JP2017137835A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2017137835A
JP2017137835A JP2016020185A JP2016020185A JP2017137835A JP 2017137835 A JP2017137835 A JP 2017137835A JP 2016020185 A JP2016020185 A JP 2016020185A JP 2016020185 A JP2016020185 A JP 2016020185A JP 2017137835 A JP2017137835 A JP 2017137835A
Authority
JP
Japan
Prior art keywords
filter
differential pressure
atmospheric pressure
pressure
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020185A
Other languages
Japanese (ja)
Inventor
郁夫 保田
Ikuo Yasuda
郁夫 保田
紀裕 鈴木
Norihiro Suzuki
紀裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016020185A priority Critical patent/JP2017137835A/en
Publication of JP2017137835A publication Critical patent/JP2017137835A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To determine the abnormality of a filter utilizing a before-and-behind-filter differential pressure while reducing erroneous determination resulting from an atmospheric pressure when acquiring the before-and-behind-filter differential pressure.SOLUTION: An exhaust emission control device for an internal combustion engine includes a filter provided in an exhaust passage of the internal combustion engine for trapping particulate matters from exhaust gas, a differential pressure detection part for detecting a before-and-behind-filter differential pressure as a difference in pressure between the exhaust upstream side and the exhaust downstream side of the filter, an atmospheric pressure detection part for detecting an atmospheric pressure around the internal combustion engine, a correction part for correcting the before-and-behind-filter differential pressure into a corrected before-and-behind-filter differential pressure as a before-and-behind-filter differential pressure under a predetermined atmospheric pressure, on the basis of the atmospheric pressure detected by the atmospheric pressure detection part at a time when detecting the before-and-behind-filter differential pressure, an average calculation part for calculating an average before-and-behind-filter differential pressure as the average of a plurality of corrected before-and-behind-filter differential pressures, and a determination part for determining whether there is the abnormality of the filter or not on the basis of whether the average before-and-behind-filter differential pressure is at a threshold value or higher, or not.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排気通路には、排気を浄化するための排気浄化装置が設けられている。このような排気浄化装置では、排気中の粒子状物質(PM:Particulate Matter、以下、PMと略す)を捕集するフィルタを排気通路に設け、当該フィルタにより外部に排出されるPMの量を低減している。   An exhaust gas purification device for purifying exhaust gas is provided in the exhaust passage of the internal combustion engine. In such an exhaust purification device, a filter for collecting particulate matter (PM) in the exhaust is provided in the exhaust passage, and the amount of PM discharged to the outside by the filter is reduced. doing.

フィルタにクラック発生等の故障が存在する場合、フィルタよりも上流側の排気圧力、すなわち背圧が低下し、フィルタの上流側の圧力とフィルタの下流側の圧力との差圧(以下、フィルタ前後差圧と呼ぶ)が低下する。当該現象を利用して、フィルタの異常を判断する方法が従来から知られている。例えば、特許文献1では、内燃機関の運転状態に基づいてフィルタに堆積しているPMの堆積量を推定し、PMの堆積量推定値が所定値以上であるときのフィルタ前後差圧が所定の閾値以下となった場合に、フィルタに異常が生じていると判断している。   When there is a failure such as cracking in the filter, the exhaust pressure upstream of the filter, that is, the back pressure, decreases, and the differential pressure between the upstream pressure of the filter and the downstream pressure of the filter (hereinafter referred to as the front and rear of the filter). Called differential pressure). A method for determining an abnormality of a filter using this phenomenon has been conventionally known. For example, in Patent Document 1, the amount of PM accumulated on the filter is estimated based on the operating state of the internal combustion engine, and the differential pressure before and after the filter when the estimated amount of PM accumulation is a predetermined value or more is predetermined. When the value is below the threshold, it is determined that an abnormality has occurred in the filter.

特開2009−103043号公報JP 2009-103043 A

フィルタ前後差圧を用いてフィルタの異常を判断する場合、走行ばらつきなどを加味して、複数(例えば、25)の時点で取得したフィルタ前後差圧を平均した平均フィルタ前後差圧を算出し、平均フィルタ前後差圧が閾値以下であるか否かに基づいてフィルタの異常を判断することが一般的である。   When judging the abnormality of the filter using the differential pressure before and after the filter, the average differential pressure before and after the filter is calculated by averaging the differential pressure before and after the filter acquired at a plurality of times (for example, 25), taking into account the running variation and the like. It is common to determine the abnormality of the filter based on whether or not the average differential pressure before and after the filter is below a threshold value.

ところで、内燃機関の運転状態が変わらない場合、フィルタ前後差圧は、空気密度の影響を受け、空気密度が小さくなるほど、低下する。空気密度は、標高が高くなり大気圧が低下するほど小さくなるため、内燃機関の運転状態が変わらない場合、標高が高くなるほど、フィルタ前後差圧は低下する。したがって、高地で取得したフィルタ前後差圧のデータが多いほど、平均フィルタ前後差圧は小さくなる。このような平均フィルタ前後差圧を用いてフィルタの異常を判断した場合、フィルタが正常であるにもかかわらずフィルタに異常が生じていると誤判断されるおそれがある。   By the way, when the operating state of the internal combustion engine does not change, the differential pressure before and after the filter is affected by the air density and decreases as the air density decreases. Since the air density decreases as the altitude increases and the atmospheric pressure decreases, the differential pressure across the filter decreases as the altitude increases when the operating state of the internal combustion engine does not change. Therefore, as the data of the differential pressure across the filter acquired at high altitude increases, the average differential pressure across the filter decreases. When a filter abnormality is determined using such an average differential pressure before and after the filter, it may be erroneously determined that the filter is abnormal even though the filter is normal.

そこで、本明細書開示の内燃機関の排気浄化装置は、フィルタ前後差圧を利用したフィルタの異常判定において、フィルタ前後差圧を取得した時点での大気圧に起因する誤判断を低減することを課題とする。   In view of this, the exhaust gas purification apparatus for an internal combustion engine disclosed in the present specification can reduce misjudgment caused by atmospheric pressure at the time of obtaining the filter front-rear differential pressure in the filter abnormality determination using the filter front-rear differential pressure. Let it be an issue.

かかる課題を解決するために、本明細書に開示された内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、前記フィルタの排気上流側の圧力と、前記フィルタの排気下流側の圧力との差であるフィルタ前後差圧を検出する差圧検出部と、前記内燃機関の周囲の大気圧を検出する大気圧検出部と、前記フィルタ前後差圧が検出された時点での前記大気圧検出部により検出された大気圧に基づき、検出された前記フィルタ前後差圧を、所定の大気圧下におけるフィルタ前後差圧である補正フィルタ前後差圧に補正する補正部と、複数の前記補正フィルタ前後差圧の平均である平均フィルタ前後差圧を算出する平均算出部と、前記平均フィルタ前後差圧が閾値以上であるか否かに基づいて、前記フィルタに異常があるか否かを判定する判定部と、を備える。   In order to solve such a problem, an exhaust emission control device for an internal combustion engine disclosed in the present specification is provided in an exhaust passage of the internal combustion engine, and includes a filter that collects particulate matter in the exhaust, and an exhaust upstream of the filter. A differential pressure detection unit that detects a differential pressure across the filter that is a difference between a pressure on the exhaust side and a pressure on the exhaust downstream side of the filter, an atmospheric pressure detection unit that detects an atmospheric pressure around the internal combustion engine, and the filter Based on the atmospheric pressure detected by the atmospheric pressure detection unit at the time when the pressure difference between the front and the back is detected, the detected pressure difference between the front and rear of the filter is a difference between the front and rear of the correction filter that is the pressure difference before and after the filter under a predetermined atmospheric pressure. A correction unit that corrects pressure, an average calculation unit that calculates an average filter front-rear differential pressure that is an average of the plurality of correction filter front-rear differential pressures, and whether the average filter front-rear differential pressure is greater than or equal to a threshold value The above And a determination unit for determining whether or not there is an abnormality in the filter.

本明細書開示の内燃機関の排気浄化装置によれば、フィルタ前後差圧を利用したフィルタの異常判定において、フィルタ前後差圧を取得した時点での大気圧に起因する誤判断を低減することができる。   According to the exhaust gas purification apparatus for an internal combustion engine disclosed in the present specification, it is possible to reduce misjudgment due to atmospheric pressure at the time when the filter front-rear differential pressure is acquired in the filter abnormality determination using the filter front-rear differential pressure. it can.

図1は、一実施形態に係る内燃機関の排気浄化装置が適用されたエンジンシステムの構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of an engine system to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied. 図2(a)は、車両走行時の標高と走行距離との関係の一例を示す図であり、図2(b)は、図2(a)に示す環境において取得されるフィルタ前後差圧の一例を示す図である。FIG. 2A is a diagram showing an example of the relationship between the altitude and the travel distance when the vehicle travels, and FIG. 2B shows the differential pressure before and after the filter acquired in the environment shown in FIG. It is a figure which shows an example. 図3は、フィルタ前後差圧の取得・補正処理の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the acquisition / correction processing of the differential pressure across the filter. 図4は、大気圧と補正係数との関係をプロットしたマップの一例である。FIG. 4 is an example of a map in which the relationship between the atmospheric pressure and the correction coefficient is plotted. 図5は、フィルタの異常判定処理の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of a filter abnormality determination process. 図6(a)は、排ガス流量に対するフィルタ前後差圧を示す図であり、図6(b)は、排ガス流量に対する補正フィルタ前後差圧を示す図である。6A is a diagram showing the differential pressure before and after the filter with respect to the exhaust gas flow rate, and FIG. 6B is a diagram showing the differential pressure before and after the correction filter with respect to the exhaust gas flow rate.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, in the drawings, the dimensions, ratios, and the like of each part may not be shown so as to completely match the actual ones. In some cases, details are omitted in some drawings.

まず、図1を参照し、一実施形態に係る内燃機関の排気浄化装置が適用されたエンジンシステムについて説明する。図1は、一実施形態に係る内燃機関の排気浄化装置が適用されたエンジンシステム100の構成を示す概略図である。なお、本明細書に記載の「上流」及び「下流」は、排気系での排気の流れ方向を基準とするものである。   First, an engine system to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration of an engine system 100 to which an exhaust gas purification apparatus for an internal combustion engine according to an embodiment is applied. Note that “upstream” and “downstream” described in this specification are based on the flow direction of the exhaust gas in the exhaust system.

図1に示すように、エンジンシステム100は、吸気通路10と、内燃機関20と、排気通路30と、補正部、平均算出部、及び判定部としてのECU(Electronic Control Unit)50と、を備える。   As shown in FIG. 1, the engine system 100 includes an intake passage 10, an internal combustion engine 20, an exhaust passage 30, a correction unit, an average calculation unit, and an ECU (Electronic Control Unit) 50 as a determination unit. .

内燃機関20は、例えば、ディーゼルエンジンであり、複数の気筒#N(N=1〜4)が設けられるとともに、各気筒#Nの燃焼室21に対し高圧の燃料をそれぞれ噴射供給するための複数の燃料噴射弁22が取り付けられている。これら気筒#Nには、上記各燃焼室21に外気を導入するための吸気ポート11と、各燃焼室21にて発生した燃焼ガスを排出するための排気ポート31とがそれぞれ接続されている。   The internal combustion engine 20 is, for example, a diesel engine, and includes a plurality of cylinders #N (N = 1 to 4), and a plurality of cylinders for injecting and supplying high-pressure fuel to the combustion chambers 21 of the respective cylinders #N. The fuel injection valve 22 is attached. These cylinders #N are connected to an intake port 11 for introducing outside air into each combustion chamber 21 and an exhaust port 31 for discharging combustion gas generated in each combustion chamber 21.

吸気ポート11には、同吸気ポート11を開閉するための吸気バルブ12が設けられている。また、吸気ポート11には、吸気マニホールドを介して吸気通路10が接続されている。この吸気通路10には、吸気を調量するためのスロットル弁14が設けられている。このスロットル弁14はモータ15によって開閉駆動される。   The intake port 11 is provided with an intake valve 12 for opening and closing the intake port 11. An intake passage 10 is connected to the intake port 11 via an intake manifold. The intake passage 10 is provided with a throttle valve 14 for metering intake air. The throttle valve 14 is driven to open and close by a motor 15.

排気ポート31には、同排気ポート31を開閉するための排気バルブ32が設けられている。また、排気ポート31には、排気マニホールドを介して排気通路30が接続されている。   The exhaust port 31 is provided with an exhaust valve 32 for opening and closing the exhaust port 31. An exhaust passage 30 is connected to the exhaust port 31 via an exhaust manifold.

排気通路30には、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する酸化触媒41と、排気中のPMを捕集するフィルタ42とが設けられている。   The exhaust passage 30 is provided with an oxidation catalyst 41 that oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust, and a filter 42 that collects PM in the exhaust.

排気通路30の酸化触媒41の上流側には、酸化触媒41に流入する排気に燃料(還元剤)を添加することができる電磁式の燃料添加弁33が設けられている。   An electromagnetic fuel addition valve 33 that can add fuel (reducing agent) to the exhaust gas flowing into the oxidation catalyst 41 is provided on the upstream side of the oxidation catalyst 41 in the exhaust passage 30.

ECU50は、中央処理制御装置(Central Processing Unit:CPU)、各種プログラムやマップ等を予め記憶したROM(Read Only Memory)、CPUの演算結果等を一時記憶するRAM(Random Access Memory)、記憶装置、及び入出力インタフェース等を備える。ECU50は、ROMに記憶されたプログラムを実行することにより各種制御を行う。   The ECU 50 includes a central processing unit (CPU), a ROM (Read Only Memory) that stores various programs and maps in advance, a RAM (Random Access Memory) that temporarily stores CPU calculation results, a storage device, And an input / output interface. The ECU 50 performs various controls by executing programs stored in the ROM.

ECU50には、エンジンシステム100を制御するため、エアフロメータ61、差圧センサ63,66、温度センサ64,65,67、大気圧センサ68などから信号が入力される。   In order to control the engine system 100, the ECU 50 receives signals from an air flow meter 61, differential pressure sensors 63 and 66, temperature sensors 64, 65 and 67, an atmospheric pressure sensor 68, and the like.

エアフロメータ61は、吸気通路10のスロットル弁14の上流に設けられ、燃焼室21に流入する空気の質量流量(以下、吸入空気量と称する)を検出する。   The air flow meter 61 is provided upstream of the throttle valve 14 in the intake passage 10 and detects the mass flow rate of air flowing into the combustion chamber 21 (hereinafter referred to as intake air amount).

差圧センサ63は、排気通路30に設けられ、酸化触媒41の上流側圧力と酸化触媒41の下流側圧力との差である触媒差圧ΔPcを検出する。以後の説明では、差圧センサ63を、触媒差圧センサ63と呼ぶ。   The differential pressure sensor 63 is provided in the exhaust passage 30 and detects a catalyst differential pressure ΔPc that is a difference between the upstream pressure of the oxidation catalyst 41 and the downstream pressure of the oxidation catalyst 41. In the following description, the differential pressure sensor 63 is referred to as a catalyst differential pressure sensor 63.

差圧センサ66は、排気通路30に設けられ、フィルタ42の上流側圧力とフィルタ42の下流側圧力との差であるフィルタ前後差圧ΔPfを検出する。以後の説明では、差圧センサ66を、フィルタ差圧センサ66と呼ぶ。フィルタ差圧センサ66は、差圧検出部の一例である。なお、フィルタ42の前後にそれぞれ圧力センサを設けて、ECU50が、両センサの出力差を求め、これに基づいて差圧を算出するようにしてもよい。   The differential pressure sensor 66 is provided in the exhaust passage 30 and detects a filter front-rear differential pressure ΔPf that is a difference between the upstream pressure of the filter 42 and the downstream pressure of the filter 42. In the following description, the differential pressure sensor 66 is referred to as a filter differential pressure sensor 66. The filter differential pressure sensor 66 is an example of a differential pressure detection unit. In addition, a pressure sensor may be provided before and after the filter 42, and the ECU 50 may obtain an output difference between the two sensors and calculate the differential pressure based on the difference.

温度センサ64は、酸化触媒41に設けられ、触媒床温Tcを検出する。以後、温度センサ64を、触媒温度センサ64と呼ぶ。   The temperature sensor 64 is provided in the oxidation catalyst 41 and detects the catalyst bed temperature Tc. Hereinafter, the temperature sensor 64 is referred to as a catalyst temperature sensor 64.

温度センサ65は、酸化触媒41とフィルタ42との間に設けられ、フィルタ42に流入する排気ガスの温度(フィルタ流入排気温)Tinを検出する。以下、温度センサ65を、フィルタ上流側温度センサ65と呼ぶ。   The temperature sensor 65 is provided between the oxidation catalyst 41 and the filter 42 and detects the temperature of the exhaust gas flowing into the filter 42 (filter inflowing exhaust gas temperature) Tin. Hereinafter, the temperature sensor 65 is referred to as a filter upstream temperature sensor 65.

温度センサ67は、排気通路30のフィルタ42の下流側に設けられ、フィルタ42から流出する排気ガスの温度(フィルタ流出排気温)Toutを検出する。以下、温度センサ67を、フィルタ下流側温度センサ67と呼ぶ。   The temperature sensor 67 is provided on the downstream side of the filter 42 in the exhaust passage 30 and detects the temperature of exhaust gas flowing out from the filter 42 (filter outflow exhaust temperature) Tout. Hereinafter, the temperature sensor 67 is referred to as a filter downstream side temperature sensor 67.

大気圧センサ68は、内燃機関20の周囲の大気圧を検出する。大気圧センサ68は、大気圧検出部の一例である。   The atmospheric pressure sensor 68 detects the atmospheric pressure around the internal combustion engine 20. The atmospheric pressure sensor 68 is an example of an atmospheric pressure detection unit.

また、ECU50には、スロットル弁14の開度を検出するスロットル開度センサ、内燃機関20のクランク角を検出するクランク角センサ、アクセルペダルの踏み込み量を検出するアクセルセンサ、外気温を検出する外気温センサ、車速に比例した自動変速機の出力軸の回転速度を検出する車速センサ等の各種センサから、エンジンの運転状態や運転条件に関する様々な情報や信号が入力される。   The ECU 50 also includes a throttle opening sensor that detects the opening of the throttle valve 14, a crank angle sensor that detects the crank angle of the internal combustion engine 20, an accelerator sensor that detects the amount of depression of the accelerator pedal, and an external air temperature that is detected. Various information and signals relating to the operating state and operating conditions of the engine are input from various sensors such as an air temperature sensor and a vehicle speed sensor that detects the rotational speed of the output shaft of the automatic transmission proportional to the vehicle speed.

ECU50の出力側には、前述のモータ15、燃料噴射弁22、燃料添加弁33の他、点火プラグ(図示せず)等の種々のアクチュエータが接続されている。ECU50は、上述した情報や信号に基づいて、燃料噴射弁22の燃料噴射量や燃料噴射時期を制御したり、スロットル弁14の開度を制御したり、燃料添加弁33の燃料噴射量や燃料噴射時期を制御したりする。また、ECU50は、フィルタ42に異常があるか否かを判定するフィルタの異常判定処理に必要なフィルタ前後差圧の取得・補正処理、及び、フィルタの異常判定処理を実行する。   In addition to the motor 15, the fuel injection valve 22, and the fuel addition valve 33, various actuators such as a spark plug (not shown) are connected to the output side of the ECU 50. The ECU 50 controls the fuel injection amount and fuel injection timing of the fuel injection valve 22, the opening degree of the throttle valve 14, and the fuel injection amount and fuel of the fuel addition valve 33 based on the information and signals described above. Control the injection timing. Further, the ECU 50 executes a filter front-rear differential pressure acquisition / correction process and a filter abnormality determination process necessary for the filter abnormality determination process for determining whether or not the filter 42 is abnormal.

次に、フィルタが正常であるにも関わらず異常であると誤判断されてしまう状況について、図2(a)及び図2(b)を参照して説明する。図2(a)は、車両走行時の標高と走行距離との関係の一例を示す図であり、図2(b)は、図2(a)に示す環境を走行する車両において取得されるフィルタ前後差圧の一例を示す図である。   Next, a situation in which the filter is erroneously determined to be abnormal although it is normal will be described with reference to FIGS. 2 (a) and 2 (b). FIG. 2A is a diagram illustrating an example of the relationship between the altitude and the travel distance during vehicle travel, and FIG. 2B is a filter acquired in a vehicle traveling in the environment illustrated in FIG. It is a figure which shows an example of front-back differential pressure.

前述したように、フィルタ前後差圧を用いてフィルタの異常を判断する場合、走行ばらつきなどを加味して、複数(例えば、25)の時点で取得したフィルタ前後差圧を平均した平均フィルタ前後差圧が、閾値以下であるか否かに基づいてフィルタの異常を判断することが一般的である。   As described above, when determining the filter abnormality using the filter front-rear differential pressure, the average filter front-rear difference obtained by averaging the filter front-rear differential pressures obtained at a plurality of times (for example, 25) in consideration of running variation and the like. Generally, it is determined whether the filter is abnormal based on whether the pressure is equal to or lower than a threshold value.

ここで、例えば、図2(a)に示すように、区間L1(高地(大気圧が低い環境))でフィルタ前後差圧を24点取得し、区間L2では、フィルタ前後差圧のデータを取得せず、位置P(平地(高地よりも大気圧が高い環境))で25点目のフィルタ前後差圧を取得したとする。この場合、フィルタの異常判定に用いられる閾値は、25点目のフィルタ前後差圧を取得した時点での大気圧(平地での大気圧)に基づいて補正され、例えば、図2(b)に一点鎖線で示される値となる。なお、区間L2でフィルタ前後差圧を取得しないのは、下り坂で負荷が低いため、異常判定処理に適切なフィルタ前後差圧を取得できないおそれがあるからである。   Here, for example, as shown in FIG. 2A, 24 points of differential pressure before and after the filter are acquired in the section L1 (high altitude (environment where the atmospheric pressure is low)), and data of the differential pressure before and after the filter is acquired in the section L2. Suppose that the differential pressure before and after the filter at the 25th point is acquired at the position P (flat ground (environment where the atmospheric pressure is higher than the highland)). In this case, the threshold value used for the filter abnormality determination is corrected based on the atmospheric pressure (atmospheric pressure on the flat ground) at the time of obtaining the 25th filter differential pressure before and after the filter. For example, FIG. The value is indicated by a one-dot chain line. The reason why the differential pressure before and after the filter is not acquired in the section L2 is that there is a possibility that the appropriate differential pressure before and after the filter cannot be acquired for the abnormality determination process because the load is low on the downhill.

一方、25個のフィルタ前後差圧のデータを平均した平均フィルタ前後差圧は、大気圧が低い環境で取得した24個の低いフィルタ前後差圧のデータの影響を受け、図2(b)に点線で示すように、閾値よりも低い値となる。この結果、フィルタが正常であるにも関わらず異常であると誤判断されてしまうおそれがある。   On the other hand, the average differential pressure before and after the filter obtained by averaging the data of 25 differential pressures before and after the filter is affected by the 24 low differential data before and after the filter obtained in an environment where the atmospheric pressure is low. As indicated by the dotted line, the value is lower than the threshold value. As a result, the filter may be erroneously determined to be abnormal although it is normal.

そこで、本実施形態に係るエンジンシステム100において、ECU50は、取得したフィルタ前後差圧を全てを、それぞれのフィルタ前後差圧を取得した時点での大気圧に基づいて所定の大気圧下におけるフィルタ前後差圧にそれぞれ補正してフィルタの異常判定処理を行い、上述したような誤判断を低減する。   Therefore, in the engine system 100 according to the present embodiment, the ECU 50 performs all of the acquired differential pressure across the filter before and after the filter under a predetermined atmospheric pressure based on the atmospheric pressure at the time when the differential pressure across the filter is acquired. A filter abnormality determination process is performed by correcting each of the differential pressures, and erroneous determination as described above is reduced.

まず、ECU50が実行するフィルタ前後差圧の取得・補正処理について、図3を用いて説明する。図3は、ECU50が実行するフィルタ前後差圧データ取得・補正処理の一例を示すフローチャートである。   First, acquisition / correction processing of the differential pressure across the filter executed by the ECU 50 will be described with reference to FIG. FIG. 3 is a flowchart illustrating an example of the filter front-rear differential pressure data acquisition / correction process executed by the ECU 50.

図3の処理は、所定の演算周期(例えば、0.1〜0.2ms(ミリ秒))で、繰り返し実行される。   The processing in FIG. 3 is repeatedly executed at a predetermined calculation cycle (for example, 0.1 to 0.2 ms (milliseconds)).

EUC50は、まず、フィルタ前後差圧を取得することを許可する差圧取得許可フラグがONか否かを判断する(ステップS11)。差圧取得許可フラグは、例えば、以下の条件が全て満たされた場合にONとなる。
PM堆積量<WPM
T1<フィルタ流入排気温Tin<T2
T3<フィルタ流出排気温Tout<T4
V1<触媒差圧ΔPcの変動量<V2
T5<触媒床温Tc<T6
なお、WPM、T1〜T6、V1及びV2は、予め定めた閾値である。PM堆積量は、ECU50により、公知の方法を用いて算出される。例えば、ECU50は、PM堆積量を、フィルタ前後差圧ΔPfに基づいて算出してもよいし、内燃機関20の運転条件に基づいて算出してもよい。T1、T3、及びT5は、互いに異なっていてもよいし、少なくとも2つが同一であってもよい。また、T2、T4及びT6は、互いに異なっていてもよいし、少なくとも2つが同一であってもよい。
The EUC 50 first determines whether or not a differential pressure acquisition permission flag for permitting acquisition of the differential pressure across the filter is ON (step S11). For example, the differential pressure acquisition permission flag is turned on when all of the following conditions are satisfied.
PM deposition amount <W PM
T1 <filter inflow exhaust gas temperature Tin <T2
T3 <filter outflow exhaust temperature Tout <T4
V1 <Fluctuation amount of catalyst differential pressure ΔPc <V2
T5 <catalyst bed temperature Tc <T6
Note that W PM , T1 to T6, V1, and V2 are predetermined threshold values. The PM accumulation amount is calculated by the ECU 50 using a known method. For example, the ECU 50 may calculate the PM accumulation amount based on the differential pressure ΔPf before and after the filter, or may calculate it based on the operating condition of the internal combustion engine 20. T1, T3, and T5 may be different from each other, or at least two of them may be the same. T2, T4 and T6 may be different from each other, or at least two of them may be the same.

差圧取得許可フラグがONではない場合(S11/NO)、ECU50は、図3の処理を終了する。   When the differential pressure acquisition permission flag is not ON (S11 / NO), the ECU 50 ends the process of FIG.

差圧取得許可フラグがONの場合(S11/YES)、ECU50は、フィルタ42を通過する排気ガスの体積流量(排ガス流量)V[m/s]を算出する(ステップS13)。ECU50は、例えば、以下の状態方程式を用いて、排ガス流量Vを算出する。
V=(Ga+Gf+Gad)×気体定数×(Tin+273.15)/
(大気圧+フィルタ42の下流側圧力+ΔPc)
Gaは吸入空気量、Gfは燃料噴射弁22の燃料噴射量、Gadは燃料添加弁33の燃料噴射量を表す。また、Tinはフィルタ上流側温度センサ65により検出されるフィルタ流入排気温、ΔPcは触媒差圧センサ63により検出される触媒差圧である。また、フィルタ42の下流側圧力は、ECU50により、吸入空気量に基づいて推定される値である。
When the differential pressure acquisition permission flag is ON (S11 / YES), the ECU 50 calculates a volume flow rate (exhaust gas flow rate) V [m 3 / s] of exhaust gas passing through the filter 42 (step S13). For example, the ECU 50 calculates the exhaust gas flow rate V using the following equation of state.
V = (Ga + Gf + Gad) × gas constant × (Tin + 273.15) /
(Atmospheric pressure + downstream pressure of filter 42 + ΔPc)
Ga represents the intake air amount, Gf represents the fuel injection amount of the fuel injection valve 22, and Gad represents the fuel injection amount of the fuel addition valve 33. Tin is the filter inflow exhaust gas temperature detected by the filter upstream temperature sensor 65, and ΔPc is the catalyst differential pressure detected by the catalyst differential pressure sensor 63. Further, the downstream pressure of the filter 42 is a value estimated by the ECU 50 based on the intake air amount.

次に、ECU50は、フィルタ前後差圧を取得する条件が成立しているか否かを判断する(ステップS15)。ECU50は、例えば、以下の条件が全て満たされている場合に、フィルタ前後差圧を取得する条件が成立していると判断する。
フィルタ42の再生回数>N
V3<排ガス流量Vの変動量<V4
V5<排ガス流量V<V6
なお、N及びV3〜V6は、予め定めた閾値である。
Next, the ECU 50 determines whether a condition for acquiring the differential pressure across the filter is satisfied (step S15). For example, the ECU 50 determines that the condition for acquiring the differential pressure across the filter is satisfied when all of the following conditions are satisfied.
Number of times the filter 42 is played> N
V3 <Fluctuation amount of exhaust gas flow rate V <V4
V5 <exhaust gas flow rate V <V6
N and V3 to V6 are predetermined threshold values.

フィルタ前後差圧を取得する条件が成立していない場合(S15/NO)、ECU50は、図3の処理を終了する。   If the condition for acquiring the differential pressure across the filter is not satisfied (S15 / NO), the ECU 50 ends the process of FIG.

一方、フィルタ前後差圧を取得する条件が成立している場合(S15/YES)、ECU50は、フィルタ前後差圧をフィルタ差圧センサ66から取得する(ステップS17)。   On the other hand, when the condition for acquiring the differential pressure across the filter is satisfied (S15 / YES), the ECU 50 acquires the differential pressure across the filter from the filter differential pressure sensor 66 (step S17).

次に、ECU50は、取得したフィルタ前後差圧を補正した補正フィルタ前後差圧を算出する(ステップS19)。本実施形態において、ECU50は、ステップS17においてフィルタ前後差圧を取得した時点で大気圧センサ68から取得した大気圧に基づいて、図4に示すマップから補正係数を取得する。本実施形態において、補正係数は、大気圧=101.325kPaのときを“1”として定めた係数であり、大気圧が低くなるほど、補正係数は小さくなる。ECU50は、フィルタ前後差圧を補正係数で割ることにより、フィルタ前後差圧を大気圧=101.325kPa下でのフィルタ前後差圧に補正した補正フィルタ前後差圧を算出する。本ステップにより、取得されたフィルタ前後差圧は全て、それぞれのフィルタ前後差圧を取得した時点における大気圧に基づいて、大気圧=101.325kPa下でのフィルタ前後差圧に補正される。なお、101.325kPaは、所定の大気圧の一例であり、所定の大気圧は、101.325kPaでなくともよく、任意の値を取りうる。   Next, the ECU 50 calculates a corrected filter front-rear differential pressure obtained by correcting the acquired filter front-rear differential pressure (step S19). In the present embodiment, the ECU 50 acquires the correction coefficient from the map shown in FIG. 4 based on the atmospheric pressure acquired from the atmospheric pressure sensor 68 when the differential pressure across the filter is acquired in step S17. In the present embodiment, the correction coefficient is a coefficient determined as “1” when atmospheric pressure = 101.325 kPa, and the correction coefficient decreases as the atmospheric pressure decreases. The ECU 50 calculates the corrected differential pressure before and after the filter by correcting the differential pressure before and after the filter to the differential pressure before and after the atmospheric pressure = 101.325 kPa by dividing the differential pressure before and after the filter by the correction coefficient. By this step, all the acquired differential pressure before and after the filter is corrected to the differential pressure before and after the filter under atmospheric pressure = 101.325 kPa based on the atmospheric pressure at the time when the respective differential pressure before and after the filter is acquired. Note that 101.325 kPa is an example of a predetermined atmospheric pressure, and the predetermined atmospheric pressure may not be 101.325 kPa and can take any value.

次に、ECU50は、ステップS13で取得した排ガス流量及びステップS19で算出した補正フィルタ前後差圧を記憶する(ステップS20)。   Next, the ECU 50 stores the exhaust gas flow rate acquired in step S13 and the correction filter front-rear differential pressure calculated in step S19 (step S20).

次に、ECU50は、補正フィルタ前後差圧のデータ個数がn個となったか否かを判断する(ステップS21)。nは、フィルタの異常判定を行うために必要なデータの個数であり、例えば、25とすることができる。   Next, the ECU 50 determines whether or not the number of data of differential pressure before and after the correction filter has reached n (step S21). n is the number of data necessary for determining the abnormality of the filter, and can be 25, for example.

補正フィルタ前後差圧のデータ個数がn個となっていない場合(S21/NO)、ECU50は、図3の処理を終了する。   When the number of data of the differential pressure before and after the correction filter is not n (S21 / NO), the ECU 50 ends the process of FIG.

一方、補正フィルタ前後差圧のデータ個数がn個となった場合(S21/YES)、ECU50は、n個の補正フィルタ前後差圧を平均した平均フィルタ前後差圧を算出し、記憶する(ステップS23)。   On the other hand, when the number of data of the differential pressure before and after the correction filter is n (S21 / YES), the ECU 50 calculates and stores an average filter differential pressure before and after averaging the n correction filter differential pressures before and after (step 21). S23).

次に、ECU50は、n個記憶されている排ガス流量のデータを平均した平均排ガス流量を算出・記憶し(ステップS25)、図3の処理を終了する。なお、ステップS23とステップS25の処理は、並行して行ってもよいし、順番を入れ替えてもよい。   Next, the ECU 50 calculates and stores an average exhaust gas flow rate obtained by averaging the n stored exhaust gas flow rate data (step S25), and ends the processing of FIG. In addition, the process of step S23 and step S25 may be performed in parallel, and the order may be changed.

次に、ECU50が実行するフィルタの異常判定処理について説明する。図5は、ECU50が実行するフィルタの異常判定処理の一例を示すフローチャートである。   Next, filter abnormality determination processing executed by the ECU 50 will be described. FIG. 5 is a flowchart illustrating an example of a filter abnormality determination process executed by the ECU 50.

図5の処理を開始すると、ECU50は、まず、イグニッションスイッチ(IGSW)が「OFF」にされたか否かを判断する(ステップS51)。イグニッションスイッチが「OFF」にされていない場合(S51/NO)、ECU50は、図5の処理を終了する。   When the processing of FIG. 5 is started, the ECU 50 first determines whether or not the ignition switch (IGSW) has been turned “OFF” (step S51). When the ignition switch is not set to “OFF” (S51 / NO), the ECU 50 ends the process of FIG.

一方、イグニッションスイッチが「OFF」にされた場合(S51/YES)、ECU50は、平均フィルタ前後差圧が記憶されているか否かを判断する(ステップS53)。平均フィルタ前後差圧が記憶されていない場合(S53/NO)、ECU50は、図5の処理を終了する。   On the other hand, when the ignition switch is turned “OFF” (S51 / YES), the ECU 50 determines whether or not the average differential pressure before and after the filter is stored (step S53). If the average differential pressure before and after the filter is not stored (S53 / NO), the ECU 50 ends the process of FIG.

一方、平均フィルタ前後差圧が記憶されている場合(S53/YES)、ECU50は、フィルタの異常判定に使用する閾値を算出する(ステップS55)。例えば、ECU50は、図3のステップS25で算出された平均排ガス流量を用いて、大気圧=101.325kPa下における排ガス流量と閾値との関係をプロットしたマップから、閾値を算出する。   On the other hand, when the average differential pressure before and after the filter is stored (S53 / YES), the ECU 50 calculates a threshold value used for determining the abnormality of the filter (step S55). For example, the ECU 50 uses the average exhaust gas flow rate calculated in step S25 of FIG. 3 to calculate the threshold value from a map in which the relationship between the exhaust gas flow rate and the threshold value under atmospheric pressure = 101.325 kPa is plotted.

次に、ECU50は、平均フィルタ前後差圧が、閾値以上であるか否か判断する(ステップS59)。   Next, the ECU 50 determines whether or not the average differential pressure before and after the filter is greater than or equal to a threshold value (step S59).

平均フィルタ前後差圧が、閾値未満の場合(S59/NO)、ECU50は、フィルタ42が正常であることを示す正常フラグをONし(ステップS61)、図5の処理を終了する。   If the average differential pressure before and after the filter is less than the threshold value (S59 / NO), the ECU 50 turns on a normal flag indicating that the filter 42 is normal (step S61), and ends the process of FIG.

一方、平均フィルタ前後差圧が、閾値以上の場合(S59/YES)、ECU50は、フィルタ42が異常であることを示す異常フラグをONし(ステップS63)、図5の処理を終了する。   On the other hand, if the average differential pressure before and after the filter is equal to or greater than the threshold value (S59 / YES), the ECU 50 turns on an abnormality flag indicating that the filter 42 is abnormal (step S63), and ends the process of FIG.

図6(a)は、フィルタ差圧センサ66により取得したフィルタ前後差圧と排ガス流量との関係を示す図であり、図6(b)は、補正後フィルタ前後差圧と排ガス流量との関係を示す図である。なお、図6(a)及び図6(b)において、実線は、フィルタが異常であると判断する閾値を表し、フィルタの異常判定処理は、排ガス流量が一点差線で示す所定値以上の領域(異常判定対象領域)で行われる。   6A is a diagram showing the relationship between the differential pressure across the filter acquired by the filter differential pressure sensor 66 and the exhaust gas flow rate, and FIG. 6B is the relationship between the corrected differential pressure across the filter and the exhaust gas flow rate. FIG. In FIGS. 6A and 6B, the solid line represents a threshold value for determining that the filter is abnormal, and the filter abnormality determination process is an area where the exhaust gas flow rate is equal to or greater than a predetermined value indicated by a one-point difference line. (Abnormality determination target area).

図6(a)に示すように、フィルタ前後差圧を補正しない場合、異常判定対象領域において、直線L1で示す閾値以下の値が多く、フィルタ42に異常が生じていないにもかかわらず、異常が生じていると誤判断される可能性がある。一方、図6(b)に示すように、フィルタ前後差圧を大気圧=101.325kPa下でのフィルタ前後差圧に補正した場合には、閾値以下の値が減少しており、異常が生じていないフィルタ42(正常品)を正常であると判断することが可能となっている。   As shown in FIG. 6A, when the differential pressure before and after the filter is not corrected, there are many values below the threshold indicated by the straight line L1 in the abnormality determination target region, and there is no abnormality even though the filter 42 is not abnormal. There is a possibility that it is misjudged that this has occurred. On the other hand, as shown in FIG. 6B, when the differential pressure before and after the filter is corrected to the differential pressure before and after the filter under atmospheric pressure = 101.325 kPa, the value below the threshold value is decreased and an abnormality occurs. It is possible to determine that the filter 42 (normal product) that is not normal is normal.

上述の説明から明らかなように、本実施形態に係るエンジンシステム100は、排気通路30に設けられ、排気中の粒子状物質を捕集するフィルタ42と、フィルタ42の排気上流側の圧力と、フィルタ42の排気下流側の圧力との差であるフィルタ前後差圧ΔPfを検出するフィルタ差圧センサ66と、内燃機関20の周囲の大気圧を検出する大気圧センサ68と、フィルタ前後差圧ΔPfが検出された時点での大気圧センサ68により検出された大気圧に基づき、検出されたフィルタ前後差圧ΔPfを、大気圧=101.325kPa下におけるフィルタ前後差圧である補正フィルタ前後差圧に補正し、複数の補正フィルタ前後差圧の平均である平均フィルタ前後差圧を算出し、平均フィルタ前後差圧が閾値以上であるか否かに基づいて、フィルタ42に異常があるか否かを判断するECU50と、を備える。フィルタ差圧センサ66により検出されたフィルタ前後差圧ΔPfは全て、フィルタ前後差圧ΔPf取得時の大気圧に基づき、大気圧=101.325kPa下におけるフィルタ前後差圧に補正されるため、フィルタ前後差圧を取得した時点での大気圧がフィルタ前後差圧に与える影響を排除することができる。これにより、大気圧が低い環境で取得されたフィルタ前後差圧のデータによって、平均フィルタ前後差圧が低くなり、フィルタ42が正常であるにも関わらず、異常であると誤判断されるのを低減する事ができる。   As is clear from the above description, the engine system 100 according to the present embodiment is provided in the exhaust passage 30 and collects the particulate matter in the exhaust, the pressure upstream of the filter 42 on the exhaust side, A filter differential pressure sensor 66 that detects a differential pressure ΔPf before and after the filter that is a difference from the pressure on the exhaust downstream side of the filter 42, an atmospheric pressure sensor 68 that detects an atmospheric pressure around the internal combustion engine 20, and a differential pressure ΔPf before and after the filter Based on the atmospheric pressure detected by the atmospheric pressure sensor 68 at the time when is detected, the detected filter front-rear differential pressure ΔPf is changed to a corrected filter front-rear differential pressure that is a differential pressure across the filter under atmospheric pressure = 101.325 kPa. Correcting, calculating an average filter front-rear differential pressure that is an average of a plurality of correction filter front-rear differential pressures, and based on whether the average filter front-rear differential pressure is greater than or equal to a threshold, Determines whether there is an abnormality in filter 42 comprises a ECU 50, the. Since all the differential pressure ΔPf before and after the filter detected by the filter differential pressure sensor 66 is corrected to the differential pressure before and after the filter under the atmospheric pressure = 101.325 kPa based on the atmospheric pressure at the time of obtaining the differential pressure ΔPf before and after the filter, The influence of the atmospheric pressure at the time when the differential pressure is acquired on the differential pressure before and after the filter can be eliminated. As a result, the data of the differential pressure before and after the filter acquired in an environment where the atmospheric pressure is low reduces the average differential pressure before and after the filter, and erroneously determines that the filter 42 is normal but is abnormal. Can be reduced.

上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these. Various modifications of these embodiments are within the scope of the present invention, and It is apparent from the above description that various other embodiments are possible within the scope.

20 内燃機関
30 排気通路
42 フィルタ
50 ECU
66 差圧センサ
68 大気圧センサ
100 エンジンシステム(内燃機関の排気浄化装置)

20 Internal combustion engine 30 Exhaust passage 42 Filter 50 ECU
66 Differential pressure sensor 68 Atmospheric pressure sensor 100 Engine system (exhaust gas purification device for internal combustion engine)

Claims (1)

内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、
前記フィルタの排気上流側の圧力と、前記フィルタの排気下流側の圧力との差であるフィルタ前後差圧を検出する差圧検出部と、
前記内燃機関の周囲の大気圧を検出する大気圧検出部と、
前記フィルタ前後差圧が検出された時点での前記大気圧検出部により検出された大気圧に基づき、検出された前記フィルタ前後差圧を、所定の大気圧下におけるフィルタ前後差圧である補正フィルタ前後差圧に補正する補正部と、
複数の前記補正フィルタ前後差圧の平均である平均フィルタ前後差圧を算出する平均算出部と、
前記平均フィルタ前後差圧が閾値以上であるか否かに基づいて、前記フィルタに異常があるか否かを判定する判定部と、
を備える内燃機関の排気浄化装置。

A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
A differential pressure detector for detecting a differential pressure across the filter, which is a difference between the pressure on the exhaust upstream side of the filter and the pressure on the exhaust downstream side of the filter;
An atmospheric pressure detector for detecting atmospheric pressure around the internal combustion engine;
Based on the atmospheric pressure detected by the atmospheric pressure detector when the differential pressure across the filter is detected, the detected differential pressure across the filter is a correction filter that is the differential pressure across the filter under a predetermined atmospheric pressure. A correction unit that corrects the differential pressure across the front and back;
An average calculating unit that calculates an average filter front-rear differential pressure that is an average of the plurality of correction filter front-rear differential pressures;
A determination unit that determines whether or not the filter has an abnormality based on whether or not the average differential pressure before and after the filter is greater than or equal to a threshold;
An exhaust gas purification apparatus for an internal combustion engine.

JP2016020185A 2016-02-04 2016-02-04 Exhaust emission control device for internal combustion engine Pending JP2017137835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020185A JP2017137835A (en) 2016-02-04 2016-02-04 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020185A JP2017137835A (en) 2016-02-04 2016-02-04 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017137835A true JP2017137835A (en) 2017-08-10

Family

ID=59564744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020185A Pending JP2017137835A (en) 2016-02-04 2016-02-04 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017137835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895775A4 (en) * 2018-12-11 2022-01-26 Yamashin Filter Corp. Filter life prediction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895775A4 (en) * 2018-12-11 2022-01-26 Yamashin Filter Corp. Filter life prediction device
US11850538B2 (en) 2018-12-11 2023-12-26 Yamashin-Filter Corp. Filter life predicting apparatus

Similar Documents

Publication Publication Date Title
US8234916B2 (en) Abnormality diagnosis device for air-fuel ratio sensor
US8302378B2 (en) Degradation diagnosis device for catalyst
JP4539740B2 (en) NOx sensor abnormality detection device and exhaust purification system using the same
US11149615B2 (en) Control device for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
US6842690B2 (en) Failure detection apparatus for an internal combustion engine
US20040173090A1 (en) Engine exhaust gas purification device
US6962145B2 (en) Failure detection apparatus for an internal combustion engine
JP6996593B2 (en) Internal combustion engine control device
JP4735465B2 (en) Exhaust gas recirculation device for internal combustion engine
US6408686B1 (en) Exhaust system monitor
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2017137835A (en) Exhaust emission control device for internal combustion engine
US11066975B2 (en) Method and device for diagnosis of a particle filter arranged in the exhaust gas system of a petrol-operated internal combustion engine
JP2012211561A (en) Degradation determination device
JP6365319B2 (en) PM sensor abnormality diagnosis device
JP2015004319A (en) Exhaust emission control system of internal combustion engine
JP7283444B2 (en) engine system
JP4655229B2 (en) Abnormality diagnosis apparatus for intake system of internal combustion engine
JP2006242067A (en) Abnormality diagnosing device for intake system sensor
JP2006090211A (en) Device and method for diagnosing internal combustion engine
JP6278002B2 (en) Failure diagnosis device for exhaust purification system
JP2016084781A (en) Exhaust emission control system for internal combustion engine
JP2000291486A (en) Misfire determining device for engine
JP2020045796A (en) Exhaust emission control device for internal combustion engine