2002-02-26 2010-06-29 Applied Materials, Inc. Tungsten nitride atomic layer deposition processes
JP2006222468A (en) * 2002-03-26 2006-08-24 Tokyo Electron Ltd Substrate processing device, substrate processing method and cleaning method
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7867914B2 (en) 2002-04-16 2011-01-11 Applied Materials, Inc. System and method for forming an integrated barrier layer
JP2003324070A (en) * 2002-04-30 2003-11-14 Suzuki Motor Corp Method and device of manufacturing thin film
KR100498609B1 (en) * 2002-05-18 2005-07-01 주식회사 하이닉스반도체 Batch type atomic layer deposition equipment
JP2004146787A (en) * 2002-07-18 2004-05-20 Air Products & Chemicals Inc Method for etching high dielectric constant material, and for cleaning deposition chamber for high dielectric constant material
KR100476370B1 (en) * 2002-07-19 2005-03-16 주식회사 하이닉스반도체 Batch type Atomic Layer Deposition and method for insitu-cleaning in the batch type atomic layer deposition
JP2005534180A (en) * 2002-07-19 2005-11-10 アヴィザ テクノロジー インコーポレイテッド In-situ formation of metal insulator metal capacitor
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
JP2004124193A (en) * 2002-10-03 2004-04-22 Tokyo Electron Ltd Treatment apparatus
JP2004218053A (en) * 2003-01-17 2004-08-05 Tokyo Electron Ltd Thin film deposition method, and thin film deposition system
US7387686B2 (en) 2003-03-25 2008-06-17 Rohm Co., Ltd. Film formation apparatus
KR101070353B1 (en) * 2003-06-25 2011-10-05 주성엔지니어링(주) Gas injector for use in semiconductor fabrication apparatus
JP2005089781A (en) * 2003-09-12 2005-04-07 Mitsui Eng & Shipbuild Co Ltd Thin film deposition system
US7647886B2 (en) 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US8518184B2 (en) 2003-12-10 2013-08-27 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, E.G., CVD deposition
US7771537B2 (en) 2003-12-10 2010-08-10 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, E.G. CVD deposition
US7906393B2 (en) 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
US8384192B2 (en) 2004-01-28 2013-02-26 Micron Technology, Inc. Methods for forming small-scale capacitor structures
JP4974676B2 (en) * 2004-04-12 2012-07-11 株式会社アルバック Formation method of barrier film
WO2005101473A1 (en) * 2004-04-12 2005-10-27 Ulvac, Inc. Method of forming barrier film and method of forming electrode film
US7419904B2 (en) 2004-04-12 2008-09-02 Ulvac Inc. Method for forming barrier film and method for forming electrode film
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US7794544B2 (en) 2004-05-12 2010-09-14 Applied Materials, Inc. Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8343279B2 (en) 2004-05-12 2013-01-01 Applied Materials, Inc. Apparatuses for atomic layer deposition
US8282992B2 (en) 2004-05-12 2012-10-09 Applied Materials, Inc. Methods for atomic layer deposition of hafnium-containing high-K dielectric materials
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
JP2006028577A (en) * 2004-07-15 2006-02-02 Canon Anelva Corp Cvd system
JP2006140424A (en) * 2004-11-15 2006-06-01 Furukawa Co Ltd Vapor growth apparatus
JP4515227B2 (en) * 2004-11-15 2010-07-28 古河機械金属株式会社 Vapor growth equipment
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
JP2007112677A (en) * 2005-10-21 2007-05-10 Takao Kamiyama Continuous manufacturing apparatus of nano carbon and its continuous manufacture method
US7850779B2 (en) 2005-11-04 2010-12-14 Applied Materisals, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US7682946B2 (en) 2005-11-04 2010-03-23 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
US9032906B2 (en) 2005-11-04 2015-05-19 Applied Materials, Inc. Apparatus and process for plasma-enhanced atomic layer deposition
JP2009516777A (en) * 2005-11-22 2009-04-23 アイクストロン、アーゲー Multilayer thin film deposition method in CVD reactor and gas inlet part of CVD reactor
JP2007277723A (en) * 2006-04-05 2007-10-25 Genus Inc Method and apparatus for providing uniform gas delivery to reactor
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
KR100794657B1 (en) 2006-06-28 2008-01-14 삼성전자주식회사 Methods Of Forming Barrier Metal Layer Of Semiconductor Device
US7838441B2 (en) 2006-10-09 2010-11-23 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
JP2010518259A (en) * 2007-02-12 2010-05-27 東京エレクトロン株式会社 Atomic layer deposition system and method
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
KR101533464B1 (en) * 2008-06-27 2015-07-02 도쿄엘렉트론가부시키가이샤 Film deposition apparatus, film deposition method, and computer readable storage medium
EP2138604A2 (en) 2008-06-27 2009-12-30 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US9416448B2 (en) 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
US9053909B2 (en) 2008-08-29 2015-06-09 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
US8673395B2 (en) 2008-08-29 2014-03-18 Tokyo Electron Limited Film deposition apparatus, film deposition method, and storage medium
US8808456B2 (en) 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US8372202B2 (en) 2008-08-29 2013-02-12 Tokyo Electron Limited Film deposition apparatus
US8673079B2 (en) 2008-09-04 2014-03-18 Tokyo Electron Limited Film deposition apparatus and substrate processing apparatus
US9267204B2 (en) 2008-09-04 2016-02-23 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and storage medium
US8840727B2 (en) 2008-09-04 2014-09-23 Tokyo Electron Limited Film deposition apparatus, substrate processor, film deposition method, and computer-readable storage medium
CN101665926A (en) * 2008-09-04 2010-03-10 东京毅力科创株式会社 Film deposition apparatus exposing substrate to plural gases in sequence
US8518183B2 (en) 2008-09-04 2013-08-27 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
US8961691B2 (en) 2008-09-04 2015-02-24 Tokyo Electron Limited Film deposition apparatus, film deposition method, computer readable storage medium for storing a program causing the apparatus to perform the method
US9418890B2 (en) 2008-09-08 2016-08-16 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
WO2010038734A1 (en) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 Film forming apparatus
KR101248654B1 (en) * 2008-09-30 2013-03-28 도쿄엘렉트론가부시키가이샤 Film forming apparatus
KR101271800B1 (en) * 2008-09-30 2013-06-07 도쿄엘렉트론가부시키가이샤 Film forming apparatus
JP2010087238A (en) * 2008-09-30 2010-04-15 Tokyo Electron Ltd Film forming device
US8951347B2 (en) 2008-11-14 2015-02-10 Tokyo Electron Limited Film deposition apparatus
CN102150245A (en) * 2008-11-14 2011-08-10 东京毅力科创株式会社 Film forming apparatus
WO2010055926A1 (en) * 2008-11-14 2010-05-20 東京エレクトロン株式会社 Film forming apparatus
JP2010153805A (en) * 2008-11-19 2010-07-08 Tokyo Electron Ltd Film deposition apparatus, cleaning method for the same, and computer storage medium for storing program
US9297072B2 (en) 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
US9103030B2 (en) 2008-12-02 2015-08-11 Tokyo Electron Limited Film deposition apparatus
KR101576302B1 (en) * 2009-03-04 2015-12-09 도쿄엘렉트론가부시키가이샤 Film deposition apparatus, film deposition method and computer readable storage medium
JP2010206025A (en) * 2009-03-04 2010-09-16 Tokyo Electron Ltd Film forming device, film forming method, program, and computer readable storage medium
JP2010212627A (en) * 2009-03-12 2010-09-24 Tokyo Electron Ltd Film forming apparatus, film forming method, and storage medium
JP2010219125A (en) * 2009-03-13 2010-09-30 Tokyo Electron Ltd Film forming device
US9093490B2 (en) 2009-03-13 2015-07-28 Tokyo Electron Limited Film deposition apparatus
US8992685B2 (en) 2009-04-09 2015-03-31 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and computer-readable storage medium
US8882915B2 (en) 2009-04-09 2014-11-11 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP2010245448A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Film depositing device, film depositing method, and storage medium
JP2010245449A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium
JP2013503498A (en) * 2009-08-31 2013-01-31 ウォニック アイピーエス カンパニー リミテッド Gas injection apparatus and substrate processing apparatus using the same
US9732424B2 (en) 2009-08-31 2017-08-15 Wonik Ips Co., Ltd. Gas injection apparatus and substrate processing apparatus using same
JP2013503971A (en) * 2009-09-02 2013-02-04 ウォニック アイピーエス カンパニー リミテッド Gas injection apparatus and substrate processing apparatus using the same
KR101434709B1 (en) 2009-11-02 2014-08-26 도쿄엘렉트론가부시키가이샤 Film formation apparatus, film formation method, and storage medium
JP2011096986A (en) * 2009-11-02 2011-05-12 Tokyo Electron Ltd Film forming device, film forming method and storage medium
JP2011124384A (en) * 2009-12-10 2011-06-23 Tokyo Electron Ltd Film deposition apparatus
US8721790B2 (en) 2009-12-10 2014-05-13 Tokyo Electron Limited Film deposition apparatus
JP2011134996A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
TWI493074B (en) * 2009-12-25 2015-07-21 Tokyo Electron Ltd Film deposition apparatus
CN102108496A (en) * 2009-12-25 2011-06-29 东京毅力科创株式会社 Film deposition apparatus and film deposition method
US8034723B2 (en) 2009-12-25 2011-10-11 Tokyo Electron Limited Film deposition apparatus and film deposition method
JP2011132589A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus, film deposition method, and storage medium
JP2011135004A (en) * 2009-12-25 2011-07-07 Tokyo Electron Ltd Film deposition apparatus
JP2013535833A (en) * 2010-07-28 2013-09-12 クックジェ エレクトリック コリア カンパニー リミテッド Substrate susceptor and vapor deposition apparatus having the same
US9567673B2 (en) 2010-07-28 2017-02-14 Kookje Electric Korea Co., Ltd. Substrate susceptor and deposition apparatus having same
US8642487B2 (en) 2011-05-18 2014-02-04 Tokyo Electron Limited Film deposition method and film deposition apparatus
JP2013042008A (en) * 2011-08-17 2013-02-28 Tokyo Electron Ltd Deposition apparatus
JP2015512144A (en) * 2012-01-31 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Multi-chamber substrate processing system
JP2017226919A (en) * 2012-01-31 2017-12-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rotary type substrate processing system
JP2015507097A (en) * 2012-01-31 2015-03-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rotary substrate processing system
WO2013141490A1 (en) * 2012-03-21 2013-09-26 주식회사 윈텔 Substrate-processing apparatus and substrate-processing method
JP2012182499A (en) * 2012-06-15 2012-09-20 Tokyo Electron Ltd Film formation device
TWI513850B (en) * 2012-07-06 2015-12-21 Tokyo Electron Ltd Film deposition apparatus, and method of depositing a film
US9714467B2 (en) 2014-02-10 2017-07-25 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
US10151031B2 (en) 2014-02-10 2018-12-11 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
JP2015209557A (en) * 2014-04-24 2015-11-24 株式会社日立国際電気 Substrate treatment apparatus, method for manufacturing semiconductor device, program, and recording medium
JP2016065268A (en) * 2014-09-24 2016-04-28 株式会社日立国際電気 Substrate processing apparatus, gas introduction shaft, and gas supply plate
US11085113B2 (en) 2014-10-31 2021-08-10 Tokyo Electron Limited Film forming method and recording medium
KR101899634B1 (en) * 2014-10-31 2018-09-17 도쿄엘렉트론가부시키가이샤 Film forming apparatus, film forming method, and recording medium
JP2016092156A (en) * 2014-10-31 2016-05-23 東京エレクトロン株式会社 Deposition device, deposition method and storage medium
US10072336B2 (en) 2014-10-31 2018-09-11 Tokyo Electron Limited Film forming apparatus, film forming method, and recording medium
JP2016096220A (en) * 2014-11-13 2016-05-26 東京エレクトロン株式会社 Film formation apparatus
US10683573B2 (en) 2014-11-13 2020-06-16 Tokyo Electron Limited Film forming apparatus
KR101928134B1 (en) * 2014-11-13 2018-12-11 도쿄엘렉트론가부시키가이샤 Film forming apparatus
JP2016105440A (en) * 2014-12-01 2016-06-09 東京エレクトロン株式会社 Film deposition method
JP2016156066A (en) * 2015-02-25 2016-09-01 東京エレクトロン株式会社 Film deposition apparatus, film deposition method, and storage medium
KR102638572B1 (en) 2015-06-17 2024-02-21 어플라이드 머티어리얼스, 인코포레이티드 Gas control within the process chamber
JP2018520516A (en) * 2015-06-17 2018-07-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Gas control in the processing chamber
KR20180009384A (en) * 2015-06-17 2018-01-26 어플라이드 머티어리얼스, 인코포레이티드 Gas control in process chamber
JP2017054881A (en) * 2015-09-08 2017-03-16 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US10480067B2 (en) 2016-02-03 2019-11-19 Tokyo Electron Limited Film deposition method
US10943806B2 (en) 2016-02-23 2021-03-09 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device, and non- transitory computer-readable recording medium
JPWO2017145261A1 (en) * 2016-02-23 2018-12-13 株式会社Kokusai Electric Substrate processing apparatus, semiconductor device manufacturing method, and computer-readable recording medium
KR102245563B1 (en) * 2016-08-03 2021-04-27 도쿄엘렉트론가부시키가이샤 Film forming apparatus, method of forming film, and storage medium
JP2018026528A (en) * 2016-08-03 2018-02-15 東京エレクトロン株式会社 Deposition device, deposition method and storage medium
KR20180015578A (en) * 2016-08-03 2018-02-13 도쿄엘렉트론가부시키가이샤 Film forming apparatus, method of forming film, and storage medium
US11124875B2 (en) 2016-08-26 2021-09-21 Industry-University Cooperation Foundation Hanyang University Atomic layer deposition apparatus and atomic layer deposition method using the same
KR102203554B1 (en) * 2016-11-11 2021-01-14 도쿄엘렉트론가부시키가이샤 Film forming device and film forming method
KR20180053242A (en) * 2016-11-11 2018-05-21 도쿄엘렉트론가부시키가이샤 Film forming device and film forming method
US11131023B2 (en) 2016-11-11 2021-09-28 Tokyo Electron Limited Film deposition apparatus and film deposition method
US10900121B2 (en) 2016-11-21 2021-01-26 Tokyo Electron Limited Method of manufacturing semiconductor device and apparatus of manufacturing semiconductor device
JP2021093462A (en) * 2019-12-11 2021-06-17 東京エレクトロン株式会社 Rotary drive device, substrate processing device and rotary drive method
JP7325313B2 (en) 2019-12-11 2023-08-14 東京エレクトロン株式会社 Rotation drive device, substrate processing device, and rotation drive method

Also Published As

Publication number Publication date
JP4817210B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP2001254181A (en) Film depositing apparatus and film depositing method
JP4817267B2 (en) Film forming apparatus and film forming method
US7763115B2 (en) Vacuum film-forming apparatus
JP5610438B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TWI423367B (en) Film deposition apparatus and substrate process apparatus
US9472398B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TWI493073B (en) Film deposition apparatus, film deposition method, and computer-readable storage medium
TWI506159B (en) Film deposition apparatus
JP3913723B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP6971887B2 (en) Film formation method and film formation equipment
JP7274387B2 (en) Film forming apparatus and film forming method
TW202117065A (en) Gas introduction structure, heattreatment device, and gas supply method
JP2004277772A (en) Treatment device
WO2022080153A1 (en) Substrate processing method and substrate processing apparatus
JP7200880B2 (en) Film forming method and film forming apparatus
TWI702305B (en) Depositon device
TW202124756A (en) Film forming method and film forming apparatus
JP2008160081A (en) Substrate processing apparatus and substrate processing method
TWI576461B (en) Thin film deposition method
JP7279605B2 (en) Deposition apparatus and operation method of the deposition apparatus
JP2005064538A (en) Substrate processing device and method of manufacturing semiconductor device
KR20220042912A (en) Atomic layer deposition apparatus
JP5385439B2 (en) Semiconductor device manufacturing method and substrate processing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4817210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees