JP6065888B2 - Air-fuel ratio sensor abnormality diagnosis device - Google Patents

Air-fuel ratio sensor abnormality diagnosis device Download PDF

Info

Publication number
JP6065888B2
JP6065888B2 JP2014154072A JP2014154072A JP6065888B2 JP 6065888 B2 JP6065888 B2 JP 6065888B2 JP 2014154072 A JP2014154072 A JP 2014154072A JP 2014154072 A JP2014154072 A JP 2014154072A JP 6065888 B2 JP6065888 B2 JP 6065888B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio sensor
applied voltage
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014154072A
Other languages
Japanese (ja)
Other versions
JP2016031055A (en
Inventor
井手 宏二
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014154072A priority Critical patent/JP6065888B2/en
Publication of JP2016031055A publication Critical patent/JP2016031055A/en
Application granted granted Critical
Publication of JP6065888B2 publication Critical patent/JP6065888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排気通路に配置される空燃比センサの異常診断装置に関する。   The present invention relates to an abnormality diagnosis device for an air-fuel ratio sensor disposed in an exhaust passage of an internal combustion engine.

従来より、空燃比を目標空燃比に制御するようにした内燃機関では、空燃比に応じた限界電流が発生する限界電流式の空燃比センサを機関排気通路内に配置し、この空燃比センサにより空燃比が目標空燃比となるように機関に供給する燃料量をフィードバック制御するようにした内燃機関が公知である。ところが、この空燃比センサは、センサ素子の外表面とセンサ素子の内部空間とが連通してしまうような素子割れが発生する場合がある。このような素子割れが発生すると、空燃比センサは、空燃比に応じた適切な出力を発生させることができなくなり、その結果、空燃比を正確に目標空燃比にフィードバック制御しえなくなる。   Conventionally, in an internal combustion engine in which the air-fuel ratio is controlled to a target air-fuel ratio, a limit current type air-fuel ratio sensor that generates a limit current corresponding to the air-fuel ratio is disposed in the engine exhaust passage, and this air-fuel ratio sensor There is known an internal combustion engine in which the amount of fuel supplied to the engine is feedback controlled so that the air-fuel ratio becomes the target air-fuel ratio. However, in this air-fuel ratio sensor, there is a case where element cracking occurs such that the outer surface of the sensor element communicates with the internal space of the sensor element. When such element cracking occurs, the air-fuel ratio sensor cannot generate an appropriate output corresponding to the air-fuel ratio, and as a result, the air-fuel ratio cannot be accurately feedback-controlled to the target air-fuel ratio.

そこで、空燃比センサの素子割れを検出するための異常診断装置が従来より公知である(例えば、特許文献1)。この特許文献1によれば、通常、空燃比センサへの印加電圧は限界電流領域の中央に設定されており、空燃比センサのセンサ素子に割れが生じたり、電極上の白金が凝縮した場合には、空燃比センサへの印加電圧が限界電流領域の中央部から高電圧側又は低電圧側にずれるとのことである。従って、この特許文献1では、空燃比センサへの印加電圧が限界電流領域の中央部から高電圧側又は低電圧側にずれた場合には、空燃比センサのセンサ素子に割れが生じか、或いは電極上の白金が凝縮したと判断される。   Therefore, an abnormality diagnosis device for detecting element cracks in an air-fuel ratio sensor has been conventionally known (for example, Patent Document 1). According to Patent Document 1, the applied voltage to the air-fuel ratio sensor is normally set at the center of the limit current region, and when the sensor element of the air-fuel ratio sensor is cracked or platinum on the electrode is condensed. Means that the voltage applied to the air-fuel ratio sensor is shifted from the center of the limit current region to the high voltage side or the low voltage side. Therefore, in this patent document 1, when the applied voltage to the air-fuel ratio sensor is shifted from the central portion of the limit current region to the high voltage side or the low voltage side, the sensor element of the air-fuel ratio sensor is cracked, or It is determined that the platinum on the electrode has condensed.

特開2010−174790号公報JP 2010-174790 A

しかしながら、この特許文献1では、空燃比センサのセンサ素子に割れが生じたことを確実に検出することはできない。
本発明の目的は、空燃比センサの素子割れを確実に検出することのできる異常診断装置を提供することにある。
However, this Patent Document 1 cannot reliably detect that a crack has occurred in the sensor element of the air-fuel ratio sensor.
An object of the present invention is to provide an abnormality diagnosis device capable of reliably detecting element cracks in an air-fuel ratio sensor.

上記課題を解決するために、本発明によれば、内燃機関の排気通路に配置されかつ空燃比に応じた限界電流が発生する限界電流式の空燃比センサの異常診断装置において、空燃比センサの出力電流を検出する電流検出部と、空燃比センサへの印加電圧を制御する印加電圧制御装置とを具備しており、空燃比センサの素子割れが生じたときには、空燃比がリッチにされたときに、空燃比センサの正常時に空燃比に応じた限界電流が発生する範囲内で印加電圧Vを変化させると、空燃比センサの正常時に印加電圧Vを0.9Vよりも高い電圧で変化させたときの出力電流Iの変化パターンでもって、出力電流Iが変化し、印加電圧制御装置は、空燃比センサの異常を診断すべく空燃比がリッチにされたときに、空燃比センサの正常時に空燃比に応じた限界電流が発生する範囲内で印加電圧を変化させ、このとき電流検出部により空燃比センサの出力電流上述の変化パターンでもって予め定められた値以上変化したことが検出されたときには空燃比センサの素子割れが生じていると判定される空燃比センサの異常診断装置が提供される。 In order to solve the above-described problem, according to the present invention, an abnormality diagnosis device for a limit current type air-fuel ratio sensor that is disposed in an exhaust passage of an internal combustion engine and generates a limit current according to the air-fuel ratio is provided. A current detection unit for detecting the output current I and an applied voltage control device for controlling the applied voltage V to the air-fuel ratio sensor are provided . When an element crack of the air-fuel ratio sensor occurs, the air-fuel ratio is made rich. If the applied voltage V is changed within a range in which a limit current corresponding to the air-fuel ratio is generated when the air-fuel ratio sensor is normal, the applied voltage V changes at a voltage higher than 0.9 V when the air-fuel ratio sensor is normal. When the output current I changes according to the change pattern of the output current I when the air-fuel ratio is changed, the applied voltage control device determines that the air-fuel ratio sensor is normal when the air-fuel ratio is made rich to diagnose an abnormality of the air-fuel ratio sensor. Sometimes air-fuel ratio Varying the applied voltage V within a range corresponding limit current is generated, the output current I of the air-fuel ratio sensor is detected to have changed by more than a predetermined value with in the above described change pattern by the current detecting unit this time An abnormality diagnosis device for an air-fuel ratio sensor that is sometimes determined to have an element crack in the air-fuel ratio sensor is provided.

本発明によれば、空燃比センサの素子割れを正確に検出することができる。   According to the present invention, it is possible to accurately detect element cracks in the air-fuel ratio sensor.

図1は、本発明による異常診断装置が用いられている内燃機関を概略的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to the present invention is used. 図2は、空燃比センサの概略的な断面図である。FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor. 図3は、各排気空燃比A/Fにおける印加電圧Vと出力電流Iとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the applied voltage V and the output current I at each exhaust air-fuel ratio A / F. 図4は、印加電圧Vを一定にしたときの空燃比と出力電流Iとの関係を示す図である。FIG. 4 is a diagram showing the relationship between the air-fuel ratio and the output current I when the applied voltage V is constant. 図5は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量等の変化を示すタイムチャートである。FIG. 5 is a time chart showing changes in the oxygen storage amount and the like of the upstream side exhaust purification catalyst during normal operation of the internal combustion engine. 図6は、素子割れが生じている空燃比センサの概略的な断面図である。FIG. 6 is a schematic cross-sectional view of an air-fuel ratio sensor in which element cracking occurs. 図7は、空燃比センサの素子割れが生じたときの出力電流Iと空燃比A/Fとの関係を示す図である。FIG. 7 is a diagram showing the relationship between the output current I and the air-fuel ratio A / F when an element crack of the air-fuel ratio sensor occurs. 図8Aおよび8Bは、空燃比センサの素子割れが生じたときの出力電流Iと印加電圧Vとの関係を示す図である。8A and 8B are diagrams showing the relationship between the output current I and the applied voltage V when the element crack of the air-fuel ratio sensor occurs. 図9Aおよび9Bは、酸素濃度センサの概略的な断面図と、酸素濃度センサの出力電圧Eの変化とを示す図である。9A and 9B are diagrams showing a schematic cross-sectional view of the oxygen concentration sensor and a change in the output voltage E of the oxygen concentration sensor. 図10Aおよび10Bは、空燃比センサの概略的な断面図と、空燃比センサの出力電流Iの変化とを示す図である。10A and 10B are diagrams showing a schematic cross-sectional view of the air-fuel ratio sensor and a change in the output current I of the air-fuel ratio sensor. 図11A、11Bおよび11Cは、空燃比センサの出力電流Iを示す図である。11A, 11B, and 11C are diagrams showing the output current I of the air-fuel ratio sensor. 図12は、空燃比センサの出力電流Iを示す図である。FIG. 12 is a diagram showing the output current I of the air-fuel ratio sensor. 図13は、アクティブ制御を行ったときの下流側空燃比センサの出力空燃比等の変化を示すタイムチャートである。FIG. 13 is a time chart showing changes in the output air-fuel ratio of the downstream air-fuel ratio sensor when active control is performed. 図14は、アクティブ制御を行ったときの下流側空燃比センサの出力空燃比等の変化を示すタイムチャートである。FIG. 14 is a time chart showing changes in the output air-fuel ratio of the downstream air-fuel ratio sensor when active control is performed. 図15は、下流側空燃比センサの異常診断を行うためのフローチャートである。FIG. 15 is a flowchart for performing abnormality diagnosis of the downstream air-fuel ratio sensor. 図16は、下流側空燃比センサの異常診断を行うためのフローチャートである。FIG. 16 is a flowchart for performing abnormality diagnosis of the downstream air-fuel ratio sensor.

以下、図面を参照して本発明による一実施例について詳細に説明する。
<内燃機関全体の説明>
図1は、本発明による異常診断装置が用いられている内燃機関を概略的に示す図である。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
<Description of the internal combustion engine as a whole>
FIG. 1 is a diagram schematically showing an internal combustion engine in which an abnormality diagnosis apparatus according to the present invention is used. Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port.

図1に示されるように、シリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。この燃料噴射弁11からは燃料が燃焼室5内に向けて噴射される。なお、本発明による実施例では、燃料として理論空燃比が14.6であるガソリンが用いられている。しかしながら、ガソリン以外の燃料、或いはガソリンとの混合燃料を用いることもできる。   As shown in FIG. 1, a spark plug 10 is arranged at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is arranged around the inner wall surface of the cylinder head 4. Fuel is injected from the fuel injection valve 11 into the combustion chamber 5. In the embodiment according to the present invention, gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel. However, fuel other than gasoline or a mixed fuel with gasoline can also be used.

各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。また、吸気管15内にはアクチュエータ17によって駆動されるスロットル弁18が配置される。一方、各気筒の排気ポート9は排気マニホルド19に連結され、排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。   The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15. A throttle valve 18 driven by an actuator 17 is disposed in the intake pipe 15. On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19, and the aggregate portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20. The upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22. The exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.

電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するための吸入空気量検出器39が配置され、この吸入空気量検出器39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガスの空燃比を検出するための上流側空燃比センサ40が配置され、また排気管22内には排気管22内を流れる排気ガスの空燃比を検出するための下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。   An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input. A port 36 and an output port 37 are provided. The intake pipe 15 is provided with an intake air amount detector 39 for detecting the flow rate of air flowing through the intake pipe 15. The output of the intake air amount detector 39 is input to the input port via the corresponding AD converter 38. 36. Further, an upstream air-fuel ratio sensor 40 for detecting the air-fuel ratio of the exhaust gas flowing in the exhaust manifold 19 is disposed at the collecting portion of the exhaust manifold 19, and the exhaust gas flowing in the exhaust pipe 22 is disposed in the exhaust pipe 22. A downstream air-fuel ratio sensor 41 for detecting the air-fuel ratio of gas is disposed. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.

アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。   A load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38. For example, the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36. The CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44. On the other hand, the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.

上流側排気浄化触媒20及び下流側排気浄化触媒24は、セラミックから成る担体上に、貴金属(例えば、白金(Pt))および酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させた三元触媒からなる。三元触媒は、三元触媒に流入する排気ガスの空燃比が理論空燃比に維持されていると、未燃HC、COおよびNOxとを同時に浄化する機能を有するが、排気浄化触媒20、24が酸素吸蔵能力を有している場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、COおよびNOxとが同時に浄化される。 The upstream side exhaust purification catalyst 20 and the downstream side exhaust purification catalyst 24 support a noble metal (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a ceramic support. It consists of a three-way catalyst. The three-way catalyst has a function of simultaneously purifying unburned HC, CO and NOx when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst is maintained at the stoichiometric air-fuel ratio. If the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 slightly deviates from the stoichiometric air-fuel ratio to the rich side or lean side, the unburned HC, CO And NOx are simultaneously purified.

即ち、排気浄化触媒20、24が酸素吸蔵能力を有していると、排気浄化触媒20、24に流入する排気ガスの空燃比が若干リーンになったときには排気ガス中に含まれる過剰な酸素が排気浄化触媒20、24内に吸蔵され、排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、COおよびNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。一方、排気浄化触媒20、24に流入する排気ガスの空燃比が若干リッチになったときには排気ガス中に含まれる未燃HC、COを還元させるのに不足している酸素が排気浄化触媒20、24から放出され、この場合にも排気浄化触媒20、24の表面上が理論空燃比に維持される。その結果、排気浄化触媒20、24の表面上において未燃HC、COおよびNOxが同時に浄化され、このとき排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。   That is, if the exhaust purification catalysts 20, 24 have oxygen storage capacity, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 becomes slightly lean, excess oxygen contained in the exhaust gas The exhaust purification catalysts 20 and 24 are occluded, and the surfaces of the exhaust purification catalysts 20 and 24 are maintained at the stoichiometric air-fuel ratio. As a result, unburned HC, CO, and NOx are simultaneously purified on the surfaces of the exhaust purification catalysts 20, 24, and at this time, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 becomes slightly rich, the oxygen that is insufficient to reduce the unburned HC and CO contained in the exhaust gas is reduced. In this case as well, the surfaces of the exhaust purification catalysts 20, 24 are maintained at the stoichiometric air-fuel ratio. As a result, unburned HC, CO, and NOx are simultaneously purified on the surfaces of the exhaust purification catalysts 20, 24, and at this time, the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio.

このように、排気浄化触媒20、24が酸素吸蔵能力を有している場合には、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比に対してリッチ側或いはリーン側に若干ずれたとしても未燃HC、COおよびNOxとが同時に浄化され、排気浄化触媒20、24から流出する排気ガスの空燃比は理論空燃比となる。   As described above, when the exhaust purification catalysts 20 and 24 have the oxygen storage capacity, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20 and 24 is richer or leaner than the stoichiometric air-fuel ratio. Even if there is a slight deviation, unburned HC, CO and NOx are simultaneously purified, and the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalysts 20, 24 becomes the stoichiometric air-fuel ratio.

<空燃比センサの説明>
本発明による実施例では、空燃比センサ40、41として、コップ型の限界電流式空燃比センサが用いられている。次に、図2を参照しつつ、空燃比センサ40、41の構造について簡単に説明する。空燃比センサ40、41は、固体電解質層51と、その一方の側面上に配置された排気側電極52と、その他方の側面上に配置された大気側電極53と、通過する排気ガスの拡散律速を行う拡散律速層54と、基準ガス室55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
<Description of air-fuel ratio sensor>
In the embodiment according to the present invention, a cup-type limiting current type air-fuel ratio sensor is used as the air-fuel ratio sensors 40 and 41. Next, the structure of the air-fuel ratio sensors 40 and 41 will be briefly described with reference to FIG. The air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode 52 disposed on one side surface thereof, an atmosphere-side electrode 53 disposed on the other side surface, and diffusion of exhaust gas passing therethrough. A diffusion control layer 54 for controlling the rate, a reference gas chamber 55, and a heater unit 56 for heating the air-fuel ratio sensors 40 and 41 are provided.

特に、本発明による実施例におけるコップ型の空燃比センサ40、41では、固体電解質層51は一端が閉じられた円筒状に形成されている。固体電解質層51の内部に形成された基準ガス室55には、大気ガスが導入されると共に、ヒータ部56が配置される。固体電解質層51の内面上には大気側電極53が配置され、固体電解質層51の外面上には排気側電極52が配置される。固体電解質層51及び排気側電極52の外面上にはこれらを覆うように拡散律速層54が配置される。なお、拡散律速層54の外側には、拡散律速層54の表面上に液体等が付着するのを防止するための保護層(図示せず)を設けることもできる。   In particular, in the cup-type air-fuel ratio sensors 40 and 41 in the embodiment according to the present invention, the solid electrolyte layer 51 is formed in a cylindrical shape with one end closed. Atmospheric gas is introduced into the reference gas chamber 55 formed inside the solid electrolyte layer 51, and a heater portion 56 is disposed. An atmosphere side electrode 53 is disposed on the inner surface of the solid electrolyte layer 51, and an exhaust side electrode 52 is disposed on the outer surface of the solid electrolyte layer 51. On the outer surfaces of the solid electrolyte layer 51 and the exhaust-side electrode 52, a diffusion control layer 54 is disposed so as to cover them. A protective layer (not shown) for preventing liquid or the like from adhering to the surface of the diffusion rate controlling layer 54 can be provided outside the diffusion rate controlling layer 54.

固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。 The solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3 etc. as stabilizers. The sintered body is formed. The diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like. Furthermore, the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.

また、排気側電極52と大気側電極53との間には、ECU31によって制御される印加電圧制御装置60によりセンサ印加電圧Vが印加される。また、ECU31には、センサ印加電圧Vを印加したときに固体電解質層51を通ってこれら電極52、53間に流れる電流Iを検出する電流検出部61が設けられる。この電流検出部61によって検出される電流が空燃比センサ40、41の出力電流Iである。   Further, a sensor applied voltage V is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by an applied voltage control device 60 controlled by the ECU 31. Further, the ECU 31 is provided with a current detector 61 that detects a current I flowing between the electrodes 52 and 53 through the solid electrolyte layer 51 when the sensor applied voltage V is applied. The current detected by the current detector 61 is the output current I of the air-fuel ratio sensors 40 and 41.

このように構成された空燃比センサ40、41は、図3に示すような電圧−電流(V−I)特性を有する。図3からわかるように、空燃比センサ40、41の出力電流Iは、排気ガスの空燃比、即ち排気空燃比A/Fが高くなるほど、即ちリーンになるほど、大きくなる。また、各排気空燃比A/FにおけるV−I線には、センサ印加電圧V軸に平行な領域、すなわちセンサ印加電圧Vが変化しても出力電流Iがほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3には、排気空燃比が18であるときの限界電流領域及び限界電流それぞれW18、I18で示されている。 The air-fuel ratio sensors 40 and 41 configured in this way have voltage-current (V-I) characteristics as shown in FIG. As can be seen from FIG. 3, the output current I of the air-fuel ratio sensors 40 and 41 increases as the air-fuel ratio of the exhaust gas, that is, the exhaust air-fuel ratio A / F increases, that is, as the air-fuel ratio becomes leaner. The V-I line at each exhaust air-fuel ratio A / F includes a region parallel to the sensor applied voltage V axis, that is, a region where the output current I hardly changes even when the sensor applied voltage V changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current. In FIG. 3, the limiting current region and limit current when the exhaust air-fuel ratio is 18 is shown in each W18, I18.

図4は、印加電圧Vを0.45V程度(図3)で一定にしたときの、排気空燃比と出力電流Iとの関係を示している。図4からわかるように、空燃比センサ40、41では、排気空燃比が高くなるほど、即ち、リーンになるほど、空燃比センサ40、41からの出力電流Iが大きくなる。また、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になる。なお、空燃比センサ40、41としては、図2に示した構造の限界電流式空燃比センサに代えて、例えば積層型の限界電流式空燃比センサ等の他の構造の限界電流式空燃比センサを用いることもできる。   FIG. 4 shows the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage V is kept constant at about 0.45 V (FIG. 3). As can be seen from FIG. 4, in the air-fuel ratio sensors 40 and 41, the higher the exhaust air-fuel ratio, that is, the leaner the output current I from the air-fuel ratio sensors 40 and 41 increases. Further, the air-fuel ratio sensors 40 and 41 have an output current I of zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio. As the air-fuel ratio sensors 40 and 41, instead of the limit current type air-fuel ratio sensor having the structure shown in FIG. Can also be used.

<基本的な制御>
このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な空燃比となるように、燃料噴射弁11からの燃料噴射量が設定される。このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比、即ち、機関本体から流出する排気ガスの空燃比が目標空燃比となるように制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。
<Basic control>
In the internal combustion engine configured as described above, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is based on the engine operating state based on the outputs of the upstream side air-fuel ratio sensor 40 and the downstream side air-fuel ratio sensor 41. The fuel injection amount from the fuel injection valve 11 is set so as to achieve an optimal air-fuel ratio. As such a method for setting the fuel injection amount, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 based on the output of the upstream side air-fuel ratio sensor 40, that is, the air-fuel ratio of the exhaust gas flowing out from the engine body is used. Are controlled so as to be the target air-fuel ratio, and the output of the upstream air-fuel ratio sensor 40 is corrected based on the output of the downstream air-fuel ratio sensor 41, or the target air-fuel ratio is changed.

図5を参照して、このような目標空燃比の制御の例について、簡単に説明する。図5は、内燃機関の通常運転時における、上流側排気浄化触媒の酸素吸蔵量、目標空燃比、上流側空燃比センサの出力空燃比及び下流側空燃比センサの出力空燃比の変化を示すタイムチャートである。なお、「出力空燃比」は、空燃比センサの出力に相当する空燃比を意味する。また、「通常運転時」は、内燃機関の特定の運転状態に応じて燃料噴射量を調整する制御、例えば、内燃機関を搭載した車両の加速時に行われる燃料噴射量の増量補正制御や、燃料供給停止制御等を行っていない運転状態を意味する。   With reference to FIG. 5, an example of such control of the target air-fuel ratio will be briefly described. FIG. 5 is a time chart showing changes in the oxygen storage amount of the upstream side exhaust purification catalyst, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor, and the output air-fuel ratio of the downstream air-fuel ratio sensor during normal operation of the internal combustion engine. It is a chart. “Output air-fuel ratio” means an air-fuel ratio corresponding to the output of the air-fuel ratio sensor. The “normal operation” is a control that adjusts the fuel injection amount in accordance with a specific operation state of the internal combustion engine, for example, an increase correction control of the fuel injection amount that is performed during acceleration of a vehicle equipped with the internal combustion engine, This means an operating state in which supply stop control or the like is not performed.

図5に示した例では、下流側空燃比センサ41の出力空燃比がリッチ判定基準空燃比(例えば、14.55)以下となったときに、目標空燃比はリーン設定空燃比AFlean(例えば、15)に設定され、維持される。その後、上流側排気浄化触媒20の酸素吸蔵量が推定され、この推定値が予め定められた判定基準吸蔵量Cref(最大酸素吸蔵量Cmaxよりも少ない量)以上になると、目標空燃比はリッチ設定空燃比AFrich(例えば、14.4)に設定され、維持される。図5に示した例では、このような操作が繰り返し行われる。なお、この場合、上述したように、上流側空燃比センサ40の出力に基づいて機関本体から流出する排気ガスの空燃比が目標空燃比となるようにフィードバック制御されている。   In the example shown in FIG. 5, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference air-fuel ratio (for example, 14.55), the target air-fuel ratio is set to the lean set air-fuel ratio AFlean (for example, 15) and maintained. Thereafter, the oxygen storage amount of the upstream side exhaust purification catalyst 20 is estimated, and when this estimated value is equal to or greater than a predetermined reference storage amount Cref (an amount smaller than the maximum oxygen storage amount Cmax), the target air-fuel ratio is set to a rich setting. The air-fuel ratio AFrich (for example, 14.4) is set and maintained. In the example shown in FIG. 5, such an operation is repeatedly performed. In this case, as described above, feedback control is performed so that the air-fuel ratio of the exhaust gas flowing out from the engine body becomes the target air-fuel ratio based on the output of the upstream air-fuel ratio sensor 40.

具体的には、図5に示した例では、時刻t1の前では、目標空燃比がリッチ設定空燃比AFrichとされており、これに伴って、上流側空燃比センサ40の出力空燃比もリッチ空燃比となっている。また、上流側排気浄化触媒20には酸素が吸蔵されているので、下流側空燃比センサ41の出力空燃比は理論空燃比(14.6)となっている。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているので、上流側排気浄化触媒20の酸素吸蔵量は徐々に低下する。 Specifically, in the example shown in FIG. 5, the target air-fuel ratio is set to the rich set air-fuel ratio AFrich before time t 1 , and accordingly, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is also increased. It is a rich air-fuel ratio. Further, since oxygen is stored in the upstream side exhaust purification catalyst 20, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio (14.6). At this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.

その後、時刻t1においては、上流側排気浄化触媒20の酸素吸蔵量がゼロに近づくことにより、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出し始める。その結果、時刻t2において、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチなリッチ判定基準空燃比AFrefriとなり、このとき目標空燃比はリッチ設定空燃比AFrichからリーン設定空燃比AFleanへ切り替えられる。 Thereafter, at time t 1 , when the oxygen storage amount of the upstream side exhaust purification catalyst 20 approaches zero, a part of the unburned gas flowing into the upstream side exhaust purification catalyst 20 is purified by the upstream side exhaust purification catalyst 20. It begins to spill without. As a result, at time t 2 , the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes the rich determination reference air-fuel ratio AFrefri that is slightly richer than the theoretical air-fuel ratio, and at this time, the target air-fuel ratio is set lean from the rich set air-fuel ratio AFrich. The air / fuel ratio is switched to AFlean.

目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比になり、未燃ガスの流出が停止する。また、上流側排気浄化触媒20の酸素吸蔵量は徐々に増加し、時刻t3において、判定基準吸蔵量Crefに到達する。このように、酸素吸蔵量が判定基準吸蔵量Crefに到達すると、目標空燃比は、再びリーン設定空燃比AFlenaからリッチ設定空燃比AFrichへと切り替えられる。この目標空燃比の切替により、上流側排気浄化触媒20に流入する排気ガスの空燃比は再びリッチ空燃比となり、その結果、上流側排気浄化触媒20の酸素吸蔵量は徐々に減少し、以降は、このような操作が繰り返し行われる。このような制御を行うことにより、上流側排気浄化触媒20からNOxが流出するのを防止することができる。 By switching the target air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes a lean air-fuel ratio, and the outflow of unburned gas stops. Further, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually increases and reaches the determination reference storage amount Cref at time t 3 . As described above, when the oxygen storage amount reaches the determination reference storage amount Cref, the target air-fuel ratio is again switched from the lean set air-fuel ratio AFlena to the rich set air-fuel ratio AFrich. By switching the target air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes a rich air-fuel ratio again. As a result, the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases, and thereafter Such an operation is repeated. By performing such control, it is possible to prevent NOx from flowing out of the upstream side exhaust purification catalyst 20.

<空燃比センサの素子割れ>
ところで、上述したような空燃比センサ40、41に生じる異常状態として、空燃比センサ40、41を構成する素子に割れが生じる素子割れという現象が挙げられる。具体的には、固体電解質層51及び拡散律速層54を貫通する割れ(図6のC1)や、固体電解質層51及び拡散律速層54に加えて両電極52、53を貫通する割れ(図6にC2)が発生する。このような素子割れが発生すると、図6に示したように割れた部分を介して排気ガスが基準ガス室55内に進入する。この場合、多量の排気ガスが基準ガス室55内に進入すると、排気ガスの空燃比がリッチであったとしても、空燃比センサ40、41の出力空燃比はリーン空燃比となる。次に、このことについて、図7を参照しつつ説明する。
<Element cracking of air-fuel ratio sensor>
By the way, as an abnormal state which arises in the air-fuel ratio sensors 40 and 41 as described above, there is a phenomenon called element cracking in which cracks occur in elements constituting the air-fuel ratio sensors 40 and 41. Specifically, a crack that penetrates the solid electrolyte layer 51 and the diffusion-controlling layer 54 (C1 in FIG. 6), or a crack that penetrates both the electrodes 52 and 53 in addition to the solid electrolyte layer 51 and the diffusion-controlling layer 54 (see FIG. 6). C2) occurs. When such element cracking occurs, the exhaust gas enters the reference gas chamber 55 through the cracked portion as shown in FIG. In this case, when a large amount of exhaust gas enters the reference gas chamber 55, even if the air-fuel ratio of the exhaust gas is rich, the output air-fuel ratio of the air-fuel ratio sensors 40, 41 becomes a lean air-fuel ratio. Next, this will be described with reference to FIG.

図7は、印加電圧を0.45V程度で一定にしたときの、排気空燃比A/Fと空燃比センサ40、41の出力電流Iとの関係を示している。なお、この図7は、空燃比センサ40、41に固体電解質層51及び拡散律速層54を貫通する貫通穴を穿設して人工的に素子割れの状態を作った場合の実験結果を示している。この図7において、×印は空燃比センサ40、41が正常である場合を示しており、□印、△印、○印は空燃比センサ40、41に貫通穴を穿設した場合を示している。なお、□印は直径が0.1mm の貫通穴を穿設した場合を示しており、△印は直径が0.2mm の貫通穴を穿設した場合を示しており、○印は直径が0.5mm の貫通穴を穿設した場合を示している。   FIG. 7 shows the relationship between the exhaust air / fuel ratio A / F and the output current I of the air / fuel ratio sensors 40 and 41 when the applied voltage is kept constant at about 0.45V. FIG. 7 shows the experimental results when the air-fuel ratio sensors 40 and 41 are formed with a through-hole penetrating the solid electrolyte layer 51 and the diffusion-controlling layer 54 to artificially create a device cracking state. Yes. In FIG. 7, the x mark indicates a case where the air-fuel ratio sensors 40 and 41 are normal, and the □ mark, the Δ mark, and the ○ mark indicate a case where a through hole is formed in the air-fuel ratio sensors 40 and 41. Yes. In addition, □ indicates a case where a through hole having a diameter of 0.1 mm is drilled, △ indicates a case where a through hole having a diameter of 0.2 mm is drilled, and ○ indicates a diameter of 0 mm. It shows the case where a 5mm through hole is drilled.

図7に示されるように、貫通穴の直径が0.1mm の場合(□印)には、空燃比センサ40、41が正常である場合(×印)と同様に排気空燃比A/Fが大きくなるにつれて、即ち排気空燃比A/Fがリーンになるにつれて空燃比センサ40、41の出力電流Iが増大する。このときには、空燃比センサ40、41の出力電流Iは排気空燃比A/Fに対して図4と同様に変化する。一方、貫通穴の直径が0.2mm の場合(△印)および貫通穴の直径が0.5mm の場合(○印)には、排気空燃比A/Fが14.6以上であってリーンのときには、貫通穴の直径が0.1mm の場合(□印)および空燃比センサ40、41が正常である場合(×印)と同様に排気空燃比A/Fが大きくなるにつれて、即ち排気空燃比A/Fがリーンになるにつれて空燃比センサ40、41の出力電流Iが増大する。これに対して、排気空燃比A/Fが14.6以下であってリッチのときには、排気空燃比A/Fが小さくなるにつれて、即ち排気空燃比A/Fがリッチになるにつれて空燃比センサ40、41の出力電流Iが大幅に増大する。   As shown in FIG. 7, when the diameter of the through hole is 0.1 mm (□ mark), the exhaust air-fuel ratio A / F is the same as when the air-fuel ratio sensors 40 and 41 are normal (× mark). As the exhaust air-fuel ratio A / F becomes leaner, the output current I of the air-fuel ratio sensors 40 and 41 increases as it increases. At this time, the output current I of the air-fuel ratio sensors 40 and 41 changes in the same manner as in FIG. 4 with respect to the exhaust air-fuel ratio A / F. On the other hand, when the diameter of the through hole is 0.2 mm (marked with Δ) and when the diameter of the through hole is 0.5 mm (marked with a circle), the exhaust air-fuel ratio A / F is 14.6 or more and the lean Sometimes, as the exhaust air-fuel ratio A / F increases, that is, the exhaust air-fuel ratio becomes the same as when the diameter of the through hole is 0.1 mm (marked with □) and when the air-fuel ratio sensors 40 and 41 are normal (marked with ×). As the A / F becomes leaner, the output current I of the air-fuel ratio sensors 40 and 41 increases. In contrast, when the exhaust air-fuel ratio A / F is 14.6 or less and is rich, the air-fuel ratio sensor 40 becomes smaller as the exhaust air-fuel ratio A / F becomes smaller, that is, as the exhaust air-fuel ratio A / F becomes richer. , 41 greatly increases the output current I.

この実験結果からわかるように貫通穴の直径が大きくなると、貫通穴から空燃比センサ40、41内に侵入した排気ガスが空燃比センサ40、41の出力電流Iに大きな影響を与え、排気空燃比A/Fがリッチであったとしても空燃比センサ40、41の出力電流Iは正の電流値となる。即ち、実際の排気空燃比A/Fがリッチであったとしても、空燃比センサ40、41の出力空燃比はリーン空燃比を示すことになる。従って、図7に示される実験結果から、実際の排気空燃比A/Fがリッチであるときに空燃比センサ40、41の出力空燃比がリーン空燃比を示している場合には、空燃比センサ40、41の出力空燃比に大きな影響を与える素子割れが生じていると判断できることになる。   As can be seen from the experimental results, when the diameter of the through-hole increases, the exhaust gas that has entered the air-fuel ratio sensors 40 and 41 from the through-hole greatly affects the output current I of the air-fuel ratio sensors 40 and 41, and the exhaust air-fuel ratio. Even if the A / F is rich, the output current I of the air-fuel ratio sensors 40 and 41 has a positive current value. That is, even if the actual exhaust air-fuel ratio A / F is rich, the output air-fuel ratios of the air-fuel ratio sensors 40 and 41 indicate the lean air-fuel ratio. Therefore, based on the experimental results shown in FIG. 7, when the actual exhaust air-fuel ratio A / F is rich, and the output air-fuel ratio of the air-fuel ratio sensors 40 and 41 indicates the lean air-fuel ratio, the air-fuel ratio sensor It can be determined that element cracks that greatly affect the output air-fuel ratios 40 and 41 have occurred.

一方、図8Aの実線は、空燃比センサ40、41の出力空燃比に大きな影響を与える素子割れが生じている場合において、排気空燃比A/Fがリッチであるときの空燃比センサ40、41の出力電流Iと空燃比センサ40、41への印加電圧Vとの関係を示している。空燃比センサ40、41が正常である場合には、排気空燃比A/Fがリッチのときには図3からわかるように空燃比センサ40、41の出力電流Iは負の電流値となる。しかしながら、空燃比センサ40、41の出力空燃比に大きな影響を与える素子割れが生じた場合には、図8Aの実線からわかるように、排気空燃比A/Fがリッチであるときに空燃比センサ40、41の出力電流Iは正の電流値となり、しかもこのとき、空燃比センサ40、41への印加電圧Vを増大させると空燃比センサ40、41の出力電流Iが急速に増大する。図8Bはこのときの空燃比センサ40、41の出力電流Iの実際の変化を示している。即ち、排気通路内の排圧は振動しており、従って排気ガスが素子割れしている部分を通って空燃比センサ40、41内に出入りするために空燃比センサ40、41の出力電流Iは図8Aに示されるように、常に変動している。   On the other hand, the solid line in FIG. 8A shows the air-fuel ratio sensors 40, 41 when the exhaust air-fuel ratio A / F is rich when element cracking that greatly affects the output air-fuel ratio of the air-fuel ratio sensors 40, 41 occurs. The relationship between the output current I and the applied voltage V to the air-fuel ratio sensors 40 and 41 is shown. When the air-fuel ratio sensors 40 and 41 are normal, when the exhaust air-fuel ratio A / F is rich, the output current I of the air-fuel ratio sensors 40 and 41 becomes a negative current value as can be seen from FIG. However, if an element crack that greatly affects the output air-fuel ratio of the air-fuel ratio sensors 40 and 41 occurs, as can be seen from the solid line in FIG. 8A, the air-fuel ratio sensor becomes rich when the exhaust air-fuel ratio A / F is rich. The output current I of 40 and 41 has a positive current value. At this time, when the voltage V applied to the air-fuel ratio sensors 40 and 41 is increased, the output current I of the air-fuel ratio sensors 40 and 41 increases rapidly. FIG. 8B shows an actual change in the output current I of the air-fuel ratio sensors 40 and 41 at this time. That is, the exhaust pressure in the exhaust passage oscillates, and therefore the output current I of the air-fuel ratio sensors 40, 41 passes through the part where the exhaust gas is cracked into the air-fuel ratio sensors 40, 41. As shown in FIG. 8A, it always fluctuates.

次に、図9Aから図11Cを参照しつつ、空燃比センサ40、41の出力空燃比に大きな影響を与える素子割れが生じた場合には、排気空燃比A/Fがリッチであるときに、図7および図8Aに示す如く、空燃比センサ40、41の出力電流Iは正の電流値となり、図8Aに示す如く、空燃比センサ40、41への印加電圧Vを増大させると空燃比センサ40、41の出力電流Iが急速に増大する理由について、簡単に説明する。   Next, referring to FIG. 9A to FIG. 11C, when an element crack that greatly affects the output air-fuel ratio of the air-fuel ratio sensors 40 and 41 occurs, when the exhaust air-fuel ratio A / F is rich, As shown in FIGS. 7 and 8A, the output current I of the air-fuel ratio sensors 40 and 41 becomes a positive current value. As shown in FIG. 8A, when the applied voltage V to the air-fuel ratio sensors 40 and 41 is increased, the air-fuel ratio sensor The reason why the output current I of 40 and 41 increases rapidly will be briefly described.

図9Aは、拡散律速層を有しない酸素濃度センサの作動原理の説明図を示している。図9Aにおいて、Aは固体電解質層、Bは大気側電極、Cは排気側電極を夫々示している。
この酸素濃度センサは、大気側の酸素分圧Pa と排気側の酸素分圧Pd との差により次式に従って起電力Eを発生する。
E=(RT/4F)ln(Pa/Pd)
なお、Rは気体定数、Tは固体電解質層Aの絶対温度、Fはファラディ定数である。
排気ガスの空燃比A/Fがリーンのときには大気側の酸素分圧Paの方が排気側の酸素分圧Pdよりも高いので大気中の酸素は大気側電極Bにおいて電子を受け取り、図9Aに示されるように、酸素イオンとなって固体電解質層A内を排気側電極Bまで移動する。その結果、大気側電極Bと排気側電極C間には起電力Eが発生する。このとき大気側の酸素分圧Paと排気側の酸素分圧Pdとの比はそれほど大きくなく、従って図9Bに示されるように、排気ガスの空燃比A/Fがリーンのときの起電力Eは0.1V程度となる。
FIG. 9A shows an explanatory diagram of the operating principle of an oxygen concentration sensor that does not have a diffusion-controlled layer. 9A, A represents a solid electrolyte layer, B represents an atmosphere side electrode, and C represents an exhaust side electrode.
This oxygen concentration sensor generates an electromotive force E according to the following equation by the difference between the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side.
E = (RT / 4F) ln (Pa / Pd)
R is a gas constant, T is an absolute temperature of the solid electrolyte layer A, and F is a Faraday constant.
When the air-fuel ratio A / F of the exhaust gas is lean, the oxygen partial pressure Pa on the atmosphere side is higher than the oxygen partial pressure Pd on the exhaust side, so oxygen in the atmosphere receives electrons at the atmosphere side electrode B, and FIG. As shown, it becomes oxygen ions and moves in the solid electrolyte layer A to the exhaust-side electrode B. As a result, an electromotive force E is generated between the atmosphere side electrode B and the exhaust side electrode C. At this time, the ratio between the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side is not so large. Therefore, as shown in FIG. 9B, the electromotive force E when the air-fuel ratio A / F of the exhaust gas is lean. Is about 0.1V.

これに対し、排気ガスの空燃比A/Fがリッチになると排気側電極C上は酸欠状態となり、このとき排気側電極Bに到達した酸素イオンは未燃HC、COと反応してただちに消費される。従って、このときには酸素イオンが次から次へと固体電解質層A内を排気側電極Bまで移動する。このときには大気側の酸素分圧Paと排気側の酸素分圧Pd との比が極めて大きくなるために、図9Bに示される如く、排気ガスの空燃比A/Fがリッチになると起電力Eは0.9V程度まで急激に上昇し、排気ガスの空燃比A/Fがリッチとなっている限り、起電力Eは0.9V程度に維持される。   In contrast, when the air-fuel ratio A / F of the exhaust gas becomes rich, the exhaust side electrode C becomes deficient, and the oxygen ions that have reached the exhaust side electrode B react with unburned HC and CO and are immediately consumed. Is done. Accordingly, at this time, oxygen ions move from the next to the next in the solid electrolyte layer A to the exhaust-side electrode B. At this time, since the ratio of the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side becomes extremely large, as shown in FIG. 9B, the electromotive force E is increased when the air-fuel ratio A / F of the exhaust gas becomes rich. The electromotive force E is maintained at about 0.9V as long as it rises rapidly to about 0.9V and the air-fuel ratio A / F of the exhaust gas is rich.

図10Aは、本発明の実施例において用いている空燃比センサ40、41の作動原理の説明図を示している。なお、図10Aにおいて、51は固体電解質層、52は排気側電極、53は大気側電極、54は拡散律速層を夫々示している。一方、図10Bは、或るリーン空燃比(A/F)l に対する空燃比センサ40、41の出力電流Iと印加電圧Vとの関係、および或るリッチ空燃比(A/F)r に対する空燃比センサ40、41の出力電流Iと印加電圧Vとの関係を示している。さて、この空燃比センサ40、41でも大気側電極53と排気側電極52間には起電力Eが発生しており、更にこの空燃比センサ40、41では大気側電極53と排気側電極52間に、この起電力Eとは逆向きに印加電圧Vが印加される。大気側電極53と排気側電極52間に印加電圧Vが印加されると排気側電極52の表面上において酸素が酸素イオンとされ、この酸素イオンを排気側電極52から大気側電極53へ送り込むポンピング作用が行われる。その結果、空燃比センサ40、41には出力電流Iが発生する。   FIG. 10A shows an explanatory diagram of the operating principle of the air-fuel ratio sensors 40 and 41 used in the embodiment of the present invention. In FIG. 10A, 51 indicates a solid electrolyte layer, 52 indicates an exhaust side electrode, 53 indicates an atmosphere side electrode, and 54 indicates a diffusion rate controlling layer. On the other hand, FIG. 10B shows the relationship between the output current I of the air-fuel ratio sensors 40 and 41 and the applied voltage V with respect to a certain lean air-fuel ratio (A / F) l, and the airflow with respect to a certain rich air-fuel ratio (A / F) r. The relationship between the output current I of the fuel ratio sensors 40 and 41 and the applied voltage V is shown. In the air-fuel ratio sensors 40 and 41, an electromotive force E is generated between the atmosphere-side electrode 53 and the exhaust-side electrode 52. Further, in the air-fuel ratio sensors 40 and 41, between the atmosphere-side electrode 53 and the exhaust-side electrode 52, In addition, the applied voltage V is applied in the direction opposite to the electromotive force E. When an applied voltage V is applied between the atmosphere side electrode 53 and the exhaust side electrode 52, oxygen is converted into oxygen ions on the surface of the exhaust side electrode 52, and this oxygen ion is pumped from the exhaust side electrode 52 to the atmosphere side electrode 53. The action is performed. As a result, an output current I is generated in the air-fuel ratio sensors 40 and 41.

さて、排気ガスの空燃比A/Fがリーンであるときには、排気ガス中の酸素が拡散律速層54を通って排気側電極52の表面上に達する。このとき大気側の酸素分圧Paと排気側の酸素分圧Pdとの比はそれほど大きくなく、従ってこのときには0.1V程度の起電力Eが発生している。このような状態で印加電圧Vを高めていくと酸素イオンのポンピング作用によって図10Aにおいて実線の矢印で示す正の出力電流Iか発生するようになる。一方、拡散律速層54内を拡散して排気側電極52の表面上に達する酸素量は、排気ガス中の酸素分圧Peと排気側電極52の表面上における酸素分圧Pdとの差に比例し、排気側電極52の表面上には、排気ガス中の酸素分圧Peと排気側電極52の表面上における酸素分圧Pdとの差に応じた量の酸素しか供給されない。従って、印加電圧Vを増大しても、排気側電極52の表面上に供給される酸素の量が律速されているためにポンピング作用によって送り込まれる酸素イオンの量は一定量に制限され、従って図10Bにおいて(A/F)l で示されるように、出力電流Iは印加電圧Vが変化しても一定に維持される、即ち限界電流が生ずることになる。   When the air-fuel ratio A / F of the exhaust gas is lean, oxygen in the exhaust gas reaches the surface of the exhaust-side electrode 52 through the diffusion rate controlling layer 54. At this time, the ratio between the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side is not so large. Therefore, at this time, an electromotive force E of about 0.1 V is generated. When the applied voltage V is increased in such a state, a positive output current I indicated by a solid arrow in FIG. 10A is generated by the pumping action of oxygen ions. On the other hand, the amount of oxygen that diffuses in the diffusion-controlling layer 54 and reaches the surface of the exhaust side electrode 52 is proportional to the difference between the oxygen partial pressure Pe in the exhaust gas and the oxygen partial pressure Pd on the surface of the exhaust side electrode 52. On the surface of the exhaust side electrode 52, only an amount of oxygen corresponding to the difference between the oxygen partial pressure Pe in the exhaust gas and the oxygen partial pressure Pd on the surface of the exhaust side electrode 52 is supplied. Therefore, even if the applied voltage V is increased, the amount of oxygen ions supplied by the pumping action is limited to a certain amount because the amount of oxygen supplied onto the surface of the exhaust-side electrode 52 is limited. As indicated by (A / F) l in 10B, the output current I is kept constant even when the applied voltage V changes, that is, a limit current is generated.

これに対して、排気ガスの空燃比A/Fがリッチになると、未燃HC,COが拡散律速層54を通って排気側電極52の表面上に達する。このとき、排気側電極52に到達した酸素イオンは未燃HC、COと反応してただちに消費され、従って排気側電極52上は酸欠状態となる。従って、大気側の酸素分圧Paと排気側の酸素分圧Pd との比が極めて大きくなるために、0.9V程度の大きな起電力Eが発生し、従って酸素イオンが次から次へと固体電解質層51内を排気側電極52まで移動する。このときには、図10Aにおいて破線の矢印で示す負の出力電流Iが発生する。ところがこの場合も、拡散律速層54内を拡散して排気側電極52の表面上に達する未燃HC,COの量は、排気ガス中の分圧Peと排気側電極52の表面上における未燃HC,COの分圧Pdとの差に比例し、排気側電極52の表面上には、排気ガス中の未燃HC,COの分圧Peと排気側電極52の表面上における未燃HC,COの分圧Pdとの差に応じた量の未燃HC,COしか供給されない。即ち、排気側電極52の表面上に供給される未燃HC,COの量は拡散律速層54によって律速されることになる。   In contrast, when the air-fuel ratio A / F of the exhaust gas becomes rich, unburned HC and CO reach the surface of the exhaust-side electrode 52 through the diffusion rate controlling layer 54. At this time, oxygen ions that have reached the exhaust-side electrode 52 react with unburned HC and CO and are immediately consumed, so that the exhaust-side electrode 52 is in an oxygen deficient state. Therefore, since the ratio of the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side becomes extremely large, a large electromotive force E of about 0.9 V is generated, so that oxygen ions are solid from one to the next. The electrolyte layer 51 moves to the exhaust side electrode 52. At this time, a negative output current I indicated by a dashed arrow in FIG. 10A is generated. However, in this case as well, the amount of unburned HC and CO that diffuses in the diffusion-controlling layer 54 and reaches the surface of the exhaust side electrode 52 is the partial pressure Pe in the exhaust gas and the unburned amount on the surface of the exhaust side electrode 52. In proportion to the difference between the partial pressure Pd of HC and CO, the unburned HC in the exhaust gas, the partial pressure Pe of CO, and the unburned HC on the surface of the exhaust side electrode 52 Only unburned HC and CO in an amount corresponding to the difference from the partial pressure Pd of CO are supplied. That is, the amount of unburned HC and CO supplied on the surface of the exhaust side electrode 52 is rate-controlled by the diffusion rate-limiting layer 54.

ところで、このように0.9V程度の起電力Eが発生しているときに0.9V程度の印加電圧Vを印加すると、起電力Eと印加電圧Vとは極性が逆向きなので、図10Bの実線(A/F)r からわかるように、空燃比センサ40、41の出力電流Iは零となる。この状態から印加電圧Vを低下させていくと酸素イオンが排気側電極52に向けて移動を開始する。ところがこのとき、上述したように、排気側電極52の表面上に供給される未燃HC,COの量は拡散律速層54によって律速されている。従って、印加電圧Vを低下させても、排気側電極52に達する酸素イオンの量は一定量に制限され、従って図10Bにおいて(A/F)r で示されるように、出力電流Iは印加電圧Vが変化しても一定に維持される、即ち限界電流が生ずることになる。一方、このように0.9V程度の起電力Eが発生しているときには排気側電極52の表面上には酸素が存在していない。従って、このとき0.9Vよりも高い印加電圧Vを印加しても酸素イオンが大気側電極53に向けて移動すこともなく、この場合には、即ち0.9Vよりも高い印加電圧Vを印加した場合には、拡散律速層54内において水分の分解が生じ、それにより図10Bにおいて(A/F)l で示されるように、出力電流Iは印加電圧Vが上昇すると急激に上昇することになる。 By the way, when the applied voltage V of about 0.9V is applied when the electromotive force E of about 0.9V is generated in this way, the polarity of the electromotive force E and the applied voltage V are opposite to each other. As can be seen from the solid line (A / F) r, the output current I of the air-fuel ratio sensors 40 and 41 becomes zero. When the applied voltage V is lowered from this state, the oxygen ions start moving toward the exhaust side electrode 52. However, at this time, as described above, the amount of unburned HC and CO supplied onto the surface of the exhaust-side electrode 52 is rate-limited by the diffusion rate-limiting layer 54. Therefore, even if the applied voltage V is decreased, the amount of oxygen ions reaching the exhaust-side electrode 52 is limited to a certain amount. Therefore, as shown by (A / F) r in FIG. Even if V changes, it remains constant, that is, a limit current is generated. On the other hand, oxygen is not present on the surface of the exhaust-side electrode 52 when the electromotive force E of about 0.9 V is generated. Therefore, this time without even move toward the atmosphere side electrode 53 oxygen ions by applying a high applied voltage V than 0.9V, in this case, i.e. high applied voltage V than 0.9V Is applied, the moisture is decomposed in the diffusion rate controlling layer 54, and as a result, the output current I rapidly increases as the applied voltage V increases , as indicated by (A / F) l in FIG. 10B. It will be.

さて、空燃比センサ40、41に素子割れが発生すると、排気ガスが図6に示されるように、基準ガス室55内に進入する。即ち、図10Aにおいて、排気ガスが大気側に侵入する。このとき排気ガスの空燃比がリーンである場合には、リーン空燃比の排気ガスが基準ガス室55内に侵入することになる。リーン空燃比の排気ガスが基準ガス室55内に侵入すると、基準ガス室55内の酸素濃度は若干低下する。しかしながらこの場合、大気側の酸素分圧Paの方が依然として排気側の酸素分圧Pdよりも高く、しかもこのときには大気側の酸素分圧Paと排気側の酸素分圧Pdとの比はそれほど大きくないために、0.1V程度の起電力Eが発生する。この場合には、印加電圧Vを増大しても、排気側電極52の表面上に供給される酸素の量が律速されているためにポンピング作用によって送り込まれる酸素イオンの量は一定量に制限され、従って図10Bにおいて(A/F)l で示されるように、出力電流Iは印加電圧Vが変化しても一定に維持される、即ち限界電流が生ずることになる。即ち、空燃比センサ40、41に素子割れが発生しても、出力電流Iは印加電圧Vの変化に対して正常時と同様に変化することになる。   Now, when element cracking occurs in the air-fuel ratio sensors 40 and 41, the exhaust gas enters the reference gas chamber 55 as shown in FIG. That is, in FIG. 10A, the exhaust gas enters the atmosphere side. At this time, if the air-fuel ratio of the exhaust gas is lean, the lean air-fuel ratio exhaust gas enters the reference gas chamber 55. When the lean air-fuel ratio exhaust gas enters the reference gas chamber 55, the oxygen concentration in the reference gas chamber 55 slightly decreases. However, in this case, the oxygen partial pressure Pa on the atmosphere side is still higher than the oxygen partial pressure Pd on the exhaust side, and in this case, the ratio between the oxygen partial pressure Pa on the atmosphere side and the oxygen partial pressure Pd on the exhaust side is so large. Therefore, an electromotive force E of about 0.1V is generated. In this case, even if the applied voltage V is increased, the amount of oxygen supplied to the surface of the exhaust-side electrode 52 is limited, so that the amount of oxygen ions fed by the pumping action is limited to a certain amount. Therefore, as shown by (A / F) l in FIG. 10B, the output current I is kept constant even when the applied voltage V changes, that is, a limit current is generated. That is, even if element cracking occurs in the air-fuel ratio sensors 40 and 41, the output current I changes in the same manner as in the normal state with respect to the change in the applied voltage V.

図11Aは、空燃比センサ40、41が正常な場合において、排気ガスの空燃比がリーンであるときの出力電流Iの変化を示しており、図11Bは、空燃比センサ40、41に素子割れが発生した場合において、排気ガスの空燃比がリーンであるときの出力電流Iの変化を示している。図11Aと図11Bとを比較するとわかるように、排気ガスの空燃比がリーンである場合には、空燃比センサ40、41が正常であろうと、空燃比センサ40、41に素子割れが発生していようと、印加電圧Vの変化に対する出力電流Iの変化パターンはほとんど同じである。従って、図7に示されるように、排気ガスの空燃比A/Fがリーンである場合には、空燃比センサ40、41が正常であろうと、空燃比センサ40、41に素子割れが発生していようと、空燃比センサ40、41の出力電流Iは空燃比A/Fが高くなるとほぼ同じ値でもって増大することになる。従って、排気ガスの空燃比がリーンのときの出力電流Iの変化からは、空燃比センサ40、41に素子割れが発生したか否かを判別することはできない。   FIG. 11A shows a change in the output current I when the air-fuel ratio of the exhaust gas is lean when the air-fuel ratio sensors 40 and 41 are normal, and FIG. This shows a change in the output current I when the air-fuel ratio of the exhaust gas is lean. As can be seen by comparing FIG. 11A and FIG. 11B, when the air-fuel ratio of the exhaust gas is lean, even if the air-fuel ratio sensors 40, 41 are normal, element cracks occur in the air-fuel ratio sensors 40, 41. Even so, the change pattern of the output current I with respect to the change of the applied voltage V is almost the same. Therefore, as shown in FIG. 7, when the air-fuel ratio A / F of the exhaust gas is lean, element cracking occurs in the air-fuel ratio sensors 40, 41 even if the air-fuel ratio sensors 40, 41 are normal. Even so, the output current I of the air-fuel ratio sensors 40 and 41 increases with substantially the same value as the air-fuel ratio A / F increases. Therefore, it cannot be determined from the change in the output current I when the air-fuel ratio of the exhaust gas is lean whether or not element cracking has occurred in the air-fuel ratio sensors 40 and 41.

これに対し、空燃比センサ40、41に素子割れが発生しているときに排気ガスの空燃比がリッチになると、出力電流Iは正常時に比べて大きく変化する。即ち、空燃比センサ40、41に素子割れが発生しているときに排気ガスの空燃比がリッチになると、多量の未燃HC,COが基準ガス室55内に進入する。即ち、図10Aにおいて、多量の未燃HC,COが大気側に侵入する。多量の未燃HC,COが基準ガス室55内に進入するとこれら未燃HC,COは大気側電極53の表面上において酸素と反応し、従って大気側電極53の表面上は酸欠状態となる。このとき大気側電極53の表面上における酸素分圧Paと排気側電極52の表面上における酸素分圧Pdとの比が小さくなり、従ってこのとき発生する起電力Eは0.1V程度となる。このように0.1V程度の起電力Eが発生しているときに0.1V程度の印加電圧Vを印加すると、起電力Eと印加電圧Vとは極性が逆向きなので、図11Cにおいて実線で示されるように、空燃比センサ40、41の出力電流Iは零となる。この状態から印加電圧Vを低下させていくと酸素イオンが排気側電極52に向けて移動を開始する。ところがこのとき、上述したように、排気側電極52の表面上に供給される未燃HC,COの量は拡散律速層54によって律速されている。従って、印加電圧Vを低下させても、排気側電極52に達する酸素イオンの量は一定量に制限され、従って図11Cにおいて実線で示されるように、出力電流Iは印加電圧Vが変化しても一定に維持される、即ち限界電流が生ずることになる。   On the other hand, if the air-fuel ratio of the exhaust gas becomes rich when element cracking occurs in the air-fuel ratio sensors 40 and 41, the output current I changes greatly compared to the normal time. That is, if the air-fuel ratio of the exhaust gas becomes rich when element cracks occur in the air-fuel ratio sensors 40 and 41, a large amount of unburned HC and CO enter the reference gas chamber 55. That is, in FIG. 10A, a large amount of unburned HC and CO enter the atmosphere side. When a large amount of unburned HC and CO enter the reference gas chamber 55, the unburned HC and CO react with oxygen on the surface of the atmosphere-side electrode 53, so that the surface of the atmosphere-side electrode 53 is deficient. . At this time, the ratio between the oxygen partial pressure Pa on the surface of the atmosphere-side electrode 53 and the oxygen partial pressure Pd on the surface of the exhaust-side electrode 52 becomes small, and therefore the electromotive force E generated at this time is about 0.1V. When an applied voltage V of about 0.1 V is applied when an electromotive force E of about 0.1 V is generated in this way, the polarity of the electromotive force E and the applied voltage V are opposite, so that the solid line in FIG. As shown, the output current I of the air-fuel ratio sensors 40 and 41 is zero. When the applied voltage V is lowered from this state, the oxygen ions start moving toward the exhaust side electrode 52. However, at this time, as described above, the amount of unburned HC and CO supplied onto the surface of the exhaust-side electrode 52 is rate-limited by the diffusion rate-limiting layer 54. Therefore, even if the applied voltage V is reduced, the amount of oxygen ions reaching the exhaust-side electrode 52 is limited to a certain amount. Therefore, as shown by the solid line in FIG. 11C, the output current I changes as the applied voltage V changes. Is also kept constant, i.e. a limiting current is produced.

一方、このように0.1V程度の起電力Eが発生しているときには排気側電極52の表面上には酸素が存在していない。従って、このとき0.1Vよりも高い印加電圧Vを印加しても酸素イオンが大気側電極53に向けて移動することもなく、この場合には、即ち0.1Vよりも高い印加電圧Vを印加した場合には、拡散律速層54内において水分の分解が生じ、それにより図11Cにおいて実線で示されるように、出力電流Iは印加電圧Vが急激に上昇することになる。即ち、空燃比センサ40、41に素子割れが発生しているときに、排気ガスの空燃比がリッチになると、図11Cにおいて実線で示されるように出力電流Iの変化パターンは、図11Cにおいて破線で示す正常の出力電流Iの変化パターンに対して、矢印で示されるように起電力Eが低下した分(0.8V)だけ印加電圧Vの低下方向に移動した形となる。従って、空燃比センサ40、41に素子割れが発生しているときに、排気ガスの空燃比がリッチになると、図7および図8A,8Bに示されるように、空燃比センサ40、41の出力電流Iは正の電流値となり、即ち空燃比センサ40、41の出力空燃比がリーン空燃比を示し、しかもこのとき、図8A,8Bに示されるように、空燃比センサ40、41への印加電圧Vを増大させると空燃比センサ40、41の出力電流Iが急速に増大することになる。   On the other hand, oxygen is not present on the surface of the exhaust-side electrode 52 when the electromotive force E of about 0.1 V is generated. Therefore, even if an applied voltage V higher than 0.1 V is applied at this time, oxygen ions do not move toward the atmosphere side electrode 53. In this case, an applied voltage V higher than 0.1 V is applied. When applied, moisture is decomposed in the diffusion-controlled layer 54, and as a result, the applied voltage V of the output current I increases rapidly as shown by the solid line in FIG. 11C. That is, when the air-fuel ratio of the exhaust gas becomes rich when element cracking occurs in the air-fuel ratio sensors 40 and 41, the change pattern of the output current I is shown by a broken line in FIG. 11C as shown by the solid line in FIG. 11C. With respect to the normal change pattern of the output current I shown in FIG. 8, the voltage is shifted in the decreasing direction of the applied voltage V by the amount (0.8 V) that the electromotive force E is reduced as indicated by the arrow. Therefore, if the air-fuel ratio of the exhaust gas becomes rich when element cracking occurs in the air-fuel ratio sensors 40, 41, the output of the air-fuel ratio sensors 40, 41 is shown in FIGS. 7 and 8A, 8B. The current I becomes a positive current value, that is, the output air-fuel ratio of the air-fuel ratio sensors 40 and 41 indicates the lean air-fuel ratio, and at this time, as shown in FIGS. 8A and 8B, the application to the air-fuel ratio sensors 40 and 41 is performed. When the voltage V is increased, the output current I of the air-fuel ratio sensors 40 and 41 increases rapidly.

図12に、図11Bに示される出力電流Iの変化をXで示し、図11Cにおいて実線で示される出力電流Iの変化をYで示す。即ち、図12において、Xは、空燃比センサ40、41が正常である場合或いは空燃比センサ40、41に素子割れが発生している場合において排気ガスの空燃比A/Fがリーンにされているときの印加電圧V対する出力電流Iの変化を示しており、Yは、空燃比センサ40、41に素子割れが発生している場合において排気ガスの空燃比A/Fがリッチにされたときの印加電圧V対する出力電流Iの変化を示している。さて、空燃比センサ40、41、例えば下流側空燃比センサ41に素子割れが発生した場合には、排気ガスの空燃比がリッチにされたときに、図12のYで示されるように、下流側空燃比センサ41の出力電流Iは正の電流値となる。即ち、下流側空燃比センサ41の出力空燃比がリーン空燃比を示す。従って、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力電流Iが正の電流値となっている場合には、即ち、下流側空燃比センサ41の出力空燃比がリーン空燃比を示している場合には下流側空燃比センサ41に素子割れが発生していると判断できるようにみえる。   In FIG. 12, the change of the output current I shown in FIG. 11B is indicated by X, and the change of the output current I indicated by the solid line in FIG. 11C is indicated by Y. That is, in FIG. 12, X indicates that the air-fuel ratio A / F of the exhaust gas is made lean when the air-fuel ratio sensors 40, 41 are normal or when the air-fuel ratio sensors 40, 41 are cracked. Shows the change in the output current I with respect to the applied voltage V when the air-fuel ratio is in operation, and Y is when the air-fuel ratio A / F of the exhaust gas is made rich when element cracking occurs in the air-fuel ratio sensors 40 and 41 The change of the output current I with respect to the applied voltage V is shown. When element cracking occurs in the air-fuel ratio sensors 40, 41, for example, the downstream air-fuel ratio sensor 41, when the air-fuel ratio of the exhaust gas is made rich, as shown by Y in FIG. The output current I of the side air-fuel ratio sensor 41 has a positive current value. That is, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 indicates the lean air-fuel ratio. Accordingly, when the output current I of the downstream air-fuel ratio sensor 41 is a positive current value when the air-fuel ratio A / F of the exhaust gas is made rich, that is, the downstream air-fuel ratio sensor 41 When the output air-fuel ratio indicates a lean air-fuel ratio, it seems that it can be determined that element cracking has occurred in the downstream air-fuel ratio sensor 41.

しかしながら、実際には、下流側空燃比センサ41が正常であったとしても、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力電流Iは正の電流値となる場合、即ち、下流側空燃比センサ41の出力空燃比がリーン空燃比を示す場合がある。例えば、気筒間の空燃比にばらつきがあり、特定の気筒間の空燃比が他の気筒に対して大きくリッチ側にずれており、排気通路の形状等によって上流側空燃比センサが各気筒から流出した排気ガスと均一に接触することなく、リッチ側にずれた気筒から流出した排気ガスと主に接触する場合がある。このような場合において、上流側空燃比センサの出力信号に基づいて空燃比を理論空燃比にフィードバック制御すると、各気筒への燃料噴射量が減量されて平均空燃比がリーンとなり、このような状態で空燃比をリッチにすべく各気筒への燃料噴射量が増量されても平均空燃比がリーンとなる場合がある。この場合には、下流側空燃比センサ41が正常であったとしても、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力空燃比がリーン空燃比を示すことになる。   However, actually, even if the downstream air-fuel ratio sensor 41 is normal, the output current I of the downstream air-fuel ratio sensor 41 is a positive current when the air-fuel ratio A / F of the exhaust gas is made rich. In other words, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 may indicate a lean air-fuel ratio. For example, the air-fuel ratio between cylinders varies, the air-fuel ratio between specific cylinders is greatly shifted to the rich side with respect to other cylinders, and the upstream air-fuel ratio sensor flows out of each cylinder due to the shape of the exhaust passage etc. In some cases, the exhaust gas that has flowed out of the cylinder shifted to the rich side does not come into uniform contact with the exhaust gas that has been exhausted, but mainly comes into contact with the exhaust gas. In such a case, if the air-fuel ratio is feedback controlled to the stoichiometric air-fuel ratio based on the output signal of the upstream air-fuel ratio sensor, the fuel injection amount to each cylinder is reduced and the average air-fuel ratio becomes lean, such a state Thus, the average air-fuel ratio may become lean even if the fuel injection amount to each cylinder is increased to make the air-fuel ratio rich. In this case, even if the downstream air-fuel ratio sensor 41 is normal, when the air-fuel ratio A / F of the exhaust gas is made rich, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes the lean air-fuel ratio. Will show.

また、下流側空燃比センサ41が、各気筒から流出した排気ガスと均一に接触することなく、リーン側にずれた気筒から流出した排気ガスと主に接触する場合がある。このような状態において、空燃比をリッチにすべく各気筒への燃料噴射量が増量されても下流側空燃比センサと接触する排気ガスの空燃比が依然としてリーンとなる場合がある。この場合には、下流側空燃比センサ41が正常であったとしても、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力空燃比がリーン空燃比を示すことになる。従って、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力空燃比がリーン空燃比を示している場合に、下流側空燃比センサ41に素子割れが発生していると判断すると誤判断することになる。   Further, there are cases where the downstream air-fuel ratio sensor 41 mainly comes into contact with the exhaust gas flowing out from the cylinder shifted to the lean side without uniformly contacting the exhaust gas flowing out from each cylinder. In such a state, even if the fuel injection amount to each cylinder is increased to make the air-fuel ratio rich, the air-fuel ratio of the exhaust gas contacting the downstream air-fuel ratio sensor may still be lean. In this case, even if the downstream air-fuel ratio sensor 41 is normal, when the air-fuel ratio A / F of the exhaust gas is made rich, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes the lean air-fuel ratio. Will show. Therefore, when the air-fuel ratio A / F of the exhaust gas is made rich, if the output air-fuel ratio of the downstream air-fuel ratio sensor 41 indicates the lean air-fuel ratio, element cracking occurs in the downstream air-fuel ratio sensor 41. If you determine that you are doing it, you will misjudge.

このように、下流側空燃比センサ41が正常であったとしても、排気ガスの空燃比A/Fがリッチにされたときに、下流側空燃比センサ41の出力電流Iが正の電流値となる場合、即ち、下流側空燃比センサ41の出力空燃比がリーン空燃比を示す場合がある。ところがこの場合には、出力電流Iは図12のXで示す如く、限界電流領域FXが生ずるように変化する。これに対し、下流側空燃比センサ41に素子割れが発生した場合には、排気ガスの空燃比A/Fがリッチにされたときに、出力電流IはYで示される如く、印加電圧Vの増大に伴い増大するように変化する。従って、このとき下流側空燃比センサが正常である場合には、印加電圧VをV1からV2に増大しても出力電流Iはほとんど変化せず、これに対し下流側空燃比センサ41に素子割れが発生している場合には、印加電圧VをV1からV2に増大すると出力電流Iは必ず大きく増大する。従って、排気ガスの空燃比A/Fをリッチにした状態において、印加電圧VをV1からV2に増大したときの出力電流Iの変化から、下流側空燃比センサ41に素子割れが発生したか否かを正確に判別できることになる。   Thus, even if the downstream air-fuel ratio sensor 41 is normal, when the air-fuel ratio A / F of the exhaust gas is made rich, the output current I of the downstream air-fuel ratio sensor 41 becomes a positive current value. In other words, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 may indicate a lean air-fuel ratio. In this case, however, the output current I changes so as to generate a limit current region FX as indicated by X in FIG. On the other hand, when an element crack occurs in the downstream air-fuel ratio sensor 41, when the air-fuel ratio A / F of the exhaust gas is made rich, the output current I is equal to the applied voltage V as indicated by Y. It changes to increase with the increase. Therefore, if the downstream side air-fuel ratio sensor is normal at this time, the output current I hardly changes even when the applied voltage V is increased from V1 to V2, and the downstream air-fuel ratio sensor 41 has an element crack. When the applied voltage V increases from V1 to V2, the output current I necessarily increases greatly. Therefore, in the state where the air-fuel ratio A / F of the exhaust gas is rich, whether or not an element crack has occurred in the downstream air-fuel ratio sensor 41 due to the change in the output current I when the applied voltage V is increased from V1 to V2. Can be accurately determined.

そこで本発明では、内燃機関の排気通路に配置されかつ空燃比に応じた限界電流が発生する限界電流式の空燃比センサの異常診断装置において、空燃比センサ40,41の出力電流Iを検出する電流検出部61と、空燃比センサ40,41への印加電圧Vを制御する印加電圧制御装置60とを具備しており、印加電圧制御装置60は、空燃比センサ40,41の異常を診断すべく空燃比がリッチにされたときに、空燃比センサ40,41の正常時に空燃比に応じた限界電流が発生する範囲FX内で印加電圧Vを変化させ、このとき電流検出部61により空燃比センサの出力電流Iが予め定められた値以上変化したことが検出されたときには空燃比センサ40,41の素子割れが生じていると判定される。     Therefore, in the present invention, the output current I of the air-fuel ratio sensors 40 and 41 is detected in an abnormality diagnosis device for a limit current-type air-fuel ratio sensor that is disposed in the exhaust passage of the internal combustion engine and generates a limit current corresponding to the air-fuel ratio. A current detector 61 and an applied voltage control device 60 for controlling the applied voltage V to the air-fuel ratio sensors 40 and 41 are provided. The applied voltage control device 60 diagnoses an abnormality in the air-fuel ratio sensors 40 and 41. When the air-fuel ratio is made as rich as possible, the applied voltage V is changed within a range FX in which a limit current corresponding to the air-fuel ratio is generated when the air-fuel ratio sensors 40 and 41 are normal. When it is detected that the output current I of the sensor has changed by a predetermined value or more, it is determined that element cracking of the air-fuel ratio sensors 40 and 41 has occurred.

<異常診断>
次に、図13および図14に示すタイムチャートを参照しつつ、下流側空燃比センサ41の素子割れを検出する場合を例にとって、本発明による空燃比センサの異常診断について説明する。本発明による実施例では、図5を参照しつつ既に説明したように、通常、空燃比はリッチ空燃比とリーン空燃比とに交互に変更されており、このように空燃比をリッチ空燃比とリーン空燃比とに交互に変更する制御を通常制御と称すると、空燃比センサの異常診断を行う際には、空燃比をこの通常制御時におけるリッチ空燃比よりもリッチにするアクティブ制御が実行される。このアクティブ制御は、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比となるように、燃料噴射弁11からの燃料噴射量を制御することによって行われる。
<Abnormal diagnosis>
Next, the abnormality diagnosis of the air-fuel ratio sensor according to the present invention will be described with reference to the time charts shown in FIGS. 13 and 14, taking as an example the case of detecting element cracks in the downstream air-fuel ratio sensor 41. In the embodiment according to the present invention, as already described with reference to FIG. 5, the air-fuel ratio is normally changed alternately to the rich air-fuel ratio and the lean air-fuel ratio, and thus the air-fuel ratio is changed to the rich air-fuel ratio. When the control that alternately changes to the lean air-fuel ratio is referred to as normal control, when performing abnormality diagnosis of the air-fuel ratio sensor, active control is performed to make the air-fuel ratio richer than the rich air-fuel ratio at the time of normal control. The This active control is performed by controlling the fuel injection amount from the fuel injection valve 11 so that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes a rich air-fuel ratio.

図13および図14には、このアクティブ制御と、目標空燃比の変化と、上流側空燃比センサの出力空燃比の変化と、下流側空燃比センサの出力空燃比(A/F)r の変化と、下流側空燃比センサへの印加電圧Vの変化を示している。なお、図13は、下流側空燃比センサ41が素子割れをしていないのに、空燃比をリッチにしたときに、下流側空燃比センサ41の出力空燃比がリーンとなっている場合を示しており、図14は、下流側空燃比センサ41が素子割れをしているために、空燃比をリッチにしたときに、下流側空燃比センサ41の出力空燃比がリーンになる場合を示している。なお、図13と図14とを比較するとわかるように、図13および図14において、アクティブ制御と、目標空燃比と、上流側空燃比センサの出力空燃比と、下流側空燃比センサへの印加電圧Vは、同一の変化を示しており、従って最初に、アクティブ制御と、目標空燃比と、上流側空燃比センサの出力空燃比と、下流側空燃比センサへの印加電圧Vとについて説明する。   13 and 14 show this active control, the change in the target air-fuel ratio, the change in the output air-fuel ratio of the upstream air-fuel ratio sensor, and the change in the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor. And changes in the applied voltage V to the downstream air-fuel ratio sensor. FIG. 13 shows a case where the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is lean when the air-fuel ratio is made rich even though the downstream air-fuel ratio sensor 41 is not cracked. FIG. 14 shows a case where the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes lean when the air-fuel ratio is made rich because the downstream side air-fuel ratio sensor 41 is cracked. Yes. As can be seen from a comparison between FIGS. 13 and 14, in FIGS. 13 and 14, the active control, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor, and the application to the downstream air-fuel ratio sensor are shown. The voltage V shows the same change. Therefore, first, the active control, the target air-fuel ratio, the output air-fuel ratio of the upstream air-fuel ratio sensor, and the applied voltage V to the downstream air-fuel ratio sensor will be described. .

図13および図14に示す例では、時刻t4において、アクティブ制御の実行が開始される。時刻t4においてアクティブ制御の実行が開始される前は、空燃比をリッチ空燃比とリーン空燃比とに交互に変更する通常制御時において目標空燃比がリッチ空燃比AFrich となっている場合を示しており、このとき上流側空燃比センサ40の出力空燃比はリッチ空燃比となっている。即ち、このとき電子制御ユニット(ECU)31では、上流側空燃比センサ40の出力空燃比から、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比AFrich になっていると判断されている。また、このときには、下流側空燃比センサへの印加電圧Vは予め定められた第1の印加電圧V1とされている。 In the example shown in FIGS. 13 and 14, at time t 4, the execution of the active control is started. Before execution of the active control is started at time t 4, it shows the case where the target air-fuel ratio is in the rich air-fuel ratio AFrich in the normal control for changing the air-fuel ratio alternately and rich air-fuel ratio and a lean air-fuel ratio At this time, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio. That is, at this time, the electronic control unit (ECU) 31 determines that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the rich air-fuel ratio AFrich from the output air-fuel ratio of the upstream side air-fuel ratio sensor 40. Has been. At this time, the applied voltage V to the downstream air-fuel ratio sensor is set to a predetermined first applied voltage V1.

次いで、時刻t4においてアクティブ制御の実行が開始されると、目標空燃比がリッチ空燃比に設定される。このとき図13および図14に示される例では、アクティブ制御実行時の目標空燃比は、通常制御時におれるリッチ空燃比AFrich よりもリッチなアクティブ制御時空燃比AFactとされる。このとき、上流側空燃比センサ40の出力空燃比も更にリッチなリッチ空燃比となる。一方、このとき下流側空燃比センサへの印加電圧Vは、変更されることなく予め定められた第1の印加電圧V1に維持されている。なお、図13および図14において、t0は下流側空燃比センサ41の異常を診断すべく空燃比がリッチにされたときからの経過時間を表しており、この経過時間 t0は空燃比がリッチされた後、これにより下流側空燃比センサ41の周囲の雰囲気が変化するまでの時間を示している。図13および図14に示される例では、この経過時間 t0は一定とされており、従って図13および図14に示される例では、空燃比がリッチにされたときから一定時間 t0を経過した後に時刻tにおいて下流側空燃比センサ41の異常診断が開始される。 Next, when execution of active control is started at time t 4 , the target air-fuel ratio is set to the rich air-fuel ratio. At this time, in the example shown in FIGS. 13 and 14, the target air-fuel ratio at the time of executing the active control is set to the active control air-fuel ratio AFact richer than the rich air-fuel ratio AFrich in the normal control. At this time, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 also becomes a rich rich air-fuel ratio. On the other hand, the applied voltage V to the downstream air-fuel ratio sensor at this time is maintained at the predetermined first applied voltage V1 without being changed. In FIG. 13 and FIG. 14, t0 represents an elapsed time from when the air-fuel ratio is made rich to diagnose abnormality of the downstream air-fuel ratio sensor 41, and this elapsed time t0 is the air-fuel ratio is rich. After this, the time until the atmosphere around the downstream air-fuel ratio sensor 41 changes is shown. In the example shown in FIGS. 13 and 14, this elapsed time t0 is constant. Therefore, in the example shown in FIGS. 13 and 14, after a certain time t0 has elapsed since the air-fuel ratio was made rich. abnormality diagnosis of the downstream air-fuel ratio sensor 41 is started at time t 5.

図13および図14に示されるように、時刻tにおいて下流側空燃比センサ41の異常診断が開始されると、予め定められた一定時間 t1の間、下流側空燃比センサへの印加電圧Vは図12に示される予め定められた第1の印加電圧V1、例えば0.4(v)に維持され、次いでこの予め定められた一定時間 t1が経過すると、時刻tにおいて下流側空燃比センサへの印加電圧Vは図12に示される予め定められた第2の印加電圧V2, 例えば0.6(v)に変更される。次いで、下流側空燃比センサへの印加電圧Vは予め定められた一定時間 t2の間、この予め定められた第2の印加電圧V2に維持される。図13および図14に示される例では、第2の印加電圧V2は第1の印加電圧V1に比べて高くされており、従って図13および図14に示される例では、一定時間 t1が経過すると、下流側空燃比センサ41への印加電圧Vが増大されることになる。次いで、一定時間 t2が経過すると時刻tにおいてアクティブ制御の実行が終了せしめられる。このとき、目標空燃比が元のリッチ空燃比AFrich に戻され、それにより上流側空燃比センサ40の出力空燃比も元の空燃比に戻され、下流側空燃比センサへの印加電圧Vも元の第1の印加電圧V1に戻される。 13 and as shown in FIG. 14, when the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is started at time t 5, during the predetermined time t1 predetermined applied voltage V to the downstream air-fuel ratio sensor the first applied voltage V1, for example, is maintained at 0.4 (v), then when the pre-fixed time t1 that is determined is passed, the downstream air-fuel ratio sensor at time t 6 predetermined shown in FIG. 12 The applied voltage V is changed to a predetermined second applied voltage V2 shown in FIG. 12, for example, 0.6 (v). Next, the applied voltage V to the downstream air-fuel ratio sensor is maintained at the predetermined second applied voltage V2 for a predetermined time t2. In the example shown in FIGS. 13 and 14, the second applied voltage V2 is higher than the first applied voltage V1, and therefore, in the example shown in FIGS. 13 and 14, when a certain time t1 elapses. The applied voltage V to the downstream air-fuel ratio sensor 41 is increased. Then, execution of the active control is made to finished at time t 7 when the predetermined time t2 has elapsed. At this time, the target air-fuel ratio is returned to the original rich air-fuel ratio AFrich, whereby the output air-fuel ratio of the upstream air-fuel ratio sensor 40 is also returned to the original air-fuel ratio, and the applied voltage V to the downstream air-fuel ratio sensor is also the original. To the first applied voltage V1.

次に、図13および図14を参照しつつ、アクティブ制御が実行されているときの下流側空燃比センサの出力空燃比(A/F)r の出力空燃比の変化について説明する。まず初めに、図13を参照すると、この図13は、上述したように、下流側空燃比センサ41が素子割れをしてもいないのに、空燃比をリッチにしたときに、下流側空燃比センサ41の出力空燃比が、予め定められた設定リーン空燃比α、例えば16.0よりもリーンになっている場合を示している。このような場合の例としては例えば前述したように、気筒間の空燃比にばらつきがあり、特定の気筒間の空燃比が他の気筒に対して大きくリッチ側にずれており、排気通路の形状等によって上流側空燃比センサ40が各気筒から流出した排気ガスと均一に接触することなく、リッチ側にずれた気筒から流出した排気ガスと主に接触する場合である。この場合には、出力電流Iは図12のXで示す如く、限界電流領域FXが生ずるように変化する。従って、この場合には、図12からわかるように、下流側空燃比センサへの印加電圧Vを予め定められた第1の印加電圧V1から第2の印加電圧V2に変化させても、下流側空燃比センサ41の出力電流Iはほとんど変化せず、従って図13に示されるように下流側空燃比センサの出力空燃比(A/F)r はほとんど変化しない。   Next, changes in the output air-fuel ratio of the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor when active control is being executed will be described with reference to FIGS. First, referring to FIG. 13, as described above, FIG. 13 shows that when the air-fuel ratio is made rich even though the downstream air-fuel ratio sensor 41 is not cracked, the downstream air-fuel ratio becomes rich. This shows a case where the output air-fuel ratio of the sensor 41 is leaner than a predetermined lean air-fuel ratio α, for example, 16.0. As an example of such a case, as described above, for example, the air-fuel ratio between cylinders varies, and the air-fuel ratio between specific cylinders is greatly shifted to the rich side with respect to the other cylinders. This is a case where the upstream air-fuel ratio sensor 40 mainly comes into contact with the exhaust gas flowing out from the cylinder shifted to the rich side without uniformly contacting with the exhaust gas flowing out from each cylinder. In this case, the output current I changes so as to generate a limit current region FX as indicated by X in FIG. Therefore, in this case, as can be seen from FIG. 12, even if the applied voltage V to the downstream air-fuel ratio sensor is changed from the first applied voltage V1 to the second applied voltage V2, the downstream side The output current I of the air-fuel ratio sensor 41 hardly changes, and therefore the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor hardly changes as shown in FIG.

一方、図14は、下流側空燃比センサ41が素子割れをしているために、空燃比をリッチにしたときに、下流側空燃比センサ41の出力空燃比が予め定められた設定リーン空燃比α、例えば16.0よりもリーンになる場合を示している。この場合には、図12のYで示されるように、下流側空燃比センサ41の出力電流Iが正の電流値となる、即ち、下流側空燃比センサ41の出力空燃比がリーン空燃比を示すばかりでなく、下流側空燃比センサ41の出力電流Iは、下流側空燃比センサ41への印加電圧Vが増大するとそれに伴って増大する。従って、この場合には、図14に示されるように、印加電圧Vが第1の印加電圧V1から第2の印加電圧V2に増大すると下流側空燃比センサの出力空燃比(A/F)r がそれに伴って増大する。従って、排気ガスの空燃比A/Fをリッチにした状態において、印加電圧VをV1からV2に増大したときの出力電流Iの変化、即ち下流側空燃比センサの出力空燃比(A/F)r の変化から、下流側空燃比センサ41に素子割れが発生したか否かを正確に判別できることになる。   On the other hand, FIG. 14 shows a set lean air-fuel ratio in which the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is predetermined when the air-fuel ratio is made rich because the downstream air-fuel ratio sensor 41 is cracked. It shows a case where the leaner than α, for example, 16.0. In this case, as indicated by Y in FIG. 12, the output current I of the downstream air-fuel ratio sensor 41 becomes a positive current value, that is, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 becomes the lean air-fuel ratio. In addition to the illustration, the output current I of the downstream air-fuel ratio sensor 41 increases as the applied voltage V to the downstream air-fuel ratio sensor 41 increases. Therefore, in this case, as shown in FIG. 14, when the applied voltage V increases from the first applied voltage V1 to the second applied voltage V2, the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor. Increases with it. Accordingly, in the state where the air-fuel ratio A / F of the exhaust gas is rich, the change in the output current I when the applied voltage V is increased from V1 to V2, that is, the output air-fuel ratio (A / F) of the downstream air-fuel ratio sensor. From the change in r, it can be accurately determined whether or not an element crack has occurred in the downstream air-fuel ratio sensor 41.

なお、図14において、第1の印加電圧V1が印加されている時間 t1において、下流側空燃比センサ41の出力空燃比が予め定められた設定リーン空燃比α、例えば16.0よりもリーンにならなかった場合には下流側空燃比センサ41に素子割れが生じていないと判断することができる。従ってこの場合には、印加電圧Vを第1の印加電圧V1から第2の印加電圧V2に変化させても意味がなく、従ってこのときには空燃比センサの異常診断は終了せしめられる。従って、本発明による実施例では、第1の印加電圧V1が印加されている時間 t1において、下流側空燃比センサ41の出力空燃比が予め定められた設定リーン空燃比αよりもリーンであるか否かの仮判定が行われ、この仮判定において、第1の印加電圧V1が印加されている時間 t1において、下流側空燃比センサ41の出力空燃比が予め定められた設定リーン空燃比αよりもリーンでないと判定されたときには、空燃比センサの異常診断は終了せしめられる。これに対し、この仮判定において、第1の印加電圧V1が印加されている時間 t1において、下流側空燃比センサ41の出力空燃比が予め定められた設定リーン空燃比αよりもリーンであると判定されたときに、初めて、印加電圧Vが第1の印加電圧V1から第2の印加電圧Vに増大せしめられ、このとき下流側空燃比センサ41の出力電流Iが増大したか否か、即ち下流側空燃比センサ41が素子割れを生じているか否かが本判定される。   In FIG. 14, at the time t1 when the first applied voltage V1 is applied, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is leaner than a predetermined lean air-fuel ratio α, for example, 16.0. If not, it can be determined that no element cracking has occurred in the downstream air-fuel ratio sensor 41. Therefore, in this case, it is meaningless to change the applied voltage V from the first applied voltage V1 to the second applied voltage V2. Therefore, at this time, the abnormality diagnosis of the air-fuel ratio sensor is terminated. Therefore, in the embodiment according to the present invention, whether the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is leaner than the predetermined lean air-fuel ratio α at the time t1 when the first applied voltage V1 is applied. In this temporary determination, at the time t1 when the first applied voltage V1 is applied, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is determined from a predetermined lean air-fuel ratio α. If it is determined that the air / fuel ratio is not lean, the abnormality diagnosis of the air-fuel ratio sensor is terminated. On the other hand, in this temporary determination, at the time t1 when the first applied voltage V1 is applied, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is leaner than a predetermined lean air-fuel ratio α. When the determination is made, for the first time, the applied voltage V is increased from the first applied voltage V1 to the second applied voltage V. At this time, whether the output current I of the downstream air-fuel ratio sensor 41 has increased, that is, It is determined whether or not the downstream air-fuel ratio sensor 41 has an element crack.

即ち、本発明では、印加電圧Vが第1の印加電圧V1とされている状態で、空燃比センサ40,41の異常を診断すべく空燃比がリッチにされたときに、空燃比センサ40,41の出力電流Iが予め定められたリーン空燃比よりもリーンであることを示す電流値となっている場合には空燃比センサ40,41に異常があると仮判定され、空燃比センサ40,41に異常があると仮判定されたときには、印加電圧Vが第1の印加電圧V1から第2の印加電圧V2に変化せしめられ、このとき電流検出部により空燃比センサ40,41の出力電流Iが予め定められた値以上変化したことが検出されたときには空燃比センサ40,41の素子割れが生じていると本判定される。   That is, in the present invention, when the air-fuel ratio is made rich so as to diagnose the abnormality of the air-fuel ratio sensor 40, 41 in a state where the applied voltage V is the first applied voltage V1, the air-fuel ratio sensor 40, If the output current I of 41 is a current value indicating that the air-fuel ratio is leaner than a predetermined lean air-fuel ratio, it is temporarily determined that the air-fuel ratio sensors 40, 41 are abnormal, When it is tentatively determined that there is an abnormality in 41, the applied voltage V is changed from the first applied voltage V1 to the second applied voltage V2, and at this time, the output current I of the air-fuel ratio sensors 40, 41 is detected by the current detector. When it is detected that has changed more than a predetermined value, it is determined that element cracking of the air-fuel ratio sensors 40, 41 has occurred.

なお、図8Bに示されるように下流側空燃比センサ41の出力電流Iは変動しており、図14に示されるように下流側空燃比センサ41の出力空燃比は変動している。従って、下流側空燃比センサ41の出力電流I或いは下流側空燃比センサ41の出力空燃比の真の値を可能な限り正確に検出するには、下流側空燃比センサ41の出力電流I或いは下流側空燃比センサ41の出力空燃比の平均値を求めることが好ましいと言える。そこで、本発明では、空燃比センサ40,41に異常があると仮判定されたときには、第1の印加電圧V1が印加されているときの空燃比センサの出力電流Iの平均値と第2の印加電圧V2が印加されているときの空燃比センサ40,41の出力電流Iの平均値とが算出され、第1の印加電圧V1が印加されているときの空燃比センサ40,41の出力電流Iの平均値に対して第2の印加電圧V2が印加されているときの空燃比センサ40,41の出力電流Iの平均値が予め定められた値以上変化した場合には空燃比センサ40,41に異常があると本判定される。   As shown in FIG. 8B, the output current I of the downstream air-fuel ratio sensor 41 varies, and as shown in FIG. 14, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 varies. Therefore, in order to detect the output current I of the downstream air-fuel ratio sensor 41 or the true value of the output air-fuel ratio of the downstream air-fuel ratio sensor 41 as accurately as possible, the output current I of the downstream air-fuel ratio sensor 41 or the downstream It can be said that it is preferable to obtain the average value of the output air-fuel ratio of the side air-fuel ratio sensor 41. Therefore, in the present invention, when it is temporarily determined that the air-fuel ratio sensors 40 and 41 are abnormal, the average value of the output current I of the air-fuel ratio sensor when the first applied voltage V1 is applied and the second The average value of the output current I of the air-fuel ratio sensors 40 and 41 when the applied voltage V2 is applied is calculated, and the output current of the air-fuel ratio sensors 40 and 41 when the first applied voltage V1 is applied. When the average value of the output current I of the air-fuel ratio sensor 40, 41 when the second applied voltage V2 is applied with respect to the average value of I changes by a predetermined value or more, the air-fuel ratio sensor 40, It is determined that 41 is abnormal.

<フローチャート>
図15および図16は、下流側空燃比センサ41の異常診断ルーチンを示している。このルーチンは一定時間間隔の割り込みによって実行される。
<Flowchart>
15 and 16 show an abnormality diagnosis routine of the downstream side air-fuel ratio sensor 41. FIG. This routine is executed by interruption at regular time intervals.

まず、ステップS10において、内燃機関の始動後、或いは内燃機関を搭載した車両のイグニッションキーがオンにされた後、下流側空燃比センサ41の異常診断が未完了であるか否かが判定される。内燃機関の始動後に異常判定が既に行われていた場合には処理サイクルを完了する。これに対し、異常診断が未完了であると判定されたときにはステップS11へと進み、アクティブ制御の実行条件が成立しているか否かが判定される。このアクティブ制御の実行条件は、両空燃比センサ40、41の温度が活性温度以上になっており、吸入空気量が予め定められた量以上であり、燃料の供給停止復帰後、予め定められた時間以上経過しているときに成立していると判定される。ここで吸入空気量が予め定められた量以上であることが成立要件の一つとされているのは、空燃比センサ40、41周りを流通する排気ガスの流量が少ないと、素子割れが生じていても空燃比センサ40、41の出力空燃比に変化が生じづらいからであり、また燃料の供給停止復帰後、予め定められた時間以上経過していることが成立要件の一つとされているのは、燃料の供給停止復帰後、暫くの間は排気側電極52の表面上に多量の酸素が存在するために空燃比がリッチにされても空燃比センサ40、41はリーンの出力空燃比を示す危険性があるからである。   First, in step S10, after the internal combustion engine is started or after the ignition key of a vehicle equipped with the internal combustion engine is turned on, it is determined whether or not abnormality diagnosis of the downstream air-fuel ratio sensor 41 is incomplete. . If the abnormality determination has already been made after the internal combustion engine is started, the processing cycle is completed. On the other hand, when it is determined that the abnormality diagnosis is not completed, the process proceeds to step S11, and it is determined whether or not an execution condition for active control is satisfied. The execution condition of this active control is that the temperature of both the air-fuel ratio sensors 40 and 41 is equal to or higher than the activation temperature, the intake air amount is equal to or higher than a predetermined amount, and is predetermined after returning from the fuel supply stoppage. It is determined that it has been established when the time has passed. One of the requirements for establishment is that the intake air amount is equal to or greater than a predetermined amount. If the flow rate of the exhaust gas flowing around the air-fuel ratio sensors 40 and 41 is small, element cracking occurs. However, it is difficult for the output air-fuel ratios of the air-fuel ratio sensors 40 and 41 to change, and one of the requirements for establishment is that a predetermined time or more has elapsed after returning from the stop of fuel supply. The air-fuel ratio sensors 40 and 41 maintain the lean output air-fuel ratio even if the air-fuel ratio is made rich because a large amount of oxygen exists on the surface of the exhaust-side electrode 52 for a while after returning from the fuel supply stop. Because there is a danger to show.

ステップS11において、アクティブ制御の実行条件が成立していないと判断されたときには処理サイクルを完了する。これに対し、アクティブ制御の実行条件が成立していると判断されたときには、ステップS12に進み、目標空燃比が、通常制御時におけるリッチ空燃比AFrich よりもリッチなアクティブ制御時空燃比AFact、例えば13.5とされる。それにより空燃比がリッチ空燃比とされ、アクティブ制御が開始される。次いで、ステップS13では、アクティブ制御が開始された後、一定時間 t0が経過したか否かが判別される。アクティブ制御が開始された後、一定時間 t0が経過していないときには、処理サイクルを完了する。これに対し、アクティブ制御が開始された後、一定時間 t0が経過したときにはステップS14に進んで、下流側空燃比センサの出力空燃比(A/F)r が予め定められた設定リーン空燃比α、例えば16.0よりもリーンであるか否か、即ち下流側空燃比センサ41の出力電流Iが、この設定リーン空燃比αに対応する設定電流値よりも大きくなったか否かが判別される。下流側空燃比センサの出力空燃比(A/F)r がこの設定リーン空燃比αよりも小さいとき、即ち下流側空燃比センサ41の出力電流Iが、この設定リーン空燃比αに対応する設定電流値よりも低いときには下流側空燃比センサ41が素子割れを生じていないと判別される。従って、このときには、ステップS29に進んで、下流側空燃比センサ41は正常であると判定される。   If it is determined in step S11 that the active control execution condition is not satisfied, the processing cycle is completed. On the other hand, when it is determined that the active control execution condition is satisfied, the process proceeds to step S12, where the target air-fuel ratio is richer than the rich air-fuel ratio AFrich during normal control, for example, 13 .5. As a result, the air-fuel ratio is made rich and the active control is started. Next, in step S13, it is determined whether or not a predetermined time t0 has elapsed after the active control is started. When the predetermined time t0 has not elapsed after the active control is started, the processing cycle is completed. On the other hand, when the predetermined time t0 has elapsed after the start of the active control, the routine proceeds to step S14, where the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor is set to a predetermined lean air-fuel ratio α. For example, it is determined whether or not the engine is leaner than 16.0, that is, whether or not the output current I of the downstream air-fuel ratio sensor 41 has become larger than the set current value corresponding to the set lean air-fuel ratio α. . When the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor is smaller than the set lean air-fuel ratio α, that is, the output current I of the downstream air-fuel ratio sensor 41 is set corresponding to the set lean air-fuel ratio α. When it is lower than the current value, it is determined that the downstream air-fuel ratio sensor 41 does not cause element cracking. Accordingly, at this time, the routine proceeds to step S29, where it is determined that the downstream air-fuel ratio sensor 41 is normal.

これに対し、ステップS14において、下流側空燃比センサの出力空燃比(A/F)r が予め定められた設定リーン空燃比αよりも大きいと判別されたとき、即ち下流側空燃比センサ41の出力電流Iが、この設定リーン空燃比αに対応する設定電流値よりも大きいと判別されたときには、ステップS15に進んで、一定時間 t1内における下流側空燃比センサの出力空燃比(A/F)r の平均値の算出が完了したことを示す完了フラグがセットされているか否かが判別される。完了フラグがセットされていないとき、即ち一定時間 t1内における下流側空燃比センサの出力空燃比(A/F)r の平均値の算出が完了していないときにはステップS16に進んで、下流側空燃比センサの出力空燃比(A/F)r が下流側空燃比センサの出力空燃比の積算値Σ(A/F)r に加算される。次いで、ステップS17では、図13および図14に示される一定時間 t1を経過したか否かが判別される。一定時間 t1を経過していないときには処理サイクルを完了する。   On the other hand, when it is determined in step S14 that the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor is larger than the predetermined set lean air-fuel ratio α, that is, the downstream air-fuel ratio sensor 41 When it is determined that the output current I is larger than the set current value corresponding to the set lean air-fuel ratio α, the process proceeds to step S15, and the output air-fuel ratio (A / F) of the downstream side air-fuel ratio sensor within a predetermined time t1. ) It is determined whether or not a completion flag indicating that the calculation of the average value of r has been completed is set. When the completion flag is not set, that is, when the calculation of the average value of the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor within the fixed time t1 is not completed, the routine proceeds to step S16, where the downstream air-fuel ratio is calculated. The output air-fuel ratio (A / F) r of the fuel ratio sensor is added to the integrated value Σ (A / F) r of the output air-fuel ratio of the downstream air-fuel ratio sensor. Next, in step S17, it is determined whether or not a predetermined time t1 shown in FIGS. 13 and 14 has elapsed. When the predetermined time t1 has not elapsed, the processing cycle is completed.

これに対し、一定時間 t1を経過したときには、ステップS18に進んで、下流側空燃比センサの出力空燃比の積算値Σ(A/F)r を一定時間 t1で除算することにより一定時間 t1内における下流側空燃比センサの出力空燃比の平均値AFOが算出される。次いで、ステップS19では、印加電圧Vが第1の印加電圧V1から第2の印加電圧V2に切替えられる。次いで、ステップS20では、下流側空燃比センサの出力空燃比の積算値Σ(A/F)r がクリアされ、完了フラグがセットされる。ついで、処理サイクルを完了する。完了フラグがセットされると、つぎの処理サイクルではステップS15からステップS21にジャンプする。ステップS21では、下流側空燃比センサの出力空燃比(A/F)r が下流側空燃比センサの出力空燃比の積算値Σ(A/F)r に加算される。次いで、ステップS22では、図13および図14に示される一定時間 t2を経過したか否かが判別される。一定時間 t2を経過していないときには処理サイクルを完了する。これに対し、一定時間 t2を経過したときには、ステップS23に進んで、下流側空燃比センサの出力空燃比の積算値Σ(A/F)r を一定時間 t2で除算することにより一定時間 t2内における下流側空燃比センサの出力空燃比の平均値AF1が算出される。   On the other hand, when the fixed time t1 has elapsed, the process proceeds to step S18, and the integrated value Σ (A / F) r of the output air-fuel ratio of the downstream side air-fuel ratio sensor is divided by the fixed time t1 to be within the fixed time t1. An average value AFO of the output air-fuel ratio of the downstream air-fuel ratio sensor at is calculated. Next, in step S19, the applied voltage V is switched from the first applied voltage V1 to the second applied voltage V2. Next, in step S20, the integrated value Σ (A / F) r of the output air-fuel ratio of the downstream air-fuel ratio sensor is cleared, and the completion flag is set. Then, the processing cycle is completed. When the completion flag is set, the process jumps from step S15 to step S21 in the next processing cycle. In step S21, the output air-fuel ratio (A / F) r of the downstream air-fuel ratio sensor is added to the integrated value Σ (A / F) r of the output air-fuel ratio of the downstream air-fuel ratio sensor. Next, in step S22, it is determined whether or not a predetermined time t2 shown in FIGS. 13 and 14 has elapsed. When the predetermined time t2 has not elapsed, the processing cycle is completed. On the other hand, when the predetermined time t2 has elapsed, the process proceeds to step S23, and the integrated value Σ (A / F) r of the output air-fuel ratio of the downstream side air-fuel ratio sensor is divided by the predetermined time t2 to be within the predetermined time t2. An average value AF1 of the output air-fuel ratio of the downstream air-fuel ratio sensor at is calculated.

