JP2001234805A - Degradation diagnostic device of air-fuel ratio sensor - Google Patents

Degradation diagnostic device of air-fuel ratio sensor

Info

Publication number
JP2001234805A
JP2001234805A JP2000049171A JP2000049171A JP2001234805A JP 2001234805 A JP2001234805 A JP 2001234805A JP 2000049171 A JP2000049171 A JP 2000049171A JP 2000049171 A JP2000049171 A JP 2000049171A JP 2001234805 A JP2001234805 A JP 2001234805A
Authority
JP
Japan
Prior art keywords
air
fuel
fuel ratio
ratio sensor
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000049171A
Other languages
Japanese (ja)
Other versions
JP4134480B2 (en
Inventor
Hiroshi Kato
浩志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000049171A priority Critical patent/JP4134480B2/en
Publication of JP2001234805A publication Critical patent/JP2001234805A/en
Application granted granted Critical
Publication of JP4134480B2 publication Critical patent/JP4134480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately judge the degradation of an air-fuel ratio sensor even when the fuel property is different. SOLUTION: The fuel injection from a fuel injection valve 4 is controlled based on the output of the air-fuel ratio sensor 11 so as to obtain the target air-fuel ratio to be set based on the operational condition. This degradation diagnostic device comprises a means to judge the fuel property, a means to judge the diagnostic range of the air-fuel ratio sensor 11, a means to judge the degradation of the air-fuel ratio sensor 11 by comparing the output change of the air-fuel ratio sensor 11 with a predetermined reference value in this diagnostic range, and a means to stop the diagnosis of the air-fuel ratio sensor 11 by the fuel property.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は内燃機関の空燃比
センサの劣化診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for diagnosing deterioration of an air-fuel ratio sensor of an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の空燃比を運転条件に応じて異
なる目標空燃比に精度よく制御するために、排気系に広
域空燃比センサを設け、この広域空燃比センサの出力に
基づいて燃料噴射量をフィードバック制御する装置が知
られている。
2. Description of the Related Art In order to accurately control the air-fuel ratio of an internal combustion engine to a different target air-fuel ratio according to operating conditions, a wide-range air-fuel ratio sensor is provided in an exhaust system, and fuel injection is performed based on the output of the wide-range air-fuel ratio sensor. Devices for feedback controlling the quantity are known.

【0003】この場合、広域空燃比センサが劣化などに
より出力特性が変動すると、空燃比の制御精度が低下す
る。そこで、広域空燃比センサの劣化や故障などを自己
診断する機能を付与し、センサ出力の変動幅が限界値を
超えたときには、交換や修理を促すようになっている。
In this case, if the output characteristics fluctuate due to deterioration of the wide-range air-fuel ratio sensor or the like, the control accuracy of the air-fuel ratio decreases. Therefore, a function of self-diagnosing deterioration or failure of the wide-range air-fuel ratio sensor is provided, and when the fluctuation range of the sensor output exceeds a limit value, replacement or repair is urged.

【0004】この劣化などの診断は、例えば次のように
して行う。広域空燃比センサの出力は(排気)空燃比に
応じて変化するが、一般的に正常品と劣化品とでは、空
燃比の変化に対する応答時間が異なり、劣化が進むほど
応答時間が長くかかる。換言すると、劣化が進むほど同
一の反応時間についての出力の変化代が小さくなる。
[0004] Diagnosis of this deterioration or the like is performed, for example, as follows. The output of the wide-range air-fuel ratio sensor changes according to the (exhaust) air-fuel ratio. Generally, the response time to the change in the air-fuel ratio differs between a normal product and a deteriorated product, and the longer the deterioration, the longer the response time. In other words, the more the deterioration proceeds, the smaller the change in output for the same reaction time.

【0005】したがって、空燃比を一定値だけ変化させ
たときの、単位時間あたりのセンサ出力の変化代を判断
することにより劣化の程度が分かり、この変化代が規定
値よりも小さくなったときに劣化によるセンサ異常を判
定している。
Therefore, the degree of deterioration can be determined by judging the amount of change in the sensor output per unit time when the air-fuel ratio is changed by a fixed value, and when the amount of change becomes smaller than a specified value. The sensor abnormality due to deterioration is determined.

【0006】ところで、内燃機関の燃料として市販の燃
料には、燃料成分が標準の燃料と重質分が多い燃料とが
ある。標準燃料に比較して重質燃料は、燃料の揮発性が
低く、燃料噴射弁により吸気管に噴射された燃料が実際
に燃焼室に到達して燃焼するまでに時間差が出てくる。
[0006] By the way, commercially available fuels for internal combustion engines include fuels with standard fuel components and fuels with a large amount of heavy components. Heavy fuel has a lower fuel volatility than the standard fuel, and there is a time lag before the fuel injected into the intake pipe by the fuel injection valve actually reaches the combustion chamber and burns.

【0007】このため、広域空燃比センサの診断を行う
場合、燃料成分によっては劣化の判定が正確に行えない
ことがある。
For this reason, when diagnosing the wide-range air-fuel ratio sensor, it may not be possible to accurately determine the deterioration depending on the fuel component.

【0008】空燃比を変化させたときに、排気管に設置
した広域空燃比センサでこの空燃比の変化が検出される
までの遅れ時間が、標準燃料と重質燃料とでは異なり、
重質燃料では単位時間の空燃比センサの出力変化代が、
標準燃料に比較して小さくなってしまう。したがって、
空燃比センサ出力の変化代を劣化判定の基準値と比較す
るとき、標準燃料と重質燃料とでは結果が相違し、空燃
比センサが正常であっても誤って劣化を判定することも
ある。
When the air-fuel ratio is changed, the delay time until the change in the air-fuel ratio is detected by the wide area air-fuel ratio sensor installed in the exhaust pipe differs between the standard fuel and the heavy fuel.
For heavy fuel, the output change of the air-fuel ratio sensor per unit time is
It is smaller than the standard fuel. Therefore,
When comparing the change in the output of the air-fuel ratio sensor with the reference value for the deterioration determination, the result differs between the standard fuel and the heavy fuel, and the deterioration may be erroneously determined even if the air-fuel ratio sensor is normal.

【0009】燃料成分の相違により空燃比センサで検出
される空燃比の応答に遅れが出ることは、特開平11−
241643号公報などにより指摘されており、この公
報では空燃比を切り換えたときの空燃比センサの出力変
化から、標準燃料と重質燃料の判定を行うことが、ま
た、判定した燃料性状により燃料噴射量を補正すること
が提案されている。
The delay in the response of the air-fuel ratio detected by the air-fuel ratio sensor due to the difference in the fuel component is described in
In this publication, it is pointed out that the standard fuel and the heavy fuel are determined from the output change of the air-fuel ratio sensor when the air-fuel ratio is switched, and the fuel injection is performed based on the determined fuel property. It has been proposed to correct the amount.

【0010】[0010]

【発明が解決すべき課題】従来、空燃比センサの劣化診
断にあたり、このような燃料性状の相違を考慮して、劣
化診断時の比較基準となる診断クライテリアを、燃料が
標準(軽質燃料)から重質燃料までの特性を加味した平
均値的なクライテリアとしたり、あるいは診断するとき
の運転領域を限定して誤診断を防ぐようにしていた。
Conventionally, when diagnosing deterioration of an air-fuel ratio sensor, taking into account such differences in fuel properties, a diagnosis criterion serving as a comparison criterion at the time of diagnosing deterioration is determined based on the standard fuel (light fuel). The average value criteria taking into account the characteristics up to the heavy fuel are taken into consideration, or the operating range at the time of diagnosis is limited to prevent erroneous diagnosis.

【0011】しかし、この場合、例えば診断クライテリ
アに余裕代を持たせるために精度が低くなったり、ある
いは診断領域が限られ、空燃比センサの劣化診断の頻度
が低下する等の問題があった。
However, in this case, there has been a problem that the accuracy is lowered in order to give a margin to the diagnostic criteria, or the diagnostic region is limited, and the frequency of the deterioration diagnosis of the air-fuel ratio sensor is reduced.

【0012】本発明はこのような問題を解決することを
目的とするもので、燃料性状が異なっても精度よく空燃
比センサの劣化判断が行えるようにする。
An object of the present invention is to solve such a problem, and it is possible to accurately judge deterioration of an air-fuel ratio sensor even if fuel properties are different.

【0013】[0013]

【課題を解決するための手段】第1の発明は、内燃機関
の排気系に設置した排気空燃比を検出する空燃比センサ
と、吸気系に設けた燃料噴射弁とを備え、目標空燃比と
なるよう燃料噴射弁からの燃料噴射量を空燃比センサの
出力に基づいて制御する内燃機関において、燃料性状を
判定する手段と、空燃比センサの診断領域を判定する手
段と、この診断領域において空燃比センサの出力変化代
を所定の基準値と比較して空燃比センサの劣化を判断す
る手段と、燃料性状に応じてこの空燃比センサの診断を
停止する手段とを備える。
According to a first aspect of the present invention, there is provided an air-fuel ratio sensor installed in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system. In an internal combustion engine that controls the amount of fuel injection from a fuel injection valve based on the output of an air-fuel ratio sensor, a means for determining fuel properties, a means for determining a diagnosis area of the air-fuel ratio sensor, A means for comparing the output change of the fuel ratio sensor with a predetermined reference value to determine the deterioration of the air-fuel ratio sensor, and a means for stopping the diagnosis of the air-fuel ratio sensor according to the fuel property.

【0014】第2の発明は、内燃機関の排気系に設置し
た排気空燃比を検出する空燃比センサと、吸気系に設け
た燃料噴射弁とを備え、目標空燃比となるよう燃料噴射
弁からの燃料噴射量を空燃比センサの出力に基づいて制
御する内燃機関において、燃料性状を判定する手段と、
燃料性状に応じてそれぞれ空燃比センサの診断領域を判
定する手段と、燃料性状に応じてそれぞれの診断領域に
おいて空燃比センサの出力変化代を共通の基準値と比較
して空燃比センサの劣化を判断する手段とを備える。
A second invention comprises an air-fuel ratio sensor installed in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system. Means for determining fuel properties in an internal combustion engine that controls the amount of fuel injection based on the output of an air-fuel ratio sensor;
Means for judging the diagnostic area of the air-fuel ratio sensor according to the fuel property, and comparing the change in output of the air-fuel ratio sensor with a common reference value in each diagnostic area according to the fuel property to determine the deterioration of the air-fuel ratio sensor. Means for determining.

【0015】第3の発明は、内燃機関の排気系に設置し
た排気空燃比を検出する空燃比センサと、吸気系に設け
た燃料噴射弁とを備え、目標空燃比となるよう燃料噴射
弁からの燃料噴射量を空燃比センサの出力に基づいて制
御する内燃機関において、燃料性状を判定する手段と、
空燃比センサの診断領域を判定する手段と、燃料性状に
応じて異なった診断基準値を設定する手段と、診断領域
において空燃比センサの出力の変化代を燃料性状に対応
した診断基準値と比較して空燃比センサの劣化を判断す
る手段とを備える。
A third invention comprises an air-fuel ratio sensor installed in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system. Means for determining fuel properties in an internal combustion engine that controls the amount of fuel injection based on the output of an air-fuel ratio sensor;
Means for determining the diagnostic area of the air-fuel ratio sensor, means for setting a different diagnostic reference value according to the fuel property, and comparing the change in the output of the air-fuel ratio sensor with the diagnostic reference value corresponding to the fuel property in the diagnostic area Means for judging deterioration of the air-fuel ratio sensor.

【0016】第4の発明は、第1から第3の発明におい
て、前記診断判定手段は、燃料カット後、診断開始ディ
レイ時間を経過したときに診断領域にあると判定する。
In a fourth aspect based on the first to third aspects, the diagnosis determination means determines that the vehicle is in the diagnosis area when a diagnosis start delay time has elapsed after fuel cut.

【0017】第5の発明は、第4の発明において、前記
診断開始ディレイ時間が燃料性状に応じて異なった時間
に設定される。
In a fifth aspect based on the fourth aspect, the diagnosis start delay time is set to a different time according to the fuel property.

【0018】[0018]

【作用、効果】第1の発明では、判定された燃料性状
が、空燃比センサの診断を行う設定燃料と一致する場合
に、診断領域が判定された時点で、空燃比センサの出力
の変化代を診断基準値と比較して空燃比センサの劣化判
断が行われ、また燃料性状が設定された燃料と異なると
きは、空燃比センサの劣化判断を停止する。このため、
劣化診断を行う診断領域、診断基準値などは設定燃料の
特性にのみ合わせて決めることができ、それだけ空燃比
センサの劣化診断の精度が高められる。
According to the first aspect of the present invention, when the determined fuel property matches the set fuel for performing the diagnosis of the air-fuel ratio sensor, the change in the output of the air-fuel ratio sensor is determined when the diagnosis region is determined. Is compared with the diagnostic reference value to determine the deterioration of the air-fuel ratio sensor. If the fuel property is different from the set fuel, the deterioration determination of the air-fuel ratio sensor is stopped. For this reason,
The diagnosis area for performing the deterioration diagnosis, the diagnosis reference value, and the like can be determined only in accordance with the characteristics of the set fuel, and accordingly, the accuracy of the deterioration diagnosis of the air-fuel ratio sensor is improved.

【0019】第2の発明では、燃料性状に応じて診断領
域を変更し、このため診断基準値が同一であっても、そ
れぞれの燃料特性に応じて適切な診断が可能となり、燃
料性状の相違による応答性の変化分に影響されずに正確
に空燃比センサの診断が行える。
According to the second aspect of the present invention, the diagnostic region is changed in accordance with the fuel property. Therefore, even if the diagnostic reference value is the same, appropriate diagnosis can be performed in accordance with each fuel characteristic, and the difference in fuel property can be obtained. The air-fuel ratio sensor can be accurately diagnosed without being affected by the change in the response caused by the air-fuel ratio.

【0020】第3の発明では、燃料性状に応じて診断基
準値を変更し、したがってこの場合にも、それぞれの燃
料性状に応じて適切な空燃比センサの劣化診断ができ
る。
In the third aspect, the diagnostic reference value is changed in accordance with the fuel property. Therefore, in this case as well, an appropriate deterioration diagnosis of the air-fuel ratio sensor can be performed in accordance with each fuel property.

【0021】第4の発明においては、診断領域の判定
は、燃料カット後にディレイ時間を経過したとき、つま
り吸気系で空燃比の切換があって所定の時間の経過して
から排気系の空燃比の変化代を判断することにより、劣
化診断が行われるので、空燃比センサの出力の変化代が
十分に大きい領域で劣化判定でき、診断精度が高まる。
In the fourth aspect, the diagnosis area is determined when the delay time has elapsed after the fuel cut, that is, when the air-fuel ratio has been switched in the intake system and a predetermined time has elapsed after the air-fuel ratio in the exhaust system has elapsed. Since the deterioration diagnosis is performed by judging the change allowance, the deterioration judgment can be made in a region where the change in the output of the air-fuel ratio sensor is sufficiently large, and the diagnosis accuracy is improved.

【0022】第5の発明では、燃料性状により空燃比の
変化に対する空燃比センサ出力の変化代が大きくなる遅
れ時間が異なるので、それぞれに対応してディレイ時間
を設定することにより、それぞれで適正な劣化診断が行
える。
In the fifth aspect, the delay time at which the change in the output of the air-fuel ratio sensor with respect to the change in the air-fuel ratio varies depending on the fuel property is different. Deterioration diagnosis can be performed.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1において、1はエンジン本体、2は吸
気管、3は排気管で、吸気管2には必要な燃料を噴射す
る燃料噴射弁4が設けられる。5は吸入空気量を制御し
てエンジン出力を制御する吸気絞弁、6は排気管に設置
した排気中の有害成分を浄化す触媒(三元触媒)であ
る。
In FIG. 1, 1 is an engine body, 2 is an intake pipe, 3 is an exhaust pipe, and the intake pipe 2 is provided with a fuel injection valve 4 for injecting necessary fuel. Reference numeral 5 denotes an intake throttle valve for controlling the engine output by controlling the amount of intake air, and reference numeral 6 denotes a catalyst (three-way catalyst) provided in an exhaust pipe for purifying harmful components in exhaust gas.

【0025】燃料噴射弁4から噴射される燃料噴射量を
運転条件に応じて設定される目標空燃比となるように制
御するためにコントローラ10が備えられる。
A controller 10 is provided for controlling the amount of fuel injected from the fuel injection valve 4 to a target air-fuel ratio set according to the operating conditions.

【0026】コントローラ10は入力回路、中央演算回
路(マイクロプロセッサ)、記憶回路、出力回路などか
ら構成され、このコントローラ10には、エンジン回転
数を検出するクランク角センサ12、吸入空気量を検出
するエアフローメータ13、吸気絞弁開度を検出する絞
弁開度センサ14、エンジン冷却水温を検出する水温セ
ンサ15、車速を検出する車速センサ16からの信号が
入力し、さらに触媒上流の排気空燃比を検出する広域空
燃比センサ11、下流の排気空燃比を検出する酸素セン
サ20からの信号も入力し、これらに基づいて運転条件
に応じて目標空燃比となるように燃料噴射量を演算し、
エンジン回転に同期して燃料噴射弁4に燃料噴射信号を
出力する。
The controller 10 includes an input circuit, a central processing circuit (microprocessor), a storage circuit, an output circuit, and the like. The controller 10 has a crank angle sensor 12 for detecting an engine speed, and an intake air amount. Signals from an air flow meter 13, a throttle valve opening sensor 14 for detecting an intake throttle valve opening, a water temperature sensor 15 for detecting an engine coolant temperature, and a vehicle speed sensor 16 for detecting a vehicle speed are input, and further, an exhaust air-fuel ratio upstream of the catalyst. From the wide-range air-fuel ratio sensor 11 for detecting the air-fuel ratio and the oxygen sensor 20 for detecting the exhaust air-fuel ratio on the downstream side, and calculate the fuel injection amount based on these signals so as to reach the target air-fuel ratio in accordance with the operating conditions.
A fuel injection signal is output to the fuel injection valve 4 in synchronization with the engine rotation.

【0027】そして、コントローラ10は広域空燃比セ
ンサ11の出力特性が正常であるかどうか判定する診断
機能をも持っている。この診断は後述するフローチャー
トにも示すが、エンジンに供給される燃料の性状、つま
り標準燃料か重質燃料化の判定を行い、この判定結果に
したがって診断領域を変更したり、異なった診断クライ
テリアを用いることにより、燃料性状にかかわらず常に
正確な判定が行えるようになっている。
The controller 10 also has a diagnostic function for determining whether the output characteristics of the wide-range air-fuel ratio sensor 11 are normal. Although this diagnosis is also shown in a flowchart described later, the properties of the fuel supplied to the engine, that is, whether the fuel is standard fuel or heavy fuel, is determined, and the diagnosis area is changed in accordance with the determination result, or a different diagnosis criterion is determined. By using this, accurate judgment can always be made regardless of the fuel property.

【0028】図2は第1の実施形態の診断内容を示すフ
ローチャートであり、これはコントローラ10において
所定時間間隔をもって繰り返し実行される。
FIG. 2 is a flow chart showing the contents of diagnosis according to the first embodiment, which is repeatedly executed by the controller 10 at predetermined time intervals.

【0029】まず、ステップS1では燃料性状が標準燃
料であるかどうかの判定を行う。この判定は、例えば暖
機後のアイドル運転時などに空燃比をステップ的に変化
させると、このときの空燃比センサ11の出力波形が、
例えば図3のように、ステップ波形Aに対して標準燃料
ではB、燃料の揮発性の低い重質燃料ではCのようにな
り、これらステップ波形Aに対する偏差から標準燃料か
重質燃料であるかが判定できる。
First, in step S1, it is determined whether the fuel property is the standard fuel. This determination is made by, for example, changing the air-fuel ratio in a stepwise manner during an idling operation after warm-up, etc., and the output waveform of the air-fuel ratio sensor 11 at this time becomes:
For example, as shown in FIG. 3, for the step waveform A, B is shown for the standard fuel, and for the heavy fuel with low fuel volatility, C is shown. Can be determined.

【0030】ステップS2では診断移行可能な運転状態
にあるかどうかの判断を行う。これは例えば、車速VS
Pが所定の下限値AFVSPL1と上限値AFVSPH
1の間にあるか、燃料噴射パルス幅TPが所定の下限値
AFTPL1と上限値AFTPH1との間にあるか、あ
るいはエンジン回転数NEが所定の下限値AFNEL1
と上限値AFNEH1との間にあるかを判断することに
より行い、上下限値の中に入っているとき、換言すると
空燃比がストイキもしくは一定の空燃比にあるときは、
診断移行可能と判断してステップS3に進む。
In step S2, it is determined whether or not the vehicle is in an operation state in which the diagnosis can be shifted. This is, for example, the vehicle speed VS
P is a predetermined lower limit value AFVSPL1 and an upper limit value AFVSPH
1, the fuel injection pulse width TP is between the predetermined lower limit value AFTPL1 and the upper limit value AFTPH1, or the engine speed NE is lower than the predetermined lower limit value AFNEL1.
And the upper limit value AFNEH1 is determined. When the value is within the upper and lower limit values, in other words, when the air-fuel ratio is at the stoichiometric or constant air-fuel ratio,
It is determined that diagnosis transfer is possible, and the process proceeds to step S3.

【0031】ここでは、診断領域であるかどうかを、運
転条件が燃料カット後の所定の診断開始ディレイ時間A
FFCD1を経過したかどうかにより判定する。燃料カ
ットにより空燃比センサ11の出力はそれまでのストイ
キから燃料の含まれていないリーン(空気だけ)に変化
する。
Here, whether or not the engine is in the diagnosis area is determined by determining whether the operating condition is a predetermined diagnosis start delay time A after the fuel cut.
The determination is made based on whether or not FFCD1 has elapsed. Due to the fuel cut, the output of the air-fuel ratio sensor 11 changes from the stoichiometric state up to the lean state (only air) containing no fuel.

【0032】なお燃料カット前の運転条件が異なると、
空燃比の変化特性が異なり、正確な比較ができないの
で、条件を合わせるためにステップS2での判断が行わ
れる。
If the operating conditions before the fuel cut are different,
Since the change characteristics of the air-fuel ratio are different and accurate comparisons cannot be made, the determination in step S2 is made to match the conditions.

【0033】また、燃料カット後に所定の診断開始ディ
レイ時間AFFCD1を持たせたのは、図4のように、
燃料カットしてから排気系の空燃比が変化するまでに時
間遅れがあり、かつ初期には変化代の絶対値も小さく、
検出誤差が出やすくなるので、診断開始までにある時間
を設定している。
The reason why the predetermined diagnosis start delay time AFFCD1 is provided after the fuel cut is as shown in FIG.
There is a time delay from the fuel cut until the air-fuel ratio of the exhaust system changes, and the absolute value of the change allowance is small at the beginning,
Since a detection error is likely to occur, a certain time is set before the start of diagnosis.

【0034】ディレイ時間が経過したら、ステップS4
で広域空燃比センサ11の出力の変化量ΔA/Fを算出
する。このセンサ出力の変化量ΔA/Fは、一定の演算
区間DAFTM1における出力変化幅として算出され
る。
When the delay time has elapsed, step S4
To calculate the variation ΔA / F of the output of the wide area air-fuel ratio sensor 11. The change amount ΔA / F of the sensor output is calculated as the output change width in a fixed calculation section DAFTM1.

【0035】そして、ステップS5において、このよう
して算出したセンサ出力の変化量ΔA/Fを、空燃比診
断クライテリアDAFNG1と比較し、空燃比センサ1
1の応答特性が正常範囲かあるいは異常であるかを判定
する。診断クライテリアDAFNG1は、燃料性状に応
じて設定され、本実施形態では、重質燃料ではなく標準
燃料に対する劣化判定の比較基準値として設定される。
Then, in step S5, the change amount ΔA / F of the sensor output thus calculated is compared with the air-fuel ratio diagnosis criterion DAFNG1.
It is determined whether the response characteristic of No. 1 is in a normal range or abnormal. The diagnostic criterion DAFNG1 is set according to the fuel property, and in the present embodiment, is set as a comparison reference value for determining deterioration with respect to the standard fuel instead of the heavy fuel.

【0036】図4にも示すように、同一の燃料性状にお
いて、正常範囲の空燃比センサの単位応答時間における
出力変化代は劣化したものよりも大きく、したがって、
予め燃料性状に応じて設定された診断クライテリアと比
較することにより、正確に空燃比センサ11の特性の診
断が行える。
As shown in FIG. 4, in the same fuel property, the output change margin per unit response time of the air-fuel ratio sensor in the normal range is larger than that of the deteriorated air-fuel ratio sensor.
The characteristics of the air-fuel ratio sensor 11 can be accurately diagnosed by comparing with a diagnosis criterion set in advance according to the fuel property.

【0037】もし、空燃比の変化量ΔA/Fが診断クラ
イテリアDAFNGIよりも大きければ空燃比センサ1
1は正常であるとして診断動作を終了させるが、小さい
ときは空燃比センサ11の劣化が進んでいるものと判断
され、ステップS6において空燃比センサ11の応答性
が基準以下として異常が判定される。
If the change amount ΔA / F of the air-fuel ratio is larger than the diagnostic criterion DAFNGI, the air-fuel ratio sensor 1
1 is normal, and the diagnostic operation is terminated. When the diagnostic operation is small, it is determined that the deterioration of the air-fuel ratio sensor 11 has advanced, and in step S6, the responsiveness of the air-fuel ratio sensor 11 is determined to be equal to or less than the reference and an abnormality is determined. .

【0038】このようにして、広域空燃比センサ11の
出力特性が正常であるかどうかについての診断は、まず
現在の燃料性状を判定し、これが標準燃料である場合に
限り、劣化診断を行う。したがって、このときの診断ク
ライテリアは標準燃料のときのセンサ応答性に基づいて
設定されており、このため燃料の揮発性などによる空燃
比の切り換え時の応答性の相違が除外され、精度よく空
燃比センサ11の出力特性の劣化のみが判定できるので
ある。
As described above, the diagnosis as to whether or not the output characteristics of the wide-range air-fuel ratio sensor 11 is normal is made by first determining the current fuel property, and performing the deterioration diagnosis only when this is the standard fuel. Therefore, the diagnosis criteria at this time are set based on the sensor response in the case of the standard fuel, so that the difference in the response when switching the air-fuel ratio due to the volatility of the fuel is excluded, and the air-fuel ratio is accurately determined. Only the deterioration of the output characteristics of the sensor 11 can be determined.

【0039】ちなみに、重質燃料では揮発性が低いた
め、吸気系での空燃比変化が排気系に到達するまでの遅
れが大きく、単位時間あたりの変化代も小さくなり、た
とえ広域空燃比センサ11の出力特性が正常であって
も、センサ出力の変化量ΔA/Fが小さくなる。
Incidentally, since the heavy fuel has low volatility, the delay in the change of the air-fuel ratio in the intake system to the exhaust system is large, and the amount of change per unit time is small. Even if the output characteristic of the sensor is normal, the variation ΔA / F of the sensor output becomes small.

【0040】したがって、もし標準燃料の診断クライテ
リアでもってセンサ出力の変化量ΔA/Fを比較した
ら、正常であるにもかかわらず、異常の判定がなれさて
しまうが、本発明のように、燃料性状が重質燃料のとき
は診断を中止することによりこのような誤診断を防ぐこ
とができる。
Therefore, if the amount of change ΔA / F in the sensor output is compared based on the diagnostic criteria of the standard fuel, it is impossible to judge an abnormality even though it is normal. When the fuel is heavy fuel, such a diagnosis can be prevented by stopping the diagnosis.

【0041】図5は本発明の第2の実施形態を示すフロ
ーチャートであり、これについて説明する。
FIG. 5 is a flowchart showing a second embodiment of the present invention, which will be described.

【0042】この実施形態では燃料性状の判定結果に基
づいて、診断開始ディレイ時間とセンサ出力の変化量Δ
A/Fの演算区間をそれぞれ異なった設定とすること
で、異なった燃料性状に対しての診断を正確に行えるよ
うにした。
In the present embodiment, the diagnosis start delay time and the change Δ
By differently setting the A / F calculation sections, diagnosis for different fuel properties can be performed accurately.

【0043】ステップS11〜ステップS16までは、
標準燃料についての空燃比センサ11の劣化判断であ
り、これは図2のステップS1〜ステップS6までの動
作と全く同じである。
Steps S11 to S16 are:
This is a determination of deterioration of the air-fuel ratio sensor 11 with respect to the standard fuel, which is exactly the same as the operation from step S1 to step S6 in FIG.

【0044】これに対して、ステップS11で標準燃料
では無いと判断されたとき、つまり重質燃料のときは、
ステップS17に進んで、現在の運転状態が診断移行可
能な状態にあるかどうかを、車速、燃料噴射パルス幅、
エンジン回転数をそれぞれ上限値、下限値であるAFV
SPH2とAFVSPL2、AFTPH2とAFTPL
2、及びAFNEH2とAFNEL2と比較して判断す
る。
On the other hand, when it is determined in step S11 that the fuel is not the standard fuel, that is, when the fuel is the heavy fuel,
Proceeding to step S17, it is determined whether the current operating state is in a state in which the diagnosis can be shifted to by the vehicle speed, the fuel injection pulse width,
AFV which is the upper limit and lower limit of the engine speed, respectively
SPH2 and AFVSPL2, AFTPH2 and AFTPL
2, and a comparison is made between AFNEH2 and AFNEL2.

【0045】なお、これらの上限、下限値は標準燃料の
ものとは相違し、重質燃料に対応して最適値に設定され
ている。
Note that these upper and lower limits are different from those of the standard fuel, and are set to optimal values corresponding to the heavy fuel.

【0046】これら各値のいずれかが、上限、下限値内
に収まっているときは、診断移行可能と判断し、ステッ
プS18に進む。ここでは、燃料カット後に所定の診断
開始ディレイ時間AFFCD2が経過するまで待ち、経
過したらステップS19に移行して演算区間DAFTM
2における広域空燃比センサ11の出力の変化量ΔA/
Fを算出する。そして、ステップS20において、この
算出した変化量ΔA/Fを、共通の診断クライテリアD
AFNG1と比較し、これよりも小さいときには空燃比
センサ11が正常である判断し、診断動作を終了する。
If any one of these values falls within the upper and lower limits, it is determined that the diagnosis can be shifted, and the process proceeds to step S18. Here, it waits until the predetermined diagnosis start delay time AFFCD2 elapses after the fuel cut, and when it elapses, the process proceeds to step S19 to calculate the operation section DAFTM.
2, the change ΔA / in the output of the wide area air-fuel ratio sensor 11
Calculate F. Then, in step S20, the calculated change amount ΔA / F is used as a common diagnostic criterion D.
Compared with AFNG1, if smaller than this, it is determined that the air-fuel ratio sensor 11 is normal, and the diagnostic operation ends.

【0047】しかし、ステップS20において、空燃比
の変化量ΔA/Fが診断クライテリアDAFNG1より
も小さいときは、ステップS21で広域空燃比センサ1
1が劣化により出力応答性が低下しているものと判定す
る。
However, if the air-fuel ratio change amount ΔA / F is smaller than the diagnostic criterion DAFNG1 in step S20, the wide-range air-fuel ratio sensor 1 is determined in step S21.
No. 1 determines that the output responsiveness is deteriorated due to deterioration.

【0048】重質燃料のときの燃料カット後の診断開始
ディレイ時間は、標準燃料のディレイ時間よりも長くと
ってあり、かつ変化量ΔA/Fの演算区間も長くしてい
る。これは重質燃料の方が燃料の揮発性が低く、吸気系
での燃料供給量の変化に対して排気系の広域空燃比セン
サ11がこの変化を検出するまでの時間遅れが大きいた
めである。したがって、同一のディレイ時間と演算区間
で比較すると、広域空燃比センサ11が正常であったと
しても、重質燃料の場合には空燃比の変化量ΔA/Fが
小さくなり、これを同一の診断クライテリアを基準に判
断すると、誤って劣化したものと判断することがある。
The diagnosis start delay time after fuel cut in the case of heavy fuel is longer than the delay time of standard fuel, and the calculation interval of the variation ΔA / F is also longer. This is because the heavy fuel has a lower fuel volatility, and the time delay until the wide-area air-fuel ratio sensor 11 of the exhaust system detects this change with respect to the change in the fuel supply amount in the intake system. . Therefore, when the same delay time is compared with the calculation section, even if the wide-range air-fuel ratio sensor 11 is normal, the amount of change ΔA / F in the air-fuel ratio becomes small in the case of heavy fuel, and this is determined by the same diagnosis. When judging based on criteria, it may be erroneously judged to have deteriorated.

【0049】しかし、この実施形態では診断開始ディレ
イ時間を燃料性状によって異ならせ、時間遅れの大きい
重質燃料について充分な遅れ時間をとることにより、同
一の診断クライテリアを用いて比較しても、正確に判断
できるのである。
However, in this embodiment, the diagnosis start delay time is made different depending on the fuel property, and a sufficient delay time is taken for heavy fuel with a large time delay. You can judge it.

【0050】図6にも示すように、重質燃料に対しては
診断開始ディレイ時間を長くし、かつ変化量ΔA/Fの
演算区間を長くすることで、空燃比の変化量ΔA/F
が、標準燃料のときと同一になり、いずれの燃料につい
ても共通の診断クライテリアでもって空燃比センサ11
の正確な劣化判定が可能となった。
As shown in FIG. 6, for the heavy fuel, by increasing the diagnosis start delay time and by increasing the calculation interval of the change amount ΔA / F, the change amount ΔA / F of the air-fuel ratio is increased.
Is the same as that of the standard fuel, and the air-fuel ratio sensor 11 has the same diagnostic criteria for any fuel.
Accurate judgment of deterioration was made possible.

【0051】次に図7のフローチャートに示す本発明の
第3の実施形態について説明する。
Next, a third embodiment of the present invention shown in the flowchart of FIG. 7 will be described.

【0052】この実施形態では、標準燃料と重質燃料と
で、診断開始ディレイ時間とセンサ出力の変化量ΔA/
Fの演算区間を同一にするが、診断クライテリアを異な
らせることで、両方の燃料について正確に空燃比センサ
11の診断を可能にした。
In this embodiment, the diagnosis start delay time and the change ΔA /
By making the calculation section of F the same, but making the diagnosis criteria different, the diagnosis of the air-fuel ratio sensor 11 can be accurately performed for both fuels.

【0053】標準燃料のときの診断動作であるステップ
S31〜ステップS36までは、図2のステップS1〜
ステップS6までと実質的に同じであり、また、ステッ
プS37〜ステップS41につても、このうちステップ
S40を除くと、ステップS2〜ステップS6までと同
一である。
Steps S31 to S36, which are diagnostic operations for the standard fuel, are performed in steps S1 to S36 in FIG.
It is substantially the same as step S6, and steps S37 to S41 are the same as steps S2 to S6 except for step S40.

【0054】つまり、ステップS35とステップS40
で用いられる空燃比の変化量ΔA/Fを比較する基準値
としての診断クライテリアが、標準燃料のときはDAF
NG1であるのに対し、重質燃料のときはDAFNG2
であり、その大きさが異なっている。同一の診断ディレ
イ時間と演算区間では、標準燃料の方が重質燃料よりも
空燃比の変化量ΔA/Fが大きいため、診断クライテリ
アDAFNG1はDAFNG2よりも大きく設定されて
いる。
That is, steps S35 and S40
When the diagnostic criterion as a reference value for comparing the change amount ΔA / F of the air-fuel ratio used in
NG1, whereas DAFNG2 for heavy fuel
And their sizes are different. In the same diagnosis delay time and calculation section, the standard criterion DAFNG1 is set to be larger than DAFNG2 because the standard fuel has a larger air-fuel ratio change amount ΔA / F than the heavy fuel.

【0055】これにより標準燃料のときと重質燃料のと
きとで空燃比センサ11の劣化判断をそれぞれ適切に行
うことが可能となる。
This makes it possible to appropriately judge the deterioration of the air-fuel ratio sensor 11 when using the standard fuel and when using the heavy fuel.

【0056】本発明は上記の実施の形態に限定されず
に、その技術的な思想の範囲内において種々の変更がな
しうることは明白である。
It is apparent that the present invention is not limited to the above-described embodiment, and that various changes can be made within the scope of the technical idea.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概略構成図である。FIG. 1 is a schematic configuration diagram of the present invention.

【図2】第1の実施形態の制御動作を示すフローチャー
トである。
FIG. 2 is a flowchart illustrating a control operation according to the first embodiment.

【図3】標準燃料と重質燃料の空燃比変化に対する空燃
比センサ応答波形の比較説明図である。
FIG. 3 is a graph for explaining a response waveform of an air-fuel ratio sensor with respect to a change in an air-fuel ratio between a standard fuel and a heavy fuel.

【図4】空燃比センサの正常時と劣化時での空燃比の変
化に対する応答波形の説明図である。
FIG. 4 is an explanatory diagram of a response waveform to a change in the air-fuel ratio when the air-fuel ratio sensor is normal and when it is deteriorated.

【図5】第2の実施形態の制御動作を示すフローチャー
トである。
FIG. 5 is a flowchart illustrating a control operation according to the second embodiment.

【図6】空燃比センサの正常時と劣化時での空燃比の変
化に対する応答波形の説明図である。
FIG. 6 is an explanatory diagram of a response waveform to a change in the air-fuel ratio when the air-fuel ratio sensor is normal and when it is deteriorated.

【図7】第3の実施形態の制御動作を示すフローチャー
トである。
FIG. 7 is a flowchart illustrating a control operation according to a third embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン本体 2 吸気管 3 排気管 4 燃料噴射弁 6 触媒 10 コントローラ 11 空燃比センサ 12 クランク角センサ 13 エアフローメータ 16 車速センサ DESCRIPTION OF SYMBOLS 1 Engine main body 2 Intake pipe 3 Exhaust pipe 4 Fuel injection valve 6 Catalyst 10 Controller 11 Air-fuel ratio sensor 12 Crank angle sensor 13 Air flow meter 16 Vehicle speed sensor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G084 BA09 BA14 DA27 DA30 EA05 EA07 EA11 EB11 FA05 FA07 FA10 FA14 FA20 FA30 FA38 3G301 JB01 JB09 KA26 MA01 MA11 MA24 NA08 NB03 NB11 ND01 NE22 NE23 PA01Z PA11Z PB02Z PD03A PD03B PD09B PD09Z PE03Z PE08Z PF01Z ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G084 BA09 BA14 DA27 DA30 EA05 EA07 EA11 EB11 FA05 FA07 FA10 FA14 FA20 FA30 FA38 3G301 JB01 JB09 KA26 MA01 MA11 MA24 NA08 NB03 NB11 ND01 NE22 NE23 PA01Z PA11Z PB02Z03 PDB PDZPD PDB PF01Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系に設置した排気空燃比を
検出する空燃比センサと、吸気系に設けた燃料噴射弁と
を備え、目標空燃比となるよう燃料噴射弁からの燃料噴
射量を空燃比センサの出力に基づいて制御する内燃機関
において、 燃料性状を判定する手段と、 空燃比センサの診断領域を判定する手段と、 この診断領域において空燃比センサの出力変化代を所定
の基準値と比較して空燃比センサの劣化を判断する手段
と、 燃料性状に応じてこの空燃比センサの診断を停止する手
段とを備えることを特徴とする空燃比センサの劣化診断
装置。
1. An air-fuel ratio sensor installed in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system, wherein a fuel injection amount from the fuel injection valve is adjusted to a target air-fuel ratio. Means for judging fuel properties, means for judging a diagnosis area of the air-fuel ratio sensor, and an output change allowance of the air-fuel ratio sensor in the diagnosis area. An apparatus for diagnosing deterioration of an air-fuel ratio sensor, comprising: means for determining deterioration of the air-fuel ratio sensor by comparing the value with a value; and means for stopping diagnosis of the air-fuel ratio sensor according to fuel properties.
【請求項2】内燃機関の排気系に設置した排気空燃比を
検出する空燃比センサと、吸気系に設けた燃料噴射弁と
を備え、目標空燃比となるよう燃料噴射弁からの燃料噴
射量を空燃比センサの出力に基づいて制御する内燃機関
において、 燃料性状を判定する手段と、 燃料性状に応じてそれぞれ空燃比センサの診断領域を判
定する手段と、 燃料性状に応じてそれぞれの診断領域において空燃比セ
ンサの出力変化代を共通の基準値と比較して空燃比セン
サの劣化を判断する手段とを備えることを特徴とする空
燃比センサの劣化診断装置。
2. An air-fuel ratio sensor provided in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system, wherein a fuel injection amount from the fuel injection valve is adjusted to a target air-fuel ratio. Means for judging fuel property, means for judging the diagnostic area of the air-fuel ratio sensor according to the fuel property, and each diagnostic area according to the fuel property. Means for comparing the output change of the air-fuel ratio sensor with a common reference value to determine the deterioration of the air-fuel ratio sensor.
【請求項3】内燃機関の排気系に設置した排気空燃比を
検出する空燃比センサと、吸気系に設けた燃料噴射弁と
を備え、目標空燃比となるよう燃料噴射弁からの燃料噴
射量を空燃比センサの出力に基づいて制御する内燃機関
において、燃料性状を判定する手段と、空燃比センサの
診断領域を判定する手段と、燃料性状に応じて異なった
診断基準値を設定する手段と、診断領域において空燃比
センサの出力の変化代を燃料性状に対応した診断基準値
と比較して空燃比センサの劣化を判断する手段とを備え
ることを特徴とする空燃比センサの劣化診断装置。
3. An air-fuel ratio sensor provided in an exhaust system of an internal combustion engine for detecting an exhaust air-fuel ratio, and a fuel injection valve provided in an intake system, wherein a fuel injection amount from the fuel injection valve is adjusted to a target air-fuel ratio. Means for determining a fuel property, means for determining a diagnostic region of the air-fuel ratio sensor, and means for setting a different diagnostic reference value depending on the fuel property in an internal combustion engine that controls the fuel property based on the output of the air-fuel ratio sensor. Means for comparing the change in the output of the air-fuel ratio sensor in the diagnosis area with a diagnostic reference value corresponding to the fuel property to determine the deterioration of the air-fuel ratio sensor.
【請求項4】前記診断判定手段は、燃料カット後、診断
開始ディレイ時間を経過したときに診断領域にあると判
定する請求項1〜3のいずれか一つに記載の空燃比セン
サの劣化診断装置。
4. The deterioration diagnosis of the air-fuel ratio sensor according to claim 1, wherein said diagnosis judgment means judges that the diagnosis is within a diagnosis area when a diagnosis start delay time has elapsed after the fuel cut. apparatus.
【請求項5】前記診断開始ディレイ時間が燃料性状に応
じて異なった時間に設定される請求項4に記載の空燃比
センサの劣化診断装置。
5. An apparatus for diagnosing deterioration of an air-fuel ratio sensor according to claim 4, wherein said diagnosis start delay time is set to a different time according to fuel properties.
JP2000049171A 2000-02-25 2000-02-25 Air-fuel ratio sensor deterioration diagnosis device Expired - Fee Related JP4134480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049171A JP4134480B2 (en) 2000-02-25 2000-02-25 Air-fuel ratio sensor deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049171A JP4134480B2 (en) 2000-02-25 2000-02-25 Air-fuel ratio sensor deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JP2001234805A true JP2001234805A (en) 2001-08-31
JP4134480B2 JP4134480B2 (en) 2008-08-20

Family

ID=18571149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049171A Expired - Fee Related JP4134480B2 (en) 2000-02-25 2000-02-25 Air-fuel ratio sensor deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP4134480B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074504B2 (en) 2009-02-17 2011-12-13 Denso Corporation Malfunction diagnosing apparatus for internal combustion engines
CN104343562A (en) * 2013-07-26 2015-02-11 曼柴油机和涡轮机欧洲股份公司 Method for internal combustion engine operation
CN105587419A (en) * 2014-11-11 2016-05-18 丰田自动车株式会社 Abnormality diagnosis system of air-fuel ratio sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074504B2 (en) 2009-02-17 2011-12-13 Denso Corporation Malfunction diagnosing apparatus for internal combustion engines
CN104343562A (en) * 2013-07-26 2015-02-11 曼柴油机和涡轮机欧洲股份公司 Method for internal combustion engine operation
CN105587419A (en) * 2014-11-11 2016-05-18 丰田自动车株式会社 Abnormality diagnosis system of air-fuel ratio sensor
JP2016089799A (en) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 Abnormality diagnosis device
US10180112B2 (en) 2014-11-11 2019-01-15 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor

Also Published As

Publication number Publication date
JP4134480B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
US6976382B2 (en) Abnormality diagnosing apparatus of exhaust gas sensor
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
JPH06100124B2 (en) Air-fuel ratio controller for alcohol internal combustion engine
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JPH0734934A (en) Air-fuel ratio controller of internal combustion engine
JPH10110646A (en) Deterioration diagnostic device for oxygen sensor in internal combustion engine
JPH0828337A (en) Self-diagnosing device in fuel temperature detecting device of internal combustion engine
JPH0323333A (en) Learning correction device and self-diagnosing device for fuel feed control device for internal combustion engine
JPH08100637A (en) Deterioration detecting device for exhaust emission control catalyst
JPH10311213A (en) Catalyst deterioration deciding device for internal combustion engine
JPH08338288A (en) O2 sensor failure diagnostic device and o2 sensor failure diagnostic method
JP2021063504A (en) Diagnostic method and diagnostic device for secondary air valve in engine system having internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JPH06229290A (en) Air-fuel ratio control device for internal combustion engine
JP4134480B2 (en) Air-fuel ratio sensor deterioration diagnosis device
US8087231B2 (en) Deterioration-determination apparatus for exhaust gas purifying system
US6945223B2 (en) Failure diagnostic apparatus for intake air stream control device and control method of failure diagnostic apparatus
JP3264234B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH0617692A (en) Failure judgment device for engine fuel system
JP3896936B2 (en) Secondary air supply abnormality detection device for internal combustion engine
JP3801841B2 (en) Fuel control device for internal combustion engine
JPH04318250A (en) Self-diagnostic device in fuel supplier for internal combustion engine
JP2006083798A (en) Abnormality diagnosing device for secondary air supply system for internal combustion engine
JPH08284651A (en) Catalyst temperature estimating device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees