JP2016089799A - Abnormality diagnosis device - Google Patents

Abnormality diagnosis device Download PDF

Info

Publication number
JP2016089799A
JP2016089799A JP2014228870A JP2014228870A JP2016089799A JP 2016089799 A JP2016089799 A JP 2016089799A JP 2014228870 A JP2014228870 A JP 2014228870A JP 2014228870 A JP2014228870 A JP 2014228870A JP 2016089799 A JP2016089799 A JP 2016089799A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio sensor
limit current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014228870A
Other languages
Japanese (ja)
Other versions
JP6311578B2 (en
Inventor
剛 林下
Go Hayashita
剛 林下
守谷 栄記
Sakanori Moriya
栄記 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014228870A priority Critical patent/JP6311578B2/en
Priority to US14/935,714 priority patent/US10180112B2/en
Priority to EP15193867.7A priority patent/EP3020949B1/en
Priority to CN201510763511.3A priority patent/CN105587419B/en
Publication of JP2016089799A publication Critical patent/JP2016089799A/en
Application granted granted Critical
Publication of JP6311578B2 publication Critical patent/JP6311578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality detection device which can discriminate kinds of abnormalities occurring in air-fuel ratio sensors.SOLUTION: An abnormality diagnosis device of air-fuel ratio sensors 40, 41 which is arranged at an exhaust passage of an internal combustion engine, and generates a limit current corresponding to an air-fuel ratio comprises a current detection part 61 which detects output currents of the air-fuel ratio sensors, and an application voltage control device 60 which controls application voltages applied to the air-fuel ratio sensors. The abnormality diagnosis device applies a voltage within a limit current region in which the limit currents are generated at the air-fuel ratio sensors when exhaust air-fuel ratios around the air-fuel ratio sensors reach preset constant air-fuel ratios, and a voltage out of the limit current region, and determines kinds of abnormalities occurring in the air-fuel ratio sensors on the basis of output currents of the air-fuel ratio sensors which are detected by a current detection part at that time.SELECTED DRAWING: Figure 11

Description

本発明は、内燃機関の排気通路に配置される空燃比センサの異常診断装置に関する。   The present invention relates to an abnormality diagnosis device for an air-fuel ratio sensor disposed in an exhaust passage of an internal combustion engine.

従来から、空燃比を目標空燃比に制御するようにした内燃機関では、空燃比に応じた限界電流が発生する限界電流式の空燃比センサを機関排気通路内に配置することが知られている。斯かる内燃機関では、空燃比センサにより空燃比が目標空燃比となるように燃焼室に供給する燃料量がフィードバック制御される。ところが、この空燃比センサには、センサ素子の外表面とセンサ素子の内部空間とが連通してしまうような素子割れが発生する場合がある。このような素子割れが発生すると、空燃比センサは、空燃比に応じた適切な出力を発生させることができなくなり、その結果、空燃比を正確に目標空燃比にフィードバック制御しえなくなる。   Conventionally, in an internal combustion engine in which the air-fuel ratio is controlled to a target air-fuel ratio, it is known that a limit current type air-fuel ratio sensor that generates a limit current corresponding to the air-fuel ratio is disposed in the engine exhaust passage. . In such an internal combustion engine, the amount of fuel supplied to the combustion chamber is feedback-controlled by the air-fuel ratio sensor so that the air-fuel ratio becomes the target air-fuel ratio. However, in this air-fuel ratio sensor, there is a case where element cracking occurs such that the outer surface of the sensor element communicates with the internal space of the sensor element. When such element cracking occurs, the air-fuel ratio sensor cannot generate an appropriate output corresponding to the air-fuel ratio, and as a result, the air-fuel ratio cannot be accurately feedback-controlled to the target air-fuel ratio.

そこで、空燃比センサの素子割れを検出するための異常診断装置が従来より公知である(例えば、特許文献1)。特許文献1によれば、通常、空燃比センサへの印加電圧は限界電流領域の中央に設定されており、空燃比センサのセンサ素子に割れが生じたり、電極上の白金が凝縮したりした場合には、空燃比センサへの印加電圧が限界電流領域の中央部から高電圧側にずれるとされている。したがって、この特許文献1に記載の装置では、空燃比センサへの印加電圧が限界電流領域の中央部から高電圧側又は低電圧側にずれた場合には、空燃比センサのセンサ素子に割れが生じているか、或いは電極上の白金が凝縮したと判断される。   Therefore, an abnormality diagnosis device for detecting element cracks in an air-fuel ratio sensor has been conventionally known (for example, Patent Document 1). According to Patent Document 1, the applied voltage to the air-fuel ratio sensor is normally set at the center of the limit current region, and when the sensor element of the air-fuel ratio sensor is cracked or platinum on the electrode is condensed In other words, the voltage applied to the air-fuel ratio sensor is shifted from the center of the limit current region to the high voltage side. Therefore, in the apparatus described in Patent Document 1, when the applied voltage to the air-fuel ratio sensor is shifted from the center of the limit current region to the high voltage side or the low voltage side, the sensor element of the air-fuel ratio sensor is cracked. It is determined that it has occurred or platinum on the electrode has condensed.

特開2010−174790号公報JP 2010-174790 A 特開平10−062376号公報Japanese Patent Laid-Open No. 10-062376 特開2007−017191号公報JP 2007-017191 A 特開2000−55861号公報JP 2000-55861 A

ところで、空燃比センサに生じる異常としては様々なものが挙げられる。このような異常としては、例えば、空燃比センサを構成する拡散律速層に詰まり等の劣化が生じることや、空燃比センサに接続された回路に故障が生じること等が挙げられる。このうち、拡散律速層に詰まり等の劣化が生じたような場合には、空燃比センサ周りの排気ガスの空燃比における変化に対する空燃比センサの出力電流における変化の程度がずれる傾きずれが生じる。一方、空燃比センサに接続された回路に故障が生じたような場合には、空燃比センサ周りの排気ガスの空燃比に対する空燃比センサの出力電流が全体的に一定値ずれるオフセットずれが生じる。しかしながら、従来の異常検出の手法では、空燃比センサにずれが生じていることを検出することができても、それが傾きずれなのかオフセットずれなのかを判別することができなかった。すなわち、空燃比センサに生じている異常の種類を判別することができなかった。   By the way, there are various abnormalities that occur in the air-fuel ratio sensor. Examples of such abnormalities include deterioration such as clogging in the diffusion rate limiting layer constituting the air-fuel ratio sensor, failure in a circuit connected to the air-fuel ratio sensor, and the like. Of these, when the diffusion rate-determining layer is clogged or deteriorated, an inclination shift occurs in which the degree of change in the output current of the air-fuel ratio sensor with respect to the change in the air-fuel ratio of the exhaust gas around the air-fuel ratio sensor deviates. On the other hand, when a failure occurs in a circuit connected to the air-fuel ratio sensor, an offset deviation occurs in which the output current of the air-fuel ratio sensor with respect to the air-fuel ratio of the exhaust gas around the air-fuel ratio sensor is entirely shifted by a constant value. However, with the conventional abnormality detection method, even if it is possible to detect that a deviation has occurred in the air-fuel ratio sensor, it has not been possible to determine whether it is an inclination deviation or an offset deviation. That is, the type of abnormality that has occurred in the air-fuel ratio sensor could not be determined.

そこで、上記課題に鑑みて、本発明の目的は、空燃比センサに生じている異常の種類を判別することができる異常検出装置を提供することにある。   In view of the above problems, an object of the present invention is to provide an abnormality detection device that can determine the type of abnormality occurring in an air-fuel ratio sensor.

上記課題を解決するために、第1の発明では、内燃機関の排気通路に設けられ且つ空燃比に応じた限界電流を発生させる空燃比センサの異常診断装置において、前記空燃比センサの出力電流を検出する電流検出部と、前記空燃比センサへの印加電圧を制御する印加電圧制御装置とを具備しており、前記空燃比センサ周りに流通する排気ガスの空燃比を予め定められた一定の空燃比にしたときに前記空燃比センサに限界電流が生じる限界電流領域内の電圧と該限界電流領域外の電圧とを印加し、このとき電流検出部により検出された前記空燃比センサの出力電流に基づいて前記空燃比センサに生じている異常の種類を判断する、空燃比センサの異常診断装置が提供される。   In order to solve the above-mentioned problem, in the first invention, in an abnormality diagnosis device for an air-fuel ratio sensor that is provided in an exhaust passage of an internal combustion engine and generates a limit current corresponding to the air-fuel ratio, the output current of the air-fuel ratio sensor is A current detection unit for detecting, and an applied voltage control device for controlling an applied voltage to the air-fuel ratio sensor, wherein the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is set to a predetermined constant air A voltage within a limit current region where a limit current is generated in the air-fuel ratio sensor when the fuel ratio is set and a voltage outside the limit current region are applied, and the output current of the air-fuel ratio sensor detected by the current detection unit at this time is applied. An abnormality diagnosis device for an air-fuel ratio sensor is provided that determines the type of abnormality occurring in the air-fuel ratio sensor based on the above.

第2の発明では、第1の発明において、前記限界電流領域外の電圧は、該限界電流領域よりも低く且つ印加電圧の上昇に伴って出力電流が上昇する比例領域内の電圧である。   According to a second aspect, in the first aspect, the voltage outside the limit current region is a voltage within a proportional region that is lower than the limit current region and in which the output current increases as the applied voltage increases.

第3の発明では、第1又は第2の発明において、前記空燃比センサが正常である場合に、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で該空燃比センサに前記限界電流領域内の電圧を印加したとき及び前記限界電流領域外の電圧を印加したときの出力電流がそれぞれ限界電流域内正常値及び限界電流域外正常値として予め検出又は算出され、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で、前記空燃比センサに前記限界電流領域内の電圧及び該限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値及び前記限界電流領域外正常値との差に基づいて前記空燃比センサに生じている異常の種類を判断する。   In a third invention, in the first or second invention, when the air-fuel ratio sensor is normal, the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is set to the predetermined constant air-fuel ratio. When the voltage within the limit current region is applied to the air-fuel ratio sensor in a maintained state and when the voltage outside the limit current region is applied, the output current is a normal value within the limit current region and a normal value outside the limit current region, respectively. In a state where the air-fuel ratio of the exhaust gas detected or calculated in advance and flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio, the air-fuel ratio sensor is supplied with the voltage in the limit current region and the air-fuel ratio sensor. Based on the difference between the detected value of the output current of the air-fuel ratio sensor when a voltage outside the limit current region is applied and the normal value within the limit current region and the normal value outside the limit current region, To determine the type of abnormality are.

第4の発明では、第3の発明において、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域内の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値との差が予め定められた限界電流領域内時基準値以上であり、且つ前記空燃比センサ周りに流通する排気ガスの空燃比が予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域外正常値との差が予め定められた限界電流領域外時基準値以上である場合には、前記空燃比センサ周りに流通する排気ガスの空燃比に対して前記空燃比センサの出力電流が全体的にずれているオフセットずれが前記空燃比センサに生じていると判断する。   According to a fourth aspect, in the third aspect, the air-fuel ratio sensor has the limit current region in a state where the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio. The difference between the detected value of the output current of the air-fuel ratio sensor when the voltage is applied and the normal value in the limit current region is greater than or equal to a predetermined reference value in the limit current region, and the air-fuel ratio sensor Detection of an output current of the air-fuel ratio sensor when a voltage outside the limit current region is applied to the air-fuel ratio sensor in a state where the air-fuel ratio of the exhaust gas flowing around is maintained at a predetermined constant air-fuel ratio If the difference between the value and the normal value outside the limit current region is equal to or greater than a predetermined reference value outside the limit current region, the air / fuel ratio is greater than the air / fuel ratio of the exhaust gas flowing around the air / fuel ratio sensor. Sensor output current is Determining an offset shift deviates the body specifically occurs in the air-fuel ratio sensor.

第5の発明では、第3又は第4の発明において、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域内の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値との差が予め定められた限界電流領域内時基準値以上であり、且つ前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域外正常値との差が予め定められた限界電流領域外時基準値未満である場合には、前記空燃比センサ周りに流通する排気ガスの空燃比の変化に対する前記空燃比センサの出力電流の変化の程度がずれている傾きずれが前記空燃比センサに生じていると判断する。   According to a fifth aspect of the invention, in the third or fourth aspect of the invention, the air-fuel ratio sensor is configured so that the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio. The difference between the detected value of the output current of the air-fuel ratio sensor when a voltage in the limit current region is applied and the normal value in the limit current region is equal to or greater than a predetermined reference value in the limit current region, and When the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio, a voltage outside the limit current region is applied to the air-fuel ratio sensor. When the difference between the detected value of the output current and the normal value outside the limit current region is less than a predetermined reference value outside the limit current region, the change in the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor Said air-fuel ratio with respect to It is determined that the inclination shift has occurred in the air-fuel ratio sensor degree of change of the output current of capacitors is shifted.

第6の発明では、第1〜第5の発明において、前記内燃機関は、その排気通路に配置された排気浄化触媒と、該排気浄化触媒の排気流れ方向上流側の前記排気通路に配置された上流側空燃比センサと、前記排気浄化触媒の排気流れ方向下流側の前記排気通路に配置された下流側空燃比センサとを具備し、該下流側空燃比センサが前記限界電流式の空燃比センサからなる。   According to a sixth aspect, in the first to fifth aspects, the internal combustion engine is disposed in an exhaust purification catalyst disposed in an exhaust passage thereof and in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction. An upstream air-fuel ratio sensor, and a downstream air-fuel ratio sensor disposed in the exhaust passage downstream of the exhaust purification catalyst in the exhaust flow direction, the downstream air-fuel ratio sensor being the limit current type air-fuel ratio sensor Consists of.

第7の発明では、第1〜第5のいずれか一つの発明において、前記内燃機関は、その排気通路に配置された排気浄化触媒と、該排気浄化触媒の排気流れ方向上流側の前記排気通路に配置された上流側空燃比センサと、前記排気浄化触媒の排気流れ方向下流側の前記排気通路に配置された下流側空燃比センサとを具備し、前記上流側空燃比センサが前記限界電流式の空燃比センサからなる。   According to a seventh invention, in any one of the first to fifth inventions, the internal combustion engine includes an exhaust purification catalyst disposed in an exhaust passage thereof, and the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction. An upstream air-fuel ratio sensor, and a downstream air-fuel ratio sensor disposed in the exhaust passage downstream of the exhaust purification catalyst in the exhaust flow direction. Air-fuel ratio sensor.

第8の発明では、第1〜第7のいずれか一つの発明において、前記内燃機関は、該内燃機関の作動中に燃焼室への燃料の供給を停止する燃料カット制御を実行可能であり、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記燃料カット制御の実行中である。   In an eighth invention, in any one of the first to seventh inventions, the internal combustion engine can execute fuel cut control for stopping the supply of fuel to the combustion chamber during operation of the internal combustion engine, When the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio, the fuel cut control is being executed.

第9の発明では、第7の発明において、前記内燃機関は、該内燃機関の作動中に燃焼室への燃料の供給を停止する燃料カット制御と、該燃料カット制御の終了後に前記排気浄化触媒に流入する排気ガスの空燃比を理論空燃比よりもリッチなリッチ空燃比に制御する復帰後リッチ制御とを実行可能であり、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記復帰後リッチ制御の実行中である。   According to a ninth invention, in the seventh invention, the internal combustion engine includes a fuel cut control for stopping the supply of fuel to the combustion chamber during operation of the internal combustion engine, and the exhaust purification catalyst after the fuel cut control ends. And a rich control after return for controlling the air-fuel ratio of the exhaust gas flowing into the exhaust gas to a rich air-fuel ratio richer than the stoichiometric air-fuel ratio, and the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is determined in advance. When the constant air-fuel ratio is maintained, the post-return rich control is being executed.

第10の発明では、第7の発明において、前記内燃機関は、前記上流側空燃比センサの出力空燃比が目標空燃比になるようにフィードバック制御を行っており、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記目標空燃比が所定の空燃比に一定に維持されているときである。   According to a tenth aspect, in the seventh aspect, the internal combustion engine performs feedback control so that the output air-fuel ratio of the upstream air-fuel ratio sensor becomes a target air-fuel ratio, and flows around the air-fuel ratio sensor. The time when the air-fuel ratio of the exhaust gas is maintained at the predetermined constant air-fuel ratio is when the target air-fuel ratio is maintained constant at the predetermined air-fuel ratio.

第11の発明では、第7の発明において、前記内燃機関は、前記上流側空燃比センサの出力空燃比が目標空燃比になるようにフィードバック制御を行っており、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記排気浄化触媒の酸素吸蔵量がゼロよりも多く且つ最大吸蔵可能酸素量よりも少ない量に維持されるように前記目標空燃比が理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比との間で交互に変更されているときである。   In an eleventh aspect based on the seventh aspect, the internal combustion engine performs feedback control so that the output air-fuel ratio of the upstream air-fuel ratio sensor becomes a target air-fuel ratio, and flows around the air-fuel ratio sensor. When the air-fuel ratio of the exhaust gas is maintained at the predetermined constant air-fuel ratio, the oxygen storage amount of the exhaust purification catalyst is maintained at an amount greater than zero and less than the maximum storable oxygen amount. Thus, the target air-fuel ratio is alternately changed between a rich air-fuel ratio richer than the stoichiometric air-fuel ratio and a lean air-fuel ratio leaner than the stoichiometric air-fuel ratio.

本発明によれば、空燃比センサに生じている異常の種類を判別することができる異常検出装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the abnormality detection apparatus which can discriminate | determine the kind of abnormality which has arisen in the air fuel ratio sensor is provided.

図1は、本発明による異常診断装置が用いられている内燃機関を概略的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to the present invention is used. 図2は、空燃比センサの概略的な断面図である。FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor. 図3は、各排気空燃比A/Fにおける印加電圧Vと出力電流Iとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the applied voltage V and the output current I at each exhaust air-fuel ratio A / F. 図4は、印加電圧Vを一定にしたときの空燃比と出力電流Iとの関係を示す図である。FIG. 4 is a diagram showing the relationship between the air-fuel ratio and the output current I when the applied voltage V is constant. 図5は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量等の変化を示すタイムチャートである。FIG. 5 is a time chart showing changes in the oxygen storage amount and the like of the upstream side exhaust purification catalyst during normal operation of the internal combustion engine. 図6は、空燃比センサが正常な場合及び異常が生じている場合における排気空燃比と空燃比センサの出力電流との関係を示している。FIG. 6 shows the relationship between the exhaust air-fuel ratio and the output current of the air-fuel ratio sensor when the air-fuel ratio sensor is normal and when an abnormality occurs. 図7は、空燃比センサへの印加電圧と出力電流との関係を示す図である。FIG. 7 is a diagram showing the relationship between the voltage applied to the air-fuel ratio sensor and the output current. 図8は、空燃比センサへの印加電圧と出力電流との関係を示す図である。FIG. 8 is a diagram showing the relationship between the voltage applied to the air-fuel ratio sensor and the output current. 図9は、空燃比センサへの印加電圧と出力電流との関係を示す図である。FIG. 9 is a diagram showing the relationship between the voltage applied to the air-fuel ratio sensor and the output current. 図10は、素子割れが生じている空燃比センサの概略的な断面図である。FIG. 10 is a schematic cross-sectional view of an air-fuel ratio sensor in which element cracking has occurred. 図11は、異常診断を行う際の下流側空燃比センサの出力空燃比等の変化を示すタイムチャートである。FIG. 11 is a time chart showing changes in the output air-fuel ratio of the downstream air-fuel ratio sensor when abnormality diagnosis is performed. 図12は、下流側空燃比センサの異常診断を行うためのフローチャートである。FIG. 12 is a flowchart for performing abnormality diagnosis of the downstream air-fuel ratio sensor. 図13は、異常診断を行う際の下流側空燃比センサの出力空燃比等の変化を示すフローチャートである。FIG. 13 is a flowchart showing a change in the output air-fuel ratio of the downstream air-fuel ratio sensor when abnormality diagnosis is performed. 図14は、下流側空燃比センサの異常診断を行うためのフローチャートである。FIG. 14 is a flowchart for performing abnormality diagnosis of the downstream air-fuel ratio sensor.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components.

<内燃機関全体の説明>
図1は、本発明の第一実施形態に係る異常診断装置が用いられる内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
<Description of the internal combustion engine as a whole>
FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to a first embodiment of the present invention is used. Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. The intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.

図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の異常診断装置が用いられる内燃機関では、ガソリン以外の燃料、或いはガソリンとの混合燃料を用いてもよい。   As shown in FIG. 1, a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4. The spark plug 10 is configured to generate a spark in response to the ignition signal. The fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal. The fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7. In this embodiment, gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel. However, in the internal combustion engine in which the abnormality diagnosis device of the present invention is used, a fuel other than gasoline or a mixed fuel with gasoline may be used.

各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。   The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15. The intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage. A throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.

一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。   On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19. The exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled. A collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20. The upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22. The exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.

電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36及び出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。   An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input. A port 36 and an output port 37 are provided. An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38. Further, an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19. In addition, in the exhaust pipe 22, the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24). An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.

また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、下流側空燃比センサ41の異常診断を行う異常診断装置として機能する。   A load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38. The For example, the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36. The CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44. On the other hand, the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45. The ECU 31 functions as an abnormality diagnosis device that performs abnormality diagnosis of the downstream air-fuel ratio sensor 41.

上流側排気浄化触媒20及び下流側排気浄化触媒24は、酸素吸蔵能力を有する三元触媒である。具体的には、排気浄化触媒20、24は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させた三元触媒である。三元触媒は、三元触媒に流入する排気ガスの空燃比が理論空燃比に維持されていると、未燃HC、CO及びNOxを同時に浄化する機能を有する。加えて、排気浄化触媒20、24が酸素吸蔵能力を有している場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、CO及びNOxとが同時に浄化される。 The upstream side exhaust purification catalyst 20 and the downstream side exhaust purification catalyst 24 are three-way catalysts having oxygen storage capacity. Specifically, the exhaust purification catalysts 20 and 24 support a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a ceramic support. Three-way catalyst. The three-way catalyst has a function of simultaneously purifying unburned HC, CO, and NOx when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is maintained at the stoichiometric air-fuel ratio. In addition, when the exhaust purification catalysts 20 and 24 have an oxygen storage capacity, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20 and 24 is slightly richer or leaner than the stoichiometric air-fuel ratio. Even if it deviates, unburned HC, CO and NOx are simultaneously purified.

すなわち、排気浄化触媒20、24が酸素吸蔵能力を有していると、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりも若干リーンになったときには、排気ガス中に含まれる過剰な酸素が排気浄化触媒20、24内に吸蔵され、排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、CO及びNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。   That is, if the exhaust purification catalysts 20, 24 have oxygen storage capacity, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 becomes slightly leaner than the stoichiometric air-fuel ratio, Excess oxygen contained is occluded in the exhaust purification catalysts 20, 24, and the surfaces of the exhaust purification catalysts 20, 24 are maintained at the stoichiometric air-fuel ratio. As a result, unburned HC, CO, and NOx are simultaneously purified on the surfaces of the exhaust purification catalysts 20, 24, and at this time, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio.

一方、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりも若干リッチになったときには、排気ガス中に含まれている未燃HC、COを還元させるのに不足している酸素が排気浄化触媒20、24から放出され、この場合にも排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、CO及びNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。   On the other hand, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 becomes slightly richer than the stoichiometric air-fuel ratio, it is insufficient to reduce unburned HC and CO contained in the exhaust gas. The released oxygen is released from the exhaust purification catalysts 20, 24, and in this case as well, the surfaces of the exhaust purification catalysts 20, 24 are maintained at the stoichiometric air-fuel ratio. As a result, unburned HC, CO, and NOx are simultaneously purified on the surfaces of the exhaust purification catalysts 20, 24, and at this time, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio.

このように、排気浄化触媒20、24が酸素吸蔵能力を有している場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC,CO及びNOxとが同時に浄化され、排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。   As described above, when the exhaust purification catalysts 20 and 24 have the oxygen storage capacity, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20 and 24 is richer or leaner than the stoichiometric air-fuel ratio. Even if there is a slight deviation, unburned HC, CO and NOx are simultaneously purified, and the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio.

<空燃比センサの説明>
本実施形態では、空燃比センサ40、41として、コップ型の限界電流式空燃比センサが用いられる。図2を用いて、空燃比センサ40、41の構造について簡単に説明する。空燃比センサ40、41は、固体電解質層51と、その一方の側面上に配置された排気側電極52と、その他方の側面上に配置された大気側電極53と、通過する排気ガスの拡散律速を行う拡散律速層54と、基準ガス室55と、空燃比センサ40、41の加熱、特に固体電解質層51の加熱を行うヒータ部56とを具備する。
<Description of air-fuel ratio sensor>
In the present embodiment, a cup-type limit current type air-fuel ratio sensor is used as the air-fuel ratio sensors 40 and 41. The structure of the air-fuel ratio sensors 40 and 41 will be briefly described with reference to FIG. The air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode 52 disposed on one side surface thereof, an atmosphere-side electrode 53 disposed on the other side surface, and diffusion of exhaust gas passing therethrough. A diffusion rate controlling layer 54 for controlling the rate, a reference gas chamber 55, and a heater unit 56 for heating the air-fuel ratio sensors 40 and 41, particularly for heating the solid electrolyte layer 51 are provided.

特に、本実施形態のコップ型の空燃比センサ40、41では、固体電解質層51は一端が閉じられた円筒状に形成される。固体電解質層51の内部に画成された基準ガス室55には、大気ガス(空気)が導入されると共に、ヒータ部56が配置される。固体電解質層51の内面上に大気側電極53が配置され、固体電解質層51の外面上に排気側電極52が配置される。固体電解質層51及び排気側電極52の外面上にはこれらを覆うように拡散律速層54が配置される。なお、拡散律速層54の外側には、拡散律速層54の表面上に液体等が付着するのを防止するための保護層(図示せず)が設けられてもよい。   In particular, in the cup-type air-fuel ratio sensors 40 and 41 of the present embodiment, the solid electrolyte layer 51 is formed in a cylindrical shape with one end closed. In the reference gas chamber 55 defined inside the solid electrolyte layer 51, atmospheric gas (air) is introduced and a heater unit 56 is disposed. An atmosphere side electrode 53 is disposed on the inner surface of the solid electrolyte layer 51, and an exhaust side electrode 52 is disposed on the outer surface of the solid electrolyte layer 51. On the outer surfaces of the solid electrolyte layer 51 and the exhaust-side electrode 52, a diffusion control layer 54 is disposed so as to cover them. A protective layer (not shown) for preventing liquid or the like from adhering to the surface of the diffusion limiting layer 54 may be provided outside the diffusion limiting layer 54.

固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。 The solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3, etc. as stabilizers. The sintered body is formed. The diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like. Furthermore, the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.

また、排気側電極52と大気側電極53との間には、ECU31に搭載された印加電圧制御装置60によりセンサ印加電圧Vが印加される。加えて、ECU31には、センサ印加電圧Vを印加したときに固体電解質層51を介してこれら電極52、53間に流れる電流Iを検出する電流検出部61が設けられる。この電流検出部61によって検出される電流が空燃比センサ40、41の出力電流Iである。   Further, a sensor applied voltage V is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by the applied voltage control device 60 mounted on the ECU 31. In addition, the ECU 31 is provided with a current detection unit 61 that detects a current I flowing between the electrodes 52 and 53 via the solid electrolyte layer 51 when the sensor application voltage V is applied. The current detected by the current detector 61 is the output current I of the air-fuel ratio sensors 40 and 41.

このように構成された空燃比センサ40、41は、図3に示したような電圧−電流(V−I)特性を有する。図3からわかるように、空燃比センサ40、41の出力電流Iは、排気ガスの空燃比、すなわち排気空燃比A/Fが高くなるほど(リーンになるほど)、大きくなる。また、各排気空燃比A/FにおけるV−I線には、センサ印加電圧V軸に平行な領域、すなわちセンサ印加電圧Vが変化しても出力電流Iがほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。 The thus configured air-fuel ratio sensors 40 and 41 have voltage-current (V-I) characteristics as shown in FIG. As can be seen from FIG. 3, the output current I of the air-fuel ratio sensors 40 and 41 increases as the air-fuel ratio of the exhaust gas, that is, the exhaust air-fuel ratio A / F increases (lean). The V-I line at each exhaust air-fuel ratio A / F includes a region parallel to the sensor applied voltage V axis, that is, a region where the output current I hardly changes even when the sensor applied voltage V changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current. In FIG. 3, the limit current region and limit current when the exhaust air-fuel ratio is 18 are indicated by W 18 and I 18 , respectively.

一方、センサ印加電圧が限界電流領域よりも低い領域では、センサ印加電圧の上昇に伴ってほぼ比例して出力電流が上昇する。斯かる領域は比例領域と称される。このときの傾きは、固体電解質層51の直流素子抵抗によって定まる。また、センサ印加電圧が限界電流領域よりも高い領域では、センサ印加電圧の増加に伴って出力電流も増加する。この領域では、排気側電極52上にて排気ガス中に含まれる水分の分解等が生じること等により、センサ印加電圧の変化に応じて出力電圧が変化する。   On the other hand, in a region where the sensor applied voltage is lower than the limit current region, the output current rises in proportion to the increase in the sensor applied voltage. Such a region is called a proportional region. The inclination at this time is determined by the DC element resistance of the solid electrolyte layer 51. Further, in a region where the sensor applied voltage is higher than the limit current region, the output current increases as the sensor applied voltage increases. In this region, the output voltage changes according to the change in the sensor applied voltage due to, for example, decomposition of moisture contained in the exhaust gas on the exhaust side electrode 52.

図4は、印加電圧Vを0.45V程度(図3)で一定にしたときの、排気空燃比と出力電流Iとの関係を示している。図4からわかるように、空燃比センサ40、41では、排気空燃比が高くなるほど(すなわちリーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなるように、排気空燃比に対して出力電流がリニアに(比例するように)変化する。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。   FIG. 4 shows the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage V is kept constant at about 0.45 V (FIG. 3). As can be seen from FIG. 4, in the air-fuel ratio sensors 40 and 41, the exhaust air-fuel ratio becomes higher with respect to the exhaust air-fuel ratio so that the output current I from the air-fuel ratio sensors 40 and 41 becomes larger as the exhaust air-fuel ratio becomes higher (that is, the leaner). The output current changes linearly (in proportion). In addition, the air-fuel ratio sensors 40 and 41 are configured such that the output current I becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.

なお、空燃比センサ40、41としては、図2に示した構造の限界電流式空燃比センサに代えて、例えば積層型の限界電流式空燃比センサ等の他の構造の限界電流式の空燃比センサを用いてもよい。   As the air-fuel ratio sensors 40 and 41, instead of the limit current type air-fuel ratio sensor having the structure shown in FIG. 2, for example, a limit current type air-fuel ratio having another structure such as a stacked type limit current type air-fuel ratio sensor is used. A sensor may be used.

<基本的な制御>
このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な空燃比となるように、燃料噴射弁11からの燃料噴射量が設定される。このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比(或いは、機関本体から流出する排気ガスの目標空燃比)が目標空燃比となるようにフィードバック制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。
<Basic control>
In the internal combustion engine configured as described above, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is based on the engine operating state based on the outputs of the upstream side air-fuel ratio sensor 40 and the downstream side air-fuel ratio sensor 41. The fuel injection amount from the fuel injection valve 11 is set so as to achieve an optimal air-fuel ratio. As such a method for setting the fuel injection amount, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 based on the output of the upstream side air-fuel ratio sensor 40 (or the target air flow of the exhaust gas flowing out from the engine body). (Fuel ratio) is controlled so as to become the target air-fuel ratio, and the output of the upstream air-fuel ratio sensor 40 is corrected based on the output of the downstream air-fuel ratio sensor 41, or the target air-fuel ratio is changed. It is done.

図5を参照して、このような目標空燃比の制御の例について、簡単に説明する。図5は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量、目標空燃比、上流側空燃比センサの出力空燃比及び下流側空燃比センサの出力空燃比のタイムチャートである。なお、「出力空燃比」は、空燃比センサの出力に相当する空燃比を意味する。また、「通常運転時」は、内燃機関の特定の運転状態に応じて燃料噴射量を調整する制御(例えば、内燃機関を搭載した車両の加速時に行われる燃料噴射量の増量補正や、燃焼室への燃料の供給を停止する燃料カット制御等)を行っていない運転状態(制御状態)を意味する。   With reference to FIG. 5, an example of such control of the target air-fuel ratio will be briefly described. FIG. 5 is a time chart of the oxygen storage amount of the upstream side exhaust purification catalyst, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor, and the output air-fuel ratio of the downstream air-fuel ratio sensor during normal operation of the internal combustion engine. . “Output air-fuel ratio” means an air-fuel ratio corresponding to the output of the air-fuel ratio sensor. The “normal operation” is a control for adjusting the fuel injection amount in accordance with a specific operation state of the internal combustion engine (for example, an increase correction of the fuel injection amount performed when the vehicle equipped with the internal combustion engine is accelerated, a combustion chamber) This means an operation state (control state) in which fuel cut control for stopping the supply of fuel to the vehicle is not performed.

図5に示した例では、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrich(例えば、14.55)以下となったときに、目標空燃比はリーン設定空燃比AFTlean(例えば、15)に設定され、維持される。その後、上流側排気浄化触媒20の酸素吸蔵量が推定され、この推定値が予め定められた判定基準吸蔵量Cref(最大酸素吸蔵量Cmaxよりも少ない量)以上になると、目標空燃比はリッチ設定空燃比AFTrich(例えば、14.4)に設定され、維持される。図5に示した例では、このような操作が繰り返し行われる。   In the example shown in FIG. 5, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio AFrich (for example, 14.55), the target air-fuel ratio is set to the lean set air-fuel ratio AFTlean (for example, for example). 15) and maintained. Thereafter, the oxygen storage amount of the upstream side exhaust purification catalyst 20 is estimated, and when this estimated value is equal to or greater than a predetermined reference storage amount Cref (an amount smaller than the maximum oxygen storage amount Cmax), the target air-fuel ratio is set to a rich setting. The air-fuel ratio AFTrich (for example, 14.4) is set and maintained. In the example shown in FIG. 5, such an operation is repeatedly performed.

具体的には、図5に示した例では、時刻t1の前では、目標空燃比がリッチ設定空燃比AFTrichとされ、これに伴って、上流側空燃比センサ40の出力空燃比も理論空燃比よりもリッチな空燃比(以下、「リッチ空燃比」という)となっている。また、上流側排気浄化触媒20には酸素が吸蔵されていることから、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比(14.6)となっている。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっていることから、上流側排気浄化触媒20の酸素吸蔵量は徐々に低下する。 Specifically, in the example shown in FIG. 5, before the time t 1 , the target air-fuel ratio is set to the rich set air-fuel ratio AFTrich, and accordingly, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is also the theoretical air-fuel ratio. The air-fuel ratio is richer than the fuel ratio (hereinafter referred to as “rich air-fuel ratio”). Further, since oxygen is stored in the upstream side exhaust purification catalyst 20, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio (14.6). At this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.

その後、時刻t1においては、上流側排気浄化触媒20の酸素吸蔵量がゼロに近づくことにより、上流側排気浄化触媒20に流入した未燃ガス(未燃HC、CO)の一部は上流側排気浄化触媒20で浄化されずに流出し始める。その結果、時刻t2において、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチなリッチ判定空燃比AFrichとなり、このとき目標空燃比はリッチ設定空燃比AFTrichからリーン設定空燃比AFTleanへ切り替えられる。 Thereafter, at time t 1 , when the oxygen storage amount of the upstream side exhaust purification catalyst 20 approaches zero, a part of the unburned gas (unburned HC, CO) flowing into the upstream side exhaust purification catalyst 20 is upstream. It begins to flow out without being purified by the exhaust purification catalyst 20. As a result, at the time t 2 , the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes the rich determination air-fuel ratio AFrich that is slightly richer than the stoichiometric air-fuel ratio, and at this time, the target air-fuel ratio becomes lean from the rich set air-fuel ratio AFTrich to the lean set air-fuel ratio. It is switched to the fuel ratio AFTlean.

目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比は理論空燃比よりもリーンな空燃比(以下、「リーン空燃比」という)になり、未燃ガスの流出は減少、停止する。また、上流側排気浄化触媒20bの酸素吸蔵量は徐々に増加し、時刻t3において、判定基準吸蔵量Crefに到達する。このように、酸素吸蔵量が判定基準吸蔵量Crefに到達すると、目標空燃比は、再びリーン設定空燃比AFlenaからリッチ設定空燃比AFTrichへと切り替えられる。この目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比は再びリッチ空燃比となり、その結果、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少し、以降は、このような操作が繰り返し行われる。このような制御を行うことにより、上流側排気浄化触媒20からNOxが流出するのを防止することができる。 By switching the target air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes an air-fuel ratio leaner than the stoichiometric air-fuel ratio (hereinafter referred to as “lean air-fuel ratio”). Decrease and stop. The oxygen storage amount of the upstream exhaust purifying catalyst 20b is gradually increased, at time t 3, reaches the determination reference storage amount Cref. Thus, when the oxygen storage amount reaches the determination reference storage amount Cref, the target air-fuel ratio is again switched from the lean set air-fuel ratio AFlena to the rich set air-fuel ratio AFTrich. By switching the target air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes a rich air-fuel ratio again. As a result, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases, and thereafter Such an operation is repeated. By performing such control, it is possible to prevent NOx from flowing out of the upstream side exhaust purification catalyst 20.

なお、通常制御として行われる上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づく目標空燃比の制御は上述したような制御に限定されるものではない。これら空燃比センサ40、41の出力に基づく制御であれば、如何なる制御であってもよい。したがって、例えば、通常制御として、目標空燃比を理論空燃比に固定して、上流側空燃比センサ40の出力空燃比が理論空燃比になるようにフィードバック制御を行うと共に、下流側空燃比センサ41の出力空燃比に基づいて上流側空燃比センサ40の出力空燃比を補正するような制御を行ってもよい。   The control of the target air-fuel ratio based on the outputs of the upstream air-fuel ratio sensor 40 and the downstream air-fuel ratio sensor 41 that is performed as normal control is not limited to the control described above. Any control may be used as long as the control is based on the outputs of these air-fuel ratio sensors 40 and 41. Therefore, for example, as the normal control, the target air-fuel ratio is fixed to the stoichiometric air-fuel ratio, feedback control is performed so that the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes the stoichiometric air-fuel ratio, and the downstream air-fuel ratio sensor 41 Control may be performed to correct the output air-fuel ratio of the upstream air-fuel ratio sensor 40 based on the output air-fuel ratio.

<空燃比センサの異常診断における問題点>
ところで、空燃比センサ40、41には様々な出力異常が生じうる。このような出力異常としては、例えば、図6に挙げたようなものが考えられる。図6は、空燃比センサ40、41が正常な場合及び異常が生じている場合における排気空燃比と空燃比センサ40、41の出力電流との関係を示している。図6の破線は空燃比センサ40、41に異常が生じていない場合の関係を示しており、一方、図6の実線は空燃比センサ40、41に異常が生じている場合の関係を示している。
<Problems in air-fuel ratio sensor abnormality diagnosis>
By the way, various output abnormalities may occur in the air-fuel ratio sensors 40 and 41. As such an output abnormality, for example, the one shown in FIG. 6 can be considered. FIG. 6 shows the relationship between the exhaust air-fuel ratio and the output current of the air-fuel ratio sensors 40, 41 when the air-fuel ratio sensors 40, 41 are normal and abnormal. The broken line in FIG. 6 shows the relationship when there is no abnormality in the air-fuel ratio sensors 40, 41, while the solid line in FIG. 6 shows the relationship when there is an abnormality in the air-fuel ratio sensors 40, 41. Yes.

図6にXで示した場合には、排気空燃比の全域において空燃比センサ40、41の出力電流が適切な値よりも小さい値(又は大きい値)になるようなずれ、すなわちオフセットずれが生じている場合を示している。したがって、この場合、空燃比センサ40、41の出力電流Iは全域において実際の空燃比よりもリッチ側(又はリーン側)の空燃比を示すことになる。一方、図6にYで示した場合には、排気空燃比の変化に対する空燃比センサ40、41の出力電流Iの変化の程度が適切な値よりも大きく(又は小さく)なるようなずれ、すなわち傾きずれが生じている場合を示している。すなわち、図6にYで示した例における排気空燃比に対する出力電流Iの傾きは、正常な空燃比センサ40、41における傾きに対して大きな値となっている。したがって、この場合、空燃比センサ40、41の出力電流における絶対値は、実際の空燃比におけるリッチ度合いやリーン度合いよりも大きな(又は小さな)リッチ度合いやリーン度合いを示すことになる。   In the case indicated by X in FIG. 6, a deviation that causes the output currents of the air-fuel ratio sensors 40 and 41 to be smaller (or larger) than an appropriate value in the entire exhaust air-fuel ratio, that is, an offset deviation occurs. Shows the case. Therefore, in this case, the output current I of the air-fuel ratio sensors 40 and 41 indicates the air-fuel ratio richer (or leaner) than the actual air-fuel ratio in the entire region. On the other hand, in the case shown by Y in FIG. 6, a deviation in which the degree of change of the output current I of the air-fuel ratio sensors 40 and 41 with respect to the change of the exhaust air-fuel ratio becomes larger (or smaller) than an appropriate value, The case where the inclination shift has occurred is shown. That is, the slope of the output current I with respect to the exhaust air / fuel ratio in the example indicated by Y in FIG. 6 is a large value with respect to the slope of the normal air / fuel ratio sensors 40 and 41. Therefore, in this case, the absolute value of the output current of the air-fuel ratio sensors 40 and 41 indicates a rich degree or lean degree that is larger (or smaller) than the rich degree or lean degree in the actual air-fuel ratio.

ここで、図5に示したような通常制御を行う場合、上流側空燃比センサ40によって、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であるのかリーン空燃比であるのかを正確に検出することが重要である。これは、目標空燃比がリッチ空燃比であるのに対して、上流側排気浄化触媒20に流入する排気ガスの実際の空燃比がリーン空燃比であるような場合には図5に示したような通常制御が成立しなくなるためである。同様に、下流側空燃比センサ41によって上流側排気浄化触媒20から流出した排気ガスの空燃比が理論空燃比近傍であるのかそれともリッチ空燃比又はリーン空燃比であるのかを検出することが重要である。これは、上流側排気浄化触媒20から流出する排気ガスの実際の空燃比が理論空燃比であるにも関わらず、下流側空燃比センサ41によって検出された空燃比がリッチ空燃比になっていると、図5に示したような通常制御が成立しなくなるためである。   Here, when performing the normal control as shown in FIG. 5, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 by the upstream side air-fuel ratio sensor 40 is a rich air-fuel ratio or a lean air-fuel ratio. It is important to accurately detect whether or not. As shown in FIG. 5, when the target air-fuel ratio is a rich air-fuel ratio, the actual air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio. This is because normal control is no longer established. Similarly, it is important to detect whether the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is in the vicinity of the stoichiometric air-fuel ratio, the rich air-fuel ratio, or the lean air-fuel ratio by the downstream air-fuel ratio sensor 41. is there. This is because the air-fuel ratio detected by the downstream air-fuel ratio sensor 41 is a rich air-fuel ratio even though the actual air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio. This is because the normal control as shown in FIG.

したがって、通常制御を行う場合には、上流側排気浄化触媒20の上流側及び下流側において排気空燃比のリッチ度合いやリーン度合いがどの程度であるかよりも、排気空燃比が理論空燃比よりもリッチであるかリーンであるかを正確に検出することが必要になる。このため、図6にXで示したオフセットずれが生じている場合には、理論空燃比における出力電流にずれが生じるため、ずれが僅かであっても異常を検出することが必要になる。しかしながら、ずれが僅かであってもオフセットずれを検出しようとすると、オフセットずれが生じている場合のみならず、図6にYで示したような傾きずれが生じている場合にもオフセットずれが生じていると判断されてしまう場合がある。したがって、排気空燃比と出力電流Iとの関係のみに基づいて空燃比センサ40、41の異常診断を行うと、生じている異常の種類(異常モード)を正確に特定できない場合がある。   Therefore, when performing normal control, the exhaust air-fuel ratio is higher than the stoichiometric air-fuel ratio than the richness or leanness of the exhaust air-fuel ratio on the upstream side and downstream side of the upstream side exhaust purification catalyst 20. It is necessary to accurately detect whether it is rich or lean. For this reason, when the offset deviation indicated by X in FIG. 6 occurs, a deviation occurs in the output current at the stoichiometric air-fuel ratio. Therefore, it is necessary to detect an abnormality even if the deviation is slight. However, even if the deviation is slight, when an offset deviation is detected, the offset deviation occurs not only when the offset deviation occurs but also when the inclination deviation as indicated by Y in FIG. 6 occurs. It may be judged that Therefore, if the abnormality diagnosis of the air-fuel ratio sensors 40 and 41 is performed based only on the relationship between the exhaust air-fuel ratio and the output current I, the type of abnormality (abnormal mode) that has occurred may not be accurately identified.

<空燃比センサにおける異常の特性>
ところで、空燃比センサ40、41への印加電圧Vと出力電流Iとの関係は、空燃比センサ40、41に生じている異常の種類によって変わる。図7は、空燃比センサ40、41周りに大気ガスが流通している状態(すなわち、大気ガスに相当する空燃比の排気ガスが流通している状態)における空燃比センサ40、41への印加電圧Vと出力電流Iとの関係を示している。図7中の実線は、空燃比センサ40、41の印加電圧制御装置60や電流検出部61等の回路に異常が生じている場合等における関係を示している。一方、図7中の破線は、空燃比センサ40、41には異常が生じていない場合、すなわち正常な場合における関係を示している。
<Characteristics of abnormality in air-fuel ratio sensor>
Incidentally, the relationship between the voltage V applied to the air-fuel ratio sensors 40 and 41 and the output current I varies depending on the type of abnormality occurring in the air-fuel ratio sensors 40 and 41. FIG. 7 shows the application to the air-fuel ratio sensors 40 and 41 in a state where the atmospheric gas is circulating around the air-fuel ratio sensors 40 and 41 (that is, the exhaust gas having an air-fuel ratio corresponding to the atmospheric gas is circulating). The relationship between the voltage V and the output current I is shown. The solid line in FIG. 7 shows the relationship in the case where an abnormality has occurred in circuits such as the applied voltage control device 60 and the current detection unit 61 of the air-fuel ratio sensors 40 and 41. On the other hand, the broken line in FIG. 7 shows the relationship when there is no abnormality in the air-fuel ratio sensors 40 and 41, that is, when it is normal.

図7に示したように、空燃比センサ40、41の回路等に異常が生じている場合には、正常な場合に比べて、印加電圧Vの全域に亘って出力電流Iが一定値だけ上昇している。この結果、空燃比センサ40、41に限界電流領域Wlc内の印加電圧V2を印加した場合、空燃比センサ40、41に異常が生じているときの出力電流Iは正常であるときの出力電流Iよりも一定値だけ上昇している。同様に、空燃比センサ40、41に比例領域Wip内の印加電圧V1を印加した場合も、空燃比センサ40、41に異常が生じているときの出力電流Iは正常であるときの出力電流Iよりも一定値だけ上昇している。なお、限界電流領域Wlcは、空燃比センサ40、41に何の異常も生じていない場合に、空燃比センサ40、41周りに大気ガスが流通している状態で生じる限界電流領域を示している。同様に比例領域Wipは、空燃比センサ40、41に何の異常も生じていない場合に、空燃比センサ40、41周りに大気ガスが流通している状態で生じる比例領域を示している。 As shown in FIG. 7, when an abnormality occurs in the circuits of the air-fuel ratio sensors 40 and 41, the output current I increases by a constant value over the entire range of the applied voltage V compared to the normal case. doing. As a result, when the applied voltage V 2 in the limit current region Wlc is applied to the air-fuel ratio sensors 40 and 41, the output current I when the air-fuel ratio sensors 40 and 41 are abnormal is normal. It is higher than I by a certain value. Similarly, when the applied voltage V 1 within the proportional region Wip is applied to the air-fuel ratio sensors 40, 41, the output current I when the air-fuel ratio sensors 40, 41 are normal is the output current when the air-fuel ratio sensors 40, 41 are normal. It is higher than I by a certain value. The limit current region Wlc indicates a limit current region that is generated when air gas is circulating around the air-fuel ratio sensors 40, 41 when no abnormality occurs in the air-fuel ratio sensors 40, 41. . Similarly, the proportional region Wip indicates a proportional region that occurs when air gas is circulating around the air-fuel ratio sensors 40, 41 when no abnormality occurs in the air-fuel ratio sensors 40, 41.

したがって、空燃比センサ40、41の回路等に異常が生じている場合には、空燃比センサ40、41への印加電圧Iが限界電流領域Wlc内の電圧であるときでも比例領域Wip内の電圧であるときでも、正常である場合に比べて出力電流Iが上昇する。なお、図示した例では、空燃比センサ40、41の回路等の異常により出力電流Iが上昇した例を示しているが、空燃比センサ40、41の回路等の異常により出力電流Iが全域に亘って低下する場合もある。   Therefore, when an abnormality occurs in the circuits of the air-fuel ratio sensors 40, 41, etc., even when the voltage I applied to the air-fuel ratio sensors 40, 41 is a voltage in the limit current region Wlc, the voltage in the proportional region Wip Even when the output current I is, the output current I increases as compared with the normal case. In the illustrated example, the output current I is increased due to an abnormality in the circuits of the air-fuel ratio sensors 40 and 41, but the output current I is spread over the entire area due to an abnormality in the circuits of the air-fuel ratio sensors 40 and 41. It may decrease over time.

このように、空燃比センサ40、41の回路等に異常が生じている場合には、空燃比センサ40、41の出力電流Iが常に本来の値から一定値ずれた値になる。この結果、空燃比センサ40、41の回路等に異常が生じている場合には、空燃比センサ40、41周りの排気空燃比と出力電流Iとの関係は図6にXで示したように、排気空燃比の全域において出力電流Iが適切な値よりも小さい値にずれるオフセットずれが生じることになる。   As described above, when an abnormality occurs in the circuits of the air-fuel ratio sensors 40 and 41, the output current I of the air-fuel ratio sensors 40 and 41 is always a value deviated from the original value by a constant value. As a result, when an abnormality occurs in the circuits of the air-fuel ratio sensors 40 and 41, the relationship between the exhaust air-fuel ratio around the air-fuel ratio sensors 40 and 41 and the output current I is as indicated by X in FIG. Thus, an offset deviation in which the output current I is shifted to a value smaller than an appropriate value occurs in the entire exhaust air-fuel ratio.

図8も、空燃比センサ40、41周りに大気ガスが流通している状態における空燃比センサ40、41への印加電圧Vと出力電流Iとの関係を示している。図中の実線は、空燃比センサ40、41の拡散律速層54に部分的な詰まりや割れ等の異常が生じている場合、或いは空燃比センサ40、41の電極52、53に劣化等の異常が生じている場合における関係を示している。一方、図中の破線は、空燃比センサ40、41に異常が生じていない場合における関係を示している。   FIG. 8 also shows the relationship between the applied voltage V to the air-fuel ratio sensor 40, 41 and the output current I in the state where the atmospheric gas is circulating around the air-fuel ratio sensor 40, 41. A solid line in the figure indicates an abnormality such as partial clogging or cracking in the diffusion rate controlling layer 54 of the air-fuel ratio sensor 40 or 41, or an abnormality such as deterioration in the electrodes 52 or 53 of the air-fuel ratio sensor 40 or 41. The relationship in the case where this occurs is shown. On the other hand, the broken line in the figure indicates the relationship when no abnormality has occurred in the air-fuel ratio sensors 40 and 41.

図8に示したように、空燃比センサ40、41の拡散律速層54や電極52、53等に異常が生じている場合には、正常な場合に比べて、限界電流領域Wlcにおいてのみ出力電流Iが一定値だけ上昇している。この結果、空燃比センサ40、41に限界電流領域Wlc内の印加電圧V2を印加した場合、空燃比センサ40、41に異常が生じているときの出力電流Iは正常であるときの出力電流Iよりも一定値だけ上昇している。一方、空燃比センサ40、41に比例領域Wip内の印加電圧V1を印加した場合には、空燃比センサ40、41に異常が生じているときの出力電流Iも正常であるときの出力電流Iもほぼ同一の値となる。なお、図示した例では、空燃比センサ40、41の拡散律速層54や電極52、53等の異常により出力電流Iが上昇した例を示しているが、空燃比センサ40、41の拡散律速層54や電極52、53等の異常により出力電流Iが低下する場合もある。 As shown in FIG. 8, when an abnormality occurs in the diffusion rate limiting layer 54, the electrodes 52, 53, etc. of the air-fuel ratio sensors 40, 41, the output current is only in the limit current region Wlc as compared with the normal case. I increases by a certain value. As a result, when the applied voltage V 2 in the limit current region Wlc is applied to the air-fuel ratio sensors 40 and 41, the output current I when the air-fuel ratio sensors 40 and 41 are abnormal is normal. It is higher than I by a certain value. On the other hand, when the applied voltage V 1 within the proportional region Wip is applied to the air-fuel ratio sensors 40 and 41, the output current I when the air-fuel ratio sensors 40 and 41 are normal is also the output current when the air-fuel ratio sensors 40 and 41 are normal. I also has almost the same value. In the illustrated example, the output current I is increased due to an abnormality in the diffusion rate limiting layer 54 of the air / fuel ratio sensors 40 and 41, the electrodes 52 and 53, etc., but the diffusion rate limiting layer of the air / fuel ratio sensors 40 and 41 is shown. In some cases, the output current I may decrease due to an abnormality in the 54, the electrodes 52, 53, or the like.

このような現象が生じる理由を拡散律速層54に詰まりや割れが生じた場合を例にとって説明する。ここで、上述したような限界電流が生じるのは、拡散律速層54によるものである。すなわち、すなわち、固体電解質層51内を単位時間内に移動可能な酸素イオンの量は印加電圧Vに応じて決まっているが、比例領域においてはこの単位時間内に移動可能な酸素イオンの量よりも拡散律速層54を介して電極52まで到達する未燃ガスや酸素の流量の方が多い(図2参照)。この結果、比例領域においては印加電圧Vの上昇に伴って、固体電解質層51内を移動する酸素イオンの量が増大し、出力電流Iが上昇する。このため、このときのV−I線図における傾きは、固体電解質層51の直流素子抵抗に応じて定まる。   The reason why such a phenomenon occurs will be described by taking as an example the case where the diffusion rate controlling layer 54 is clogged or cracked. Here, the limit current as described above is caused by the diffusion-controlled layer 54. That is, the amount of oxygen ions that can move within the unit time in the solid electrolyte layer 51 is determined according to the applied voltage V, but in the proportional region, the amount of oxygen ions that can move within the unit time. However, the flow rate of the unburned gas and oxygen reaching the electrode 52 through the diffusion control layer 54 is larger (see FIG. 2). As a result, in the proportional region, as the applied voltage V increases, the amount of oxygen ions that move in the solid electrolyte layer 51 increases, and the output current I increases. For this reason, the inclination in the VI diagram at this time is determined according to the DC element resistance of the solid electrolyte layer 51.

ところが、限界電流領域においては、固体電解質層51内を単位時間内に移動可能な酸素イオンの量よりも拡散律速層54を介して電極52まで到達する未燃ガスや酸素の流量の方が少ない。この結果、限界電流領域においては、印加電圧Vが変化しても、固体電解質層51内を移動する酸素イオンの量は、拡散律速層54を介して電極52まで到達する未燃ガスや酸素の流量のまま一定となる。この結果、限界電流領域においては印加電圧Vが変化しても、固体電解質層51内を移動する酸素イオンの量が変化せず、よって出力電流Iも変化しない。   However, in the limiting current region, the flow rate of unburned gas and oxygen reaching the electrode 52 via the diffusion-controlling layer 54 is smaller than the amount of oxygen ions that can move within the solid electrolyte layer 51 within a unit time. . As a result, in the limiting current region, even if the applied voltage V changes, the amount of oxygen ions that move in the solid electrolyte layer 51 is the amount of unburned gas or oxygen that reaches the electrode 52 via the diffusion rate controlling layer 54. The flow rate remains constant. As a result, even if the applied voltage V changes in the limit current region, the amount of oxygen ions that move in the solid electrolyte layer 51 does not change, and therefore the output current I does not change.

このような拡散律速層54に詰まりや割れ等が発生すると、拡散律速層54を介して電極まで到達する未燃ガスや酸素の流量が変化する。この結果、限界電流領域においては出力電流Iは拡散律速層54を介して電極52まで到達する未燃ガスや酸素の流量によって決まるため、出力電流Iが変化することになる。一方、上述したように比例領域においては、拡散律速層54を介して電極52まで到達する未燃ガスや酸素の流量よりも、固体電解質層51内を単位時間内に移動可能な酸素イオンの量の方が多い。この結果、拡散律速層54に詰まりや割れ等が発生しても比例領域における出力電流Iは変化しない。   When such a diffusion-controlling layer 54 is clogged or cracked, the flow rate of unburned gas or oxygen reaching the electrode through the diffusion-controlling layer 54 changes. As a result, in the limit current region, the output current I changes because the output current I is determined by the flow rate of the unburned gas and oxygen reaching the electrode 52 through the diffusion rate controlling layer 54. On the other hand, as described above, in the proportional region, the amount of oxygen ions that can move within the solid electrolyte layer 51 within a unit time rather than the flow rate of unburned gas and oxygen reaching the electrode 52 through the diffusion rate controlling layer 54. There are more. As a result, the output current I in the proportional region does not change even if the diffusion rate controlling layer 54 is clogged or cracked.

そして、拡散律速層54に詰まりや割れが生じた場合、これらが生じていない場合と比べて出力電流Iが変化する程度は、排気空燃比の理論空燃比からの偏差が大きくなるほど大きくなる。これは、排気空燃比の理論空燃比からの偏差が大きくなるほど、単位排気ガス中に含まれる酸素や未燃ガスの量が多くなるため、拡散律速層54を通過する排気ガスの量が変化すると電極52まで到達する未燃ガスや酸素の量が大きく変化することによるものである。この結果、空燃比センサ40、41の拡散律速層54や電極52、53等に異常が生じている場合には、図6にYで示したような傾きずれが生じることになる。   When the diffusion-controlling layer 54 is clogged or cracked, the degree to which the output current I changes is larger as the deviation of the exhaust air / fuel ratio from the stoichiometric air / fuel ratio becomes larger than when there is no such phenomenon. This is because, as the deviation of the exhaust air / fuel ratio from the stoichiometric air / fuel ratio increases, the amount of oxygen and unburned gas contained in the unit exhaust gas increases, and therefore the amount of exhaust gas passing through the diffusion rate controlling layer 54 changes. This is because the amount of unburned gas and oxygen reaching the electrode 52 varies greatly. As a result, when an abnormality occurs in the diffusion rate limiting layer 54 of the air-fuel ratio sensors 40 and 41, the electrodes 52 and 53, etc., a tilt shift as indicated by Y in FIG. 6 occurs.

図9も、空燃比センサ40、41周りに大気ガスが流通している状態における空燃比センサ40、41への印加電圧Vと出力電流Iとの関係を示している。図中の実線は、空燃比センサ40、41に素子割れ等の異常が生じている場合における関係を示している。ここで、空燃比センサ40、41の素子割れは、具体的には、固体電解質層51及び拡散律速層54を貫通する割れ(図10のC1)や、固体電解質層51及び拡散律速層54に加えて両電極52、53を貫通する割れ(図10にC2)を意味する。一方、図中の破線は、空燃比センサ40、41に異常が生じていない場合における関係を示している。このように空燃比センサ40、41に素子割れが生じていると基準ガス室55内の基準ガス(通常は大気ガス)に異常(基準ガス異常)が生じることになる。   FIG. 9 also shows the relationship between the voltage V applied to the air-fuel ratio sensors 40 and 41 and the output current I in the state where the atmospheric gas is circulating around the air-fuel ratio sensors 40 and 41. The solid line in the figure shows the relationship when abnormality such as element cracking occurs in the air-fuel ratio sensors 40 and 41. Here, the element cracks of the air-fuel ratio sensors 40 and 41 are specifically the cracks penetrating the solid electrolyte layer 51 and the diffusion rate limiting layer 54 (C1 in FIG. 10), the solid electrolyte layer 51 and the diffusion rate limiting layer 54, or the like. In addition, it means a crack (C2 in FIG. 10) penetrating both electrodes 52 and 53. On the other hand, the broken line in the figure indicates the relationship when no abnormality has occurred in the air-fuel ratio sensors 40 and 41. Thus, if element cracks occur in the air-fuel ratio sensors 40 and 41, an abnormality (reference gas abnormality) occurs in the reference gas (usually atmospheric gas) in the reference gas chamber 55.

図9に示したように、空燃比センサ40、41の基準ガスに異常が生じている場合には、正常な場合に比べて、比例領域Wipにおいてのみ出力電流Iが一定値だけ上昇している。この結果、空燃比センサ40、41に限界電流領域Wlc内の印加電圧V2を印加した場合には、空燃比センサ40、41に異常が生じているときの出力電流Iも正常であるときの出力電流Iもほぼ同一の値となる。一方、空燃比センサ40、41に比例領域Wip内の印加電圧V1を印加した場合、空燃比センサ40、41に異常が生じているときの出力電流Iは正常であるときの出力電流Iよりも一定値だけ上昇している。 As shown in FIG. 9, when an abnormality occurs in the reference gas of the air-fuel ratio sensors 40 and 41, the output current I increases by a certain value only in the proportional region Wip, compared to the normal case. . As a result, when the applied voltage V 2 in the limit current region Wlc is applied to the air-fuel ratio sensors 40, 41, the output current I when the air-fuel ratio sensors 40, 41 are abnormal is also normal. The output current I is also almost the same value. On the other hand, when the applied voltage V 1 within the proportional region Wip is applied to the air-fuel ratio sensors 40 and 41, the output current I when the air-fuel ratio sensors 40 and 41 are abnormal is greater than the output current I when normal. Is also rising by a certain value.

以上より、図7から図9に示した現象は以下の表1のようにまとめることができる。

Figure 2016089799
From the above, the phenomena shown in FIGS. 7 to 9 can be summarized as shown in Table 1 below.
Figure 2016089799

<異常診断制御>
そこで、本実施形態では、内燃機関の排気通路に設けられ且つ空燃比に応じた限界電流を発生させる空燃比センサの異常診断装置において、空燃比センサ40、41の出力電流Iを検出する電流検出部61と、空燃比センサ40、41への印加電圧を制御する印加電圧制御装置60とを具備し、空燃比センサ40、41周りに流通する排気ガスの空燃比が予め定められた一定の空燃比にしたときに空燃比センサ40、41に限界電流が生じる限界電流領域内の電圧とこの限界電流領域外(特に、比例領域)の電圧とを印加し、このとき電流検出部により検出された空燃比センサ40、41の出力電流Iに基づいて空燃比センサ40、41に生じている異常の種類を判断するようにしている。限界電流領域内の電圧の印加と限界電流領域外の電圧の印加は、例えば、空燃比センサ40、41周りに流通する排気ガスの空燃比を一定の空燃比に維持した状態で印加電圧制御装置60により空燃比センサ40、41への印加電圧を変化させることにより行われる。
<Abnormality diagnosis control>
Therefore, in the present embodiment, current detection for detecting the output current I of the air-fuel ratio sensors 40 and 41 in the abnormality diagnosis device for the air-fuel ratio sensor that is provided in the exhaust passage of the internal combustion engine and generates a limit current corresponding to the air-fuel ratio. Unit 61 and an applied voltage control device 60 for controlling the applied voltage to the air-fuel ratio sensors 40 and 41, and the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensors 40 and 41 is set to a predetermined level. A voltage within the limit current region where a limit current is generated and a voltage outside this limit current region (particularly the proportional region) are applied to the air-fuel ratio sensors 40 and 41 when the fuel ratio is set, and at this time, the current detection unit detects the voltage. The type of abnormality occurring in the air-fuel ratio sensors 40, 41 is determined based on the output current I of the air-fuel ratio sensors 40, 41. The application of the voltage within the limit current region and the application of the voltage outside the limit current region are performed, for example, in a state where the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensors 40 and 41 is maintained at a constant air-fuel ratio. 60 is performed by changing the voltage applied to the air-fuel ratio sensors 40 and 41.

特に、本実施形態では、空燃比センサ40、41が正常である場合に、空燃比センサ40、41周りに流通する排気ガスの空燃比が予め定められた一定の空燃比に維持された状態で空燃比センサ40、41に限界電流領域内の電圧を印加したとき及び限界電流領域外の電圧を印加したときの出力電流がそれぞれ限界電流領域内正常値及び限界電流領域外正常値として予め検出又は算出され、空燃比センサ40、41周りに流通する排気ガスの空燃比が予め定められた一定の空燃比に維持された状態で、空燃比センサ40、41に限界電流領域内の電圧を印加したときの空燃比センサ40、41の出力電流の検出値と限界電流領域内正常値との差、及び空燃比センサ40、41に限界電流領域外の電圧を印加したときの空燃比センサ40、41の出力電流の検出値と限界電流領域外正常値との差とに基づいて空燃比センサ40、41に生じている異常の種類を判断するようにしている。   In particular, in the present embodiment, when the air-fuel ratio sensors 40, 41 are normal, the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensors 40, 41 is maintained at a predetermined constant air-fuel ratio. When the voltage within the limit current region is applied to the air-fuel ratio sensors 40 and 41 and when the voltage outside the limit current region is applied, the output currents are detected in advance as normal values within the limit current region and normal values outside the limit current region, respectively. The voltage within the limit current region is applied to the air-fuel ratio sensors 40, 41 in a state where the air-fuel ratio of the exhaust gas calculated and circulated around the air-fuel ratio sensors 40, 41 is maintained at a predetermined constant air-fuel ratio. The difference between the detected value of the output current of the air-fuel ratio sensor 40, 41 and the normal value in the limit current region, and the air-fuel ratio sensor 40, 41 when a voltage outside the limit current region is applied to the air-fuel ratio sensor 40, 41. And so as to determine the type of abnormality occurring in the air-fuel ratio sensor 40 and 41 based on the difference between the detected value and the limiting current region outside the normal value of the output current.

<タイムチャートを用いた制御の説明>
次に、図11に示すタイムチャートを参照しつつ、下流側空燃比センサ41の異常診断を行う場合を例にとって、本実施形態における空燃比センサの異常診断について説明する。本実施形態では、図5を参照しつつ既に説明したように、通常、目標空燃比はリッチ設定空燃比AFTrichとリーン設定空燃比AFTleanとに交互に変更されている。このように目標空燃比をリッチ設定空燃比AFTrichとリーン設定空燃比AFTleanとに交互に変更する制御を通常制御と称す。
<Description of control using time chart>
Next, referring to the time chart shown in FIG. 11, the abnormality diagnosis of the air-fuel ratio sensor in the present embodiment will be described taking as an example the case where abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed. In the present embodiment, as already described with reference to FIG. 5, the target air-fuel ratio is normally changed alternately between the rich set air-fuel ratio AFTrich and the lean set air-fuel ratio AFTlean. Control in which the target air-fuel ratio is changed alternately between the rich set air-fuel ratio AFTrich and the lean set air-fuel ratio AFTlean is referred to as normal control.

一方、本実施形態では、内燃機関の搭載された車両の減速時等において、クランクシャフトやピストン3が運動している状態(すなわち、内燃機関の作動中)であっても、燃料噴射弁11から燃焼室5への燃料の供給を停止する燃料カット制御が行われる。また、燃料カット制御が行われると、排気浄化触媒20、24の酸素吸蔵量が最大吸蔵可能酸素量に到達する。このため、燃料カット制御の終了後には排気浄化触媒20、24に吸蔵された酸素を放出すべく、目標空燃比を上述した通常制御時におけるリッチ設定空燃比AFTrichよりもリッチにする復帰後リッチ制御が行われる。   On the other hand, in the present embodiment, even when the crankshaft and the piston 3 are moving (ie, during operation of the internal combustion engine) during deceleration of the vehicle on which the internal combustion engine is mounted, the fuel injection valve 11 Fuel cut control for stopping the supply of fuel to the combustion chamber 5 is performed. Further, when the fuel cut control is performed, the oxygen storage amount of the exhaust purification catalysts 20, 24 reaches the maximum storable oxygen amount. For this reason, after the fuel cut control is finished, the rich control after returning to make the target air-fuel ratio richer than the rich set air-fuel ratio AFTrich during the normal control described above in order to release the oxygen stored in the exhaust purification catalysts 20, 24. Is done.

ここで、本実施形態における下流側空燃比センサ41の異常診断は、下流側空燃比センサ41周りの排気ガスの空燃比が一定の空燃比に維持されているときに行われる。特に、本実施形態では、下流側空燃比センサ41周りの排気ガスの空燃比は大気ガスに対応する空燃比に維持される燃料カット制御の実行中に異常診断が行われる。加えて、本実施形態では、下流側空燃比センサ41周りの排気ガスの空燃比がほぼ理論空燃比となる復帰後リッチ制御の実行中にも異常診断が行われる。   Here, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 in the present embodiment is performed when the air-fuel ratio of the exhaust gas around the downstream air-fuel ratio sensor 41 is maintained at a constant air-fuel ratio. In particular, in the present embodiment, abnormality diagnosis is performed during fuel cut control in which the air-fuel ratio of the exhaust gas around the downstream air-fuel ratio sensor 41 is maintained at the air-fuel ratio corresponding to the atmospheric gas. In addition, in the present embodiment, abnormality diagnosis is performed even during execution of post-return rich control in which the air-fuel ratio of the exhaust gas around the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio.

図11は、これら燃料カット制御及び復帰後リッチ制御の有無と、目標空燃比と、上流側空燃比センサ40の出力空燃比と、下流側空燃比センサ41の出力空燃比と、下流側空燃比センサ41への印加電圧と、異常診断の完了を示す完了フラグとのタイムチャートである。   FIG. 11 shows the presence or absence of these fuel cut control and post-return rich control, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor 40, the output air-fuel ratio of the downstream air-fuel ratio sensor 41, and the downstream air-fuel ratio. 4 is a time chart of a voltage applied to a sensor 41 and a completion flag indicating completion of abnormality diagnosis.

図11に示した例では、時刻t1において、燃料カット制御の実行が開始される。時刻t1において燃料カット制御の実行が開始される前は、目標空燃比をリッチ空燃比とリーン空燃比とに交互に変更する通常制御時において目標空燃比がリッチ設定空燃比AFTrichとなっている場合を示している。このとき上流側空燃比センサ40の出力空燃比はリッチ空燃比となっている。また、このときには、上流側排気浄化触媒20に流入した排気ガス中の未燃ガスは上流側排気浄化触媒20で浄化されるため、下流側空燃比センサ41の出力空燃比は理論空燃比となっている。 In the example shown in FIG. 11, execution of fuel cut control is started at time t 1 . Before execution of the fuel cut control at time t 1 , the target air-fuel ratio becomes the rich set air-fuel ratio AFTrich during normal control in which the target air-fuel ratio is alternately changed to the rich air-fuel ratio and the lean air-fuel ratio. Shows the case. At this time, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio. At this time, since the unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is purified by the upstream side exhaust purification catalyst 20, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes the stoichiometric air-fuel ratio. ing.

時刻t1において、燃料カット制御の実行が開始されると、機関本体1からは大気ガスが流出するため、上流側空燃比センサ40の出力空燃比AFupは大気ガスに対応した極めてリーン度合いの大きいリーン空燃比に変化する。また、上流側排気浄化触媒20にも大気ガスが流入するが、上流側排気浄化触媒20に流入した大気ガス中の酸素は上流側排気浄化触媒20に吸蔵される。このため、燃料カット制御の開始直後には、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比に維持される。しかしながら、上流側排気浄化触媒20の酸素吸蔵量はすぐに最大吸蔵可能酸素量に到達し、上流側排気浄化触媒20からも大気ガスが流出するようになる。この結果、下流側空燃比センサ41の出力空燃比も大気ガスに対応した極めてリーン度合いの大きいリーン空燃比に変化する。 When execution of the fuel cut control is started at time t 1 , the atmospheric gas flows out from the engine body 1, so that the output air-fuel ratio AFup of the upstream air-fuel ratio sensor 40 has an extremely lean degree corresponding to the atmospheric gas. Change to lean air-fuel ratio. Further, although atmospheric gas also flows into the upstream side exhaust purification catalyst 20, oxygen in the atmospheric gas that has flowed into the upstream side exhaust purification catalyst 20 is occluded by the upstream side exhaust purification catalyst 20. For this reason, immediately after the start of the fuel cut control, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is maintained substantially at the stoichiometric air-fuel ratio. However, the oxygen storage amount of the upstream side exhaust purification catalyst 20 immediately reaches the maximum storable oxygen amount, and atmospheric gas also flows out from the upstream side exhaust purification catalyst 20. As a result, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 also changes to a lean air-fuel ratio with a very high degree of lean corresponding to the atmospheric gas.

また、本実施形態では、燃料カット制御の実行が開始された時刻t1において、下流側空燃比センサ41の異常診断を開始すべく、下流側空燃比センサ41への印加電圧Vが第二の電圧V2(例えば、1.0V)に上昇せしめられる。ここで、第二の電圧V2は、下流側空燃比センサ41に異常が生じていない場合に下流側空燃比センサ41周りに大気ガスが流通している状態で生じる限界電流領域Wlc内の電圧である。 In the present embodiment, at time t 1 when execution of fuel cut control is started, the applied voltage V to the downstream air-fuel ratio sensor 41 is set to the second voltage to start the abnormality diagnosis of the downstream air-fuel ratio sensor 41. The voltage is raised to V 2 (for example, 1.0 V). Here, the second voltage V 2 is a voltage within the limit current region Wlc that is generated when atmospheric gas is circulating around the downstream air-fuel ratio sensor 41 when no abnormality occurs in the downstream air-fuel ratio sensor 41. It is.

その後、図11に示した例では、時刻t2において、下流側空燃比センサ41の出力空燃比の上昇が終了して、一定の値に収束する。本実施形態では、下流側空燃比センサ41の出力空燃比が収束した時刻t2に異常診断が開始されると共に、この時刻t2から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。 Thereafter, in the example shown in FIG. 11, at time t 2 , the increase in the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 ends and converges to a constant value. In this embodiment, abnormality diagnosis is started at time t 2 when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 has converged, and the downstream air-fuel ratio sensor is set for a predetermined time Δt from this time t 2. The voltage applied to 41 is kept constant.

その後、本実施形態では、時刻t2から予め定められた一定時間Δtが経過した時刻t3において、下流側空燃比センサ41への印加電圧Vが第一の電圧V1(例えば、0.2V)に低下せしめられる。ここで、第一の電圧V1は、下流側空燃比センサ41に異常が生じていない場合に下流側空燃比センサ41周りに大気ガスが流通している状態で生じる比例領域Wip内の電圧である。本実施形態では、下流側空燃比センサ41への印加電圧Vが第一の電圧V1に変更された時刻t3から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。 Thereafter, in the present embodiment, the applied voltage V to the downstream air-fuel ratio sensor 41 is the first voltage V 1 (for example, 0.2 V) at time t 3 when a predetermined time Δt has elapsed from time t 2. ). Here, the first voltage V 1 is a voltage in the proportional region Wip that is generated when atmospheric gas is circulating around the downstream air-fuel ratio sensor 41 when no abnormality has occurred in the downstream air-fuel ratio sensor 41. is there. In the present embodiment, the voltage V applied to the downstream air-fuel ratio sensor 41 is applied to the downstream air-fuel ratio sensor 41 for a predetermined time Δt from time t 3 when the voltage V is changed to the first voltage V 1. The voltage is kept constant.

図11に示した例では、下流側空燃比センサ41への印加電圧Vが第一の電圧V1に変更されてから予め定められた一定時間Δtが経過した時刻t4において、異常診断のための下流側空燃比センサ41の出力電流Iの検出が完了する。したがって、時刻t4において、下流側空燃比センサ41への印加電圧が通常制御用の電圧(例えば、0.45V)に上昇せしめられる。図11に示した例では、その後、時刻t5において燃料カット制御の実行が終了せしめられる。 In the example shown in FIG. 11, for abnormality diagnosis, at a time t 4 when a predetermined time Δt has elapsed since the voltage V applied to the downstream air-fuel ratio sensor 41 is changed to the first voltage V 1. Detection of the output current I of the downstream air-fuel ratio sensor 41 is completed. Therefore, at time t 4 , the voltage applied to the downstream air-fuel ratio sensor 41 is raised to the normal control voltage (for example, 0.45 V). In the example shown in FIG. 11, then the fuel cut control is made to finished at time t 5.

時刻t5において、燃料カット制御の実行が終了せしめられると、それに伴って復帰後リッチ制御の実行が開始される。このため、目標空燃比は、リッチ設定空燃比AFTrichよりもリッチな復帰後リッチ設定空燃比AFTrtとされる。目標空燃比が復帰後リッチ設定空燃比になると、これに伴って上流側空燃比センサ40の出力空燃比も復帰後リッチ設定空燃比AFTrtに対応した空燃比に変化する。また、上流側排気浄化触媒20にもリッチ空燃比の排気ガスが流入するが、上流側排気浄化触媒20に流入した排気ガス中の未燃ガスは上流側排気浄化触媒20に吸蔵されている酸素と反応して浄化される。この結果、下流側空燃比センサ41の出力空燃比は、時刻t5において復帰後リッチ制御の実行が開始されると減少し、やがてほぼ理論空燃比となる。 At time t 5, when the fuel cut control is made to completion, execution of the return after the rich control is started accordingly. For this reason, the target air-fuel ratio is set to the post-return rich set air-fuel ratio AFTrt that is richer than the rich set air-fuel ratio AFTrich. When the target air-fuel ratio becomes the rich set air-fuel ratio after return, the output air-fuel ratio of the upstream side air-fuel ratio sensor 40 also changes to the air-fuel ratio corresponding to the rich set air-fuel ratio AFTrt after return. The rich air-fuel ratio exhaust gas also flows into the upstream side exhaust purification catalyst 20, but unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is oxygen stored in the upstream side exhaust purification catalyst 20. It reacts with and is purified. As a result, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is reduced with execution of the return after the rich control at time t 5 is started, eventually becomes substantially the stoichiometric air-fuel ratio.

また、本実施形態では、燃料カット制御の実行が開始された時刻t5において、下流側空燃比センサ41の異常診断を開始すべく、下流側空燃比センサ41への印加電圧Vが第四の電圧V4(例えば、0.45V)とされる。ここで、第四の電圧V4は、下流側空燃比センサ41に異常が生じていない場合に下流側空燃比センサ41周りに理論空燃比の排気ガスが流通している状態で生じる限界電流領域内の電圧である。 Further, in the present embodiment, at time t 5 that the fuel cut control is started, in order to start the abnormality diagnosis of the downstream air-fuel ratio sensor 41, the voltage V applied to the downstream-side air-fuel ratio sensor 41 is a fourth The voltage is V 4 (for example, 0.45 V). Here, the fourth voltage V 4 is a limit current region generated in a state where exhaust gas of the theoretical air-fuel ratio is circulating around the downstream air-fuel ratio sensor 41 when no abnormality occurs in the downstream air-fuel ratio sensor 41. Is the voltage inside.

その後、図11に示した例では、時刻t6において、下流側空燃比センサ41の出力空燃比の低下が終了して、一定の値に収束する。本実施形態では、下流側空燃比センサ41の出力空燃比が収束した時刻t6から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。 Thereafter, in the example shown in FIG. 11, at time t 6 , the decrease in the output air-fuel ratio of the downstream air-fuel ratio sensor 41 ends and converges to a constant value. In the present embodiment, the voltage applied to the downstream-side air-fuel ratio sensor 41 over a predetermined time Δt that the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is determined in advance from the time t 6 converged is maintained constant.

その後、本実施形態では、時刻t6から予め定められた一定時間Δtが経過した時刻t7において、下流側空燃比センサ41への印加電圧Vが第三の印加電圧V3(例えば、0.1V)に低下せしめられる。ここで、第三の電圧V3は、下流側空燃比センサ41に異常が生じていない場合に、下流側空燃比センサ41周りに理論空燃比の排気ガスが流通している状態で生じる比例領域内の電圧である。本実施形態では、下流側空燃比センサ41への印加電圧Vが第三の電圧V3に変更された時刻t7から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。 Then, in the present embodiment, at time t 7 for a predetermined time Δt has passed a predetermined from the time t 6, the downstream air-fuel ratio voltage V applied to the sensor 41 is the third of the applied voltage V 3 (e.g., 0. 1V). Here, the third voltage V 3 is a proportional region generated in a state where exhaust gas having a theoretical air-fuel ratio is circulating around the downstream air-fuel ratio sensor 41 when no abnormality occurs in the downstream air-fuel ratio sensor 41. Is the voltage inside. In the present embodiment, the voltage V applied to the downstream air-fuel ratio sensor 41 is applied to the downstream air-fuel ratio sensor 41 for a predetermined time Δt from time t 7 when the voltage V applied to the downstream air-fuel ratio sensor 41 is changed to the third voltage V 3. The voltage is kept constant.

図11に示した例では、時刻t7から予め定められた一定時間Δtが経過した時刻t8において、異常診断が完了する。したがって、時刻t8において、下流側空燃比センサ41への印加電圧が通常制御用の電圧(例えば、0.45V)に上昇せしめられる。また、図11に示した例では、時刻t8においても復帰後リッチ制御は完了していないため、目標空燃比は復帰後リッチ設定空燃比AFTrtに維持される。これにより、上流側空燃比センサ40の出力空燃比はリッチ空燃比とされ、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少していく。 In the example shown in FIG. 11, the abnormality diagnosis is completed at time t 8 when a predetermined time Δt has elapsed from time t 7 . Therefore, at time t 8 , the voltage applied to the downstream air-fuel ratio sensor 41 is raised to the normal control voltage (for example, 0.45 V). Further, in the example shown in FIG. 11, since the return after the rich control is also at time t 8 not completed, the target air-fuel ratio is maintained at the return after the rich set air-fuel ratio AFTrt. As a result, the output air-fuel ratio of the upstream side air-fuel ratio sensor 40 becomes a rich air-fuel ratio, and the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.

その後、上流側排気浄化触媒20の酸素吸蔵量が徐々に減少していくと、やがてほぼ零になり、上流側排気浄化触媒20からリッチ空燃比の排気ガスが流出し始める。これにより、時刻t9において下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrich以下になる。本実施形態では、このように、下流側空燃比センサ41の出力空燃比がリッチ判定空燃比AFrich以下になると、復帰後リッチ制御が終了せしめられ、図5に示した通常制御が再開される。 Thereafter, when the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases, it eventually becomes almost zero, and the rich air-fuel ratio exhaust gas starts to flow out from the upstream side exhaust purification catalyst 20. Thus, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or lower than the rich determining the air-fuel ratio AFrich at time t 9. In the present embodiment, when the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio AFrich as described above, the rich control after returning is terminated, and the normal control shown in FIG. 5 is resumed.

ここで、本実施形態では、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が大気ガスに相当する空燃比である状態で、下流側空燃比センサ41への印加電圧Iが限界電流領域Wlc内の電圧V2であるときの出力電流が正常値として予め実験的に又は計算により検出又は算出されている。同様に、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が大気ガスに相当する空燃比である状態で、下流側空燃比センサ41への印加電圧Iが比例領域Wip内の電圧V1であるときの出力電流が正常値として予め実験的に又は計算により検出又は算出されている。 Here, in the present embodiment, when the downstream air-fuel ratio sensor 41 is normal, the downstream air-fuel ratio sensor 41 is in a state where the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is an air-fuel ratio corresponding to the atmospheric gas. The output current when the applied voltage I to 41 is the voltage V 2 in the limit current region Wlc is detected or calculated in advance experimentally or by calculation as a normal value. Similarly, when the downstream air-fuel ratio sensor 41 is normal, the applied voltage to the downstream air-fuel ratio sensor 41 in a state where the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is an air-fuel ratio corresponding to atmospheric gas. The output current when I is the voltage V 1 in the proportional region Wip is detected or calculated as a normal value experimentally or by calculation in advance.

そして、図11に示したような制御を行った際に、下流側空燃比センサ41が正常である場合には、上述したように下流側空燃比センサ41に限界電流領域内の電圧V2を印加した状態における電流検出部61による出力電流Iの検出値は、このような状態における正常値(限界電流領域内正常値)にほぼ一致する。同様に、下流側空燃比センサ41が正常である場合には、上述したように下流側空燃比センサ41に比例領域内の電圧V1を印加した状態で電流検出部61による出力電流Iの検出値は、このような状態における正常値(限界電流領域外正常値)にほぼ一致する。そこで、本実施形態では、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値が、対応する限界電流領域内正常値とほぼ一致し、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域外正常値とほぼ一致する場合には、下流側空燃比センサ41は正常であると判断される。 When the control as shown in FIG. 11 is performed and the downstream air-fuel ratio sensor 41 is normal, the downstream air-fuel ratio sensor 41 is supplied with the voltage V 2 in the limit current region as described above. The detected value of the output current I by the current detector 61 in the applied state substantially matches the normal value (normal value in the limit current region) in such a state. Similarly, when the downstream air-fuel ratio sensor 41 is normal, the output current I is detected by the current detector 61 with the voltage V 1 in the proportional region applied to the downstream air-fuel ratio sensor 41 as described above. The value substantially matches the normal value (normal value outside the limit current region) in such a state. Therefore, in this embodiment, the detection value of the output current I of the downstream air-fuel ratio sensor 41 at time t 2 ~t 3 is almost identical with the corresponding limiting current region within normal values, and at time t 3 ~t 4 When the detected value of the output current I of the downstream side air-fuel ratio sensor 41 substantially matches the corresponding normal value outside the limit current region, it is determined that the downstream side air-fuel ratio sensor 41 is normal.

一方、下流側空燃比センサ41の回路等に異常が生じている場合、すなわち下流側空燃比センサ41にオフセットずれが生じている場合には、上述したように下流側空燃比センサ41に限界電流領域内の電圧V2を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域内正常値との差が予め定められた基準値(限界電流領域内時基準値)以上になるような値になる。同様に、下流側空燃比センサ41にオフセットずれが生じている場合には、上述したように下流側空燃比センサ41に比例領域内の電圧V1を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域外正常値との差が予め定められた基準値(限界電流領域外時基準値)以上になるような値になる。そこで、本実施形態では、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域内正常値との差が基準値以上であり、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域外正常値との差が基準値以上である場合には、下流側空燃比センサ41にはオフセットずれが生じていると判断される。 On the other hand, when an abnormality occurs in the circuit or the like of the downstream air-fuel ratio sensor 41, that is, when an offset shift occurs in the downstream air-fuel ratio sensor 41, as described above, the limit current is supplied to the downstream air-fuel ratio sensor 41. The detected value of the output current I by the current detection unit 61 in the state where the voltage V 2 in the region is applied is a reference value in which a difference from the corresponding normal value in the limit current region is determined in advance (the reference value in the limit current region) ) It becomes a value that becomes above. Similarly, if the offset deviation occurs on the downstream-side air-fuel ratio sensor 41, the output current by the current detecting section 61 in the state of applying the voltages V 1 in the proportional region downstream-side air-fuel ratio sensor 41 as described above The detected value of I is a value such that the difference from the corresponding normal value outside the limit current region is not less than a predetermined reference value (reference value outside the limit current region). Therefore, in the present embodiment, the difference between the detected value and the corresponding limiting current region within the normal value of the output current I of the downstream air-fuel ratio sensor 41 at time t 2 ~t 3 is equal to or greater than the reference value, and the time t 3 If the difference between the detected value and the corresponding limiting current region outside the normal value of the output current I of the downstream air-fuel ratio sensor 41 in ~t 4 is equal to or greater than the reference value, an offset shift in the downstream air-fuel ratio sensor 41 It is determined that it has occurred.

他方、下流側空燃比センサ41の拡散律速層54や電極52等に異常が生じている場合、すなわち下流側空燃比センサ41に傾きずれが生じている場合には、上述したように下流側空燃比センサ41に限界電流領域内の電圧V2を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域内正常値との差が予め定められた基準値(限界電流領域内時基準値)以上になるような値になる。同様に、下流側空燃比センサ41に傾きずれが生じている場合には、上述したように下流側空燃比センサ41に比例領域内の電圧V1を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域外正常値とほぼ一致する。そこで、本実施形態では、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域内正常値との差が基準値以上であり、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域外正常値とほぼ一致する場合には、下流側空燃比センサ41には傾きずれが生じていると判断される。 On the other hand, if there is an abnormality in the diffusion rate controlling layer 54 or the electrode 52 of the downstream air-fuel ratio sensor 41, that is, if there is a tilt shift in the downstream air-fuel ratio sensor 41, the downstream air-fuel ratio sensor 41 is The detected value of the output current I by the current detector 61 in a state where the voltage V 2 in the limit current region is applied to the fuel ratio sensor 41 is a reference value (limit value) in which the difference from the corresponding normal value in the limit current region is predetermined. It becomes a value that is equal to or greater than the reference value in the current region. Similarly, if the displacement inclination to the downstream side air-fuel ratio sensor 41 has occurred, the output current by the current detection unit 61 in the state of applying the voltages V 1 in the proportional region downstream-side air-fuel ratio sensor 41 as described above The detected value of I substantially matches the corresponding normal value outside the limit current region. Therefore, in the present embodiment, the difference between the detected value and the corresponding limiting current region within the normal value of the output current I of the downstream air-fuel ratio sensor 41 at time t 2 ~t 3 is equal to or greater than the reference value, and the time t 3 When the detected value of the output current I of the downstream side air-fuel ratio sensor 41 at t 4 substantially coincides with the corresponding normal value outside the limit current region, it is determined that the downstream air-fuel ratio sensor 41 has a tilt deviation. Is done.

さらに、下流側空燃比センサ41に素子割れ等の異常が生じている場合、すなわち下流側空燃比センサ41に基準ガス異常が生じている場合には、上述したように下流側空燃比センサ41に限界電流領域内の電圧V2を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域内正常値とほぼ一致する。同様に、下流側空燃比センサ41に傾きずれが生じている場合には、上述したように下流側空燃比センサ41に比例領域内の電圧V1を印加した状態における電流検出部61による出力電流Iの検出値は、対応する限界電流領域外正常値との差が予め定められた基準値(限界電流領域外時基準値)以上になるような値になる。そこで、本実施形態では、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域内正常値とほぼ一致し、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域外正常値との差が基準値以上である場合には、下流側空燃比センサ41には基準ガスの異常が生じていると判断される。 Further, when an abnormality such as an element crack occurs in the downstream air-fuel ratio sensor 41, that is, when a reference gas abnormality occurs in the downstream air-fuel ratio sensor 41, as described above, The detected value of the output current I by the current detector 61 in a state where the voltage V 2 in the limit current region is applied substantially matches the corresponding normal value in the limit current region. Similarly, if the displacement inclination to the downstream side air-fuel ratio sensor 41 has occurred, the output current by the current detection unit 61 in the state of applying the voltages V 1 in the proportional region downstream-side air-fuel ratio sensor 41 as described above The detected value of I is a value such that the difference from the corresponding normal value outside the limit current region is not less than a predetermined reference value (reference value outside the limit current region). Therefore, in this embodiment, substantially coincides with the limiting current region within the normal value detection value corresponding the output current I of the downstream air-fuel ratio sensor 41 at time t 2 ~t 3, and downstream at time t 3 ~t 4 When the difference between the detected value of the output current I of the side air-fuel ratio sensor 41 and the corresponding normal value outside the limit current region is greater than or equal to the reference value, the downstream air-fuel ratio sensor 41 has an abnormality in the reference gas. It is judged.

また、同様に、時刻t6〜t7において検出された下流側空燃比センサ41の出力電流Iと時刻t7〜t8において検出された下流側空燃比センサ41の出力電流Iとに基づいて検出することも可能である。この場合にも、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が理論空燃比である状態で、下流側空燃比センサ41への印加電圧Iが限界電流領域内の電圧V4であるときの出力電流が限界電流領域内正常値として予め実験的に又は計算により検出又は算出されている。同様に、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が理論空燃比である状態で、下流側空燃比センサ41への印加電圧Iが比例領域Wip内の電圧V3であるときの出力電流が限界電流領域外正常値として予め実験的に又は計算により検出又は算出されている。 Similarly, on the basis of the output current I of the downstream air-fuel ratio sensor 41 detected in the output current I and the time t 7 ~t 8 of the downstream air-fuel ratio sensor 41 which is detected at time t 6 ~t 7 It is also possible to detect. Also in this case, when the downstream air-fuel ratio sensor 41 is normal, the applied voltage I to the downstream air-fuel ratio sensor 41 is in a state where the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio. The output current at the voltage V 4 in the limit current region is detected or calculated in advance experimentally or by calculation as a normal value in the limit current region. Similarly, when the downstream air-fuel ratio sensor 41 is normal and the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio, the applied voltage I to the downstream air-fuel ratio sensor 41 is in the proportional range. The output current at the voltage V 3 in Wip is detected or calculated in advance experimentally or by calculation as a normal value outside the limit current region.

そして、図11に示したような制御を行った際に、下流側空燃比センサ41に限界電流領域内の電圧V4を印加した状態における電流検出部61による出力電流Iの検出値と、対応する限界電流領域内正常値との差が算出される。加えて、下流側空燃比センサ41に比例領域内の電圧V3を印加した状態における電流検出部61による出力電流Iの検出値と、対応する限界電流領域外正常値との差が算出される。このように算出された出力電流Iの差に基づいて、上述した時刻t2〜t4の場合と同様な手法で、下流側空燃比センサ41の異常モードが診断される。 When the control as shown in FIG. 11 is performed, the detected value of the output current I by the current detection unit 61 in a state where the voltage V 4 in the limit current region is applied to the downstream air-fuel ratio sensor 41, and the correspondence The difference from the normal value in the limiting current region is calculated. In addition, the difference between the detected value of the output current I by the current detector 61 and the corresponding normal value outside the limit current region in a state where the voltage V 3 in the proportional region is applied to the downstream air-fuel ratio sensor 41 is calculated. . Based on the difference between the output currents I calculated in this way, the abnormal mode of the downstream side air-fuel ratio sensor 41 is diagnosed by a method similar to that at the times t 2 to t 4 described above.

なお、上記実施形態では、燃料カット制御の実行中における時刻t2〜t4と、復帰後リッチ制御の実行中における時刻t6〜t8とにおいて、二回の異常診断が行われている。しかしながら、下流側空燃比センサ41の異常診断はこのうちの一方のみであってもよい。 In the above embodiment, abnormality diagnosis is performed twice at times t 2 to t 4 during execution of fuel cut control and at times t 6 to t 8 during execution of rich control after return. However, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 may be only one of them.

また、上記実施形態では、下流側空燃比センサ41の異常診断を例にとって説明したが、上流側空燃比センサ40の異常診断も同様に行うことができる。ただし、復帰後リッチ制御の実行中には上流側空燃比センサ40周りには上流側排気浄化触媒20に流入する前の排気ガスが流通する。したがって、復帰後リッチ制御の実行中には上流側空燃比センサ40周りを流通する排気ガスの空燃比がどのような空燃比になっているのかは不明である。このため、上流側空燃比センサ40の異常診断は、復帰後リッチ制御の実行中には行われない。   In the above embodiment, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 has been described as an example. However, the abnormality diagnosis of the upstream air-fuel ratio sensor 40 can be performed in the same manner. However, the exhaust gas before flowing into the upstream side exhaust purification catalyst 20 flows around the upstream side air-fuel ratio sensor 40 during execution of the rich control after the return. Therefore, it is unclear what the air-fuel ratio of the exhaust gas flowing around the upstream air-fuel ratio sensor 40 is during the rich control after return. For this reason, the abnormality diagnosis of the upstream air-fuel ratio sensor 40 is not performed during the execution of rich control after return.

さらに、上記実施形態では、限界電流領域内の一つの電圧と比例領域内の一つの電圧とを下流側空燃比センサ41に印加し、このときの空燃比センサ40、41の出力電流Iに基づいて空燃比センサ40、41の異常の種類を判定している。しかしながら、限界電流領域内及び比例領域内では、それぞれ複数の異なる電圧を印加するようにしてもよいし、限界電流領域内及び比例領域内のいずれか一方のみにおいて複数の異なる電圧を印加するようにしてもよい。ここで、限界電流領域内では基本的に印加電圧Vが変わっても出力電流Iは変化しないが、比例領域内では印加電圧Vが変わると出力電流Iも変化する。このため、比例領域内において異なる電圧を印加する数が限界電流領域内において異なる電圧を印加する数よりも多いことが好ましい。   Furthermore, in the above embodiment, one voltage in the limit current region and one voltage in the proportional region are applied to the downstream air-fuel ratio sensor 41, and based on the output current I of the air-fuel ratio sensors 40 and 41 at this time. Thus, the type of abnormality of the air-fuel ratio sensors 40 and 41 is determined. However, a plurality of different voltages may be applied in the limit current region and the proportional region, respectively, or a plurality of different voltages may be applied only in one of the limit current region and the proportional region. May be. Here, the output current I does not change even if the applied voltage V changes basically within the limit current region, but the output current I also changes when the applied voltage V changes within the proportional region. For this reason, it is preferable that the number of different voltages applied in the proportional region is larger than the number of different voltages applied in the limit current region.

本実施形態によれば、上述したように空燃比センサ40、41に限界電流領域内の電圧と比例領域内の電圧とを印加した状態で空燃比センサの出力電流を検出することにより、異なる異常モードを、特にオフセットずれによる異常とそれ以外の原因による異常とを区別することができる。   According to this embodiment, as described above, different abnormalities are detected by detecting the output current of the air-fuel ratio sensor in a state where the voltage in the limit current region and the voltage in the proportional region are applied to the air-fuel ratio sensors 40, 41. The mode can be distinguished particularly from an abnormality due to an offset deviation and an abnormality due to other causes.

<フローチャート>
図12は、下流側空燃比センサ41の異常診断を行う制御ルーチンのフローチャートを示している。特に、図12は、燃料カット制御の実行中において異常診断を行う場合、すなわち図11の時刻t2〜t4において異常診断を行う場合のフローチャートを示している。なお、図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
<Flowchart>
FIG. 12 shows a flowchart of a control routine for diagnosing abnormality of the downstream air-fuel ratio sensor 41. In particular, FIG. 12 shows a flowchart when an abnormality diagnosis is performed during execution of the fuel cut control, that is, when an abnormality diagnosis is performed at times t 2 to t 4 in FIG. The illustrated control routine is performed by interruption at regular time intervals.

まず、ステップS11では、異常診断の実行条件が成立しているか否かが判定される。異常診断の実行条件が成立する場合とは、例えば、下流側空燃比センサ41の温度がその活性温度以上になっており且つ内燃機関の始動後、或いは内燃機関を搭載した車両のイグニッションキーがオンにされた後、下流側空燃比センサ41の異常診断が未完了の場合に成立する。ステップS11において、異常診断の実行条件が成立していないと判定された場合には、ステップS12へと進む。ステップS12では、後述する異なる電圧の印加回数iが1にリセットされ、1〜n回目の電圧の印加時における出力電流I(1)〜I(n)が0にリセットされ、制御ルーチンが終了せしめられる。   First, in step S11, it is determined whether or not an abnormality diagnosis execution condition is satisfied. When the condition for executing the abnormality diagnosis is satisfied, for example, the temperature of the downstream air-fuel ratio sensor 41 is equal to or higher than its activation temperature and the ignition key of the vehicle equipped with the internal combustion engine is turned on after the internal combustion engine is started. This is established when the abnormality diagnosis of the downstream air-fuel ratio sensor 41 has not been completed. If it is determined in step S11 that the abnormality diagnosis execution condition is not satisfied, the process proceeds to step S12. In step S12, the number of application times i of different voltages to be described later is reset to 1, the output currents I (1) to I (n) at the time of application of the first to nth voltages are reset to 0, and the control routine is terminated. It is done.

一方、ステップS11において、異常診断の実行条件が成立していると判定された場合にはステップS13へと進む。ステップS13では、燃料カット制御(FC)の実行中であるか否かが判定される。ステップS13において、燃料カット制御の実行中でないと判定された場合には、ステップS12へと進み、電圧の印加回数iが1にリセットされ、1〜n回目の電圧の印加時における出力電流が0にリセットされ、制御ルーチンが終了せしめられる。   On the other hand, if it is determined in step S11 that the abnormality diagnosis execution condition is satisfied, the process proceeds to step S13. In step S13, it is determined whether fuel cut control (FC) is being executed. If it is determined in step S13 that the fuel cut control is not being executed, the process proceeds to step S12, where the voltage application count i is reset to 1, and the output current at the time of the first to n-th voltage application is 0. To reset the control routine.

その後、燃料カット制御の実行が開始されると、次の制御ルーチンではステップS13からステップS14へと進む。ステップS14では、下流側空燃比センサ41への印加電圧Vが第i回目の印加電圧V(i)とされる。ここで、第i回目の印加電圧V(i)は予め設定されている。例えば、第1回目の印加電圧V(1)は、空燃比センサ40、41に何の異常も生じていない場合に、空燃比センサ40、41周りに大気ガスが流通している状態で生じる限界電流領域内の電圧とされる。加えて、第2回目の印加電圧V(2)は、空燃比センサ40、41に何の異常も生じていない場合に、空燃比センサ40、41周りに大気ガスが流通している状態で生じる比例領域内の電圧とされる。なお、異なる電圧の印加回数i及び第i回目の印加電圧V(i)は、限界電流領域内の電圧を少なくとも一回印加し、比例領域内の電圧を少なくとも一回印加すれば、如何なる回数及び電圧に設定されてもよい。   Thereafter, when execution of fuel cut control is started, the process proceeds from step S13 to step S14 in the next control routine. In step S14, the applied voltage V to the downstream air-fuel ratio sensor 41 is set to the i-th applied voltage V (i). Here, the i-th applied voltage V (i) is set in advance. For example, the first applied voltage V (1) is a limit that occurs when air gas is circulating around the air-fuel ratio sensors 40, 41 when no abnormality occurs in the air-fuel ratio sensors 40, 41. The voltage is in the current region. In addition, the second applied voltage V (2) is generated in a state where air gas is circulating around the air-fuel ratio sensors 40, 41 when no abnormality has occurred in the air-fuel ratio sensors 40, 41. The voltage is within the proportional range. Note that the number of times i and the i-th applied voltage V (i) of different voltages are applied as long as the voltage in the limit current region is applied at least once and the voltage in the proportional region is applied at least once. The voltage may be set.

ここで、燃料カット制御の実行開始前には電圧の印加回数iはステップS12によって1に設定されている。したがって、燃料カット制御の実行開始直後においてステップS14では、電圧の印加回数iは1にセットされている。このため、燃料カット制御の実行開始直後には、印加電圧Vは第1回目の印加電圧V(1)とされ、例えば、限界電流領域内の電圧V2とされる。次いで、ステップS15では、下流側空燃比センサ41の出力電流Iが安定したか否かが判定される。下流側空燃比センサ41の出力電流Iが安定したか否かは、例えば、単位時間あたりの下流側空燃比センサ41の出力電流Iの変化量が一定量以下になったか否かに基づいて判定される。或いは、下流側空燃比センサ41の出力電流Iが安定したか否かは、印加電圧Vを変更してからの経過時間が予め定められた時間以上であるか否かに基づいて判定されてもよい。 Here, before the start of the fuel cut control, the voltage application count i is set to 1 in step S12. Therefore, immediately after the start of the fuel cut control, the voltage application count i is set to 1 in step S14. For this reason, immediately after the start of the fuel cut control, the applied voltage V is the first applied voltage V (1), for example, the voltage V 2 in the limit current region. Next, in step S15, it is determined whether or not the output current I of the downstream air-fuel ratio sensor 41 has become stable. Whether or not the output current I of the downstream air-fuel ratio sensor 41 has stabilized is determined based on, for example, whether or not the amount of change in the output current I of the downstream air-fuel ratio sensor 41 per unit time has become a certain amount or less. Is done. Alternatively, whether or not the output current I of the downstream side air-fuel ratio sensor 41 is stable may be determined based on whether or not the elapsed time after changing the applied voltage V is equal to or longer than a predetermined time. Good.

ステップS15において、下流側空燃比センサ41の出力電流Iが安定していないと判定された場合には、制御ルーチンが終了せしめられる。一方、下流側空燃比センサ41の出力電流Iが安定すると、ステップS15からステップS16へと進む。ステップS16では、ステップS15において下流側空燃比センサ41の出力電流Iが安定したと判定されてからの経過時間が予め定められた一定時間Δt以上であるか否かが判定される。ステップS16において、経過時間が一定時間Δtよりも短いと判定された場合には制御ルーチンが終了せしめられる。   If it is determined in step S15 that the output current I of the downstream air-fuel ratio sensor 41 is not stable, the control routine is terminated. On the other hand, when the output current I of the downstream air-fuel ratio sensor 41 is stabilized, the process proceeds from step S15 to step S16. In step S16, it is determined whether or not the elapsed time since the output current I of the downstream air-fuel ratio sensor 41 has been stabilized in step S15 is equal to or longer than a predetermined time Δt. If it is determined in step S16 that the elapsed time is shorter than the predetermined time Δt, the control routine is terminated.

一方、下流側空燃比センサ41の出力電流Iが安定したと判定されてから時間が経って、一定時間Δt以上が経過すると、次の制御ルーチンでは、ステップS16からステップS17へと進む。ステップS17では、下流側空燃比センサ41の出力電流Iが安定したと判定されてから一定時間Δtが経過するまでの下流側空燃比センサ41の出力電流Iの平均値が算出され、この平均値が第i回目の印加電圧V(i)を印加したときの出力電流I(i)とされる。したがって、第1回目の印加電圧V(1)が印加されているときには、第1回目の印加電圧V(1)を印加したときの出力電流I(1)が算出される。   On the other hand, when a predetermined time Δt has elapsed after it has been determined that the output current I of the downstream air-fuel ratio sensor 41 has stabilized, the process proceeds from step S16 to step S17 in the next control routine. In step S17, an average value of the output current I of the downstream side air-fuel ratio sensor 41 from when it is determined that the output current I of the downstream side air-fuel ratio sensor 41 is stable until a predetermined time Δt elapses is calculated. Is the output current I (i) when the i-th applied voltage V (i) is applied. Therefore, when the first applied voltage V (1) is applied, the output current I (1) when the first applied voltage V (1) is applied is calculated.

次いで、ステップS18では、異なる電圧の印加回数iがn回以上であるか否かが判定される。nは2以上の値とされる。現在の異なる電圧の印加回数iがnよりも少ない場合にはステップS19へと進む。ステップS19では、異なる電圧の印加回数iに1が加算され制御ルーチンが終了せしめられる。   Next, in step S18, it is determined whether the number of application times i of different voltages is n or more. n is a value of 2 or more. If the current application number i of different voltages is less than n, the process proceeds to step S19. In step S19, 1 is added to the number of application times i of different voltages, and the control routine is terminated.

異なる電圧の印加回数iに1が加算されて異なる電圧の印加回数が2になると次の制御ルーチンでは、ステップS14において、印加電圧Vが第2回目の印加電圧V(2)とされる。その後、印加電圧Vが第2回目の印加電圧V(2)とされた後に下流側空燃比センサ41の出力電流Iが安定したと判定されてからの経過時間が一定時間Δt以上になると、再びステップS17へと進む。ステップS17では下流側空燃比センサ41の出力電流Iが安定したと判定されてから一定時間Δtが経過するまでの下流側空燃比センサ41の出力電流Iの平均値が算出され、この平均値が第2回目の印加電圧V(2)を印加したときの出力電流I(2)とされる。   When 1 is added to the number of application times i of different voltages and the number of application times of different voltages becomes 2, in the next control routine, the applied voltage V is set to the second applied voltage V (2) in step S14. After that, after the applied voltage V is set to the second applied voltage V (2) and the elapsed time after it is determined that the output current I of the downstream air-fuel ratio sensor 41 is stabilized becomes equal to or longer than the predetermined time Δt, Proceed to step S17. In step S17, an average value of the output current I of the downstream side air-fuel ratio sensor 41 from the time when it is determined that the output current I of the downstream side air-fuel ratio sensor 41 has stabilized until a predetermined time Δt elapses is calculated. The output current I (2) when the second applied voltage V (2) is applied.

次いで、ステップS18では、異なる電圧の印加回数iがn回以上であるか否かが判定され、nが2であるときには、異なる電圧の印加回数iがn回以上になっていると判定される。一方、nが3以上であるときには、異なる電圧の印加回数がn回になるまで、ステップS11〜S17が繰り返される。ステップS18において、異なる電圧の印加回数iがn回以上であると判定された場合には、ステップS20へと進む。   Next, in step S18, it is determined whether or not the number of application times i of different voltages is n or more. When n is 2, it is determined that the number of application times i of different voltages is n or more. . On the other hand, when n is 3 or more, steps S11 to S17 are repeated until the number of different voltage applications is n. If it is determined in step S18 that the number of application times i of different voltages is n or more, the process proceeds to step S20.

ステップS20では、ステップS17で算出された出力電流I(0)〜I(n)に基づいて、これらを上述したように正常値と比較して、下流側空燃比センサ41の異常モードが判定される。次いで、ステップS21では、異なる電圧の印加回数iが1にリセットされ、1〜n回目の電圧の印加時における出力電流が0にリセットされ、制御ルーチンが終了せしめられる。   In step S20, based on the output currents I (0) to I (n) calculated in step S17, these are compared with normal values as described above, and the abnormal mode of the downstream air-fuel ratio sensor 41 is determined. The Next, in step S21, the number i of application of different voltages is reset to 1, the output current at the time of the first to n-th voltage application is reset to 0, and the control routine is terminated.

なお、図12に示した制御ルーチンは、燃料カット制御の実行中において異常診断を行う場合を示しているが、復帰後リッチ制御の実行中において異常診断を行う場合も同様な制御ルーチンにて異常診断を行うことが可能である。この場合、ステップS13において、燃料カット制御の実行中であるか否かではなく、復帰後リッチ制御の実行中であるか否かが判定される。また、この場合、第i回目の印加電圧V(i)も燃料カット制御の実行中の場合における印加電圧とは異なる電圧とされる。   The control routine shown in FIG. 12 shows a case where abnormality diagnosis is performed during execution of fuel cut control. However, when abnormality diagnosis is performed during execution of rich control after return, the same control routine performs abnormality diagnosis. Diagnosis can be made. In this case, in step S13, it is determined whether or not the post-return rich control is being executed, not whether or not the fuel cut control is being executed. In this case, the i-th applied voltage V (i) is also different from the applied voltage when the fuel cut control is being executed.

<第二実施形態>
次に、図13及び図14を参照して、本発明の第二実施形態に係る異常診断装置について説明する。第二実施形態に係る異常診断装置における構成及び制御は、以下で説明する部分を除いて、基本的に第一実施形態に係る異常診断装置における構成及び制御と同様である。
<Second embodiment>
Next, with reference to FIG.13 and FIG.14, the abnormality diagnosis apparatus which concerns on 2nd embodiment of this invention is demonstrated. The configuration and control in the abnormality diagnosis device according to the second embodiment are basically the same as the configuration and control in the abnormality diagnosis device according to the first embodiment, except for the parts described below.

ところで、上流側空燃比センサ40には異常が発生していない場合、上流側空燃比センサ40の出力空燃比が目標空燃比になるようにフィードバック制御を行っていると、上流側排気浄化触媒20に流入する排気ガスの空燃比は目標空燃比と同一の空燃比となる。したがって、目標空燃比を理論空燃比に一定に維持した場合には、上流側排気浄化触媒20に流入する排気ガスの空燃比は理論空燃比となり、下流側空燃比センサ41周りを流通する排気ガスの空燃比も理論空燃比に一定に維持される。   By the way, when the upstream air-fuel ratio sensor 40 is not abnormal, the feedback control is performed so that the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes the target air-fuel ratio. The air-fuel ratio of the exhaust gas flowing into the air-fuel ratio is the same as the target air-fuel ratio. Therefore, when the target air-fuel ratio is kept constant at the stoichiometric air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the stoichiometric air-fuel ratio, and the exhaust gas flowing around the downstream air-fuel ratio sensor 41 The air-fuel ratio is also kept constant at the stoichiometric air-fuel ratio.

また、目標空燃比をリッチ空燃比に一定に維持した場合には、上流側排気浄化触媒20において流入した排気ガス中の未燃ガスが上流側排気浄化触媒20において浄化される。このため、目標空燃比をリッチ空燃比に維持し始めたときには、下流側空燃比センサ41周りを流通する排気ガスの空燃比はほぼ理論空燃比となる。しかしながら、上流側排気浄化触媒20の酸素吸蔵量がゼロになると、もはや上流側排気浄化触媒20では未燃ガスは浄化されなくなる。このため、最終的には、下流側空燃比センサ41周りを流通する排気ガスの空燃比はリッチ空燃比である目標空燃比に一定に維持されることになる。   Further, when the target air-fuel ratio is kept constant at the rich air-fuel ratio, unburned gas in the exhaust gas flowing in the upstream side exhaust purification catalyst 20 is purified in the upstream side exhaust purification catalyst 20. For this reason, when the target air-fuel ratio starts to be maintained at the rich air-fuel ratio, the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 becomes substantially the stoichiometric air-fuel ratio. However, when the oxygen storage amount of the upstream side exhaust purification catalyst 20 becomes zero, the upstream side exhaust purification catalyst 20 no longer purifies unburned gas. Therefore, finally, the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is kept constant at the target air-fuel ratio that is a rich air-fuel ratio.

下流側空燃比センサ41の異常診断を行う場合には、上流側空燃比センサ40の出力空燃比が目標空燃比になるようにフィードバック制御されている限り、下流側空燃比センサ41周りを流通する排気ガスの空燃比を目標空燃比に一定に維持することができる。そこで、本実施形態では、目標空燃比を所定の空燃比に一定に維持することで、下流側空燃比センサ41周りに流通する排気ガスの空燃比が予め定められた一定の空燃比に維持されているときに、下流側空燃比センサ41の異常診断を行うようにしている。   When the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed, as long as feedback control is performed so that the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes the target air-fuel ratio, the area around the downstream air-fuel ratio sensor 41 is circulated. The air-fuel ratio of the exhaust gas can be kept constant at the target air-fuel ratio. Therefore, in the present embodiment, the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is maintained at a predetermined constant air-fuel ratio by maintaining the target air-fuel ratio constant at a predetermined air-fuel ratio. The downstream side air-fuel ratio sensor 41 is diagnosed for abnormality.

次に、図13に示すタイムチャートを参照しつつ、目標空燃比を理論空燃比に維持する場合を例にとって、本実施形態における下流側空燃比センサ41の異常診断について説明する。図13は、異常診断フラグ、目標空燃比、上流側空燃比センサ40の出力空燃比、下流側空燃比センサ41の出力空燃比及び下流側空燃比センサ41への印加電圧のタイムチャートである。   Next, referring to the time chart shown in FIG. 13, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 in the present embodiment will be described by taking as an example the case where the target air-fuel ratio is maintained at the stoichiometric air-fuel ratio. FIG. 13 is a time chart of the abnormality diagnosis flag, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor 40, the output air-fuel ratio of the downstream air-fuel ratio sensor 41, and the voltage applied to the downstream air-fuel ratio sensor 41.

本実施形態でも、図5を参照しつつ既に説明したように、通常、目標空燃比はリッチ設定空燃比AFTrichとリーン設定空燃比AFTleanとに交互に変更されている。図13に示した例では、時刻t1において、異常診断が開始すべく目標空燃比が理論空燃比とされる前は、目標空燃比をリッチ空燃比とリーン空燃比とに交互に変更する通常制御時において目標空燃比がリッチ設定空燃比AFTrichとなっている場合を示している。 Also in this embodiment, as already described with reference to FIG. 5, the target air-fuel ratio is normally changed alternately to the rich set air-fuel ratio AFTrich and the lean set air-fuel ratio AFTlean. In the example shown in FIG. 13, before the target air-fuel ratio is made the stoichiometric air-fuel ratio at the time t 1 to start the abnormality diagnosis, the target air-fuel ratio is changed to the rich air-fuel ratio and the lean air-fuel ratio alternately. This shows a case where the target air-fuel ratio is the rich set air-fuel ratio AFTrich during control.

図13に示した例では、時刻t1において、異常診断を開始すべく、目標空燃比がリッチ設定空燃比AFTrichから理論空燃比(14.6)に変更される。これに伴って、上流側空燃比センサの出力空燃比AFupが理論空燃比に変化する。一方、下流側空燃比センサ41の出力空燃比AFdwnは理論空燃比のまま維持される。また、本実施形態では、異常診断が開始されると、下流側空燃比センサ41への印加電圧Vが第4の電流V4(例えば、0.45V)とされる。ここで、第四の電圧V4は、下流側空燃比センサ41に異常が生じていない場合に下流側空燃比センサ41周りに理論空燃比の排気ガスが流通している状態で生じる限界電流領域内の電圧である。 In the example shown in FIG. 13, at time t 1 , the target air-fuel ratio is changed from the rich set air-fuel ratio AFTrich to the stoichiometric air-fuel ratio (14.6) in order to start abnormality diagnosis. Along with this, the output air-fuel ratio AFup of the upstream air-fuel ratio sensor changes to the stoichiometric air-fuel ratio. On the other hand, the output air-fuel ratio AFdwn of the downstream air-fuel ratio sensor 41 is maintained as the stoichiometric air-fuel ratio. In the present embodiment, when abnormality diagnosis is started, the voltage V applied to the downstream air-fuel ratio sensor 41 is set to the fourth current V 4 (for example, 0.45 V). Here, the fourth voltage V 4 is a limit current region generated in a state where exhaust gas of the theoretical air-fuel ratio is circulating around the downstream air-fuel ratio sensor 41 when no abnormality occurs in the downstream air-fuel ratio sensor 41. Is the voltage inside.

その後、本実施形態では、時刻t1から予め定められた時間Δt0経過した時刻t2から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。ここで、時間Δt0は、例えば時刻t1において下流側空燃比センサ41の出力空燃比がリッチ空燃比となっていたような場合であっても、目標空燃比が理論空燃比に変更された結果、下流側空燃比センサ41の出力空燃比が理論空燃比に収束するのに必要な時間とされる。 Thereafter, in the present embodiment, the applied voltage to the downstream air-fuel ratio sensor 41 is kept constant for a predetermined time Δt from time t 2 when a predetermined time Δt 0 has elapsed from time t 1. . Here, at the time Δt 0 , for example, even when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is a rich air-fuel ratio at the time t 1 , the target air-fuel ratio is changed to the stoichiometric air-fuel ratio. As a result, the time required for the output air-fuel ratio of the downstream air-fuel ratio sensor 41 to converge to the stoichiometric air-fuel ratio is set.

その後、本実施形態では、時刻t2から予め定められた一定時間Δtが経過した時刻t3において、下流側空燃比センサ41への印加電圧Vが第三の電圧V3(例えば、0.1V)に低下せしめられる。ここで、第三の電圧V3は、下流側空燃比センサ41に異常が生じていない場合に下流側空燃比センサ41周りに理論空燃比の排気ガスが流通している状態で生じる比例領域Wip内の電圧である。本実施形態では、下流側空燃比センサ41への印加電圧Vが第三の電圧V3に変更された時刻t3から予め定められた一定時間Δtに亘って下流側空燃比センサ41への印加電圧が一定に維持される。 Then, in the present embodiment, at time t 3 when the predetermined time Δt has passed a predetermined from time t 2, the voltage V applied to the downstream-side air-fuel ratio sensor 41 is the third voltage V 3 (e.g., 0.1 V ). Here, the third voltage V 3 is a proportional region Wip generated in a state where exhaust gas of the stoichiometric air-fuel ratio is circulating around the downstream air-fuel ratio sensor 41 when no abnormality has occurred in the downstream air-fuel ratio sensor 41. Is the voltage inside. In the present embodiment, the application to the downstream air-fuel ratio sensor 41 is performed for a predetermined time Δt from time t 3 when the applied voltage V to the downstream air-fuel ratio sensor 41 is changed to the third voltage V 3. The voltage is kept constant.

図13に示した例では、時刻t3から予め定められた一定時間Δtが経過した時刻t4において、異常診断が完了する。したがって、時刻t4において、下流側空燃比センサ41への印加電圧が通常制御用の電圧(例えば、0.45V)に上昇せしめられると共に、目標空燃比もリッチ設定空燃比AFTrichに戻され、その後、図5に示した通常制御が行われる。 In the example shown in FIG. 13, at time t 4 when a certain time Δt predetermined from the time t 3 has elapsed, the abnormality diagnosis is completed. Therefore, at time t 4 , the voltage applied to the downstream side air-fuel ratio sensor 41 is raised to a voltage for normal control (for example, 0.45 V), and the target air-fuel ratio is also returned to the rich set air-fuel ratio AFTrich. The normal control shown in FIG. 5 is performed.

ここで、本実施形態においても、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が理論空燃比である状態で、下流側空燃比センサ41への印加電圧Iが限界電流領域内の電圧V4であるときの出力電流が限界電流領域内正常値として予め実験的に又は計算により検出又は算出されている。同様に、下流側空燃比センサ41が正常であるときに、下流側空燃比センサ41周りの排気空燃比が理論空燃比である状態で、下流側空燃比センサ41への印加電圧Iが比例領域内の電圧V3であるときの出力電流が限界電流領域外正常値として予め実験的に又は計算により検出又は算出されている。 Here, also in the present embodiment, when the downstream air-fuel ratio sensor 41 is normal, the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is in the state where the stoichiometric air-fuel ratio is the stoichiometric air-fuel ratio. The output current when the applied voltage I is the voltage V 4 in the limit current region is detected or calculated in advance experimentally or by calculation as a normal value in the limit current region. Similarly, when the downstream air-fuel ratio sensor 41 is normal and the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio, the applied voltage I to the downstream air-fuel ratio sensor 41 is in the proportional range. The output current at the voltage V 3 is detected or calculated in advance experimentally or by calculation as a normal value outside the limit current region.

そして、図13に示したような制御を行った際に、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域内正常値とほぼ一致し、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域外正常値とほぼ一致する場合には、下流側空燃比センサ41は正常であると判断される。また、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域内正常値との差が基準値以上であり、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域外正常値との差が基準値以上である場合には、下流側空燃比センサ41にはオフセットずれが生じていると判断される。 When the control as shown in FIG. 13 is performed, the detected value of the output current I of the downstream air-fuel ratio sensor 41 at the times t 2 to t 3 substantially coincides with the corresponding normal value in the limit current region, If the detected value of the output current I of the downstream air-fuel ratio sensor 41 at times t 3 to t 4 substantially matches the corresponding normal value outside the limit current region, it is determined that the downstream air-fuel ratio sensor 41 is normal. Is done. Further, the difference between the detected value of the output current I of the downstream side air-fuel ratio sensor 41 at the time t 2 to t 3 and the corresponding normal value in the limit current region is equal to or greater than the reference value, and the downstream at the time t 3 to t 4 . If the difference between the detected value of the output current I of the side air-fuel ratio sensor 41 and the corresponding normal value outside the limit current region is equal to or greater than the reference value, it is determined that the downstream air-fuel ratio sensor 41 has an offset deviation. Is done.

一方、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域内正常値との差が基準値以上であり、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域外正常値とほぼ一致する場合には、下流側空燃比センサ41には傾きずれが生じていると判断される。さらに、時刻t2〜t3における下流側空燃比センサ41の出力電流Iの検出値が対応する限界電流領域内正常値とほぼ一致し、且つ時刻t3〜t4における下流側空燃比センサ41の出力電流Iの検出値と対応する限界電流領域外正常値との差が基準値以上である場合には、下流側空燃比センサ41には基準ガス異常が生じていると判断される。 On the other hand, the difference between the detected value of the output current I of the downstream air-fuel ratio sensor 41 at times t 2 to t 3 and the corresponding normal value in the limit current region is equal to or greater than the reference value, and the downstream at times t 3 to t 4 . If the detected value of the output current I of the side air-fuel ratio sensor 41 substantially matches the corresponding normal value outside the limit current region, it is determined that the downstream air-fuel ratio sensor 41 has a tilt shift. Further, the time t 2 substantially coincides with the limiting current region within the normal value detection value corresponding the output current I of the downstream air-fuel ratio sensor 41 in ~t 3, the downstream air-fuel ratio sensor 41 at and time t 3 ~t 4 When the difference between the detected value of the output current I and the corresponding normal value outside the limit current region is equal to or larger than the reference value, it is determined that the downstream air-fuel ratio sensor 41 has a reference gas abnormality.

なお、図13は、目標空燃比を理論空燃比に一定に維持した場合を示しているが、目標空燃比を理論空燃比以外の空燃比に維持するようにしてもよい。ただし、この場合、下流側空燃比センサ41周りを流通する排気ガスの空燃比が安定するまでに、上流側排気浄化触媒20の酸素吸蔵量が最大吸蔵可能酸素量又はゼロに到達する必要がある。このため、下流側空燃比センサ41周りを流通する排気ガスの空燃比が収束するのに必要な時間である時間Δt0が比較的長い時間とされる。 FIG. 13 shows a case where the target air-fuel ratio is maintained constant at the stoichiometric air-fuel ratio, but the target air-fuel ratio may be maintained at an air-fuel ratio other than the stoichiometric air-fuel ratio. However, in this case, the oxygen storage amount of the upstream side exhaust purification catalyst 20 needs to reach the maximum storable oxygen amount or zero until the air-fuel ratio of the exhaust gas flowing around the downstream side air-fuel ratio sensor 41 becomes stable. . For this reason, the time Δt 0, which is the time required for the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 to converge, is a relatively long time.

本実施形態によれば、上述したように空燃比センサ40、41に限界電流領域内の電圧と比例領域内の電圧とを印加した状態で空燃比センサの出力電流を検出することにより、異なる異常モードを、特にオフセットずれによる異常とそれ以外の原因による異常とを区別することができる。   According to this embodiment, as described above, different abnormalities are detected by detecting the output current of the air-fuel ratio sensor in a state where the voltage in the limit current region and the voltage in the proportional region are applied to the air-fuel ratio sensors 40, 41. The mode can be distinguished particularly from an abnormality due to an offset deviation and an abnormality due to other causes.

また、第一実施形態では、燃料カット制御中又は復帰後リッチ制御中に異常診断が行われる。しかしながら、燃料カット制御及び復帰後リッチ制御は機関運転状態に応じて実行されるものであり、場合によっては長期間実行されないこともある。このため、長期間に亘って異常診断を実行することができない場合もある。これに対して、本実施形態では、通常制御を一時的に中断して目標空燃比を一定の値に維持すればよいため、如何なるタイミングでも異常診断を行うことができる。   In the first embodiment, an abnormality diagnosis is performed during fuel cut control or during return rich control. However, the fuel cut control and the post-return rich control are executed according to the engine operating state, and may not be executed for a long period of time depending on circumstances. For this reason, abnormality diagnosis may not be executed over a long period of time. On the other hand, in the present embodiment, the normal control may be temporarily interrupted to maintain the target air-fuel ratio at a constant value, so that abnormality diagnosis can be performed at any timing.

なお、上記第二実施形態では、異常診断を行うにあたり、目標空燃比を予め定められた一定の空燃比に維持するようにしている。しかしながら、異常診断を行うにあたり、目標空燃比をリッチ空燃比とリーン空燃比との間で交互に短い間隔で切り替えるようにしてもよい。目標空燃比をこのようにリッチ空燃比とリーン空燃比との間で交互に短い間隔で切り替えると、排気ガス中の未燃ガスや空気は上流側排気浄化触媒20で除去される。このため、下流側空燃比センサ41周りを流通する排気ガスの空燃比は理論空燃比で一定に維持されることになる。この場合、上流側排気浄化触媒20の酸素吸蔵量がゼロよりも多く且つ最大吸蔵可能酸素量よりも少ない量に維持されるように目標空燃比をリッチ空燃比とリーン空燃比との間で交互に変更する必要がある。   In the second embodiment, when performing abnormality diagnosis, the target air-fuel ratio is maintained at a predetermined constant air-fuel ratio. However, when performing abnormality diagnosis, the target air-fuel ratio may be switched between the rich air-fuel ratio and the lean air-fuel ratio alternately at short intervals. When the target air-fuel ratio is switched between the rich air-fuel ratio and the lean air-fuel ratio alternately at short intervals, unburned gas and air in the exhaust gas are removed by the upstream side exhaust purification catalyst 20. For this reason, the air-fuel ratio of the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is maintained constant at the stoichiometric air-fuel ratio. In this case, the target air-fuel ratio is alternated between the rich air-fuel ratio and the lean air-fuel ratio so that the oxygen storage amount of the upstream side exhaust purification catalyst 20 is maintained to be greater than zero and less than the maximum storable oxygen amount. It is necessary to change to.

<フローチャート>
図14は、下流側空燃比センサ41の異常診断を行う制御ルーチンのフローチャートを示している。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
<Flowchart>
FIG. 14 shows a flowchart of a control routine for performing abnormality diagnosis of the downstream air-fuel ratio sensor 41. The illustrated control routine is performed by interruption at regular time intervals.

図14に示したように、まず、ステップS31では、異常診断の実行条件が成立しているか否かが判定される。ステップS31において、異常診断の実行条件が成立していないと判定された場合には、ステップS32へと進む。ステップS32では、異なる電圧の印加回数iが1にリセットされ、1〜n回目の電圧の印加時における出力電流I(0)〜I(n)が0にリセットされ、制御ルーチンが終了せしめられる。   As shown in FIG. 14, first, in step S31, it is determined whether or not an abnormality diagnosis execution condition is satisfied. If it is determined in step S31 that the abnormality diagnosis execution condition is not satisfied, the process proceeds to step S32. In step S32, the number of application times i of different voltages is reset to 1, output currents I (0) to I (n) at the time of application of the first to nth voltages are reset to 0, and the control routine is terminated.

一方、ステップS32において、異常診断の実行条件が成立していないと判定された場合にはステップS33へと進む。ステップS33では、目標空燃比が理論空燃比(14.6)とされる。次いで、ステップS34では、ステップS14と同様に、下流側空燃比センサ41への印加電圧Vが第i回目の印加電圧V(i)とされる。次いでステップS35では、異なる電圧の印加回数iが2以上であるか否かが判定され、印加回数iが1回であるときには、ステップS36へと進む。ステップS36では、目標空燃比を理論空燃比に設定してからの経過時間が上述した所定の時間Δt0以上であるか否かが判定される。ステップS36において、目標空燃比を理論空燃比に設定してからの経過時間が上述した所定の時間Δt0未満であると判定された場合、すなわち下流側空燃比センサ41周りを流通する排気ガスの空燃比が安定していない場合があると判定された場合には、制御ルーチンが終了せしめられる。 On the other hand, if it is determined in step S32 that the abnormality diagnosis execution condition is not satisfied, the process proceeds to step S33. In step S33, the target air-fuel ratio is set to the theoretical air-fuel ratio (14.6). Next, in step S34, as in step S14, the applied voltage V to the downstream air-fuel ratio sensor 41 is set to the i-th applied voltage V (i). Next, in step S35, it is determined whether or not the number of application times i of different voltages is 2 or more. If the number of application times i is 1, the process proceeds to step S36. In step S36, it is determined whether or not an elapsed time after setting the target air-fuel ratio to the stoichiometric air-fuel ratio is equal to or greater than the predetermined time Δt 0 described above. In step S36, when it is determined that the elapsed time since the target air-fuel ratio is set to the stoichiometric air-fuel ratio is less than the predetermined time Δt 0 described above, that is, the exhaust gas flowing around the downstream air-fuel ratio sensor 41 is exhausted. If it is determined that the air-fuel ratio may not be stable, the control routine is terminated.

一方、ステップS36において、経過時間が所定の時間Δt0以上であると判定された場合には、ステップS36からステップS37へと進む。ステップS37では、目標空燃比を理論空燃比に設定してからの経過時間が所定の時間Δt0以上であると判定されてからの経過時間が予め定められた一定時間Δt以上であるか否かが判定される。ステップS37において経過時間が一定時間Δt以上であると判定されると、ステップS37からステップS38へと進む。ステップS38では、一定時間Δtが経過する間の下流側空燃比センサ41の出力電流Iの平均値が算出され、この平均値が第i回目の印加電圧V(i)を印加したときの出力電流I(i)とされる。次いで、ステップS39では、異なる電圧の印加回数iがn回以上であるか否かが判定される。現在の異なる電圧の印加回数iがnよりも少ない場合にはステップS40へと進む。ステップS40では、異なる電圧の印加回数iに1が加算され制御ルーチンが終了せしめられる。 On the other hand, if it is determined in step S36 that the elapsed time is equal to or longer than the predetermined time Δt 0 , the process proceeds from step S36 to step S37. In step S37, whether or not the elapsed time since the target air-fuel ratio is set to the stoichiometric air-fuel ratio is not less than a predetermined time Δt 0 is not less than a predetermined time Δt. Is determined. If it is determined in step S37 that the elapsed time is equal to or longer than the predetermined time Δt, the process proceeds from step S37 to step S38. In step S38, the average value of the output current I of the downstream side air-fuel ratio sensor 41 is calculated during the lapse of the fixed time Δt, and this average value is the output current when the i-th applied voltage V (i) is applied. I (i). Next, in step S39, it is determined whether or not the number of application times i of different voltages is n or more. If the current application number i of the different voltage is smaller than n, the process proceeds to step S40. In step S40, 1 is added to the number of application times i of different voltages, and the control routine is terminated.

異なる電圧の印加回数iに1が加算されて異なる電圧の印加回数が2になると次の制御ルーチンでは、ステップS35からステップS41へと進む。ステップS41では、印加電圧が変更されてから下流側空燃比センサ41の出力電流Iが安定したか否かが判定される。ステップS35において、下流側空燃比センサ41の出力電流Iが安定していないと判定された場合には、制御ルーチンが終了せしめられる。一方、下流側空燃比センサ41の出力電流Iが安定すると、ステップS41からステップS37へと進む。その後、ステップS37及びS38を経て、ステップS39に進む。ステップS39では、異なる電圧の印加回数iがn回以上であるか否か再びが判定され、nが2であるときには、異なる電圧の印加回数iがn回以上になっていると判定される。一方、nが3以上であるときには、異なる電圧の印加回数がn回になるまで、ステップS31〜S38が繰り返される。ステップS39において、異なる電圧の印加回数iがn回以上であると判定された場合には、ステップS42へと進む。   When 1 is added to the number of application times i of different voltages and the number of application times of different voltages becomes 2, the process proceeds from step S35 to step S41 in the next control routine. In step S41, it is determined whether or not the output current I of the downstream air-fuel ratio sensor 41 has stabilized after the applied voltage is changed. If it is determined in step S35 that the output current I of the downstream air-fuel ratio sensor 41 is not stable, the control routine is ended. On the other hand, when the output current I of the downstream air-fuel ratio sensor 41 is stabilized, the process proceeds from step S41 to step S37. Thereafter, the process proceeds to step S39 via steps S37 and S38. In step S39, it is determined again whether or not the number of application times i of different voltages is n or more. When n is 2, it is determined that the number of application times i of different voltages is n or more. On the other hand, when n is 3 or more, steps S31 to S38 are repeated until the number of application times of different voltages is n. If it is determined in step S39 that the number of application times i of different voltages is n or more, the process proceeds to step S42.

ステップS42では、ステップS38で算出された出力電流I(0)〜I(n)に基づいて、これらを上述したように正常値と比較して、下流側空燃比センサ41の異常モードが判定される。次いで、ステップS43では、異なる電圧の印加回数iが1にリセットされ、1〜n回目の電圧の印加時における出力電流が0にリセットされる。次いで、ステップS44では、目標空燃比が通常制御における目標空燃比に設定され、制御ルーチンが終了せしめられる。   In step S42, based on the output currents I (0) to I (n) calculated in step S38, these are compared with normal values as described above, and the abnormal mode of the downstream air-fuel ratio sensor 41 is determined. The Next, in step S43, the number i of application of different voltages is reset to 1, and the output current at the time of application of the first to nth voltages is reset to 0. Next, in step S44, the target air-fuel ratio is set to the target air-fuel ratio in normal control, and the control routine is ended.

1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ
DESCRIPTION OF SYMBOLS 1 Engine body 5 Combustion chamber 7 Intake port 9 Exhaust port 19 Exhaust manifold 20 Upstream exhaust purification catalyst 24 Downstream exhaust purification catalyst 31 ECU
40 upstream air-fuel ratio sensor 41 downstream air-fuel ratio sensor

Claims (11)

内燃機関の排気通路に設けられ且つ空燃比に応じた限界電流を発生させる空燃比センサの異常診断装置において、
前記空燃比センサの出力電流を検出する電流検出部と、前記空燃比センサへの印加電圧を制御する印加電圧制御装置とを具備しており、
前記空燃比センサ周りに流通する排気ガスの空燃比が予め定められた一定の空燃比にしたときに前記空燃比センサに限界電流が生じる限界電流領域内の電圧と該限界電流領域外の電圧とを印加し、このとき電流検出部により検出された前記空燃比センサの出力電流に基づいて前記空燃比センサに生じている異常の種類を判断する、空燃比センサの異常診断装置。
In an abnormality diagnosis apparatus for an air-fuel ratio sensor that is provided in an exhaust passage of an internal combustion engine and generates a limit current corresponding to the air-fuel ratio,
A current detector that detects an output current of the air-fuel ratio sensor; and an applied voltage control device that controls an applied voltage to the air-fuel ratio sensor.
A voltage within a limit current region where a limit current is generated in the air-fuel ratio sensor and a voltage outside the limit current region when the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is set to a predetermined constant air-fuel ratio; An abnormality diagnosis device for an air-fuel ratio sensor that determines the type of abnormality occurring in the air-fuel ratio sensor based on the output current of the air-fuel ratio sensor detected by a current detection unit at this time.
前記限界電流領域外の電圧は、該限界電流領域よりも低く且つ印加電圧の上昇に伴って出力電流が上昇する比例領域内の電圧である、請求項1に記載の空燃比センサの異常診断装置。   2. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the voltage outside the limit current region is a voltage within a proportional region that is lower than the limit current region and in which the output current increases as the applied voltage increases. . 前記空燃比センサが正常である場合に、前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で該空燃比センサに前記限界電流領域内の電圧を印加したとき及び前記限界電流領域外の電圧を印加したときの出力電流がそれぞれ限界電流領域内正常値及び限界電流領域外正常値として予め検出又は算出され、
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で、前記空燃比センサに前記限界電流領域内の電圧及び該限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値及び前記限界電流領域外正常値との差に基づいて前記空燃比センサに生じている異常の種類を判断する、請求項1又は2に記載の空燃比センサの異常診断装置。
When the air-fuel ratio sensor is normal, the air-fuel ratio sensor is maintained in the limit current region while the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio. Output current when applying a voltage of and the voltage outside the limit current region is detected or calculated in advance as a normal value within the limit current region and a normal value outside the limit current region, respectively,
With the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor maintained at the predetermined constant air-fuel ratio, the air-fuel ratio sensor is supplied with a voltage within the limit current region and a voltage outside the limit current region. The type of abnormality occurring in the air-fuel ratio sensor is determined based on the difference between the detected value of the output current of the air-fuel ratio sensor when the voltage is applied and the normal value in the limit current region and the normal value outside the limit current region The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1 or 2.
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域内の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値との差が予め定められた限界電流領域内時基準値以上であり、且つ前記空燃比センサ周りに流通する排気ガスの空燃比が予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域外正常値との差が予め定められた限界電流領域外時基準値以上である場合には、前記空燃比センサ周りに流通する排気ガスの空燃比に対して前記空燃比センサの出力電流が全体的にずれているオフセットずれが前記空燃比センサに生じていると判断する、請求項3に記載の空燃比センサの異常診断装置。   The air-fuel ratio sensor when a voltage within the limit current region is applied to the air-fuel ratio sensor in a state where the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio The difference between the detected value of the output current and the normal value in the limit current region is equal to or greater than a predetermined reference value in the limit current region, and the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is determined in advance. The difference between the detected value of the output current of the air-fuel ratio sensor and the normal value outside the limit current area when a voltage outside the limit current area is applied to the air-fuel ratio sensor while being maintained at a constant air-fuel ratio. Is equal to or greater than a predetermined reference value outside the limit current region, an offset in which the output current of the air-fuel ratio sensor is totally deviated from the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor Before the gap It is determined to be occurring in the air-fuel ratio sensor, abnormality diagnosis device for an air-fuel ratio sensor according to claim 3. 前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域内の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域内正常値との差が予め定められた限界電流領域内時基準値以上であり、且つ前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持された状態で前記空燃比センサに前記限界電流領域外の電圧を印加したときの前記空燃比センサの出力電流の検出値と前記限界電流領域外正常値との差が予め定められた限界電流領域外時基準値未満である場合には、前記空燃比センサ周りに流通する排気ガスの空燃比の変化に対する前記空燃比センサの出力電流の変化の程度がずれている傾きずれが前記空燃比センサに生じていると判断する、請求項3又は4に記載の空燃比センサの異常診断装置。   The air-fuel ratio sensor when a voltage within the limit current region is applied to the air-fuel ratio sensor in a state where the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio The difference between the detected value of the output current and the normal value in the limit current region is equal to or greater than a predetermined reference value in the limit current region, and the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is The detected value of the output current of the air-fuel ratio sensor and the normal value outside the limit current area when a voltage outside the limit current area is applied to the air-fuel ratio sensor while being maintained at a predetermined constant air-fuel ratio. When the difference is less than a predetermined reference value outside the limit current region, the degree of change in the output current of the air-fuel ratio sensor with respect to the change in the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is shifted. Slope Les is determined to have occurred in the air-fuel ratio sensor, abnormality diagnosis device for an air-fuel ratio sensor according to claim 3 or 4. 前記内燃機関は、その排気通路に配置された排気浄化触媒と、該排気浄化触媒の排気流れ方向上流側の前記排気通路に配置された上流側空燃比センサと、前記排気浄化触媒の排気流れ方向下流側の前記排気通路に配置された下流側空燃比センサとを具備し、該下流側空燃比センサが前記限界電流式の空燃比センサからなる、請求項1〜5のいずれか1項に記載の空燃比センサの異常診断装置。   The internal combustion engine includes an exhaust purification catalyst disposed in the exhaust passage, an upstream air-fuel ratio sensor disposed in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction, and an exhaust flow direction of the exhaust purification catalyst. 6. A downstream air-fuel ratio sensor disposed in the exhaust passage on the downstream side, wherein the downstream air-fuel ratio sensor comprises the limit current type air-fuel ratio sensor. An air-fuel ratio sensor abnormality diagnosis device. 前記内燃機関は、その排気通路に配置された排気浄化触媒と、該排気浄化触媒の排気流れ方向上流側の前記排気通路に配置された上流側空燃比センサと、前記排気浄化触媒の排気流れ方向下流側の前記排気通路に配置された下流側空燃比センサとを具備し、前記上流側空燃比センサが前記限界電流式の空燃比センサからなる、請求項1〜5のいずれか1項に記載の空燃比センサの異常診断装置。   The internal combustion engine includes an exhaust purification catalyst disposed in the exhaust passage, an upstream air-fuel ratio sensor disposed in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction, and an exhaust flow direction of the exhaust purification catalyst. 6. A downstream air-fuel ratio sensor disposed in the exhaust passage on the downstream side, wherein the upstream air-fuel ratio sensor is composed of the limit current type air-fuel ratio sensor. An air-fuel ratio sensor abnormality diagnosis device. 前記内燃機関は、該内燃機関の作動中に燃焼室への燃料の供給を停止する燃料カット制御を実行可能であり、
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記燃料カット制御の実行中である、請求項1〜7のいずれか1項に記載の空燃比センサの異常診断装置。
The internal combustion engine is capable of executing fuel cut control for stopping the supply of fuel to the combustion chamber during operation of the internal combustion engine,
8. The fuel cut control is being executed when the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio. The abnormality diagnosis device for an air-fuel ratio sensor according to the item.
前記内燃機関は、該内燃機関の作動中に燃焼室への燃料の供給を停止する燃料カット制御と、該燃料カット制御の終了後に前記排気浄化触媒に流入する排気ガスの空燃比を理論空燃比よりもリッチなリッチ空燃比に制御する復帰後リッチ制御とを実行可能であり、
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記復帰後リッチ制御の実行中である、請求項7に記載の空燃比センサの異常診断装置。
The internal combustion engine has a fuel cut control for stopping the supply of fuel to the combustion chamber during operation of the internal combustion engine, and an air / fuel ratio of the exhaust gas flowing into the exhaust purification catalyst after the completion of the fuel cut control. It is possible to execute post-return rich control that controls to a richer rich air-fuel ratio,
The air-fuel ratio according to claim 7, wherein the post-return rich control is being executed when the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio. Sensor abnormality diagnosis device.
前記内燃機関は、前記上流側空燃比センサの出力空燃比が目標空燃比になるようにフィードバック制御を行っており、
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記目標空燃比が所定の空燃比に一定に維持されているときである、請求項7に記載の空燃比センサの異常診断装置。
The internal combustion engine performs feedback control so that the output air-fuel ratio of the upstream air-fuel ratio sensor becomes a target air-fuel ratio,
The air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio when the target air-fuel ratio is maintained constant at the predetermined air-fuel ratio. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 7.
前記内燃機関は、前記上流側空燃比センサの出力空燃比が目標空燃比になるようにフィードバック制御を行っており、
前記空燃比センサ周りに流通する排気ガスの空燃比が前記予め定められた一定の空燃比に維持されているときは、前記排気浄化触媒の酸素吸蔵量がゼロよりも多く且つ最大吸蔵可能酸素量よりも少ない量に維持されるように前記目標空燃比が理論空燃比よりもリッチなリッチ空燃比と理論空燃比よりもリーンなリーン空燃比との間で交互に変更されているときである、請求項7に記載の空燃比センサの異常診断装置。
The internal combustion engine performs feedback control so that the output air-fuel ratio of the upstream air-fuel ratio sensor becomes a target air-fuel ratio,
When the air-fuel ratio of the exhaust gas flowing around the air-fuel ratio sensor is maintained at the predetermined constant air-fuel ratio, the oxygen storage amount of the exhaust purification catalyst is greater than zero and the maximum storable oxygen amount When the target air-fuel ratio is alternately changed between a rich air-fuel ratio richer than the stoichiometric air-fuel ratio and a lean air-fuel ratio leaner than the stoichiometric air-fuel ratio so as to be maintained at a smaller amount. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 7.
JP2014228870A 2014-11-11 2014-11-11 Air-fuel ratio sensor abnormality diagnosis device Active JP6311578B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014228870A JP6311578B2 (en) 2014-11-11 2014-11-11 Air-fuel ratio sensor abnormality diagnosis device
US14/935,714 US10180112B2 (en) 2014-11-11 2015-11-09 Abnormality diagnosis system of air-fuel ratio sensor
EP15193867.7A EP3020949B1 (en) 2014-11-11 2015-11-10 Abnormality diagnosis system of air-fuel ratio sensor
CN201510763511.3A CN105587419B (en) 2014-11-11 2015-11-10 The apparatus for diagnosis of abnormality of air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228870A JP6311578B2 (en) 2014-11-11 2014-11-11 Air-fuel ratio sensor abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2016089799A true JP2016089799A (en) 2016-05-23
JP6311578B2 JP6311578B2 (en) 2018-04-18

Family

ID=54539909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228870A Active JP6311578B2 (en) 2014-11-11 2014-11-11 Air-fuel ratio sensor abnormality diagnosis device

Country Status (4)

Country Link
US (1) US10180112B2 (en)
EP (1) EP3020949B1 (en)
JP (1) JP6311578B2 (en)
CN (1) CN105587419B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052829A (en) * 2018-11-07 2020-05-15 도요타 지도샤(주) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP2020118084A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Internal combustion engine control device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330040B2 (en) * 2016-06-14 2019-06-25 Ford Global Technologies, Llc Method and system for air-fuel ratio control
JP6562047B2 (en) * 2017-08-10 2019-08-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6733648B2 (en) * 2017-12-12 2020-08-05 トヨタ自動車株式会社 Catalyst deterioration detector
JP6624321B1 (en) * 2019-03-22 2019-12-25 トヨタ自動車株式会社 Air-fuel ratio sensor abnormality detection device, air-fuel ratio sensor abnormality detection system, data analysis device, internal combustion engine control device, and air-fuel ratio sensor abnormality detection method
JP6998416B2 (en) * 2020-03-30 2022-01-18 本田技研工業株式会社 Deterioration judgment device for air-fuel ratio sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219328A (en) * 1988-02-26 1989-09-01 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
JPH01262460A (en) * 1988-04-13 1989-10-19 Fujikura Ltd Self-diagnosis method for deterioration of oxygen sensor
JPH0212049A (en) * 1988-06-30 1990-01-17 Honda Motor Co Ltd Method for deciding deterioration of oxygen concentration detector
JPH08327586A (en) * 1995-06-05 1996-12-13 Nippondenso Co Ltd Abnormality diagnostic device for oxygen sensor
JPH09166569A (en) * 1995-12-15 1997-06-24 Denso Corp Air-fuel ratio sensor abnormality detecting device
JP2001234805A (en) * 2000-02-25 2001-08-31 Nissan Motor Co Ltd Degradation diagnostic device of air-fuel ratio sensor
JP2004245843A (en) * 2004-03-19 2004-09-02 Denso Corp Oxygen concentration sensing system
JP2006017078A (en) * 2004-07-05 2006-01-19 Toyota Industries Corp Deterioration determining device of catalyst in internal combustion engine
JP2006077659A (en) * 2004-09-09 2006-03-23 Denso Corp Irregularity diagnosing device for exhaust gas sensor
JP2007239491A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010071259A (en) * 2008-09-22 2010-04-02 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010174790A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Control device of air-fuel ratio sensor
JP2012068150A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Abnormality diagnostic device for oxygen sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938075A (en) * 1974-09-30 1976-02-10 The Bendix Corporation Exhaust gas sensor failure detection system
US4947818A (en) * 1988-04-28 1990-08-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with device for warning of malfunction in an air-fuel ratio control system
US5230320A (en) * 1991-06-27 1993-07-27 Mazda Motor Corporation Intake and exhaust control system for automobile engine
US5964208A (en) * 1995-03-31 1999-10-12 Denso Corporation Abnormality diagnosing system for air/fuel ratio feedback control system
JP3711582B2 (en) * 1995-03-31 2005-11-02 株式会社デンソー Oxygen concentration detector
US5781878A (en) 1995-06-05 1998-07-14 Nippondenso Co., Ltd. Apparatus and method for diagnosing degradation or malfunction of oxygen sensor
US5845489A (en) 1995-11-08 1998-12-08 Denso Corporation Abnormality detector for air-fuel ratio control system
US5769063A (en) 1996-06-05 1998-06-23 Toyota Jidosha Kabushiki Kaisha Malfunction detecting apparatus for air-fuel ratio sensor
JPH1062376A (en) 1996-06-05 1998-03-06 Toyota Motor Corp Abnormality detector for air-fuel ratio sensor
JP3500976B2 (en) 1998-08-06 2004-02-23 株式会社デンソー Abnormality diagnosis device for gas concentration sensor
JP4595718B2 (en) 2005-07-05 2010-12-08 トヨタ自動車株式会社 Abnormality detection device for air-fuel ratio sensor and internal combustion engine equipped with the abnormality detection device
JP4803502B2 (en) * 2007-06-22 2011-10-26 トヨタ自動車株式会社 Air-fuel ratio sensor abnormality diagnosis device
EP2899388A4 (en) 2012-09-20 2016-04-20 Toyota Motor Co Ltd Control device for internal combustion engine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219328A (en) * 1988-02-26 1989-09-01 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
JPH01262460A (en) * 1988-04-13 1989-10-19 Fujikura Ltd Self-diagnosis method for deterioration of oxygen sensor
JPH0212049A (en) * 1988-06-30 1990-01-17 Honda Motor Co Ltd Method for deciding deterioration of oxygen concentration detector
JPH08327586A (en) * 1995-06-05 1996-12-13 Nippondenso Co Ltd Abnormality diagnostic device for oxygen sensor
JPH09166569A (en) * 1995-12-15 1997-06-24 Denso Corp Air-fuel ratio sensor abnormality detecting device
JP2001234805A (en) * 2000-02-25 2001-08-31 Nissan Motor Co Ltd Degradation diagnostic device of air-fuel ratio sensor
JP2004245843A (en) * 2004-03-19 2004-09-02 Denso Corp Oxygen concentration sensing system
JP2006017078A (en) * 2004-07-05 2006-01-19 Toyota Industries Corp Deterioration determining device of catalyst in internal combustion engine
JP2006077659A (en) * 2004-09-09 2006-03-23 Denso Corp Irregularity diagnosing device for exhaust gas sensor
JP2007239491A (en) * 2006-03-06 2007-09-20 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010071259A (en) * 2008-09-22 2010-04-02 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2010174790A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Control device of air-fuel ratio sensor
JP2012068150A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Abnormality diagnostic device for oxygen sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052829A (en) * 2018-11-07 2020-05-15 도요타 지도샤(주) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP2020076639A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Failure detection device and failure detection method of gas sensor
KR102201463B1 (en) * 2018-11-07 2021-01-11 도요타 지도샤(주) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP7103176B2 (en) 2018-11-07 2022-07-20 トヨタ自動車株式会社 Gas sensor failure detection device, gas sensor failure detection method
JP2020118084A (en) * 2019-01-23 2020-08-06 トヨタ自動車株式会社 Internal combustion engine control device
JP7115335B2 (en) 2019-01-23 2022-08-09 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
US20160131064A1 (en) 2016-05-12
EP3020949B1 (en) 2019-01-02
EP3020949A1 (en) 2016-05-18
CN105587419B (en) 2018-11-27
CN105587419A (en) 2016-05-18
JP6311578B2 (en) 2018-04-18
US10180112B2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
JP6311578B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6020739B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6179371B2 (en) Air-fuel ratio sensor abnormality diagnosis device
KR101822562B1 (en) Exhaust gas purification system for internal combustion engine
JP6222020B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6237460B2 (en) Abnormality diagnosis device for internal combustion engine
JP6222037B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6323281B2 (en) Control device for internal combustion engine
JP6350434B2 (en) Abnormality diagnosis device for downstream air-fuel ratio sensor
JP6090092B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6288011B2 (en) Internal combustion engine
JP6110270B2 (en) Abnormality diagnosis device for internal combustion engine
JP6268976B2 (en) Control device for internal combustion engine
JP6056726B2 (en) Control device for internal combustion engine
JPWO2015029166A1 (en) Control device for internal combustion engine
JP6217739B2 (en) Exhaust gas purification device for internal combustion engine
WO2014118888A1 (en) Control device for internal combustion engine
JP6733648B2 (en) Catalyst deterioration detector
JP2015075082A (en) Air-fuel ratio sensor control device
JP6065888B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6350414B2 (en) Control device for internal combustion engine
JP2016196854A (en) Abnormality diagnostic device for air-fuel ratio sensor
JP2016211429A (en) Abnormality diagnosis device of downstream-side air-fuel ratio sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R151 Written notification of patent or utility model registration

Ref document number: 6311578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151