次いで、ステップS24では、一定時間 t2内における下流側空燃比センサの出力空燃比の平均値AF1と一定時間 t1内における下流側空燃比センサの出力空燃比の平均値AF0との差(AF1−AF0)が予め定められた値ΔAF(例えば空燃比差で1.0)よりも大きいか否かが判別される。出力空燃比の平均値AF1と出力空燃比の平均値AF0との差(AF1−AF0)が予め定められた値ΔAFよりも小さいときには、下流側空燃比センサ41が素子割れを生じていないと判断され、ステップS25に進んで下流側空燃比センサ41は正常であると判定される。次いで、ステップS27に進む。これに対し、ステップS24において、出力空燃比の平均値AF1と出力空燃比の平均値AF0との差(AF1−AF0)が予め定められた値ΔAFよりも大きいときには、下流側空燃比センサ41が素子割れを生じていると判断され、ステップS26に進んで下流側空燃比センサ41に異常があると判定される。次いで、ステップS27に進む。ステップS27ではアクティブ制御が終了せしめられる。即ち、ステップS27では、下流側空燃比センサ41への印加電圧Vが第2の印加電圧V2から第1の印加電圧V1に戻され、目標空燃比が元のリッチ空燃比AFrich に戻される。   Next, in step S24, the difference between the average value AF1 of the output air-fuel ratio of the downstream air-fuel ratio sensor within a certain time t2 and the average value AF0 of the output air-fuel ratio of the downstream air-fuel ratio sensor within a certain time t1 (AF1-AF0). ) Is larger than a predetermined value ΔAF (for example, 1.0 as an air-fuel ratio difference). When the difference (AF1−AF0) between the average value AF1 of the output air-fuel ratio and the average value AF0 of the output air-fuel ratio is smaller than a predetermined value ΔAF, it is determined that the downstream air-fuel ratio sensor 41 has not caused element cracking. In step S25, the downstream air-fuel ratio sensor 41 is determined to be normal. Next, the process proceeds to step S27. On the other hand, when the difference (AF1-AF0) between the average value AF1 of the output air-fuel ratio and the average value AF0 of the output air-fuel ratio is larger than a predetermined value ΔAF in step S24, the downstream air-fuel ratio sensor 41 is It is determined that an element crack has occurred, and the process proceeds to step S26, where it is determined that the downstream air-fuel ratio sensor 41 is abnormal. Next, the process proceeds to step S27. In step S27, the active control is terminated. That is, in step S27, the applied voltage V to the downstream air-fuel ratio sensor 41 is returned from the second applied voltage V2 to the first applied voltage V1, and the target air-fuel ratio is returned to the original rich air-fuel ratio AFrich.

なお、図15および図16を参照しつつ、下流側空燃比センサ41の異常診断を行う場合を例にとって説明してきたが、上流側空燃比センサ40の異常診断についても、図15および図16を参照しつつ説明してきた方法と同様な方法でもって行うことができる。   Note that the case where the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed as an example has been described with reference to FIGS. 15 and 16, but the abnormality diagnosis of the upstream air-fuel ratio sensor 40 is also illustrated in FIGS. It can be performed by a method similar to the method described with reference.

1 機関本体
5 燃焼室
7 吸気ポート
9 排気ポート
19 排気マニホルド
20 上流側排気浄化触媒
24 下流側排気浄化触媒
31 ECU
40 上流側空燃比センサ
41 下流側空燃比センサ
DESCRIPTION OF SYMBOLS 1 Engine body 5 Combustion chamber 7 Intake port 9 Exhaust port 19 Exhaust manifold 20 Upstream exhaust purification catalyst 24 Downstream exhaust purification catalyst 31 ECU
40 upstream air-fuel ratio sensor 41 downstream air-fuel ratio sensor

Claims (7)

内燃機関の排気通路に配置されかつ空燃比に応じた限界電流が発生する限界電流式の空燃比センサの異常診断装置において、空燃比センサの出力電流を検出する電流検出部と、空燃比センサへの印加電圧を制御する印加電圧制御装置とを具備しており、空燃比センサの素子割れが生じたときには、空燃比がリッチにされたときに、空燃比センサの正常時に空燃比に応じた限界電流が発生する範囲内で印加電圧Vを変化させると、空燃比センサの正常時に印加電圧Vを0.9Vよりも高い電圧で変化させたときの出力電流Iの変化パターンでもって、出力電流Iが変化し、該印加電圧制御装置は、空燃比センサの異常を診断すべく空燃比がリッチにされたときに、空燃比センサの正常時に空燃比に応じた限界電流が発生する範囲内で印加電圧を変化させ、このとき電流検出部により空燃比センサの出力電流該変化パターンでもって予め定められた値以上変化したことが検出されたときには空燃比センサの素子割れが生じていると判定される空燃比センサの異常診断装置。 An abnormality diagnosis device for a limit current type air-fuel ratio sensor arranged in an exhaust passage of an internal combustion engine and generating a limit current according to the air-fuel ratio, a current detection unit for detecting an output current I of the air-fuel ratio sensor, and an air-fuel ratio sensor An applied voltage control device for controlling the applied voltage V to the air-fuel ratio , when an air-fuel ratio sensor is cracked, when the air-fuel ratio is made rich, and when the air-fuel ratio sensor is normal, When the applied voltage V is changed within a range where the limit current is generated, the output current I changes with the change pattern of the applied voltage V at a voltage higher than 0.9 V when the air-fuel ratio sensor is normal. When the current I changes and the air-fuel ratio is made rich so as to diagnose the abnormality of the air-fuel ratio sensor, the applied voltage control device is within a range in which a limit current corresponding to the air-fuel ratio is generated when the air-fuel ratio sensor is normal. Applied power at Changing the V, determined element crack of the air-fuel ratio sensor when the output current I of the air-fuel ratio sensor is detected to have changed prescribed value or more in advance with a said change pattern occurs by the current detecting unit this time Abnormality diagnosis device for air-fuel ratio sensor. 印加電圧が第1の印加電圧とされている状態で、空燃比センサの異常を診断すべく空燃比がリッチにされたときに、空燃比センサの出力電流が予め定められたリーン空燃比よりもリーンの空燃比であることを示す電流値となっている場合には空燃比センサに異常があると仮判定され、空燃比センサに異常があると仮判定されたときには、印加電圧が第1の印加電圧から第2の印加電圧に変化せしめられ、このとき電流検出部により空燃比センサの出力電流上記変化パターンでもって予め定められた値以上変化したことが検出されたときには空燃比センサの素子割れが生じていると本判定される請求項1に記載の空燃比センサの異常診断装置。 When the applied voltage V is the first applied voltage, when the air-fuel ratio is made rich to diagnose an abnormality of the air-fuel ratio sensor, the output current I of the air-fuel ratio sensor is a predetermined lean air-fuel ratio. When the current value indicates that the air-fuel ratio is leaner than that, it is temporarily determined that the air-fuel ratio sensor is abnormal, and when it is temporarily determined that the air-fuel ratio sensor is abnormal, the applied voltage V is When the first applied voltage is changed to the second applied voltage, at this time, when the current detection unit detects that the output current I of the air-fuel ratio sensor has changed by a predetermined value or more with the above-mentioned change pattern, it is empty. The air-fuel ratio sensor abnormality diagnosis apparatus according to claim 1, wherein the determination is made that an element crack of the fuel ratio sensor has occurred. 空燃比センサに異常があると仮判定されたときには、第1の印加電圧が印加されているときの空燃比センサの出力電流の平均値と第2の印加電圧が印加されているときの空燃比センサの出力電流の平均値とが算出され、第1の印加電圧が印加されているときの空燃比センサの出力電流Iの平均値に対して第2の印加電圧が印加されているときの空燃比センサの出力電流の平均値が上記変化パターンでもって予め定められた値以上変化した場合には空燃比センサの素子割れが生じていると本判定される請求項2に記載の空燃比センサの異常診断装置。 When it is temporarily determined that the air-fuel ratio sensor is abnormal, the average value of the output current I of the air-fuel ratio sensor when the first applied voltage is applied and the sky when the second applied voltage is applied. When the average value of the output current I of the fuel ratio sensor is calculated and the second applied voltage is applied to the average value of the output current I of the air-fuel ratio sensor when the first applied voltage is applied The air-fuel ratio sensor according to claim 2, wherein when the average value of the output current I of the air-fuel ratio sensor changes more than a predetermined value with the change pattern, it is determined that an element crack of the air-fuel ratio sensor has occurred. Abnormality diagnosis device for the fuel ratio sensor. 空燃比センサの異常を診断すべく空燃比がリッチにされたときに、空燃比がリッチにされたときから一定時間経過した後に空燃比センサの異常診断が開始される請求項1に記載の空燃比センサの異常診断装置。   The air-fuel ratio sensor abnormality diagnosis according to claim 1, wherein when the air-fuel ratio is made rich in order to diagnose an abnormality in the air-fuel ratio sensor, the air-fuel ratio sensor abnormality diagnosis is started after a lapse of a predetermined time from when the air-fuel ratio is made rich. Abnormality diagnosis device for the fuel ratio sensor. 内燃機関の排気通路に排気浄化触媒が配置され、該排気浄化触媒上流の該排気通路に上流側空燃比センサが配置されており、排気浄化触媒下流の該排気通路に下流側空燃比センサが配置されており、該下流側空燃比センサが上記限界電流式の空燃比センサからなる請求項1に記載の空燃比センサの異常診断装置。   An exhaust purification catalyst is disposed in the exhaust passage of the internal combustion engine, an upstream air-fuel ratio sensor is disposed in the exhaust passage upstream of the exhaust purification catalyst, and a downstream air-fuel ratio sensor is disposed in the exhaust passage downstream of the exhaust purification catalyst. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the downstream air-fuel ratio sensor comprises the limit current type air-fuel ratio sensor. 内燃機関の排気通路に排気浄化触媒が配置され、該排気浄化触媒上流の該排気通路に上流側空燃比センサが配置されており、排気浄化触媒下流の該排気通路に下流側空燃比センサが配置されており、該上流側空燃比センサが上記限界電流式の空燃比センサからなる請求項1に記載の空燃比センサの異常診断装置   An exhaust purification catalyst is disposed in the exhaust passage of the internal combustion engine, an upstream air-fuel ratio sensor is disposed in the exhaust passage upstream of the exhaust purification catalyst, and a downstream air-fuel ratio sensor is disposed in the exhaust passage downstream of the exhaust purification catalyst. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the upstream air-fuel ratio sensor comprises the limit current type air-fuel ratio sensor. 内燃機関は、空燃比をリッチ空燃比とリーン空燃比とに交互に変更する通常制御と、空燃比を該通常制御時におけるリッチ空燃比よりもリッチにするアクティブ制御とを実行可能であり、該アクティブ制御の実行中に空燃比センサの異常診断がおこなわれる請求項1に記載の空燃比センサの異常診断装置。   The internal combustion engine is capable of executing normal control for alternately changing the air-fuel ratio to a rich air-fuel ratio and a lean air-fuel ratio and active control for making the air-fuel ratio richer than the rich air-fuel ratio at the time of the normal control, The air-fuel ratio sensor abnormality diagnosis apparatus according to claim 1, wherein abnormality diagnosis of the air-fuel ratio sensor is performed during execution of active control.
JP2014154072A 2014-07-29 2014-07-29 Air-fuel ratio sensor abnormality diagnosis device Expired - Fee Related JP6065888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154072A JP6065888B2 (en) 2014-07-29 2014-07-29 Air-fuel ratio sensor abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154072A JP6065888B2 (en) 2014-07-29 2014-07-29 Air-fuel ratio sensor abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2016031055A JP2016031055A (en) 2016-03-07
JP6065888B2 true JP6065888B2 (en) 2017-01-25

Family

ID=55441582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154072A Expired - Fee Related JP6065888B2 (en) 2014-07-29 2014-07-29 Air-fuel ratio sensor abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP6065888B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115335B2 (en) * 2019-01-23 2022-08-09 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3834898B2 (en) * 1996-12-13 2006-10-18 株式会社デンソー Air-fuel ratio sensor abnormality diagnosis device
JP3562030B2 (en) * 1995-06-05 2004-09-08 株式会社デンソー Oxygen sensor abnormality diagnosis device
JP3891234B2 (en) * 1997-10-02 2007-03-14 株式会社デンソー Air-fuel ratio sensor system abnormality diagnosis device for internal combustion engine
JP2000221160A (en) * 1999-01-29 2000-08-11 Toyota Motor Corp Air/fuel ratio detector
JP3975599B2 (en) * 1999-02-19 2007-09-12 株式会社デンソー Gas concentration detector
JP2004019542A (en) * 2002-06-17 2004-01-22 Toyota Motor Corp Abnormality detector of oxygen sensor
JP4252359B2 (en) * 2003-05-09 2009-04-08 株式会社日本自動車部品総合研究所 Abnormality detector for gas concentration sensor
JP4665636B2 (en) * 2005-07-13 2011-04-06 株式会社デンソー Element breakage detection device for oxygen sensor
JP2009191665A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Fuel injection control device of internal combustion engine
JP4947019B2 (en) * 2008-09-22 2012-06-06 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP2010174790A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Control device of air-fuel ratio sensor
JP2012068150A (en) * 2010-09-24 2012-04-05 Toyota Motor Corp Abnormality diagnostic device for oxygen sensor
US20140188371A1 (en) * 2011-09-13 2014-07-03 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2016031055A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6222037B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6311578B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6020739B2 (en) Air-fuel ratio sensor abnormality diagnosis device
KR101822562B1 (en) Exhaust gas purification system for internal combustion engine
JP6179371B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP6350434B2 (en) Abnormality diagnosis device for downstream air-fuel ratio sensor
WO2014118890A1 (en) Control device for internal combustion engine
WO2014119026A1 (en) Control device for internal combustion engine
JP5949958B2 (en) Control device for internal combustion engine
JP6268976B2 (en) Control device for internal combustion engine
JP5949959B2 (en) Control device for internal combustion engine
JP6562047B2 (en) Exhaust gas purification device for internal combustion engine
JP6065888B2 (en) Air-fuel ratio sensor abnormality diagnosis device
WO2014118888A1 (en) Control device for internal combustion engine
JP6217739B2 (en) Exhaust gas purification device for internal combustion engine
CN109915268B (en) Catalyst degradation detection device
KR102201463B1 (en) Failure detection apparatus for gas sensor and failure detection method for gas sensor
JP6350414B2 (en) Control device for internal combustion engine
JP2015075082A (en) Air-fuel ratio sensor control device
CN111472894B (en) Control device for internal combustion engine
JP6734019B2 (en) Abnormality diagnosis device for downstream air-fuel ratio sensor
JP2016196854A (en) Abnormality diagnostic device for air-fuel ratio sensor
JP2021143665A (en) Control device for exhaust sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6065888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees