JP2006077659A - Irregularity diagnosing device for exhaust gas sensor - Google Patents

Irregularity diagnosing device for exhaust gas sensor Download PDF

Info

Publication number
JP2006077659A
JP2006077659A JP2004261764A JP2004261764A JP2006077659A JP 2006077659 A JP2006077659 A JP 2006077659A JP 2004261764 A JP2004261764 A JP 2004261764A JP 2004261764 A JP2004261764 A JP 2004261764A JP 2006077659 A JP2006077659 A JP 2006077659A
Authority
JP
Japan
Prior art keywords
catalyst
sensor
lean
rich
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004261764A
Other languages
Japanese (ja)
Other versions
JP4470661B2 (en
Inventor
Yukihiro Yamashita
山下  幸宏
Naoki Yoshiume
直樹 吉梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004261764A priority Critical patent/JP4470661B2/en
Publication of JP2006077659A publication Critical patent/JP2006077659A/en
Application granted granted Critical
Publication of JP4470661B2 publication Critical patent/JP4470661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately determine regularity/irregularity of an exhaust gas sensor (catalyst downstream gas sensor) installed downstream of a catalyst for exhaust gas purification without deteriorating exhaust emission in a device performing irregularity diagnosis of a catalyst downstream side sensor. <P>SOLUTION: Air fuel ratio is temporally controlled to rich after recovery from fuel cut to promote reaction of occluded lean composition (occluded oxygen) of the catalyst and rich composition of exhaust gas and reduce lean composition occlusion quantity of the catalyst and a condition of the catalyst is quickly recovered to a near stoichiometric condition for reducing emission of lean composition such as NOx after recovery from fuel cut (after fuel injection restart). Response time between a predetermined voltage (in a embodiment 0.3 V → 0.5 V) of the catalyst downstream sensor from lean to rich is measured by using air fuel ratio rich control temporally executed after recovery from fuel cut and irregularity diagnosis of the catalyst downstream sensor based on the response time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排出ガス浄化用の触媒の下流側に設置された排出ガスセンサの異常診断を行う排出ガスセンサの異常診断装置に関する発明である。   The present invention relates to an abnormality diagnosis device for an exhaust gas sensor that performs an abnormality diagnosis of an exhaust gas sensor installed on the downstream side of a catalyst for purifying exhaust gas.

近年の自動車は、排出ガス浄化のために、例えば、特許文献1(特開平4−16757号公報)、特許文献2(特開平8−177575公報)、特許文献3(特許第3227912号公報)等に記載されているように、排気管に触媒を設置すると共に、この触媒の上流側に酸素センサ、空燃比センサ等の排出ガスセンサを設置し、この触媒上流側の排出ガスセンサ(以下「触媒上流側センサ」という)で検出した排出ガスの空燃比が触媒の浄化ウインドウの範囲内となるように空燃比(燃料噴射量)を制御することで、排出ガスの浄化率を高めるようにしている。しかし、触媒が劣化すると、排出ガスの浄化率が低下するため、触媒の下流側に排出ガスセンサ(以下「触媒下流側センサ」という)を設置し、この触媒下流側センサで触媒の流出ガスの空燃比をモニターすることで、触媒の劣化判定を行うようにしたものがある。
特開平4−16757号公報 特開平8−177575公報 特許第3227912号公報
In recent automobiles, for example, Patent Document 1 (Japanese Patent Laid-Open No. 4-16757), Patent Document 2 (Japanese Patent Laid-Open No. 8-177575), Patent Document 3 (Japanese Patent No. 3227912) and the like are used for exhaust gas purification. In addition to installing a catalyst in the exhaust pipe, an exhaust gas sensor such as an oxygen sensor and an air-fuel ratio sensor is installed upstream of the catalyst, and an exhaust gas sensor upstream of the catalyst (hereinafter referred to as “catalyst upstream side”). By controlling the air-fuel ratio (fuel injection amount) so that the air-fuel ratio of the exhaust gas detected by the “sensor” falls within the range of the purification window of the catalyst, the exhaust gas purification rate is increased. However, when the catalyst deteriorates, the exhaust gas purification rate decreases. Therefore, an exhaust gas sensor (hereinafter referred to as “catalyst downstream sensor”) is installed on the downstream side of the catalyst. There are some which judge the deterioration of the catalyst by monitoring the fuel ratio.
JP-A-4-16757 JP-A-8-177575 Japanese Patent No. 3227912

このシステムでは、触媒下流側センサが劣化すると、検出応答性が遅くなるため、本来、劣化と判定すべき触媒を劣化していないと誤判定する可能性がある。この誤判定を避けるために、触媒下流側センサの異常を早期に検出する必要がある。   In this system, if the downstream sensor of the catalyst deteriorates, the detection responsiveness is delayed. Therefore, there is a possibility that the catalyst that should originally be determined to be deteriorated is erroneously determined as not deteriorated. In order to avoid this erroneous determination, it is necessary to detect an abnormality in the catalyst downstream sensor early.

上記特許文献1〜3には、エンジン運転中に燃料カットによる空燃比のリッチ/リーンの切り換えを利用して触媒上流側センサの応答性を計測して異常診断する技術が記載されているが、この触媒上流側センサの異常診断技術をそのまま触媒下流側センサの異常診断に適用することはできない。この理由は、触媒上流側センサとは異なり、触媒下流側センサは触媒の状態の影響を受けてしまうためである。   Patent Documents 1 to 3 describe a technique for diagnosing abnormality by measuring the responsiveness of the upstream sensor of the catalyst by using the rich / lean switching of the air-fuel ratio by fuel cut during engine operation. This abnormality diagnosis technique for the catalyst upstream sensor cannot be applied to the abnormality diagnosis for the catalyst downstream sensor as it is. This is because, unlike the catalyst upstream sensor, the catalyst downstream sensor is affected by the state of the catalyst.

つまり、触媒を通過する排出ガスの空燃比は、触媒の酸素吸蔵量(リーン成分吸蔵量)の影響を受けてかなり変化するため、触媒上流側の空燃比のリッチ/リーンを切り換えたときの触媒下流側の空燃比の挙動は、触媒の酸素吸蔵量によってかなり変化する。このため、触媒上流側の空燃比のリッチ/リーンの切り換えが触媒下流側センサの出力変化としてあまり現れないような場合でも、触媒下流側センサの応答性が悪化しているのか、触媒下流側の空燃比が徐々に変化しているのかを区別することができず、触媒下流側センサの正常/異常を誤判定する可能性がある。   In other words, the air-fuel ratio of the exhaust gas that passes through the catalyst changes considerably under the influence of the oxygen storage amount (lean component storage amount) of the catalyst, so the catalyst when the air-fuel ratio rich / lean on the upstream side of the catalyst is switched. The downstream air-fuel ratio behavior varies considerably depending on the oxygen storage amount of the catalyst. For this reason, even when the rich / lean switching of the air / fuel ratio on the upstream side of the catalyst does not appear as much as the output change of the downstream sensor of the catalyst, whether the response of the downstream sensor of the catalyst has deteriorated, Whether the air-fuel ratio is gradually changing cannot be distinguished, and there is a possibility that the normality / abnormality of the downstream sensor of the catalyst is erroneously determined.

また、この対策として、通常の走行時に、触媒下流側センサの異常診断のために、触媒下流側の空燃比の変化が大きく現れるように、触媒上流側の空燃比を大きく変化させることが考えられるが、触媒上流側の空燃比を大きく変化させると、触媒の浄化能力を越えて触媒上流側の空燃比を変化させることになってしまい、排気エミッションが悪化してしまう不具合が発生する。   As a countermeasure, it is conceivable that the air-fuel ratio on the upstream side of the catalyst is greatly changed so that the change in the air-fuel ratio on the downstream side of the catalyst appears greatly during normal travel so as to diagnose the abnormality of the sensor on the downstream side of the catalyst. However, if the air-fuel ratio on the upstream side of the catalyst is greatly changed, the air-fuel ratio on the upstream side of the catalyst is changed beyond the purification capacity of the catalyst, and a problem that exhaust emission deteriorates occurs.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、排気エミッションを悪化させずに、触媒下流側センサの正常/異常を精度良く判定することができる排出ガスセンサの異常診断装置を提供することにある。   The present invention has been made in consideration of such circumstances, and therefore the object of the present invention is to detect abnormalities in the exhaust gas sensor that can accurately determine normality / abnormality of the downstream sensor of the catalyst without deteriorating exhaust emission. It is to provide a diagnostic device.

上記目的を達成するために、請求項1に係る発明は、触媒の状態がリーンの状態で空燃比リッチ制御を実行したときの触媒下流側センサのリーンからリッチへの応答性(応答時間、センサ出力変化の傾き等)を応答性計測手段により計測し、この応答性計測値に基づいて触媒下流側センサの異常診断を異常診断手段により行うようにしたものである。つまり、触媒の状態がリーンの状態であれば、触媒下流側の空燃比もリーンの状態になっているものと推定できるため、この状態で空燃比リッチ制御が実行されたときに、触媒下流側センサのリーンからリッチへの応答性を計測すれば、触媒の状態がほぼ一定の状態で触媒下流側センサのリーンからリッチへの応答性を精度良く計測することができ、この応答性計測値に基づいて触媒下流側センサの正常/異常を精度良く判定することができる。しかも、応答性計測前の触媒の状態がリーンの状態であるため、触媒下流側の空燃比が確実にリッチ側に変化するように、触媒上流側の空燃比を大きくリッチ側に変化させても、触媒で排出ガスのリッチ成分を浄化することができ、排気エミッションを悪化させずに済む。   In order to achieve the above object, the invention according to claim 1 is characterized in that the response from the lean to rich of the downstream sensor of the catalyst when the air-fuel ratio rich control is executed in the lean state of the catalyst (response time, sensor The slope of the output change or the like) is measured by the responsiveness measuring means, and the abnormality diagnosis of the downstream sensor of the catalyst is performed by the abnormality diagnosing means based on this responsiveness measurement value. That is, if the catalyst is in a lean state, it can be estimated that the air-fuel ratio on the downstream side of the catalyst is also in a lean state. Therefore, when air-fuel ratio rich control is executed in this state, the downstream side of the catalyst By measuring the responsiveness of the sensor from lean to rich, it is possible to accurately measure the responsiveness from lean to rich of the downstream sensor of the catalyst in a state where the catalyst is almost constant. Based on this, it is possible to accurately determine whether the catalyst downstream sensor is normal or abnormal. Moreover, since the state of the catalyst before the responsiveness measurement is in a lean state, even if the air-fuel ratio on the upstream side of the catalyst is greatly changed to the rich side so that the air-fuel ratio on the downstream side of the catalyst is surely changed to the rich side. The rich component of the exhaust gas can be purified by the catalyst, and the exhaust emission does not deteriorate.

この場合、請求項2のように、燃料カット又は空燃比リーン制御が所定期間以上続いたときに、触媒の状態がリーンの状態であると判断して空燃比リッチ制御を実行し、触媒下流側センサのリーンからリッチへの応答性を計測して該触媒下流側センサの異常診断を実行するようにすると良い。このようにすれば、エンジン運転中に、燃料カット又は空燃比リーン制御を利用して触媒下流側センサの異常診断を実施できると共に、燃料カット又は空燃比リーン制御により増加した触媒の酸素吸蔵量(リーン成分吸蔵量)を空燃比リッチ制御により減少させることができて、NOx排出量を低減することができる。   In this case, as described in claim 2, when the fuel cut or the air-fuel ratio lean control continues for a predetermined period or longer, it is determined that the catalyst is in the lean state, and the air-fuel ratio rich control is executed. An abnormality diagnosis of the downstream sensor of the catalyst may be executed by measuring the response of the sensor from lean to rich. In this way, while the engine is running, abnormality diagnosis of the catalyst downstream side sensor can be performed using fuel cut or air-fuel ratio lean control, and the oxygen storage amount of the catalyst increased by fuel cut or air-fuel ratio lean control ( The lean component storage amount) can be reduced by the air-fuel ratio rich control, and the NOx emission amount can be reduced.

更に、請求項3のように、触媒のリーン成分吸蔵量が飽和状態になったと推定されるときに、空燃比リッチ制御を実行して、触媒下流側センサのリーンからリッチへの応答性を計測して該触媒下流側センサの異常診断を実行するようにすると良い。このようにすれば、触媒下流側センサの異常診断時に、常に触媒が一定のリーン状態で触媒下流側センサのリーンからリッチへの応答性を計測できるため、触媒下流側センサの応答性を精度良く計測することができて、触媒下流側センサの異常診断精度を向上させることができる。   Further, as described in claim 3, when it is estimated that the lean component storage amount of the catalyst is saturated, the air-fuel ratio rich control is executed to measure the response from lean to rich of the downstream sensor of the catalyst. Thus, it is preferable to perform abnormality diagnosis of the catalyst downstream side sensor. In this way, when the abnormality of the downstream sensor of the catalyst is diagnosed, the response of the downstream sensor of the catalyst downstream from lean to rich can be measured with the catalyst always in a certain lean state. It is possible to measure, and the abnormality diagnosis accuracy of the catalyst downstream sensor can be improved.

また、請求項4のように、空燃比リッチ制御によるリッチ度合を触媒の状態がリッチ側に変化するように設定するようにすると良い。これにより、触媒下流側の空燃比を確実にリーンからリッチへ変化させることができて、応答性の計測精度を向上させることができる。   Further, as described in claim 4, it is preferable to set the rich degree by the air-fuel ratio rich control so that the state of the catalyst changes to the rich side. As a result, the air-fuel ratio on the downstream side of the catalyst can be reliably changed from lean to rich, and the responsiveness measurement accuracy can be improved.

また、排出ガス流量が少ないと、触媒上流側の空燃比をリーンからリッチへ変化させても、触媒の状態がリッチ側に変化しない可能性があり、その結果、触媒下流側センサの応答性が悪化しているのか、触媒下流側の空燃比が徐々に変化しているのかを正確に区別できなくなる可能性がある。   In addition, if the exhaust gas flow rate is small, the catalyst state may not change to the rich side even if the air-fuel ratio on the upstream side of the catalyst is changed from lean to rich. There is a possibility that it cannot be accurately discriminated whether it is deteriorating or whether the air-fuel ratio on the downstream side of the catalyst is gradually changing.

この対策として、請求項5のように、排出ガス流量が所定量以下のときに触媒下流側センサの応答性の計測を禁止するようにすると良い。このようにすれば、排出ガス流量が少ないときに、触媒下流側センサの正常/異常を誤判定することを未然に防止できる。   As a countermeasure against this, it is preferable to prohibit the measurement of the responsiveness of the catalyst downstream sensor when the exhaust gas flow rate is equal to or less than a predetermined amount. In this way, it is possible to prevent erroneous determination of normality / abnormality of the catalyst downstream side sensor when the exhaust gas flow rate is small.

以下、本発明を実施するための最良の形態を具体化した一実施例を図面に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、DCモータ等のモータ15によって開度調節されるスロットルバルブ16と、スロットル開度を検出するスロットル開度センサ17とが設けられている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment embodying the best mode for carrying out the invention will be described with reference to the drawings.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 16 whose opening is adjusted by a motor 15 such as a DC motor, and a throttle opening sensor 17 for detecting the throttle opening are provided.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、各気筒の吸気マニホールド20の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 for introducing air into each cylinder of the engine 11, and a fuel injection valve 21 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 20 of each cylinder. Yes. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each ignition plug 22.

一方、エンジン11の排気管23(排気通路)には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒24が設けられ、この触媒24の上流側に、排出ガスの空燃比又はリッチ/リーンを検出する空燃比センサ、酸素センサ等の排出ガスセンサ(以下「触媒上流側センサ」という)25が設けられ、触媒24の下流側に、排出ガスのリッチ/リーンを検出する酸素センサ(以下「触媒下流側センサ」という)26が設けられている。   On the other hand, the exhaust pipe 23 (exhaust passage) of the engine 11 is provided with a catalyst 24 such as a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas. An exhaust gas sensor (hereinafter referred to as “catalyst upstream sensor”) 25 such as an air-fuel ratio sensor or oxygen sensor for detecting the air-fuel ratio or rich / lean is provided, and the exhaust gas rich / lean is detected downstream of the catalyst 24. An oxygen sensor (hereinafter referred to as “catalyst downstream sensor”) 26 is provided.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ27や、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ28が取り付けられている。このクランク角センサ28の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 27 that detects the cooling water temperature and a crank angle sensor 28 that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 28, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)29に入力される。このECU29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 29. The ECU 29 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount of the fuel injection valve 21 according to the engine operating state. The ignition timing of the spark plug 22 is controlled.

その際、ECU29は、図示しない空燃比フィードバック制御プログラムを実行することで、触媒上流側センサ25の検出空燃比が目標空燃比に一致するように空燃比(燃料噴射量)を制御して、触媒24の上流側の空燃比が触媒24の浄化ウインド内(ストイキ付近)に収まるように制御する。この際、触媒下流側センサ26の出力は、触媒24の上流側の目標空燃比を補正するのに用いられたり、触媒24の劣化診断に用いられる。   At that time, the ECU 29 executes an air-fuel ratio feedback control program (not shown) to control the air-fuel ratio (fuel injection amount) so that the detected air-fuel ratio of the catalyst upstream sensor 25 matches the target air-fuel ratio. Control is performed so that the air-fuel ratio on the upstream side of 24 falls within the purification window (near the stoichiometric) of the catalyst 24. At this time, the output of the catalyst downstream side sensor 26 is used to correct the target air-fuel ratio on the upstream side of the catalyst 24 or used for diagnosis of deterioration of the catalyst 24.

また、ECU29は、後述する図2の触媒下流側センサ異常診断ルーチンを実行することで、次のようにして燃料カットを利用して触媒下流側センサ26の異常診断を実施する。エンジン運転中に燃料カットが実行されると、触媒24内に多量の酸素(リーン成分)が流れ込むため、触媒24の酸素吸蔵量(リーン成分吸蔵量)が増加して、触媒24の状態がリーンの状態になる。このため、燃料カット復帰後(燃料噴射再開後)は、排出ガスのリーン成分を触媒24内で十分に浄化することができず、NOx等のリーン成分の排出量が増加する傾向がある。そこで、本実施例では、燃料カット復帰後(燃料噴射再開後)のNOx等のリーン成分の排出量を低減するために、図3に示すように、燃料カット復帰後(燃料噴射再開後)に、一時的に空燃比をリッチに制御して、触媒24の吸蔵リーン成分と排出ガスのリッチ成分との反応を促進させて触媒24のリーン成分吸蔵量を減少させ、触媒24の状態を速やかにストイキ付近に回復させるようにしている。   Further, the ECU 29 executes a catalyst downstream side sensor abnormality diagnosis routine of FIG. 2 to be described later, thereby performing abnormality diagnosis of the catalyst downstream side sensor 26 using the fuel cut as follows. When a fuel cut is performed during engine operation, a large amount of oxygen (lean component) flows into the catalyst 24, so the oxygen storage amount (lean component storage amount) of the catalyst 24 increases and the state of the catalyst 24 becomes lean. It becomes the state of. For this reason, after returning from the fuel cut (after resuming fuel injection), the lean component of the exhaust gas cannot be sufficiently purified in the catalyst 24, and the amount of discharge of the lean component such as NOx tends to increase. Therefore, in this embodiment, in order to reduce the discharge amount of lean components such as NOx after returning from fuel cut (after resuming fuel injection), as shown in FIG. 3, after returning from fuel cut (after resuming fuel injection). The air-fuel ratio is temporarily controlled to be rich, and the reaction between the lean component of the catalyst 24 and the rich component of the exhaust gas is promoted to reduce the lean component storage amount of the catalyst 24, thereby promptly changing the state of the catalyst 24. It tries to recover near the stoiki.

本実施例の触媒下流側センサ26の異常診断は、この燃料カット復帰後(燃料噴射再開後)に一時的に実行される空燃比リッチ制御を利用して、触媒下流側センサ26のリーンからリッチへの所定電圧間(例えば0.3V→0.5V)の応答時間を計測し、この応答時間に基づいて触媒下流側センサ26の異常診断を行うようにしている。   The abnormality diagnosis of the catalyst downstream side sensor 26 of the present embodiment uses the air-fuel ratio rich control that is temporarily executed after the fuel cut is restored (after the fuel injection is resumed), and the catalyst downstream side sensor 26 leans to rich. A response time between predetermined voltages (for example, 0.3 V → 0.5 V) is measured, and abnormality diagnosis of the catalyst downstream side sensor 26 is performed based on the response time.

以下、本実施例の触媒下流側センサ26の異常診断を実行する図2の触媒下流側センサ異常診断ルーチンの処理内容を説明する。本ルーチンは、エンジン運転中に所定周期(例えば5ms周期)で実行され、特許請求の範囲でいう応答性計測手段と異常診断手段としての役割を果たす。   The processing contents of the catalyst downstream side sensor abnormality diagnosis routine of FIG. 2 for executing abnormality diagnosis of the catalyst downstream side sensor 26 of this embodiment will be described below. This routine is executed at a predetermined cycle (for example, a cycle of 5 ms) during engine operation, and serves as responsiveness measurement means and abnormality diagnosis means in the claims.

本ルーチンが起動されると、まずステップ101で、吸入空気量が所定量以上であるか否かで、排出ガス流量が所定量以上であるか否かを判定し、その結果、吸入空気量が所定量未満(排出ガス流量が所定量未満)と判定されれば、以降の処理を実行することなく、そのまま本ルーチンを終了する。排出ガス流量が少ないと、空燃比リッチ制御を行っても、触媒24の状態がリッチ側に変化しないため、触媒下流側センサ26の応答性が悪化しているのか、触媒24の下流側の空燃比が徐々に変化しているのかを正確に区別できないためである。   When this routine is started, first, at step 101, it is determined whether or not the exhaust gas flow rate is greater than or equal to a predetermined amount based on whether or not the intake air amount is greater than or equal to a predetermined amount. If it is determined that the amount is less than the predetermined amount (the exhaust gas flow rate is less than the predetermined amount), this routine is terminated without executing the subsequent processing. If the exhaust gas flow rate is small, the state of the catalyst 24 does not change to the rich side even if the air-fuel ratio rich control is performed, so whether the response of the catalyst downstream sensor 26 is deteriorated or the downstream of the catalyst 24 is empty. This is because it cannot be accurately distinguished whether the fuel ratio is gradually changing.

これに対して、上記ステップ101で、吸入空気量が所定量以上(排出ガス流量が所定量以上)と判定されれば、ステップ102に進み、燃料カット復帰後(燃料噴射再開後)の空燃比リッチ制御を所定時間以上実施したか否かで、触媒24のリーン成分吸蔵量(酸素吸蔵量)が十分に減少したか否かを判定し、「No」と判定されれば、以降の処理を実行することなく、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 101 that the intake air amount is greater than or equal to a predetermined amount (exhaust gas flow rate is greater than or equal to a predetermined amount), the process proceeds to step 102 and the air-fuel ratio after returning from fuel cut (after restarting fuel injection) It is determined whether or not the lean component storage amount (oxygen storage amount) of the catalyst 24 has been sufficiently reduced depending on whether or not the rich control has been performed for a predetermined time or more. If “No” is determined, the subsequent processing is performed. This routine is terminated without executing it.

その後、燃料カット復帰後(燃料噴射再開後)の空燃比リッチ制御を所定時間以上実施して、触媒24のリーン成分吸蔵量(酸素吸蔵量)が十分に減少したと推定できる状態になった段階で、ステップ103に進み、触媒下流側センサ26の出力電圧をリーン側のしきい電圧である例えば0.15Vと比較し、触媒下流側センサ26の出力電圧が0.15V未満であれば、燃料カットにより触媒下流側センサ26の出力電圧が十分にリーン側に変化したと判断して、ステップ104に進み、診断前提条件フラグFXを“1”にセットして本ルーチンを終了する。もし、燃料カットにより触媒下流側センサ26の出力電圧が十分にリーン側に変化していない場合は、触媒下流側センサ26の応答時間を正確に計測できないため、診断前提条件フラグFXが“0”に維持され、触媒下流側センサ26の応答時間計測・異常診断が禁止される。   Thereafter, the air-fuel ratio rich control after returning from the fuel cut (after resuming fuel injection) is performed for a predetermined time or more, and it is possible to estimate that the lean component storage amount (oxygen storage amount) of the catalyst 24 has been sufficiently reduced. In step 103, the output voltage of the catalyst downstream sensor 26 is compared with a lean threshold voltage, for example, 0.15V. If the output voltage of the catalyst downstream sensor 26 is less than 0.15V, the fuel It is determined that the output voltage of the catalyst downstream side sensor 26 has sufficiently changed to the lean side due to the cut, the process proceeds to step 104, the diagnosis precondition flag FX is set to “1”, and this routine is ended. If the output voltage of the catalyst downstream sensor 26 is not sufficiently changed to the lean side due to the fuel cut, the response time of the catalyst downstream sensor 26 cannot be accurately measured, so the diagnosis precondition flag FX is “0”. The response time measurement / abnormality diagnosis of the catalyst downstream side sensor 26 is prohibited.

一方、上記ステップ103で、触媒下流側センサ26の出力電圧が0.15V以上と判定されれば、ステップ105に進み、診断前提条件フラグFXが“1”にセットされているか否かを判定し、「No」と判定されれば、診断前提条件が不成立と判断して、以降の処理を実行することなく、そのまま本ルーチンを終了する。   On the other hand, if it is determined in step 103 that the output voltage of the catalyst downstream side sensor 26 is 0.15 V or more, the process proceeds to step 105, in which it is determined whether or not the diagnosis precondition flag FX is set to “1”. If “No” is determined, it is determined that the diagnosis precondition is not satisfied, and this routine is terminated without executing the subsequent processing.

これに対して、上記ステップ105で、診断前提条件フラグFXが“1”にセットされていると判定されれば、診断前提条件が成立していると判断して、続くステップ106〜108の処理によって、触媒下流側センサ26の出力電圧がリーン側の所定電圧(例えば0.3V)からリッチ側の所定電圧(例えば0.5V)に到達するまでの応答時間をタイムカウンタTCによりカウントする。すなわち、触媒下流側センサ26の出力電圧がリーン側の所定電圧(例えば0.3V)以上になったときにタイムカウンタTCのカウントアップを開始し、触媒下流側センサ26の出力電圧がリッチ側の所定電圧(例えば0.5V)に到達した時点で、タイムカウンタTCのカウントアップ動作を終了して、ステップ109に進み、タイムカウンタTCで計測した触媒下流側センサ26の応答時間TCを判定値と比較し、応答時間TCが判定値以上であれば、ステップ110に進み、触媒下流側センサ26が異常(応答性劣化)と判定し、次のステップ111で、異常情報をECU29のバックアップRAM等の書き換え可能な不揮発性メモリに記憶すると共に、警告表示を行って運転者に知らせる。一方、応答時間TCが判定値未満であれば、ステップ112に進み、触媒下流側センサ26が正常と判定判定する。この後、ステップ113に進み、タイムカウンタTCと診断前提条件フラグFXをリセットして、本ルーチンを終了する。   On the other hand, if it is determined in step 105 that the diagnosis precondition flag FX is set to “1”, it is determined that the diagnosis precondition is satisfied, and the subsequent steps 106 to 108 are performed. Thus, the response time until the output voltage of the catalyst downstream side sensor 26 reaches a predetermined voltage on the rich side (for example, 0.5 V) from a predetermined voltage on the lean side (for example, 0.3 V) is counted by the time counter TC. That is, when the output voltage of the catalyst downstream sensor 26 becomes equal to or higher than a predetermined voltage (eg, 0.3 V) on the lean side, the time counter TC starts counting up, and the output voltage of the catalyst downstream sensor 26 is on the rich side. When a predetermined voltage (for example, 0.5 V) is reached, the count-up operation of the time counter TC is terminated, and the process proceeds to step 109 where the response time TC of the catalyst downstream sensor 26 measured by the time counter TC is used as a determination value. If the response time TC is equal to or greater than the determination value, the process proceeds to step 110 where the catalyst downstream sensor 26 determines that the abnormality (responsiveness deterioration), and in the next step 111, the abnormality information is stored in the backup RAM or the like of the ECU 29. The information is stored in a rewritable nonvolatile memory and a warning is displayed to inform the driver. On the other hand, if the response time TC is less than the determination value, the process proceeds to step 112 where it is determined that the catalyst downstream sensor 26 is normal. Thereafter, the process proceeds to step 113, the time counter TC and the diagnostic precondition flag FX are reset, and this routine is terminated.

以上説明した本実施例によれば、燃料カット復帰後(燃料噴射再開後)にNOx低減のために一時的に実行される空燃比リッチ制御を利用して、触媒下流側センサ26のリーンからリッチへの所定電圧間(例えば0.3V→0.5V)の応答時間を計測するようにしたので、触媒24の状態がほぼ一定の状態で触媒下流側センサ26のリーンからリッチへの応答時間を精度良く計測することができ、この応答時間に基づいて触媒下流側センサ26の正常/異常を精度良く判定することができる。しかも、応答時間計測前の触媒24の状態がリーンの状態であるため、触媒24の下流側の空燃比が確実にリッチ側に変化するように、触媒24の上流側の空燃比を大きくリッチ側に変化させても、触媒24で排出ガスのリッチ成分を浄化することができ、排気エミッションを悪化させずに済む。   According to the present embodiment described above, the air-fuel ratio rich control that is temporarily executed to reduce NOx after returning from the fuel cut (after restarting the fuel injection) is used to make the richness of the catalyst downstream side sensor 26 from lean to rich. Since the response time between predetermined voltages (for example, 0.3 V → 0.5 V) is measured, the response time from the lean of the catalyst downstream sensor 26 to the rich in the state of the catalyst 24 is almost constant. Measurement can be performed with high accuracy, and normality / abnormality of the catalyst downstream sensor 26 can be determined with high accuracy based on the response time. In addition, since the state of the catalyst 24 before the response time measurement is lean, the air-fuel ratio on the upstream side of the catalyst 24 is greatly increased on the rich side so that the air-fuel ratio on the downstream side of the catalyst 24 is surely changed to the rich side. Even if it is changed, the rich component of the exhaust gas can be purified by the catalyst 24, and the exhaust emission does not deteriorate.

しかも、本実施例では、エンジン運転中に、燃料カットを利用して触媒下流側センサ26の異常診断を実施できると共に、燃料カットにより増加した触媒24の酸素吸蔵量(リーン成分吸蔵量)を空燃比リッチ制御により減少させることができて、NOx排出量を低減することができる。   In addition, in this embodiment, while the engine is running, abnormality diagnosis of the catalyst downstream side sensor 26 can be performed by using the fuel cut, and the oxygen storage amount (lean component storage amount) of the catalyst 24 increased by the fuel cut is emptied. It can be reduced by the fuel ratio rich control, and the NOx emission amount can be reduced.

更に、本実施例では、燃料カットにより触媒下流側センサ26の出力電圧が十分にリーン側(例えば0.15V未満)に変化したときのみ(換言すれば、燃料カットにより触媒24のリーン成分吸蔵量が飽和状態になったと推定されるときのみ)、触媒下流側センサ26の応答時間を計測するようにしたので、常に触媒24が一定のリーン状態で触媒下流側センサ26の応答時間を精度良く計測することができる。   Furthermore, in this embodiment, only when the output voltage of the catalyst downstream sensor 26 has sufficiently changed to the lean side (for example, less than 0.15 V) due to the fuel cut (in other words, the lean component occlusion amount of the catalyst 24 due to the fuel cut). Since the response time of the catalyst downstream sensor 26 is measured only when it is estimated that the catalyst has become saturated), the response time of the catalyst downstream sensor 26 is accurately measured with the catalyst 24 always in a certain lean state. can do.

また、本実施例では、触媒下流側センサ26の出力電圧がリーン側の所定電圧(例えば0.3V)からリッチ側の所定電圧(例えば0.5V)に到達するまでの応答時間を計測するようにしたので、空燃比リッチ制御により触媒24の状態がリッチ側に変化するまでの触媒下流側センサ26の応答時間を計測することができ、応答時間の精度を更に向上させることができる。   In this embodiment, the response time until the output voltage of the catalyst downstream sensor 26 reaches the rich predetermined voltage (for example, 0.5 V) from the lean predetermined voltage (for example, 0.3 V) is measured. Therefore, the response time of the catalyst downstream sensor 26 until the state of the catalyst 24 changes to the rich side by the air-fuel ratio rich control can be measured, and the accuracy of the response time can be further improved.

また、排出ガス流量が少ないと、燃料カット復帰後(燃料噴射再開後)に空燃比リッチ制御を行っても、触媒24の状態がリッチ側に変化しない可能性があることを考慮して、本実施例では、排出ガス流量(吸入空気量)が所定量以下のときに応答時間の計測を禁止するようにしたので、排出ガス流量が少ないときに、触媒下流側センサ26の正常/異常を誤判定することを未然に防止できる。   Further, considering that the exhaust gas flow rate is small, the state of the catalyst 24 may not change to the rich side even if the air-fuel ratio rich control is performed after the fuel cut is restored (after the fuel injection is resumed). In the embodiment, since the measurement of the response time is prohibited when the exhaust gas flow rate (intake air amount) is less than or equal to the predetermined amount, the normality / abnormality of the catalyst downstream sensor 26 is erroneously detected when the exhaust gas flow rate is small. Judgment can be prevented in advance.

尚、本実施例では、触媒下流側センサ26の応答性を表す情報として、応答時間を計測するようにしたが、触媒下流側センサ26の出力変化の傾きを計測したり、所定時間の出力変化量を計測するようにしても良い。   In this embodiment, the response time is measured as information indicating the response of the catalyst downstream sensor 26. However, the inclination of the output change of the catalyst downstream sensor 26 is measured, or the output change for a predetermined time is measured. The amount may be measured.

また、本実施例では、燃料カットを利用して触媒下流側センサ26の応答時間計測・異常診断を実行するようにしたが、空燃比リーン制御が所定期間以上続いたときに、触媒24の状態がリーンの状態であると判断して空燃比リッチ制御を実行し、触媒下流側センサ26の応答時間計測・異常診断を実行するようにしても良い。   In the present embodiment, the response time measurement / abnormality diagnosis of the catalyst downstream side sensor 26 is executed by using the fuel cut. However, when the air-fuel ratio lean control continues for a predetermined period or longer, the state of the catalyst 24 It may be determined that is in a lean state, air-fuel ratio rich control is executed, and response time measurement / abnormality diagnosis of the catalyst downstream side sensor 26 may be executed.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. 触媒下流側センサ異常診断ルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a catalyst downstream sensor abnormality diagnosis routine. 実施例の触媒下流側センサの異常診断方法を説明するためのタイムチャートである。It is a time chart for demonstrating the abnormality diagnosis method of the catalyst downstream sensor of an Example.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管、24…触媒、25…触媒上流側センサ、26…触媒下流側センサ、29…ECU(異常診断手段,応答性計測手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe, 24 ... Catalyst, 25 ... Catalyst upstream sensor, 26 ... Catalyst downstream Sensor, 29 ... ECU (abnormality diagnosis means, response measurement means)

Claims (5)

排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「触媒下流側センサ」という)の異常診断を行うものにおいて、
前記触媒の状態がリーンの状態で空燃比リッチ制御を実行したときの前記触媒下流側センサのリーンからリッチへの応答性を計測する応答性計測手段と、
前記触媒下流側センサのリーンからリッチへの応答性に基づいて前記触媒下流側センサの異常診断を行う異常診断手段と
を備えていることを特徴とする排出ガスセンサの異常診断装置。
In the exhaust gas sensor installed on the downstream side of the exhaust gas purification catalyst (hereinafter referred to as “catalyst downstream sensor”),
Responsiveness measuring means for measuring the response from lean to rich of the catalyst downstream side sensor when air-fuel ratio rich control is executed in a lean state of the catalyst;
An abnormality diagnosis device for an exhaust gas sensor, comprising: abnormality diagnosis means for performing abnormality diagnosis of the catalyst downstream side sensor based on a response from lean to rich of the catalyst downstream side sensor.
前記応答性計測手段は、燃料カット又は空燃比リーン制御が所定期間以上続いたときに、前記触媒の状態がリーンの状態であると判断して前記空燃比リッチ制御を実行し、前記触媒下流側センサのリーンからリッチへの応答性を計測することを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。   When the fuel cut or air-fuel ratio lean control continues for a predetermined period or longer, the responsiveness measuring means determines that the state of the catalyst is a lean state and executes the air-fuel ratio rich control, and the downstream side of the catalyst The abnormality diagnosis device for an exhaust gas sensor according to claim 1, wherein the response of the sensor from lean to rich is measured. 前記応答性計測手段は、前記触媒のリーン成分吸蔵量が飽和状態になったと推定されるときに、前記空燃比リッチ制御を実行して、前記触媒下流側センサのリーンからリッチへの応答性を計測することを特徴とする請求項1又は2に記載の排出ガスセンサの異常診断装置。   The responsiveness measuring means executes the air-fuel ratio rich control when it is estimated that the lean component storage amount of the catalyst is saturated, and determines the responsiveness of the catalyst downstream side sensor from lean to rich. The abnormality diagnosis device for an exhaust gas sensor according to claim 1, wherein the abnormality diagnosis device measures the abnormality. 前記応答性計測手段は、前記空燃比リッチ制御によるリッチ度合を前記触媒の状態がリッチ側に変化するように設定することを特徴とする請求項1乃至3のいずれかに記載の排出ガスセンサの異常診断装置。   The exhaust gas sensor abnormality according to any one of claims 1 to 3, wherein the responsiveness measuring means sets the rich degree by the air-fuel ratio rich control so that the state of the catalyst changes to the rich side. Diagnostic device. 前記応答性計測手段は、排出ガス流量が所定量以下のときに前記応答性の計測を禁止する手段を備えていることを特徴とする請求項1乃至4のいずれかに記載の排出ガスセンサの異常診断装置。   The abnormality of the exhaust gas sensor according to any one of claims 1 to 4, wherein the responsiveness measuring means includes means for prohibiting the responsiveness measurement when an exhaust gas flow rate is a predetermined amount or less. Diagnostic device.
JP2004261764A 2004-09-09 2004-09-09 Exhaust gas sensor abnormality diagnosis device Expired - Fee Related JP4470661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261764A JP4470661B2 (en) 2004-09-09 2004-09-09 Exhaust gas sensor abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261764A JP4470661B2 (en) 2004-09-09 2004-09-09 Exhaust gas sensor abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2006077659A true JP2006077659A (en) 2006-03-23
JP4470661B2 JP4470661B2 (en) 2010-06-02

Family

ID=36157322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261764A Expired - Fee Related JP4470661B2 (en) 2004-09-09 2004-09-09 Exhaust gas sensor abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP4470661B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014000A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
US8141344B2 (en) 2006-07-25 2012-03-27 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of an internal combustion engine
JP2013082286A (en) * 2011-10-07 2013-05-09 Suzuki Motor Corp Internal combustion engine operating state detection device
US20150167522A1 (en) * 2013-12-18 2015-06-18 Hyundai Motor Company Exhaust gas purifying system for vehicle
CN105587419A (en) * 2014-11-11 2016-05-18 丰田自动车株式会社 Abnormality diagnosis system of air-fuel ratio sensor
JP2016121591A (en) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 Failure determination device of oxygen concentration sensor
EP3103994A2 (en) 2015-06-11 2016-12-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141344B2 (en) 2006-07-25 2012-03-27 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method of an internal combustion engine
JP2010014000A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2013082286A (en) * 2011-10-07 2013-05-09 Suzuki Motor Corp Internal combustion engine operating state detection device
US20150167522A1 (en) * 2013-12-18 2015-06-18 Hyundai Motor Company Exhaust gas purifying system for vehicle
CN105587419A (en) * 2014-11-11 2016-05-18 丰田自动车株式会社 Abnormality diagnosis system of air-fuel ratio sensor
JP2016089799A (en) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 Abnormality diagnosis device
US10180112B2 (en) 2014-11-11 2019-01-15 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
JP2016121591A (en) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 Failure determination device of oxygen concentration sensor
EP3103994A2 (en) 2015-06-11 2016-12-14 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
CN106246369A (en) * 2015-06-11 2016-12-21 丰田自动车株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP4470661B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JP4831015B2 (en) Abnormality diagnosis device for internal combustion engine
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP4497132B2 (en) Catalyst degradation detector
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP2009036024A (en) Air-fuel ratio control device of internal combustion engine
JP2007127027A (en) Catalyst deterioration diagnosis device for engine and catalyst device for exhaust emission control
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP2005188309A (en) Abnormality determination device of throttle system
JP4893292B2 (en) Control device for internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4210940B2 (en) Abnormality diagnosis device for intake system sensor
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2012211561A (en) Degradation determination device
JP4395890B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP2008157036A (en) Control device of internal combustion engine
JP4547617B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine
JP2010048117A (en) Abnormality diagnosis device for air-fuel ratio sensor
JP4591841B2 (en) Water temperature sensor abnormality diagnosis device for internal combustion engine
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor
JP4534160B2 (en) Abnormality diagnosis device for secondary air supply system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees