JP2012211561A - Degradation determination device - Google Patents

Degradation determination device Download PDF

Info

Publication number
JP2012211561A
JP2012211561A JP2011078334A JP2011078334A JP2012211561A JP 2012211561 A JP2012211561 A JP 2012211561A JP 2011078334 A JP2011078334 A JP 2011078334A JP 2011078334 A JP2011078334 A JP 2011078334A JP 2012211561 A JP2012211561 A JP 2012211561A
Authority
JP
Japan
Prior art keywords
response time
ratio sensor
fuel ratio
rear air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078334A
Other languages
Japanese (ja)
Inventor
Manabu Okada
学 岡田
Takeshi Oshima
武 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2011078334A priority Critical patent/JP2012211561A/en
Publication of JP2012211561A publication Critical patent/JP2012211561A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a degradation determination device for performing degradation determination of a catalyst converter and a rear air-fuel-ratio sensor with higher accuracy and preventing incorrect determination thereof from being performed.SOLUTION: The degradation determination device includes a degradation determination means which includes a fuel supply stop means including the catalyst converter for purifying exhaust gas from an internal combustion engine and the rear air-fuel-ratio sensor disposed on the downstream side of the catalyst converter, and stopping fuel supply to the internal combustion engine, a response time measurement means for measuring response time of the rear air-fuel-ratio sensor, and a response time tendency calculation means for checking response time tendency, and which determines a response time from a stop of fuel supply until the rear air-fuel-ration sensor outputs a predetermined output signal under different intake air amount conditions, determines a gradient amount as response time tendency of the rear air-fuel-ratio sensor from a plurality of determined response times, and determines degradation of the catalyst sensor if the determined gradient amount is smaller than a predetermined gradient amount.

Description

この発明は劣化判定装置に係り、特に、内燃機関の排出ガスの有害成分を浄化する触媒コンバータおよび、触媒コンバータの下流側に配置されるリヤ空燃比センサを備えた排出ガス浄化システムの劣化判定装置に関する。   The present invention relates to a deterioration determination device, and in particular, a deterioration determination device for an exhaust gas purification system including a catalytic converter that purifies harmful components of exhaust gas from an internal combustion engine, and a rear air-fuel ratio sensor disposed downstream of the catalytic converter. About.

従来、内燃機関を有する車両には、排出ガスを浄化する排出ガス浄化システムを設けている。排出ガス浄化システムは、排出ガスの有害成分を浄化する触媒を内蔵した触媒コンバータを設け、その触媒コンバータの排出ガス内の有害成分の浄化率をみるために、触媒コンバータの上流側にフロント空燃比センサを設け、触媒コンバータの下流側にリヤ空燃比センサを設け、このフロント空燃比センサとリヤ空燃比センサとの検出結果から排出ガス中の有害成分の浄化効率を高めている。
排出ガス浄化システムの劣化を判定する劣化判定装置は、燃料供給停止時のリヤ空燃比センサ信号の応答時間をモニタすることにより、リヤ空燃比センサの応答劣化の異常検知を行う(図4参照)。リヤ空燃比センサ信号の応答時間は、図10に示すように、燃料供給停止時Aからリヤ空燃比センサ信号の電圧が規定値の判定電圧に低下した時Bまでの時間を計測することによって得る。
リヤ空燃比センサの応答時間と触媒コンバータの劣化状態は密接に関係しており、リヤ空燃比センサの応答時間は、触媒コンバータが正常な状態では触媒コンバータ前の空燃比の変化を触媒コンバータが吸収する(排出ガス中の酸素を吸着する量が多い)ため、リヤ空燃比センサの信号には空燃比の変化が遅れて現れる(リヤ空燃比センサの応答が遅い。つまり、応答時間が長い。)。触媒コンバータが劣化すると、空燃比の変化を触媒コンバータが吸収できず(排出ガス中の酸素を吸着する量が少ない)、リヤ空然比センサの信号には空燃比の変化が早く現れる(リヤ空燃比センサの応答が速くなる。つまり、応答時間が短くなる。)。
Conventionally, a vehicle having an internal combustion engine is provided with an exhaust gas purification system for purifying exhaust gas. The exhaust gas purification system is provided with a catalytic converter with a built-in catalyst that purifies harmful components of exhaust gas, and in order to check the purification rate of harmful components in the exhaust gas of the catalytic converter, the front air-fuel ratio is upstream of the catalytic converter. A sensor is provided, and a rear air-fuel ratio sensor is provided downstream of the catalytic converter, and the purification efficiency of harmful components in the exhaust gas is increased from the detection results of the front air-fuel ratio sensor and the rear air-fuel ratio sensor.
A deterioration determination device that determines deterioration of the exhaust gas purification system detects an abnormality in response deterioration of the rear air-fuel ratio sensor by monitoring the response time of the rear air-fuel ratio sensor signal when the fuel supply is stopped (see FIG. 4). . As shown in FIG. 10, the response time of the rear air-fuel ratio sensor signal is obtained by measuring the time from the fuel supply stop time A to the time B when the voltage of the rear air-fuel ratio sensor signal drops to the predetermined determination voltage. .
The response time of the rear air-fuel ratio sensor and the deterioration state of the catalytic converter are closely related, and the response time of the rear air-fuel ratio sensor is absorbed by the catalytic converter when the catalytic converter is normal. (There is a large amount of oxygen adsorbed in the exhaust gas), the change in the air-fuel ratio appears later in the signal of the rear air-fuel ratio sensor (the response of the rear air-fuel ratio sensor is slow, that is, the response time is long). . When the catalytic converter deteriorates, the catalytic converter cannot absorb the change in the air-fuel ratio (the amount of adsorbing oxygen in the exhaust gas is small), and the change in the air-fuel ratio appears early in the signal of the rear air-ratio ratio sensor (the rear empty space). The response of the fuel ratio sensor becomes faster, that is, the response time becomes shorter.)

前述した様に、リヤ空燃比センサの応答時間は、触媒コンバータの状態(劣化度合い)に影響を受けることとなる。リヤ空燃比センサの信号は、図11に示すように、(A).触媒コンバータが正常でリヤ空燃比センサが正常のときは振幅が小となり、(B).触媒コンバータが劣化でリヤ空燃比センサが正常のときは振幅が大となり、(C).触媒コンバータが劣化でリヤ空燃比センサが劣化のときは振幅が小となる。
つまり、リヤ空燃比センサと触媒コンバータとが互いに劣化している場合(図11(C))と、リヤ空燃比センサと触媒コンバータとが互いに正常である場合(図11(A))とのリヤ空燃比センサの応答時間に大きな変化が現れないために、それらの劣化が検出できない。そこで、触媒コンバータの劣化度合いの影響を受けずにリヤ空燃比センサの応答劣化を検出するために、燃料供給停止中の平均吸入空気量に対するリヤ空燃比センサの応答時間の関係からリヤ空燃比センサの応答劣化を検出する方法がある。
図12(A)は触媒コンバータが劣化した条件下でのリヤ空燃比センサが正常及び劣化(応答遅れ発生)のときの各応答時間を示し、図12(B)は触媒コンバータが正常に作動している条件下での空燃比センサが正常及び劣化(応答遅れ発生)のときの各応答時間を示している。また、図12(C)は図12(A)、図12(B)を合わせて表示したものである。
従来では、リヤ空燃比センサが劣化していることを判定するために、図12(C)の破線で示すようにリヤ空燃比センサ応答劣化閾値を比較的長い応答時間とし、この閾値よりも長い応答時間である場合にリヤ空燃比センサが劣化していると判定していた。ただし、この方法は触媒コンバータが正常に作動している場合においてリヤ空燃比センサが劣化していることを判定できるものである。触媒コンバータが劣化している場合はリヤ空燃比センサの応答時間が短いため、リヤ空燃比センサが劣化している場合であってもリヤ空燃比センサが正常に作動していると誤判定してしまう問題があった。
また、リヤ空燃比センサが劣化しリヤ空燃比センサの応答遅れが発生することで、劣化した触媒コンバータを正常に作動していると判定してしまう問題もあった(図13参照)。
As described above, the response time of the rear air-fuel ratio sensor is affected by the state (deterioration degree) of the catalytic converter. As shown in FIG. 11, the signals of the rear air-fuel ratio sensor are (A). When the catalytic converter is normal and the rear air-fuel ratio sensor is normal, the amplitude is small, and (B). When the catalytic converter is deteriorated and the rear air-fuel ratio sensor is normal, the amplitude becomes large, and (C). When the catalytic converter is deteriorated and the rear air-fuel ratio sensor is deteriorated, the amplitude is small.
In other words, the rear air-fuel ratio sensor and the catalytic converter are deteriorated from each other (FIG. 11C), and the rear air-fuel ratio sensor and the catalytic converter are normal to each other (FIG. 11A). Since no significant change appears in the response time of the air-fuel ratio sensor, their deterioration cannot be detected. Therefore, in order to detect the response deterioration of the rear air-fuel ratio sensor without being affected by the degree of deterioration of the catalytic converter, the rear air-fuel ratio sensor is determined from the relationship of the response time of the rear air-fuel ratio sensor to the average intake air amount when the fuel supply is stopped. There is a method for detecting the deterioration of response.
FIG. 12A shows response times when the rear air-fuel ratio sensor is normal and deteriorated (response delay occurs) under the condition that the catalytic converter deteriorates, and FIG. 12B shows that the catalytic converter operates normally. Each response time when the air-fuel ratio sensor under normal conditions is normal and deteriorated (response delay occurs) is shown. FIG. 12 (C) shows a combination of FIGS. 12 (A) and 12 (B).
Conventionally, in order to determine that the rear air-fuel ratio sensor has deteriorated, the rear air-fuel ratio sensor response deterioration threshold is set to a relatively long response time as shown by the broken line in FIG. 12C, and is longer than this threshold. When the response time is reached, it is determined that the rear air-fuel ratio sensor has deteriorated. However, this method can determine that the rear air-fuel ratio sensor has deteriorated when the catalytic converter is operating normally. When the catalytic converter is deteriorated, the response time of the rear air-fuel ratio sensor is short. Therefore, even if the rear air-fuel ratio sensor is deteriorated, it is erroneously determined that the rear air-fuel ratio sensor is operating normally. There was a problem.
In addition, the rear air-fuel ratio sensor deteriorates and a response delay of the rear air-fuel ratio sensor occurs, which causes a problem that the deteriorated catalytic converter is determined to be operating normally (see FIG. 13).

上記問題に対する従来技術として、特許文献1(特許第2858406号)がある。上記特許文献1では、排出ガス中の空燃比をみるために、排出ガス中の酸素濃度をみて空燃比を算出する酸素センサを用いた技術が紹介されている。詳しくは、内燃機関への燃料供給が停止された後に、リヤ酸素センサからの出力信号が所定レベルをリッチ側からリーン側に横切った時点からの経過時間を測定して、この経過時間が所定時間に達した時のリヤ酸素センサの出力値がリーン側に設定された第一の判定レベルよりもリッチ側である場合、もしくは前記第一の判定レベルに達するまでの時間が所定時間を越える場合に、リヤ酸素センサの劣化を判定する技術が紹介されている。これより、特許文献1では、触媒コンバータの劣化度合いの影響を受けずに、リヤ酸素センサの劣化を検出することができる。   There exists patent document 1 (patent 2858406) as a prior art with respect to the said problem. In Patent Document 1, a technique using an oxygen sensor that calculates the air-fuel ratio by looking at the oxygen concentration in the exhaust gas is introduced in order to see the air-fuel ratio in the exhaust gas. Specifically, after the fuel supply to the internal combustion engine is stopped, the elapsed time from the time when the output signal from the rear oxygen sensor crosses the predetermined level from the rich side to the lean side is measured, and this elapsed time is set to the predetermined time. When the output value of the rear oxygen sensor at the time of reaching the richer side than the first judgment level set on the lean side, or when the time until reaching the first judgment level exceeds a predetermined time A technique for judging deterioration of a rear oxygen sensor is introduced. Thus, in Patent Document 1, the deterioration of the rear oxygen sensor can be detected without being affected by the degree of deterioration of the catalytic converter.

特許第2858406号Patent No. 2858406

しかし、上記特許文献1では、以下の問題がある。
吸入空気量が多い場合には、リヤ酸素センサの応答時間に大きな差が現れず、リヤ酸素センサの誤った劣化判定がなされる可能性がある。
前述したように、触謀コンバータは劣化が進むほど、酸素吸着能力が落ちる。内燃機関ヘの吸入空気量が増大し、劣化した状態にある触媒コンバータに大量の空気が流れ込むと、空気中の酸素のほとんどが触媒コンバータに吸着されずにリヤ酸素センサに流れ込む。すると正常に機能しているリヤ酸素センサと劣化しているリヤ酸素センサの応答時間に差が出ない場合もある。
酸素センサを空燃比センサに置き換えた場合も同様の問題が発生する。空然比センサも劣化が進むと出力信号の変化が鈍化するので、空燃比センサや触媒コンバータの劣化判定が正確に行われないといった不都合がある。
However, Patent Document 1 has the following problems.
When the amount of intake air is large, there is no possibility that a large difference appears in the response time of the rear oxygen sensor, and an erroneous deterioration determination of the rear oxygen sensor may be made.
As described above, the oxygen adsorption capacity of the plotter converter decreases as the deterioration progresses. When the amount of intake air to the internal combustion engine increases and a large amount of air flows into the deteriorated catalytic converter, most of the oxygen in the air flows into the rear oxygen sensor without being adsorbed by the catalytic converter. Then, there may be no difference in response time between the functioning rear oxygen sensor and the deteriorated rear oxygen sensor.
A similar problem occurs when the oxygen sensor is replaced with an air-fuel ratio sensor. As the air-fuel ratio sensor also deteriorates, the change in the output signal slows down, so that the deterioration determination of the air-fuel ratio sensor and the catalytic converter cannot be accurately performed.

この発明は、触媒コンバータおよびリヤ空燃比センサの劣化判定をより精度良く行い、それらの誤判定を行うことを抑制する劣化判定装置を提供することを目的とする。   An object of the present invention is to provide a deterioration determination device that performs deterioration determination of a catalytic converter and a rear air-fuel ratio sensor with higher accuracy and suppresses erroneous determination of those.

この発明は、排出ガス浄化システムの劣化を判定する劣化判定装置において、前記排出ガス浄化システムは、内燃機関の排出ガスを浄化する触媒コンバータと、この触媒コンバータの下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサとを備え、前記内燃機関への燃料の供給を停止する燃料供給停止手段と、前記リヤ空燃比センサの応答時間を測定する応答時間測定手段と、複数の応答時間から応答時間傾向をみる応答時間傾向算出手段とを備え、燃料供給が停止されてから前記リヤ空然比センサが所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間から前記リヤ空燃比センサの応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に前記触媒コンバータが劣化していると判定する劣化判定手段を備えることを特徴とする。   The present invention relates to a deterioration determination apparatus for determining deterioration of an exhaust gas purification system, wherein the exhaust gas purification system is disposed on the downstream side of the catalytic converter for purifying the exhaust gas of the internal combustion engine and in the exhaust gas. A fuel supply stop means for stopping the supply of fuel to the internal combustion engine, a response time measuring means for measuring a response time of the rear air fuel ratio sensor, Response time trend calculation means for determining response time trends from a plurality of response times, and the intake air amount conditions with different response times from when the fuel supply is stopped until the rear air-ratio ratio sensor outputs a predetermined output signal An inclination amount that is a response time tendency of the rear air-fuel ratio sensor is obtained from the obtained plurality of response times, and when the obtained inclination amount is smaller than a predetermined inclination amount, Converter is characterized in that it comprises determining degradation determination means to be deteriorated.

この発明の劣化判定装置は、内燃機関の複数の異なる運転状況下においてリヤ空燃比センサの応答時間傾向をみることで、触媒コンバータの劣化判定をより精度よく求めることができる。   The deterioration determination device according to the present invention can determine deterioration of a catalytic converter more accurately by observing the response time tendency of the rear air-fuel ratio sensor under a plurality of different operating conditions of the internal combustion engine.

図1は劣化判定装置の判定のフローチャート図である。(実施例)FIG. 1 is a flowchart of determination by the deterioration determination apparatus. (Example) 図2は劣化判定装置の概略構成図である。(実施例)FIG. 2 is a schematic configuration diagram of the deterioration determination apparatus. (Example) 図3は劣化判定装置のシステム構成図である。(実施例)FIG. 3 is a system configuration diagram of the deterioration determination apparatus. (Example) 図4はリヤ空燃比センサの応答時間の遅れを示す図である。(実施例)FIG. 4 is a diagram showing a delay in response time of the rear air-fuel ratio sensor. (Example) 図5はリヤ空燃比センサの応答時間からの傾き量の算出を示す図である。(実施例)FIG. 5 is a diagram showing calculation of the amount of inclination from the response time of the rear air-fuel ratio sensor. (Example) 図6は傾き量からの補正量の算出を示す図である。(実施例)FIG. 6 is a diagram illustrating calculation of the correction amount from the tilt amount. (Example) 図7は触媒コンバータが劣化でリヤ空燃比センサが正常及び劣化のときの各応答時間と、触媒コンバータが正常で空燃比センサが正常及び劣化のときの各応答時間と、補正後の劣化判定用の閾値とを示す図である。(実施例)FIG. 7 shows each response time when the catalytic converter is deteriorated and the rear air-fuel ratio sensor is normal and deteriorated, each response time when the catalytic converter is normal and the air-fuel ratio sensor is normal and deteriorated, and for the deterioration determination after correction It is a figure which shows this threshold value. (Example) 図8はリヤ空燃比センサの劣化判定用の閾値補正による触媒コンバータの劣化判定領域を示す図である。(実施例)FIG. 8 is a diagram showing a deterioration determination region of the catalytic converter by threshold correction for deterioration determination of the rear air-fuel ratio sensor. (Example) 図9は吸入空気量に対するリヤ空燃比センサの応答時間のマップを示す図である。(実施例)FIG. 9 is a diagram showing a map of the response time of the rear air-fuel ratio sensor with respect to the intake air amount. (Example) 図10はリヤ空燃比センサの応答時間測定を示す図である。(従来例)FIG. 10 is a diagram showing response time measurement of the rear air-fuel ratio sensor. (Conventional example) 図11はリヤ空燃比センサ信号の変化を示し、(A)は触媒コンバータが正常でリヤ空燃比センサが正常のときのリヤ空燃比センサ信号の振幅を示す図、(B)は触媒コンバータが劣化でリヤ空燃比センサが正常のときのリヤ空燃比センサ信号の振幅を示す図、(C)は触媒コンバータが劣化でリヤ空燃比センサが劣化のときのリヤ空燃比センサ信号の振幅を示す図である。(従来例)FIG. 11 shows changes in the rear air-fuel ratio sensor signal, (A) shows the amplitude of the rear air-fuel ratio sensor signal when the catalytic converter is normal and the rear air-fuel ratio sensor is normal, and (B) shows deterioration of the catalytic converter. FIG. 8C is a diagram showing the amplitude of the rear air-fuel ratio sensor signal when the rear air-fuel ratio sensor is normal, and FIG. 10C is a diagram showing the amplitude of the rear air-fuel ratio sensor signal when the catalytic converter is degraded and the rear air-fuel ratio sensor is degraded. is there. (Conventional example) 図12はリヤ空燃比センサの応答時間と閾値を示し、(A)は触媒コンバータが劣化でリヤ空燃比センサが正常及び劣化のときの各応答時間を示す図、(B)は触媒コンバータが正常で空燃比センサが正常及び劣化のときの各応答時間を示す図、(C)は前記(A)及び(B)を合わせたリヤ空燃比センサが正常及び劣化のときの各応答時間と劣化判定用の閾値を示す図である。(従来例)FIG. 12 shows the response time and threshold value of the rear air-fuel ratio sensor. FIG. 12A shows the response time when the catalytic converter is deteriorated and the rear air-fuel ratio sensor is normal and deteriorated. FIG. FIG. 8C is a diagram showing response times when the air-fuel ratio sensor is normal and deteriorated, and FIG. 8C is a response time and deterioration determination when the rear air-fuel ratio sensor combining the above-described (A) and (B) is normal and deteriorated. It is a figure which shows the threshold value for use. (Conventional example) 図13は触媒コンバータの劣化判定値とリヤ空燃比センサの応答時間遅れの関係を示す図である。(従来例)FIG. 13 is a diagram showing the relationship between the deterioration judgment value of the catalytic converter and the response time delay of the rear air-fuel ratio sensor. (Conventional example)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図9は、この発明の実施例を示すものである。図2において、1は内燃機関、2はシリンダブロック、3はシリンダヘッド、4はシリンダヘッドカバー、5はピストン、6は燃焼室、7は吸気ポート、8は排気ポート、9は吸気弁、10は排気弁、11は吸気カム軸、12は排気カム軸である。
内燃機関1は、吸気系として、エアクリーナ13と吸気管14とスロットルボディ15とサージタンク16と吸気マニホルド17とを順次に接続し、吸気ポート7に連通する吸気通路18を設けている。スロットルボディ15の吸気通路18には、スロットルバルブ19を設けている。また、内燃機関1は、排気系として、排気マニホルド20と上流側排気管21と触媒コンバータ22と下流側排気管23とを順次に接続し、排気ポート8に連通する排気通路24を設けている。触媒コンバータ22は、触媒25を内蔵している。
前記内燃機関1は、燃料系として、燃料タンク26を設け、燃料タンク26内に燃料を吸引して圧送する燃料ポンプ27を設け、この燃料ポンプ27に燃料フィルタ28と圧力レギュレータ29とを介して一端側が接続される燃料供給管30を設けている。圧力レギュレータ29には、燃料タンク26内に開口した燃料戻り管31を接続している。燃料供給管30の他端側は、燃料分配管32に接続している。燃料分配管32には、吸気マニホルド17に取り付けられた各気筒毎の燃料噴射弁33を接続している。
前記燃料タンク26には、2ウェイチェックバルブ34を介してエバポ管35の一端側を接続している。エバポ管35は、他端側をキャニスタ36に接続している。キャニスタ36には、パージ管37の一端側を接続している。パージ管37は、他端側をスロットルボディ15に設けたスロットルバルブ19上流側の吸気通路18に連通している。
前記内燃機関1は、点火系として、シリンダヘッドカバー4に各気筒毎のイグニションコイル38を取り付けている。イグニションコイル38は、各気筒の燃焼室6に臨ませた点火プラグに飛び火させる。内燃機関1には、シリンダヘッドカバー4内をPCVバルブ39を介してサージタンク16の吸気通路18に連通するタンク側ブローバイガス通路40を設け、シリンダヘッドカバー4内をエアクリーナ13内に連通するクリーナ側ブローバイガス通路41を設けている。また、内燃機関1は、スロットルバルブ19を迂回して吸気通路18を連通するバイパス空気通路42を設け、このバイパス空気通路42の途中にアイドル空気量を調整するアイドル空気量制御バルブ43を設けている。
1 to 9 show an embodiment of the present invention. In FIG. 2, 1 is an internal combustion engine, 2 is a cylinder block, 3 is a cylinder head, 4 is a cylinder head cover, 5 is a piston, 6 is a combustion chamber, 7 is an intake port, 8 is an exhaust port, 9 is an intake valve, An exhaust valve, 11 is an intake camshaft, and 12 is an exhaust camshaft.
The internal combustion engine 1 is provided with an intake passage 18 that communicates with an intake port 7 by sequentially connecting an air cleaner 13, an intake pipe 14, a throttle body 15, a surge tank 16, and an intake manifold 17 as an intake system. A throttle valve 19 is provided in the intake passage 18 of the throttle body 15. Further, the internal combustion engine 1 is provided with an exhaust passage 24 that sequentially connects an exhaust manifold 20, an upstream exhaust pipe 21, a catalytic converter 22, and a downstream exhaust pipe 23 as an exhaust system, and communicates with the exhaust port 8. . The catalytic converter 22 incorporates a catalyst 25.
The internal combustion engine 1 includes a fuel tank 26 as a fuel system, a fuel pump 27 that sucks and pumps fuel into the fuel tank 26, and a fuel filter 28 and a pressure regulator 29. A fuel supply pipe 30 to which one end side is connected is provided. A fuel return pipe 31 opened in the fuel tank 26 is connected to the pressure regulator 29. The other end side of the fuel supply pipe 30 is connected to a fuel distribution pipe 32. A fuel injection valve 33 for each cylinder attached to the intake manifold 17 is connected to the fuel distribution pipe 32.
One end of an evaporation pipe 35 is connected to the fuel tank 26 via a two-way check valve 34. The evaporation pipe 35 is connected to the canister 36 at the other end. One end of a purge pipe 37 is connected to the canister 36. The other end of the purge pipe 37 communicates with the intake passage 18 upstream of the throttle valve 19 provided in the throttle body 15.
The internal combustion engine 1 has an ignition coil 38 for each cylinder attached to a cylinder head cover 4 as an ignition system. The ignition coil 38 is ignited by a spark plug facing the combustion chamber 6 of each cylinder. The internal combustion engine 1 is provided with a tank side blow-by gas passage 40 that communicates with the intake passage 18 of the surge tank 16 through the PCV valve 39 in the cylinder head cover 4, and a cleaner side blow-by that communicates with the air cleaner 13 in the cylinder head cover 4. A gas passage 41 is provided. Further, the internal combustion engine 1 is provided with a bypass air passage 42 that bypasses the throttle valve 19 and communicates with the intake passage 18, and an idle air amount control valve 43 that adjusts the amount of idle air is provided in the middle of the bypass air passage 42. Yes.

前記内燃機関1は、電子制御部44を備えている。電子制御部44には、図3に示すように、燃料ポンプリレー45を介して燃料ポンプ27を接続し、燃料噴射弁33を接続し、イグナイタ46を介してイグニションコイル38を接続し、アイドル空気量制御バルブ43を接続している。
前記電子制御部44には、スロットルバルブ19のスロットル開度を検出するスロットル開度センサ47と、スロットルバルブ19下流側の吸気圧力を検出する吸気圧力センサ48と、エンジン回転速度を検出するためクランク角を検出するクランク角センサ49と、冷却水温度を検出する水温センサ50と、ノッキングを検出するノッキングセンサ51と、触媒コンバータ22の上流側に配置されて排出ガス中の空燃比を検出するためのフロント空燃比センサ52と、触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを接続し、メインリレー54及びフューズ55を介してバッテリ56(図2参照)を接続している。
また、電子制御部44には、チェックエンジンランプ57を接続し、ラジエータファンリレー58を介してラジエータクーリングファン59を接続し、エアコンのA/Cコンプレッサクラッチ60を接続し、タコメータ61を接続し、自動変速機のA/Tコントローラ62を接続し、さらに、バッテリ電圧、イグニションスイッチ状態信号、車速信号、ブレーキスイッチ信号、エアコンのA/C信号、自動変速機のA/T信号等の各種信号を入力する内燃機関用信号部63を接続している。
電子制御部44は、スロットル開度センサ47からスロットル開度、吸気圧力センサ48から吸気圧力、クランク角センサ49からエンジン回転速度及び気筒判別、水温センサ50から冷却水温度、ノッキングセンサ51からノックレベル、フロント空燃比センサ52から触媒コンバータ22上流側の排出ガスの空燃比、リヤ空燃比センサ53から触媒コンバータ22下流側の排出ガスの空燃比、の各検出信号を入力する。電子制御部44は、これら入力する検出信号によって、燃料ポンプ27、燃料噴射弁33、イグニションコイル38、アイドル制御バルブ43等の動作を制御し、燃料噴射量、点火時期、アイドル回転数等を制御する。なお、吸気圧力センサ48の吸入空気圧力からは、内燃機関1の吸入空気量を求める。吸入空気量の求め方は一例であり、吸気圧力センサ48ではなく、直接的に吸入空気量を検出できるエアフローセンサを用いても良い。
The internal combustion engine 1 includes an electronic control unit 44. As shown in FIG. 3, the electronic control unit 44 is connected to the fuel pump 27 via the fuel pump relay 45, to the fuel injection valve 33, and to the ignition coil 38 via the igniter 46. A quantity control valve 43 is connected.
The electronic control unit 44 includes a throttle opening sensor 47 for detecting the throttle opening of the throttle valve 19, an intake pressure sensor 48 for detecting the intake pressure downstream of the throttle valve 19, and a crank for detecting the engine speed. A crank angle sensor 49 for detecting the angle, a water temperature sensor 50 for detecting the coolant temperature, a knocking sensor 51 for detecting knocking, and an upstream side of the catalytic converter 22 for detecting the air-fuel ratio in the exhaust gas. The front air-fuel ratio sensor 52 is connected to the rear air-fuel ratio sensor 53 that is disposed downstream of the catalytic converter 22 and detects the air-fuel ratio in the exhaust gas, and the battery 56 is connected via the main relay 54 and the fuse 55. (See FIG. 2).
In addition, a check engine lamp 57 is connected to the electronic control unit 44, a radiator cooling fan 59 is connected via a radiator fan relay 58, an A / C compressor clutch 60 of an air conditioner is connected, a tachometer 61 is connected, Connect A / T controller 62 of automatic transmission, and also send various signals such as battery voltage, ignition switch status signal, vehicle speed signal, brake switch signal, A / C signal of air conditioner, A / T signal of automatic transmission, etc. An input internal combustion engine signal unit 63 is connected.
The electronic control unit 44 detects the throttle opening from the throttle opening sensor 47, the intake pressure from the intake pressure sensor 48, the engine speed and cylinder discrimination from the crank angle sensor 49, the coolant temperature from the water temperature sensor 50, and the knock level from the knock sensor 51. Then, the detection signals of the air-fuel ratio of the exhaust gas upstream of the catalytic converter 22 and the air-fuel ratio of the exhaust gas downstream of the catalytic converter 22 are input from the front air-fuel ratio sensor 52. The electronic control unit 44 controls the operation of the fuel pump 27, the fuel injection valve 33, the ignition coil 38, the idle control valve 43, and the like based on these input detection signals, and controls the fuel injection amount, the ignition timing, the idle speed, and the like. To do. The intake air amount of the internal combustion engine 1 is obtained from the intake air pressure of the intake pressure sensor 48. The method of obtaining the intake air amount is an example, and an air flow sensor that can directly detect the intake air amount may be used instead of the intake pressure sensor 48.

前記内燃機関1は、図2に示すように、排出ガスを浄化する触媒コンバータ22と、この触媒コンバータ22の上流側に配置されて排出ガス中の空燃比を検出するためのフロント空燃比センサ52と、触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを備えた排出ガス浄化システム64を設けている。排出ガス浄化システム64は、前記電子制御部44によりフロント空燃比センサ52とリヤ空燃比センサ53との検出結果から燃料供給量を制御し、触媒コンバータ22に内蔵する触媒25による排出ガス中の有害成分の浄化効率を高めている。
内燃機関1は、前記排出ガス浄化システム64の劣化を判定する劣化判定装置65を設けている。劣化判定装置65は、図3に示すように、排出ガス浄化システム64の排出ガスを浄化する触媒コンバータ22と、この触媒コンバータ22の下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサ53とを備え、前記電子制御部44に設けられている。劣化判定装置65は、電子制御部44に、燃料供給停止手段66と応答時間測定手段67と応答時間傾向算出手段68と補正値算出手段69と劣化判定手段70とを備えている。
前記燃料供給停止手段66は、燃料噴射弁33による内燃機関1への燃料の供給を停止する。前記応答時間測定手段67は、リヤ空燃比センサ53の応答時間を測定する。前記応答時間傾向算出手段68は、応答時間測定手段67が検出した複数の応答時間から応答時間傾向をみる。前記補正値算出手段69は、リヤ空燃比センサ53の応答時間傾向である傾き量からリヤ空燃比センサ53の応答時間を補正するための補正値を求める。
前記劣化判定手段70は、内燃機関1への燃料供給が停止されてからリヤ空然比センサ53が所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間からリヤ空燃比センサ53の応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に触媒コンバータ22の触媒25が劣化していると判定する。また、劣化判定手段70は、補正値により補正したリヤ空燃比センサ53の応答時間が所定応答時間よりも大きい場合にリヤ空燃比センサ53が劣化していると判定する。
As shown in FIG. 2, the internal combustion engine 1 includes a catalytic converter 22 that purifies exhaust gas, and a front air-fuel ratio sensor 52 that is disposed upstream of the catalytic converter 22 and detects an air-fuel ratio in the exhaust gas. And a rear air-fuel ratio sensor 53 that is disposed downstream of the catalytic converter 22 and detects an air-fuel ratio in the exhaust gas is provided. The exhaust gas purification system 64 controls the fuel supply amount from the detection results of the front air-fuel ratio sensor 52 and the rear air-fuel ratio sensor 53 by the electronic control unit 44, and is harmful in the exhaust gas by the catalyst 25 built in the catalytic converter 22. Increases purification efficiency of ingredients.
The internal combustion engine 1 is provided with a deterioration determination device 65 that determines deterioration of the exhaust gas purification system 64. As shown in FIG. 3, the deterioration determination device 65 is disposed on the downstream side of the catalytic converter 22 that purifies the exhaust gas of the exhaust gas purification system 64 and detects the air-fuel ratio in the exhaust gas. The rear air-fuel ratio sensor 53 is provided in the electronic control unit 44. The deterioration determination device 65 includes a fuel supply stop unit 66, a response time measurement unit 67, a response time tendency calculation unit 68, a correction value calculation unit 69, and a deterioration determination unit 70 in the electronic control unit 44.
The fuel supply stop means 66 stops the supply of fuel to the internal combustion engine 1 by the fuel injection valve 33. The response time measuring unit 67 measures the response time of the rear air-fuel ratio sensor 53. The response time tendency calculating means 68 looks at the response time tendency from the plurality of response times detected by the response time measuring means 67. The correction value calculating means 69 obtains a correction value for correcting the response time of the rear air-fuel ratio sensor 53 from the amount of inclination that is the response time tendency of the rear air-fuel ratio sensor 53.
The deterioration determining means 70 obtains the response time from when the fuel supply to the internal combustion engine 1 is stopped until the rear air-ratio sensor 53 outputs a predetermined output signal under different intake air amount conditions, Is obtained from the response time of the rear air-fuel ratio sensor 53, and it is determined that the catalyst 25 of the catalytic converter 22 is deteriorated when the obtained inclination amount is smaller than the predetermined inclination amount. Further, the deterioration determination means 70 determines that the rear air-fuel ratio sensor 53 has deteriorated when the response time of the rear air-fuel ratio sensor 53 corrected by the correction value is longer than a predetermined response time.

次に、劣化判定装置65の作用を説明する。
劣化判定装置65は、図1に示すように、劣化判定のプログラムがスタートすると(100)、燃料供給状態を検出し(101)、燃料供給停止であるかを判断する(102
)。この判断(102)がNOの場合は、この判断を繰り返す。この判断(102)がYESの場合は、触媒コンバータ22の劣化の有無を判定するために、燃料供給停止中の異なる複数の平均吸入空気量におけるリヤ空然比センサ53の応答時間trを測定し(103)、それらの応答時間trから平均吸入空気量に対するリヤ空燃比センサ53の応答時間傾向(傾き量g)を求める(104)。
リヤ空然比センサ53の応答時間trは、図10に示すように、燃料供給停止時Aからリヤ空燃比センサ信号53の電圧が規定値の判定電圧に低下した時Bまでの時間を計測することによって得る。また、応答時間trは、図9のマップに示すように、平均吸入空気量に対する応答時間trの測定データの採取数が多いほど、応答時間傾向はより正確なものを求めることができる。なお、応答時間trの測定データの採取数は状況に応じて適宜変更可能としても良い。
前記(105)で求めた傾き量gが、所定傾き量GDよりも小さいか(傾き量g<所定傾き量GD)を判断する(105)。触媒コンバータ22は、劣化が進むと酸素吸着能力が落ちるので、劣化が進んだ触媒コンバータ22である場合のリヤ空然比センサ53の応答時間は吸入空気量の大小によらず同程度の応答時間を示す(図5参照)。つまり、傾き量gが、触媒コンバータ22が劣化していると判断できる所定傾き量GDよりも小さい場合(105:YES)には、触媒コンバータ22が劣化状態に有ると判断し(106)、補正値COVの算出(108)に移行する。一方、傾き量gが、所定傾き量GDよりも大きい場合(105:NO)には、触媒コンバータ22が正常であると判断し(107)、補正値COVの算出(108)に移行する。
複数の異なる平均吸入空気量に対するリヤ空燃比センサ53の応答時間を測定する際には、同様の条件で測定するのが望ましい。この条件とは、例えば内燃機関1の冷却水温やエンジン回転速度、リヤ空然比センサ53の状態(電圧やリヤ空燃比センサ53の活性状況)等である。これより、劣化判定装置65は、内燃機関1の複数の異なる運転状況下においてリヤ空燃比センサ53の応答時間傾向をみることで、触媒コンバータ22の劣化判定を、より精度高く行なうことができる。
Next, the operation of the deterioration determination device 65 will be described.
As shown in FIG. 1, when the deterioration determination program starts (100), the deterioration determination device 65 detects the fuel supply state (101) and determines whether the fuel supply is stopped (102).
). If this determination (102) is NO, this determination is repeated. When this determination (102) is YES, in order to determine whether the catalytic converter 22 has deteriorated, the response time tr of the rear air-ratio ratio sensor 53 at a plurality of different average intake air amounts during the stop of fuel supply is measured. (103) The response time tendency (inclination amount g) of the rear air-fuel ratio sensor 53 with respect to the average intake air amount is obtained from these response times tr (104).
As shown in FIG. 10, the response time tr of the rear air-ratio ratio sensor 53 measures the time from the fuel supply stop time A to the time B when the voltage of the rear air-fuel ratio sensor signal 53 drops to a predetermined determination voltage. Get by. Further, as shown in the map of FIG. 9, the response time tr can be obtained more accurately as the number of collected measurement data of the response time tr with respect to the average intake air amount increases. Note that the number of collected measurement data of the response time tr may be changed as appropriate according to the situation.
It is determined whether the inclination amount g obtained in (105) is smaller than the predetermined inclination amount GD (inclination amount g <predetermined inclination amount GD) (105). As the catalytic converter 22 deteriorates, the oxygen adsorption capacity decreases. Therefore, the response time of the rear air ratio sensor 53 in the case of the catalytic converter 22 having deteriorated is the same as the response time regardless of the amount of intake air. (See FIG. 5). That is, when the inclination amount g is smaller than the predetermined inclination amount GD that can be determined that the catalytic converter 22 is deteriorated (105: YES), it is determined that the catalytic converter 22 is in a deteriorated state (106), and correction is performed. The process proceeds to calculation of value COV (108). On the other hand, when the amount of inclination g is larger than the predetermined amount of inclination GD (105: NO), it is determined that the catalytic converter 22 is normal (107), and the process proceeds to calculation of the correction value COV (108).
When measuring the response time of the rear air-fuel ratio sensor 53 for a plurality of different average intake air amounts, it is desirable to measure under the same conditions. This condition includes, for example, the cooling water temperature of the internal combustion engine 1, the engine speed, the state of the rear air-ratio ratio sensor 53 (the voltage and the active state of the rear air-fuel ratio sensor 53), and the like. Thus, the deterioration determination device 65 can perform the deterioration determination of the catalytic converter 22 with higher accuracy by looking at the response time tendency of the rear air-fuel ratio sensor 53 under a plurality of different operating conditions of the internal combustion engine 1.

前記触媒コンバータ22が劣化状態の判定(106)・(107)を行った後に、前記(104)で算出した傾き量gから、図6に示すように、リヤ空燃比センサ53の応答時間を補正するための補正値COVを求める(108)。求めた補正値COVにより計測したリヤ空燃比センサ53の応答時間trを補正して補正応答時間Ctrとし(図7参照)、補正応答時間Ctrが所定応答時間Dtrよりも大きいか(補正応答時間Ctr>所定応答時間Dtr)を判断する(109)。
補正応答時間Ctrが所定応答時間Dtrよりも大きい場合(109:YES)には、リヤ空燃比センサ53が劣化状態に有ると判断し(110)、プログラムをエンドにする(112)。一方、補正応答時間Ctrが所定応答時間Dtrよりも小さい場合(109:NO)には、リヤ空燃比センサ53が正常であると判断し(111)、プログラムをエンドにする(112)。
応答時間trの補正値COVは、傾き量gが小さいほど小さく設定する(図6参照)。この補正値COVは、触媒コンバータ22の酸素吸着能力を反映したものである。前述したように、触媒コンバータ22は劣化が進むほど酸素吸着能力が落ちるので、傾き量gが小さいほど補正値COVを小さくする必要がある。これより触媒コンバータ22の劣化度合いによらないリヤ空燃比センサ53のみの補正応答時間Ctrを求めることができ、触媒コンバータ22の劣化度合いに影響を受けずに、リヤ空燃比センサ53の劣化を判定できる。
これより、劣化判定装置65は、リヤ空然比センサ53の応答時間傾向から触媒コンバータ22の劣化状況を排除したリヤ空燃比センサ53の応答時間を求めることができ、リヤ空燃比センサ53の劣化判定を触媒コンバータ22の劣化状況に影響を受けることなく行うことができる。また、劣化判定装置65は、リヤ空燃比センサ53の応答時間trを傾き量gから求めた補正値COVで補正することで、リヤ空燃比センサ53の応答時間trによる劣化判定の領域を拡張することができ、リヤ空燃比センサ53の劣化や異常の検知を行うことができない領域をなくすことができる(図8参照)。
なお、リヤ空燃比センサ53が劣化していると判断された場合には、触媒コンバータ22の劣化診断を行うことを禁止する構成としても良い。この場合は、(104)の処理後に(108)に進む構成とする。その劣化したリヤ空燃比センサ53の検出結果を用いて触媒コンバータ22の誤った劣化診断を行うことを防止する。
After the catalytic converter 22 determines the deterioration state (106) and (107), the response time of the rear air-fuel ratio sensor 53 is corrected from the inclination amount g calculated in (104) as shown in FIG. A correction value COV for obtaining the value is obtained (108). The response time tr of the rear air-fuel ratio sensor 53 measured by the obtained correction value COV is corrected to be a correction response time Ctr (see FIG. 7). Whether the correction response time Ctr is longer than the predetermined response time Dtr (correction response time Ctr) > Predetermined response time Dtr) is determined (109).
When the corrected response time Ctr is longer than the predetermined response time Dtr (109: YES), it is determined that the rear air-fuel ratio sensor 53 is in a deteriorated state (110), and the program is ended (112). On the other hand, if the corrected response time Ctr is shorter than the predetermined response time Dtr (109: NO), it is determined that the rear air-fuel ratio sensor 53 is normal (111), and the program is ended (112).
The correction value COV of the response time tr is set smaller as the inclination amount g is smaller (see FIG. 6). This correction value COV reflects the oxygen adsorption capability of the catalytic converter 22. As described above, since the oxygen adsorption capacity of the catalytic converter 22 decreases as the deterioration progresses, it is necessary to decrease the correction value COV as the inclination amount g decreases. Thus, the correction response time Ctr of only the rear air-fuel ratio sensor 53 independent of the degree of deterioration of the catalytic converter 22 can be obtained, and the deterioration of the rear air-fuel ratio sensor 53 is determined without being affected by the degree of deterioration of the catalytic converter 22. it can.
Accordingly, the deterioration determination device 65 can obtain the response time of the rear air-fuel ratio sensor 53 excluding the deterioration state of the catalytic converter 22 from the response time tendency of the rear air-fuel ratio sensor 53, and the deterioration of the rear air-fuel ratio sensor 53 is determined. The determination can be made without being affected by the deterioration state of the catalytic converter 22. Further, the deterioration determination device 65 corrects the response time tr of the rear air-fuel ratio sensor 53 with the correction value COV obtained from the inclination amount g, thereby expanding the deterioration determination region based on the response time tr of the rear air-fuel ratio sensor 53. Thus, it is possible to eliminate a region where deterioration or abnormality of the rear air-fuel ratio sensor 53 cannot be detected (see FIG. 8).
In addition, when it is determined that the rear air-fuel ratio sensor 53 is deteriorated, it may be configured to prohibit the deterioration diagnosis of the catalytic converter 22 from being performed. In this case, the process proceeds to (108) after the process of (104). Using the detection result of the deteriorated rear air-fuel ratio sensor 53, an erroneous deterioration diagnosis of the catalytic converter 22 is prevented.

このように、劣化判定装置65は、触媒コンバータ22の劣化度合いに応じて触媒コンバータ22に内蔵する触媒25の酸素吸蔵能力が変化する特性を利用し、触媒コンバータ22及びリヤ空燃比センサ53の劣化を判定している。正常な触媒コンバータ22では、酸素吸蔵能力が大きく、リヤ空然比センサ53の信号の電圧が燃料供給停止時から規定値の判定電圧に低下するまでの応答時間に遅れが生じる(図4参照)。
これに対して、劣化した触媒コンバータ22では、酸素吸蔵能力が低下するため、応答時間の遅れは生じ難い。この触媒コンバータ22の劣化度合いによる応答時間への影響は、燃料供給停止中の平均吸入空気量が小さい程大きくなる。つまり、燃料供給停止中の平均吸入空気量ベースで応答時間の傾向を見ると、その傾きが異なることとなる。図5に示すように、正常な触媒コンバータ22の応答時間の傾き量は、劣化した触媒コンバータ22の応答時間の傾き量よりも大きい。
劣化判定装置65は、この応答時間傾向の差を利用し、触媒コンバータ22の酸素吸蔵能力を推定して傾き量から触媒コンバータ22の劣化度合いを判定し、また、傾き量から補正値を求め(図6参照)、リヤ空燃比センサ53の応答時間を補正することにより(図7参照)、リヤ空燃比センサ53の劣化判定を正確に実施することが可能となり、リヤ空燃比センサ53の劣化判定検知が不可の範囲を無くすことが可能となる。
これにより、劣化判定装置65は、触媒コンバータ22の劣化判定を精度よく求めることができとともに、触媒コンバータ22の劣化度合いの影響を受けることなくリヤ空燃比センサ53の応答劣化診断を正確に実行できる(図8参照)。なお、リヤ空燃比センサ53のみが劣化した場合、劣化なしのリヤ空燃比センサ53の応答時間と比較して、劣化したリヤ空燃比センサ53の応答時間の遅れは増加するが、燃料供給停止中の平均吸入空気量ベースの応答時間の傾きに変化は無い(図2参照)。
As described above, the deterioration determination device 65 uses the characteristic that the oxygen storage capacity of the catalyst 25 built in the catalytic converter 22 changes in accordance with the degree of deterioration of the catalytic converter 22, and deteriorates the catalytic converter 22 and the rear air-fuel ratio sensor 53. Is judged. The normal catalytic converter 22 has a large oxygen storage capacity, and there is a delay in the response time until the voltage of the signal of the rear air-ratio ratio sensor 53 drops from the fuel supply stop time to the specified determination voltage (see FIG. 4). .
On the other hand, in the deteriorated catalytic converter 22, the oxygen storage capacity is reduced, so that a response time is hardly delayed. The influence on the response time due to the degree of deterioration of the catalytic converter 22 increases as the average intake air amount during the stop of fuel supply decreases. That is, when the tendency of the response time is seen on the basis of the average intake air amount when the fuel supply is stopped, the inclination is different. As shown in FIG. 5, the inclination amount of the response time of the normal catalytic converter 22 is larger than the inclination amount of the response time of the deteriorated catalytic converter 22.
The deterioration determination device 65 uses this difference in response time tendency to estimate the oxygen storage capacity of the catalytic converter 22, determine the deterioration degree of the catalytic converter 22 from the amount of inclination, and obtain a correction value from the amount of inclination ( By correcting the response time of the rear air-fuel ratio sensor 53 (see FIG. 7), it becomes possible to accurately determine the deterioration of the rear air-fuel ratio sensor 53, and to determine the deterioration of the rear air-fuel ratio sensor 53. It is possible to eliminate the range where detection is impossible.
As a result, the deterioration determination device 65 can accurately determine the deterioration determination of the catalytic converter 22 and can accurately execute the response deterioration diagnosis of the rear air-fuel ratio sensor 53 without being affected by the deterioration degree of the catalytic converter 22. (See FIG. 8). When only the rear air-fuel ratio sensor 53 is deteriorated, the response time delay of the deteriorated rear air-fuel ratio sensor 53 is increased as compared with the response time of the rear air-fuel ratio sensor 53 without deterioration, but the fuel supply is stopped. There is no change in the slope of the response time based on the average intake air amount (see FIG. 2).

なお、応答時間の補正値の算出は、上述実施例においては異なる吸入空気量条件下で求めた応答時間から求めたが、下記内容に変更することで同様の効果が得られる。
1.設定したエンジン回転速度のマップに応じてリヤ空燃比センサ53の応答時間を記憶し、エンジン回転速度に応じて読み出した応答時間から補正値を算出する。エンジン回転速度が小さいほど吸入空気量が少ないので、その場合の応答時間は大となる。
2.設定した吸入空気量のマップに応じてリヤ空燃比センサ53の応答時間を記憶し、吸入空気量に応じて読み出した応答時間の傾き量から補正値を算出する。吸入空気量は、燃料供給停止となってから所定時間経過後の瞬間の吸入空気量とする。ある瞬間、もしくは所定期間中の吸入空気量を測定し、リヤ酸素センサの応答時間傾向を求める。
Although the correction value of the response time is calculated from the response time obtained under different intake air amount conditions in the above-described embodiment, the same effect can be obtained by changing to the following contents.
1. The response time of the rear air-fuel ratio sensor 53 is stored according to the set engine speed map, and a correction value is calculated from the read response time according to the engine speed. The smaller the engine speed, the smaller the intake air amount, and the response time in that case becomes longer.
2. The response time of the rear air-fuel ratio sensor 53 is stored according to the set intake air amount map, and a correction value is calculated from the inclination amount of the response time read out according to the intake air amount. The intake air amount is the intake air amount at the moment when a predetermined time has elapsed since the fuel supply was stopped. The intake air amount at a certain moment or during a predetermined period is measured, and the response time tendency of the rear oxygen sensor is obtained.

この発明は、触媒コンバータおよびリヤ空燃比センサの劣化判定をより精度良く行うことができるものであり、排出ガス浄化システムを備えた内燃機関を搭載する車両、船舶等に応用することができる。   The present invention can perform deterioration determination of a catalytic converter and a rear air-fuel ratio sensor with higher accuracy, and can be applied to vehicles, ships, and the like equipped with an internal combustion engine equipped with an exhaust gas purification system.

1 内燃機関
20 排気マニホルド
21 上流側排気管
22 触媒コンバータ
23 下流側排気管
24 排気通路
44 電子制御部
52 フロント空燃比センサ
53 リヤ空燃比センサ
64 排出ガス浄化システム
65 劣化判定装置
66 燃料供給停止手段
67 応答時間測定手段
68 応答時間傾向算出手段
69 補正値算出手段
70 劣化判定手段

DESCRIPTION OF SYMBOLS 1 Internal combustion engine 20 Exhaust manifold 21 Upstream exhaust pipe 22 Catalytic converter 23 Downstream exhaust pipe 24 Exhaust passage 44 Electronic control part 52 Front air fuel ratio sensor 53 Rear air fuel ratio sensor 64 Exhaust gas purification system 65 Degradation judgment device 66 Fuel supply stop means 67 Response time measuring means 68 Response time tendency calculating means 69 Correction value calculating means 70 Degradation determining means

Claims (2)

排出ガス浄化システムの劣化を判定する劣化判定装置において、前記排出ガス浄化システムは、内燃機関の排出ガスを浄化する触媒コンバータと、この触媒コンバータの下流側に配置されて排出ガス中の空燃比を検出するためのリヤ空燃比センサとを備え、前記内燃機関への燃料の供給を停止する燃料供給停止手段と、前記リヤ空燃比センサの応答時間を測定する応答時間測定手段と、複数の応答時間から応答時間傾向をみる応答時間傾向算出手段とを備え、燃料供給が停止されてから前記リヤ空然比センサが所定の出力信号を出力するまでの応答時間を異なる吸入空気量条件下で求め、求めた複数の応答時間から前記リヤ空燃比センサの応答時間傾向である傾き量を求め、求めた傾き量が所定傾き量よりも小さい場合に前記触媒コンバータが劣化していると判定する劣化判定手段を備えることを特徴とする劣化判定装置。   In the deterioration determination device for determining the deterioration of the exhaust gas purification system, the exhaust gas purification system includes a catalytic converter that purifies the exhaust gas of the internal combustion engine, and an air-fuel ratio in the exhaust gas that is disposed downstream of the catalytic converter. A fuel supply stop means for stopping the fuel supply to the internal combustion engine, a response time measurement means for measuring a response time of the rear air fuel ratio sensor, and a plurality of response times. Response time trend calculating means for determining the response time trend from the time when the fuel supply is stopped and the rear air-ratio sensor outputs a predetermined output signal under different intake air amount conditions, An inclination amount which is a response time tendency of the rear air-fuel ratio sensor is obtained from the obtained plural response times, and the catalytic converter is obtained when the obtained inclination amount is smaller than a predetermined inclination amount. Deterioration determination device, characterized in that it comprises determining degradation determination means to be deteriorated. 前記傾き量から前記リヤ空燃比センサの応答時間を補正する補正値を求める補正値算出手段を備え、前記劣化判定手段は、前記補正値により補正した前記リヤ空燃比センサの応答時間が所定応答時間よりも大きい場合に前記リヤ空燃比センサが劣化していると判定することを特徴とする請求項1に記載の劣化判定装置。




Correction value calculating means for obtaining a correction value for correcting the response time of the rear air-fuel ratio sensor from the amount of inclination; and the deterioration determining means, the response time of the rear air-fuel ratio sensor corrected by the correction value is a predetermined response time. 2. The deterioration determination device according to claim 1, wherein the deterioration determination device determines that the rear air-fuel ratio sensor has deteriorated when the value is larger than the value.




JP2011078334A 2011-03-31 2011-03-31 Degradation determination device Withdrawn JP2012211561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078334A JP2012211561A (en) 2011-03-31 2011-03-31 Degradation determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078334A JP2012211561A (en) 2011-03-31 2011-03-31 Degradation determination device

Publications (1)

Publication Number Publication Date
JP2012211561A true JP2012211561A (en) 2012-11-01

Family

ID=47265713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078334A Withdrawn JP2012211561A (en) 2011-03-31 2011-03-31 Degradation determination device

Country Status (1)

Country Link
JP (1) JP2012211561A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056731A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Abnormality diagnostic device for air-fuel ratio sensor
JP2016056753A (en) * 2014-09-10 2016-04-21 日立オートモティブシステムズ株式会社 Air-fuel ratio sensor diagnostic device for internal combustion engine
JP2022016890A (en) * 2020-07-13 2022-01-25 日立Astemo株式会社 Control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056731A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Abnormality diagnostic device for air-fuel ratio sensor
US9624808B2 (en) 2014-09-09 2017-04-18 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system of air-fuel ratio sensor
JP2016056753A (en) * 2014-09-10 2016-04-21 日立オートモティブシステムズ株式会社 Air-fuel ratio sensor diagnostic device for internal combustion engine
JP2022016890A (en) * 2020-07-13 2022-01-25 日立Astemo株式会社 Control device for internal combustion engine
JP7299862B2 (en) 2020-07-13 2023-06-28 日立Astemo株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US10323562B2 (en) Gasoline particulate filter diagnostics
US10408114B2 (en) Gasoline particulate filter diagnostics
US11073063B2 (en) Gasoline particulate filter diagnostics
RU2634911C2 (en) System of internal combustion engine diagnostics
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JP6358101B2 (en) Abnormality diagnosis device
US7117729B2 (en) Diagnosis apparatus for fuel vapor purge system and method thereof
JP4892878B2 (en) Failure diagnosis device for fuel level gauge
WO2012146620A1 (en) Engine air to fuel ratio cylinder imbalance diagnostic
JP4403156B2 (en) Oxygen sensor diagnostic device for internal combustion engine
JP2016056696A (en) Engine control device
JP2012211561A (en) Degradation determination device
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2010275912A (en) Abnormality diagnostic device for variable valve timing control system
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
US9429089B2 (en) Control device of engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
SE1051374A1 (en) Method and apparatus for determining the proportion of ethanol in the fuel of a motor vehicle
JP6166646B2 (en) Control device for internal combustion engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
US20170370317A1 (en) Abnormality diagnosis device for pm sensor
JP2015004319A (en) Exhaust emission control system of internal combustion engine
JP2006242067A (en) Abnormality diagnosing device for intake system sensor
JP2005282475A (en) Abnormality diagnosis device for air fuel ratio sensor
JP2017137835A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603