JP7283444B2 - engine system - Google Patents

engine system Download PDF

Info

Publication number
JP7283444B2
JP7283444B2 JP2020096953A JP2020096953A JP7283444B2 JP 7283444 B2 JP7283444 B2 JP 7283444B2 JP 2020096953 A JP2020096953 A JP 2020096953A JP 2020096953 A JP2020096953 A JP 2020096953A JP 7283444 B2 JP7283444 B2 JP 7283444B2
Authority
JP
Japan
Prior art keywords
nox
nox purification
purification rate
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020096953A
Other languages
Japanese (ja)
Other versions
JP2021188592A (en
Inventor
浩一 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020096953A priority Critical patent/JP7283444B2/en
Priority to DE102021114111.7A priority patent/DE102021114111A1/en
Publication of JP2021188592A publication Critical patent/JP2021188592A/en
Application granted granted Critical
Publication of JP7283444B2 publication Critical patent/JP7283444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、エンジンシステムに関する。 The present invention relates to engine systems.

従来のエンジンシステムとしては、例えば特許文献1に記載されている技術が知られている。特許文献1に記載のエンジンシステムは、ディーゼルエンジンの排気ガス通路に配設されたNOx吸蔵還元型触媒と、このNOx吸蔵還元型触媒の上流側に配置された空気過剰率センサ及び第1NOxセンサと、NOx吸蔵還元型触媒の下流側に配置された第2NOxセンサと、再生制御装置とを備えている。再生制御装置は、第1NOxセンサ及び第2NOxセンサの検出値を用いてNOx吸蔵還元型触媒のNOx吸蔵量を推定し、NOx吸蔵量が所定の判定量を超えた場合、空気過剰率センサにより検出された酸素濃度が所定の判定範囲内であるときに、NOx吸蔵還元型触媒に吸蔵されたNOxを還元除去することで、NOx再生制御を行う。 BACKGROUND ART As a conventional engine system, for example, the technique described in Patent Document 1 is known. The engine system described in Patent Document 1 includes a NOx storage reduction catalyst disposed in an exhaust gas passage of a diesel engine, and an excess air ratio sensor and a first NOx sensor disposed upstream of the NOx storage reduction catalyst. , a second NOx sensor disposed downstream of the NOx storage reduction catalyst, and a regeneration control device. The regeneration control device estimates the NOx storage amount of the NOx storage reduction type catalyst using the detection values of the first NOx sensor and the second NOx sensor, and when the NOx storage amount exceeds a predetermined determination amount, it is detected by the excess air ratio sensor. NOx regeneration control is performed by reducing and removing NOx stored in the NOx storage reduction catalyst when the obtained oxygen concentration is within a predetermined determination range.

特開2008-291715号公報JP 2008-291715 A

ところで、NOx吸蔵還元型触媒(NOx浄化触媒)に吸蔵されたNOxを定期的に還元除去する際には、エンジンから多量のPM及び未燃HCが発生する。排気ガスに含まれるPM及び未燃HCによってNOx吸蔵還元型触媒の端面が詰まると、NOx吸蔵還元型触媒のNOx浄化性能が低下すると共に、エミッションの悪化や背圧低下による出力低下が引き起こされる。従って、NOx吸蔵還元型触媒の端面詰まりを生じさせない対策に加え、NOx吸蔵還元型触媒の端面詰まりが生じたこと又は生じそうなことを高精度に検知し、NOx吸蔵還元型触媒の端面詰まりを抑制又は解消するといった対策が必要である。 By the way, when the NOx stored in the NOx storage reduction catalyst (NOx purification catalyst) is periodically reduced and removed, a large amount of PM and unburned HC are generated from the engine. When the end face of the NOx storage reduction catalyst is clogged with PM and unburned HC contained in the exhaust gas, the NOx purification performance of the NOx storage reduction catalyst deteriorates, and output decreases due to worsening of emissions and lower back pressure. Therefore, in addition to measures to prevent the end face clogging of the NOx storage reduction type catalyst, the fact that the end face clogging of the NOx storage reduction type catalyst has occurred or is about to occur is detected with high accuracy, and the end face clogging of the NOx storage reduction type catalyst is detected. It is necessary to take measures to suppress or eliminate them.

本発明の目的は、NOx浄化触媒の端面詰まりの検知精度を向上させることができるエンジンシステムを提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide an engine system capable of improving detection accuracy of end face clogging of a NOx purification catalyst.

本発明の一態様に係るエンジンシステムは、エンジンと、エンジンと接続され、エンジン内で発生した排気ガスが流れる排気通路と、排気通路に配設され、排気ガスに含まれるNOxを浄化するNOx浄化触媒と、NOx浄化触媒の少なくとも下流側に存在するNOxを検出するNOx検出部と、NOx浄化触媒の現在の状態に基づいて、NOx浄化触媒のNOx浄化率推定値を算出する第1浄化率算出部と、NOx検出部の検出値に基づいて、NOx浄化触媒のNOx浄化率検出値を算出する第2浄化率算出部と、第1浄化率算出部により算出されたNOx浄化率推定値と第2浄化率算出部により算出されたNOx浄化率検出値との差分を算出し、NOx浄化率推定値とNOx浄化率検出値との差分が規定時間内に規定値以上となったときに、NOx浄化触媒の端面に詰まりが生じている可能性があると判定する詰まり判定部とを備える。 An engine system according to an aspect of the present invention includes an engine, an exhaust passage connected to the engine through which exhaust gas generated in the engine flows, and a NOx purification system disposed in the exhaust passage to purify NOx contained in the exhaust gas. A first purification rate calculation for calculating an estimated NOx purification rate of the NOx purification catalyst based on the catalyst, a NOx detection unit that detects NOx existing at least downstream of the NOx purification catalyst, and a current state of the NOx purification catalyst. a second purification rate calculation unit that calculates the NOx purification rate detection value of the NOx purification catalyst based on the detected value of the NOx detection unit; an estimated NOx purification rate calculated by the first purification rate calculation unit; 2 Calculate the difference from the NOx purification rate detection value calculated by the purification rate calculation unit, and when the difference between the NOx purification rate estimated value and the NOx purification rate detection value becomes equal to or greater than the specified value within a specified time, the NOx a clogging determination unit that determines that there is a possibility that an end face of the purification catalyst is clogged.

このようなエンジンシステムにおいては、NOx浄化触媒の現在の状態に基づいて、NOx浄化触媒のNOx浄化率推定値が算出されると共に、NOx浄化触媒の少なくとも下流側に存在するNOxを検出するNOx検出部の検出値に基づいて、NOx浄化触媒のNOx浄化率検出値が算出される。そして、NOx浄化率推定値とNOx浄化率検出値との差分が算出され、その差分が規定時間内に規定値以上となったときに、NOx浄化触媒の端面に詰まりが生じている可能性があると判定される。従って、NOx浄化率推定値とNOx浄化率検出値との差分が想定よりも短期間で大きくなったときは、NOx浄化触媒の劣化ではなく、NOx浄化触媒の端面に詰まりが生じている可能性があると判定されることとなる。これにより、NOx浄化触媒の端面詰まりの検知精度が向上する。 In such an engine system, an estimated NOx purification rate of the NOx purification catalyst is calculated based on the current state of the NOx purification catalyst, and NOx detection is performed to detect NOx existing at least downstream of the NOx purification catalyst. A NOx purification rate detection value of the NOx purification catalyst is calculated based on the detection value of the part. Then, the difference between the NOx purification rate estimated value and the NOx purification rate detected value is calculated, and when the difference becomes equal to or larger than the specified value within the specified time, there is a possibility that the end face of the NOx purification catalyst is clogged. It is determined that there is Therefore, when the difference between the NOx purification rate estimated value and the NOx purification rate detected value increases in a shorter period of time than expected, there is a possibility that the end face of the NOx purification catalyst is clogged rather than deteriorated. It is determined that there is This improves the detection accuracy of the end face clogging of the NOx purification catalyst.

エンジンシステムは、詰まり判定部によりNOx浄化触媒の端面に詰まりが生じている可能性があると判定されたときに、NOx浄化触媒に流入される排気ガスを昇温させる排気昇温部を更に備えてもよい。このような構成では、NOx浄化触媒の端面に詰まりが生じている可能性があると判定されると、NOx浄化触媒に流入される排気ガスが昇温するため、NOx浄化触媒の端面に詰まった物質が燃焼除去される。従って、NOx浄化触媒の端面詰まりが抑制又は解消される。 The engine system further includes an exhaust temperature raising section that raises the temperature of the exhaust gas flowing into the NOx purification catalyst when the clogging judgment section judges that the end face of the NOx purification catalyst may be clogged. may In such a configuration, when it is determined that the end face of the NOx purification catalyst may be clogged, the temperature of the exhaust gas flowing into the NOx purification catalyst rises. Material is burned off. Therefore, the end face clogging of the NOx purification catalyst is suppressed or eliminated.

第1浄化率算出部は、NOx浄化触媒に流入される排気ガスの温度及び流量と、NOx浄化触媒の劣化度、NOx吸蔵量及び硫黄被毒量とに基づいて、NOx浄化触媒のNOx浄化率推定値を算出してもよい。このような構成では、NOx浄化触媒の現在の状態が適切に得られるため、NOx浄化触媒のNOx浄化率推定値を精度良く算出することができる。 The first purification rate calculation unit calculates the NOx purification rate of the NOx purification catalyst based on the temperature and flow rate of the exhaust gas flowing into the NOx purification catalyst, the deterioration degree of the NOx purification catalyst, the NOx storage amount, and the sulfur poisoning amount. An estimate may be calculated. With such a configuration, the current state of the NOx purification catalyst can be appropriately obtained, so the NOx purification rate estimated value of the NOx purification catalyst can be calculated with high accuracy.

エンジンシステムは、排気ガスが安定状態であるかどうかを判断し、排気ガスが安定状態であるときに、詰まり判定部による判定処理の実行を許可する判定適否判断部を更に備えてもよい。このような構成では、NOx浄化触媒の端面詰まりの判定処理に適した条件の排気ガスが得られるときに、詰まり判定部による判定処理の実行が許可される。従って、NOx浄化触媒の端面詰まりの検知精度が更に向上する。 The engine system may further include a decision propriety determining section that determines whether the exhaust gas is in a stable state and permits execution of the determination processing by the clogging determining section when the exhaust gas is in a stable state. In such a configuration, execution of the determination process by the clogging determination unit is permitted when exhaust gas with conditions suitable for the end face clogging determination process of the NOx purification catalyst is obtained. Therefore, the detection accuracy of end face clogging of the NOx purification catalyst is further improved.

判定適否判断部は、排気ガスの安定状態が一定時間継続しているときに、詰まり判定部による判定処理の実行を許可してもよい。このような構成では、詰まり判定部による1回の判定処理期間におけるNOx浄化率推定値及びNOx浄化率検出値のばらつきの影響が少なくなる。従って、NOx浄化触媒の端面詰まりの検知精度が一層向上する。 The determination propriety determination unit may allow the clogging determination unit to perform the determination process when the stable state of the exhaust gas continues for a certain period of time. With such a configuration, the influence of variations in the NOx purification rate estimated value and the NOx purification rate detected value during one judgment processing period by the clogging judgment section is reduced. Therefore, the detection accuracy of end face clogging of the NOx purification catalyst is further improved.

NOx検出部の数が2つであり、NOx検出部は、NOx浄化触媒の上流側及び下流側に存在するNOxを検出してもよい。このような構成では、精度が高いNOx浄化率検出値が得られるため、NOx浄化触媒の端面詰まりの検知精度が更に向上する。 The number of NOx detection units may be two, and the NOx detection units may detect NOx existing upstream and downstream of the NOx purification catalyst. With such a configuration, a highly accurate NOx purification rate detection value can be obtained, so that the detection accuracy of end face clogging of the NOx purification catalyst is further improved.

本発明によれば、NOx浄化触媒の端面詰まりの検知精度を向上させることができる。 According to the present invention, it is possible to improve the detection accuracy of the end face clogging of the NOx purification catalyst.

本発明の一実施形態に係るエンジンシステムを概略的に示す構成図である。1 is a configuration diagram schematically showing an engine system according to one embodiment of the present invention; FIG. 図1に示されたエンジンシステムの制御系の構成図である。2 is a configuration diagram of a control system of the engine system shown in FIG. 1; FIG. 図2に示された第1浄化率算出部により実行される算出処理の手順の詳細を示すフローチャートである。FIG. 3 is a flow chart showing details of a procedure of calculation processing executed by a first purification rate calculation unit shown in FIG. 2; FIG. 図2に示された第2浄化率算出部により実行される算出処理の手順の詳細を示すフローチャートである。FIG. 3 is a flow chart showing details of a procedure of calculation processing executed by a second purification rate calculation unit shown in FIG. 2; FIG. 図2に示された詰まり判定部により実行される判定処理の手順の詳細を示すフローチャートである。FIG. 3 is a flow chart showing the details of the procedure of determination processing executed by the clogging determination unit shown in FIG. 2; FIG. 図2に示された判定適否判断部により実行される判断処理の手順の詳細を示すフローチャートである。FIG. 3 is a flow chart showing the details of the procedure of judgment processing executed by a judgment propriety judging unit shown in FIG. 2; FIG. NSR触媒の端面詰まりの検知例を示すタイミング図である。FIG. 4 is a timing chart showing an example of detection of end face clogging of an NSR catalyst;

以下、本発明の実施形態について、図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係るエンジンシステムを概略的に示す構成図である。図1において、本実施形態のエンジンシステム1は、車両に搭載されている。エンジンシステム1は、エンジン2と、吸気通路3と、排気通路4と、スロットルバルブ5と、インジェクタ6と、NSR触媒7(NOxStorage-Reduction触媒)とを備えている。 FIG. 1 is a configuration diagram schematically showing an engine system according to one embodiment of the present invention. In FIG. 1, an engine system 1 of this embodiment is mounted on a vehicle. The engine system 1 includes an engine 2, an intake passage 3, an exhaust passage 4, a throttle valve 5, an injector 6, and an NSR catalyst 7 (NOx Storage-Reduction catalyst).

エンジン2は、ディーゼルエンジンである。エンジン2は、特に図示はしないが、燃焼室を構成するシリンダを有している。吸気通路3及び排気通路4は、エンジン2に接続されている。吸気通路3は、吸入空気が流れる通路である。排気通路4は、エンジン2の燃焼室内で発生した排気ガスが流れる流路である。 Engine 2 is a diesel engine. Although not shown, the engine 2 has cylinders forming combustion chambers. The intake passage 3 and the exhaust passage 4 are connected to the engine 2 . The intake passage 3 is a passage through which intake air flows. The exhaust passage 4 is a flow path through which exhaust gas generated in the combustion chamber of the engine 2 flows.

スロットルバルブ5は、吸気通路3に配設されている。スロットルバルブ5は、エンジン2に供給される吸入空気の流量を調整する流量調整弁である。インジェクタ6は、エンジン2の燃焼室に向けて燃料を噴射する燃料噴射弁である。 A throttle valve 5 is arranged in the intake passage 3 . The throttle valve 5 is a flow control valve that adjusts the flow rate of intake air supplied to the engine 2 . The injector 6 is a fuel injection valve that injects fuel toward the combustion chamber of the engine 2 .

NSR触媒7は、排気通路4に配設されている。NSR触媒7は、排気ガスに含まれるNOxを浄化するNOx浄化触媒である。NSR触媒7は、担持体に触媒貴金属及びNOx吸蔵材を担持させた構造を有している。 The NSR catalyst 7 is arranged in the exhaust passage 4 . The NSR catalyst 7 is a NOx purification catalyst that purifies NOx contained in the exhaust gas. The NSR catalyst 7 has a structure in which a catalyst noble metal and a NOx storage material are supported on a carrier.

また、エンジンシステム1は、アクセルセンサ8と、回転数センサ9と、エアフローメータ10と、排気温センサ11と、上流側NOxセンサ12と、下流側NOxセンサ13と、ECU14(enginecontrol unit)とを備えている。 The engine system 1 also includes an accelerator sensor 8, a rotation speed sensor 9, an air flow meter 10, an exhaust temperature sensor 11, an upstream NOx sensor 12, a downstream NOx sensor 13, and an ECU 14 (engine control unit). I have.

アクセルセンサ8は、アクセルペダル(図示せず)の開度をエンジン負荷として検出する。回転数センサ9は、エンジン2の回転数(エンジン回転数)を検出する。エアフローメータ10は、エンジン2への吸入空気量を検出する。排気温センサ11は、排気ガスの温度(排気温)を検出する。 An accelerator sensor 8 detects the opening of an accelerator pedal (not shown) as an engine load. A rotation speed sensor 9 detects the rotation speed of the engine 2 (engine speed). The airflow meter 10 detects the intake air amount to the engine 2 . The exhaust temperature sensor 11 detects the temperature of the exhaust gas (exhaust temperature).

上流側NOxセンサ12は、NSR触媒7の上流側に存在するNOxを検出するNOx検出部を構成する。下流側NOxセンサ13は、NSR触媒7の下流側に存在するNOxを検出するNOx検出部を構成する。上流側NOxセンサ12及び下流側NOxセンサ13は、例えばNOx濃度又はNOx量をNOxの状態量として検出する。 The upstream NOx sensor 12 constitutes a NOx detector that detects NOx present upstream of the NSR catalyst 7 . The downstream NOx sensor 13 constitutes a NOx detector that detects NOx existing downstream of the NSR catalyst 7 . The upstream NOx sensor 12 and the downstream NOx sensor 13 detect, for example, NOx concentration or NOx amount as NOx state quantities.

ECU14は、CPU、RAM、ROM及び入出力インターフェース等により構成されている。ECU14は、アクセルセンサ8、回転数センサ9、エアフローメータ10、排気温センサ11、上流側NOxセンサ12及び下流側NOxセンサ13の検出値を取得し、所定の処理を実行し、スロットルバルブ5及びインジェクタ6を制御する。 The ECU 14 includes a CPU, RAM, ROM, input/output interfaces, and the like. The ECU 14 acquires the detected values of the accelerator sensor 8, the rotation speed sensor 9, the air flow meter 10, the exhaust temperature sensor 11, the upstream NOx sensor 12, and the downstream NOx sensor 13, executes predetermined processing, and controls the throttle valve 5 and Control injector 6.

ECU14は、図2に示されるように、第1浄化率算出部15と、第2浄化率算出部16と、詰まり判定部17と、排気昇温部18と、判定適否判断部19とを有している。 As shown in FIG. 2 , the ECU 14 has a first purification rate calculator 15 , a second purification rate calculator 16 , a clogging determination section 17 , an exhaust temperature raising section 18 , and a determination propriety determination section 19 . are doing.

第1浄化率算出部15は、NSR触媒7の現在の状態に基づいて、NSR触媒7のNOx浄化率推定値を算出する。NSR触媒7の現在の状態は、アクセルセンサ8により検出されたエンジン負荷と回転数センサ9により検出されたエンジン回転数とエアフローメータ10により検出された吸入空気量と排気温センサ11により検出された排気温とに基づいて推定される。 The first purification rate calculator 15 calculates an estimated NOx purification rate of the NSR catalyst 7 based on the current state of the NSR catalyst 7 . The current state of the NSR catalyst 7 is determined by the engine load detected by the accelerator sensor 8, the engine speed detected by the speed sensor 9, the intake air amount detected by the air flow meter 10, and the exhaust temperature sensor 11. is estimated based on the exhaust temperature.

図3は、第1浄化率算出部15により実行される算出処理の手順の詳細を示すフローチャートである。本処理は、例えばイグニッションスイッチがONされると実行される。図3において、第1浄化率算出部15は、まずアクセルセンサ8、回転数センサ9、エアフローメータ10及び排気温センサ11の検出値を取得する(手順S101)。 FIG. 3 is a flowchart showing the details of the procedure of calculation processing executed by the first purification rate calculator 15. As shown in FIG. This processing is executed, for example, when an ignition switch is turned on. In FIG. 3, the first purification rate calculator 15 first acquires detection values of the accelerator sensor 8, the rotation speed sensor 9, the airflow meter 10, and the exhaust temperature sensor 11 (step S101).

続いて、第1浄化率算出部15は、アクセルセンサ8、回転数センサ9、エアフローメータ10及び排気温センサ11の検出値に基づいて、NSR触媒7に流入される排気ガス量、NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量(S被毒量)を推定する(手順S102)。 Subsequently, the first purification rate calculation unit 15 determines the amount of exhaust gas flowing into the NSR catalyst 7, the NSR catalyst 7 , the NOx storage amount, and the sulfur poisoning amount (S poisoning amount) are estimated (step S102).

具体的には、エンジン負荷及びエンジン回転数に基づいて、インジェクタ6からエンジン2への燃料噴射量及び燃料噴射時期が決定される。NSR触媒7に流入される排気ガス量は、エンジン2への吸入空気量及び燃料噴射量に基づいて算出される。NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量は、エンジン負荷、エンジン回転数及び排気温に基づいて算出される。なお、排気ガス量、NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量は、例えばマップ計算により算出される。 Specifically, the fuel injection amount and fuel injection timing from the injector 6 to the engine 2 are determined based on the engine load and the engine speed. The amount of exhaust gas flowing into the NSR catalyst 7 is calculated based on the amount of intake air to the engine 2 and the amount of fuel injection. The degree of deterioration, NOx storage amount and sulfur poisoning amount of the NSR catalyst 7 are calculated based on the engine load, engine speed and exhaust temperature. The amount of exhaust gas, the degree of deterioration of the NSR catalyst 7, the amount of NOx storage, and the amount of sulfur poisoning are calculated by map calculation, for example.

続いて、第1浄化率算出部15は、排気温、排気ガス量、NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量に基づいて、NSR触媒7の上流側及び下流側のNOx量を推定する(手順S103)。これにより、NSR触媒7の上流側及び下流側のNOx推定値が得られる(図7(b)参照)。 Subsequently, the first purification rate calculation unit 15 calculates the NOx amount upstream and downstream of the NSR catalyst 7 based on the exhaust temperature, exhaust gas amount, deterioration degree of the NSR catalyst 7, NOx storage amount, and sulfur poisoning amount. is estimated (step S103). As a result, estimated NOx values upstream and downstream of the NSR catalyst 7 are obtained (see FIG. 7(b)).

NSR触媒7の上流側のNOx推定値(図7(b)中の実線P1参照)は、排気温及び排気ガス量に基づいて算出される。NSR触媒7の下流側のNOx推定値(図7(b)中の実線P2参照)は、排気温、排気ガス量、NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量に基づいて算出される。なお、NSR触媒7の上流側及び下流側のNOx推定値は、例えばマップ計算により算出される。 The NOx estimated value on the upstream side of the NSR catalyst 7 (see solid line P1 in FIG. 7(b)) is calculated based on the exhaust temperature and the amount of exhaust gas. The NOx estimated value on the downstream side of the NSR catalyst 7 (see solid line P2 in FIG. 7(b)) is calculated based on the exhaust temperature, the amount of exhaust gas, the degree of deterioration of the NSR catalyst 7, the NOx storage amount, and the sulfur poisoning amount. be done. The estimated NOx values upstream and downstream of the NSR catalyst 7 are calculated by map calculation, for example.

続いて、第1浄化率算出部15は、NSR触媒7の上流側及び下流側のNOx推定値に基づいて、NSR触媒7のNOx浄化率推定値(図7(d)中の実線P参照)を算出する(手順S104)。NSR触媒7の上流側のNOx量をA1とし、NSR触媒7の下流側のNOx量をA2としたときに、NSR触媒7のNOx浄化率は、(A1-A2)/A1から算出される。 Subsequently, the first purification rate calculation unit 15 calculates the estimated NOx purification rate of the NSR catalyst 7 (see solid line P in FIG. 7(d)) based on the estimated NOx values on the upstream and downstream sides of the NSR catalyst 7. is calculated (step S104). When the NOx amount on the upstream side of the NSR catalyst 7 is A1 and the NOx amount on the downstream side of the NSR catalyst 7 is A2, the NOx purification rate of the NSR catalyst 7 is calculated from (A1-A2)/A1.

第2浄化率算出部16は、上流側NOxセンサ12及び下流側NOxセンサ13により検出されたNOxの状態量に基づいて、NSR触媒7のNOx浄化率検出値を算出する。 The second purification rate calculator 16 calculates the NOx purification rate detection value of the NSR catalyst 7 based on the NOx state quantity detected by the upstream NOx sensor 12 and the downstream NOx sensor 13 .

図4は、第2浄化率算出部16により実行される算出処理の手順の詳細を示すフローチャートである。本処理は、例えばイグニッションスイッチがONされると実行される。図4において、第2浄化率算出部16は、まず上流側NOxセンサ12及び下流側NOxセンサ13の検出値をNOx検出値として取得する(手順S111)。 FIG. 4 is a flowchart showing the details of the procedure of calculation processing executed by the second purification rate calculator 16. As shown in FIG. This processing is executed, for example, when an ignition switch is turned on. In FIG. 4, the second purification rate calculator 16 first acquires the detection values of the upstream NOx sensor 12 and the downstream NOx sensor 13 as NOx detection values (step S111).

続いて、第2浄化率算出部16は、上流側NOxセンサ12により取得されたNSR触媒7の上流側のNOx検出値(図7(c)中の実線Q1参照)と下流側NOxセンサ13により取得されたNSR触媒7の下流側のNOx検出値(図7(c)中の実線Q2参照)とに基づいて、NSR触媒7のNOx浄化率検出値(図7(d)中の実線Q参照)を算出する(手順S112)。NSR触媒7のNOx浄化率検出値の算出式は、図3における手順S104と同様である。 Subsequently, the second purification rate calculation unit 16 calculates the upstream NOx detection value of the NSR catalyst 7 acquired by the upstream NOx sensor 12 (see solid line Q1 in FIG. 7(c)) and the downstream NOx sensor 13. Based on the acquired NOx detection value downstream of the NSR catalyst 7 (see the solid line Q2 in FIG. 7(c)), the NOx purification rate detection value of the NSR catalyst 7 (see the solid line Q in FIG. 7(d)) ) is calculated (step S112). The formula for calculating the NOx purification rate detection value of the NSR catalyst 7 is the same as in step S104 in FIG.

詰まり判定部17は、第1浄化率算出部15により算出されたNOx浄化率推定値と第2浄化率算出部16により算出されたNOx浄化率検出値との差分を算出し、NOx浄化率推定値とNOx浄化率検出値との差分が規定時間内に規定値以上となったときに、NSR触媒7の前端面7aに詰まりが生じている可能性があると判定する。 The clogging determination unit 17 calculates the difference between the NOx purification rate estimated value calculated by the first purification rate calculation unit 15 and the NOx purification rate detection value calculated by the second purification rate calculation unit 16, and estimates the NOx purification rate. It is determined that there is a possibility that the front end surface 7a of the NSR catalyst 7 is clogged when the difference between the value and the NOx purification rate detection value becomes equal to or greater than a specified value within a specified time.

図5は、詰まり判定部17により実行される判定処理の手順の詳細を示すフローチャートである。本処理は、後述する判定許可フラグが1に設定されているときに、実行される。 FIG. 5 is a flow chart showing the details of the procedure of determination processing executed by the clogging determination unit 17. As shown in FIG. This process is executed when a determination permission flag, which will be described later, is set to 1.

図5において、詰まり判定部17は、まず第1浄化率算出部15により算出されたNOx浄化率推定値と第2浄化率算出部16により算出されたNOx浄化率検出値とを取得する(手順S121)。続いて、詰まり判定部17は、NOx浄化率推定値とNOx浄化率検出値との差分をNOx浄化率差分として算出する(手順S122)。 In FIG. 5, the clogging determination unit 17 first acquires the NOx purification rate estimated value calculated by the first purification rate calculation unit 15 and the NOx purification rate detection value calculated by the second purification rate calculation unit 16 (procedure S121). Subsequently, the clogging determination unit 17 calculates the difference between the NOx purification rate estimated value and the NOx purification rate detected value as the NOx purification rate difference (step S122).

続いて、詰まり判定部17は、NOx浄化率差分が予め決められた規定値以上であるかどうかを判断する(手順S123)。詰まり判定部17は、NOx浄化率差分が規定値以上であると判断したときは、前回判定処理が行われた時からの経過時間が予め決められた規定時間内であるかどうかを判断する(手順S124)。NSR触媒7の経年劣化によっても、NOx浄化率差分が規定値以上となり得る。ここでの規定時間は、単にNSR触媒7の経年劣化によってNOx浄化率差分が規定値以上となった場合を除外するための判断値である。 Subsequently, the clogging determination unit 17 determines whether or not the NOx purification rate difference is equal to or greater than a predetermined specified value (step S123). When the clogging determination unit 17 determines that the NOx purification rate difference is equal to or greater than the specified value, it determines whether or not the elapsed time since the previous determination process was performed is within a predetermined specified time ( step S124). Degradation of the NSR catalyst 7 over time may also cause the NOx purification rate difference to exceed the specified value. The prescribed time here is a judgment value for excluding a case where the NOx purification rate difference exceeds a prescribed value simply due to aged deterioration of the NSR catalyst 7 .

詰まり判定部17は、前回判定処理が行われた時からの経過時間が規定時間内であると判断したときは、NSR触媒7の前端面7aに詰まりが生じている可能性があると判定する(手順S125)。 The clogging judging section 17 judges that there is a possibility that the front end surface 7a of the NSR catalyst 7 is clogged when judging that the elapsed time since the previous judging process is within the specified time. (Step S125).

詰まり判定部17は、手順S123でNOx浄化率差分が規定値よりも小さいと判断したときは、NSR触媒7の前端面7aに詰まりが生じていないと判定する(手順S126)。詰まり判定部17は、手順S124で前回判定処理が行われた時からの経過時間が規定時間を超えていると判断したときも、NSR触媒7の前端面7aに詰まりが生じていないと判定する(手順S126)。 When the clogging determination unit 17 determines in step S123 that the NOx purification rate difference is smaller than the specified value, it determines that the front end surface 7a of the NSR catalyst 7 is not clogged (step S126). The clogging judging section 17 judges that the front end surface 7a of the NSR catalyst 7 is not clogged even when it judges that the elapsed time since the previous judging process was performed in step S124 exceeds the specified time. (Step S126).

排気昇温部18は、詰まり判定部17によりNSR触媒7の前端面7aに詰まりが生じている可能性があると判定されたときに、NSR触媒7に流入される排気ガスを昇温させるようにインジェクタ6又はスロットルバルブ5を制御する。 The exhaust temperature raising unit 18 raises the temperature of the exhaust gas flowing into the NSR catalyst 7 when the clogging determination unit 17 determines that the front end surface 7a of the NSR catalyst 7 may be clogged. to control the injector 6 or the throttle valve 5.

排気昇温部18は、エンジン2の燃焼状態を変えることで、排気ガスを昇温させる。具体的には、排気昇温部18は、エンジン負荷及びエンジン回転数に基づいて決定される燃料噴射時期を遅角させるようにインジェクタ6を制御することにより、排気ガスを昇温させる。また、排気昇温部18は、エンジン2への吸入空気量を減少させるようにスロットルバルブ5を制御することにより、排気ガスを昇温させてもよい。 The exhaust temperature raising unit 18 raises the temperature of the exhaust gas by changing the combustion state of the engine 2 . Specifically, the exhaust temperature raising unit 18 raises the temperature of the exhaust gas by controlling the injector 6 to retard the fuel injection timing determined based on the engine load and the engine speed. Further, the exhaust temperature raising unit 18 may raise the temperature of the exhaust gas by controlling the throttle valve 5 so as to reduce the intake air amount to the engine 2 .

判定適否判断部19は、エンジン2から排出される排気ガスが安定状態であるかどうかを判断し、排気ガスが安定状態であるときに、詰まり判定部17による判定処理の実行を許可する。排気ガスの安定状態は、排気量及び排気温が安定している状態である。ここでは、判定適否判断部19は、アクセルセンサ8により検出されたエンジン負荷と回転数センサ9により検出されたエンジン回転数とに基づいて、エンジン2が定常運転状態であるかどうかを判断することで、排気ガスが安定状態であるかどうかを判断する。 The determination propriety determination unit 19 determines whether the exhaust gas discharged from the engine 2 is in a stable state, and permits the clogging determination unit 17 to perform determination processing when the exhaust gas is in a stable state. A stable state of the exhaust gas is a state in which the exhaust amount and the exhaust temperature are stable. Here, the determination propriety determination unit 19 determines whether or not the engine 2 is in a steady operating state based on the engine load detected by the accelerator sensor 8 and the engine speed detected by the speed sensor 9. to determine whether the exhaust gas is in a stable state.

図6は、判定適否判断部19により実行される判断処理の手順の詳細を示すフローチャートである。本処理は、例えばイグニッションスイッチがONされると実行される。図6において、判定適否判断部19は、まずアクセルセンサ8及び回転数センサ9の検出値を取得する(手順S131)。 FIG. 6 is a flow chart showing the details of the procedure of the judgment processing executed by the judgment propriety judging section 19. As shown in FIG. This processing is executed, for example, when an ignition switch is turned on. In FIG. 6, the determination propriety determination unit 19 first acquires the detection values of the accelerator sensor 8 and the rotation speed sensor 9 (step S131).

続いて、判定適否判断部19は、エンジン負荷及びエンジン回転数に基づいて、エンジン2が定常運転状態であるかどうかを判断する(手順S132)。エンジン2の定常運転状態は、アクセルペダルが一定の開度で踏み込まれることで、車両が一定の速度で走行している状態である。この場合には、エンジン2から排出される排気ガスは、NOxを適度に含み、詰まり判定部17によるNSR触媒7の端面詰まりの判定に適した安定状態となる。 Subsequently, the judgment propriety judging section 19 judges whether or not the engine 2 is in a steady operating state based on the engine load and the engine speed (step S132). The steady operating state of the engine 2 is a state in which the vehicle is running at a constant speed as the accelerator pedal is depressed at a constant opening. In this case, the exhaust gas discharged from the engine 2 contains an appropriate amount of NOx, and is in a stable state suitable for the clogging determination unit 17 to determine whether the end face of the NSR catalyst 7 is clogged.

判定適否判断部19は、エンジン2が定常運転状態であると判断したときは、エンジン2の定常運転状態の継続時間が継続時間閾値t(図7(a)参照)に達したかどうかを判断する(手順S133)。継続時間閾値tは、図5の手順S124における規定時間に比べて十分に短い時間である。つまり、判定適否判断部19は、排気ガスの安定状態が一定時間継続しているかどうかを判断することになる。 When the determination unit 19 determines that the engine 2 is in the steady operation state, it determines whether the duration of the steady operation state of the engine 2 has reached the duration threshold value t (see FIG. 7A). (step S133). The duration threshold t is a time sufficiently shorter than the specified time in step S124 of FIG. In other words, the determination propriety determination unit 19 determines whether the stable state of the exhaust gas continues for a certain period of time.

判定適否判断部19は、エンジン2の定常運転状態の継続時間が継続時間閾値tに達したと判断したときは、判定許可フラグを1に設定する(手順S134)。判定許可フラグは、詰まり判定部17によるNSR触媒7の端面詰まりの判定処理を許可するためのフラグである(図7(e)参照)。判定処理を許可する場合は、判定許可フラグが1に設定される。判定処理を許可しない場合は、判定許可フラグが0に設定される。 When determining that the duration of the steady operation state of the engine 2 has reached the duration threshold value t, the determination propriety determination unit 19 sets the determination permission flag to 1 (step S134). The judgment permission flag is a flag for permitting the judgment processing of end face clogging of the NSR catalyst 7 by the clogging judging section 17 (see FIG. 7(e)). The determination permission flag is set to 1 when the determination process is permitted. The determination permission flag is set to 0 when the determination process is not permitted.

判定適否判断部19は、手順S132でエンジン2が定常運転状態でないと判断したときは、判定許可フラグを0に設定する(手順S135)。判定適否判断部19は、手順S133でエンジン2の定常運転状態の継続時間が継続時間閾値tに達していないと判断したときも、判定許可フラグを0に設定する(手順S135)。 When determining in step S132 that the engine 2 is not in the steady operating state, the determination propriety determination unit 19 sets the determination permission flag to 0 (step S135). The determination propriety determination unit 19 also sets the determination permission flag to 0 when determining in step S133 that the duration of the steady operation state of the engine 2 has not reached the duration threshold t (step S135).

以上のように構成されたエンジンシステム1において、図7(b)に示されるように、NSR触媒7の現在の状態に基づいて、NSR触媒7の上流側のNOx推定値(実線P1参照)及びNSR触媒7の下流側のNOx推定値(実線P2参照)が算出される。そして、図7(d)に示されるように、NSR触媒7のNOx浄化率推定値(実線P参照)が算出される。なお、図7(d)では、エンジン2の定常運転状態が継続しているときのNOx浄化率推定値のみが、端面詰まり判定用NOx浄化率推定値として示されている。 In the engine system 1 configured as described above, as shown in FIG. A NOx estimated value (see solid line P2) on the downstream side of the NSR catalyst 7 is calculated. Then, as shown in FIG. 7(d), the estimated NOx purification rate of the NSR catalyst 7 (see solid line P) is calculated. In FIG. 7(d), only the NOx purification rate estimated value when the engine 2 continues to be in steady state is shown as the NOx purification rate estimated value for end face clogging determination.

また、図7(c),図7(d)に示されるように、上流側NOxセンサ12により取得されたNSR触媒7の上流側のNOx検出値(実線Q1参照)と下流側NOxセンサ13により取得されたNSR触媒7の下流側のNOx検出値(実線Q2参照)とに基づいて、NSR触媒7のNOx浄化率検出値(実線Q参照)が算出される。なお、図7(d)では、エンジン2の定常運転状態が継続しているときのNOx浄化率検出値のみが、端面詰まり判定用NOx浄化率検出値として示されている。 Further, as shown in FIGS. 7(c) and 7(d), the upstream NOx detection value (see solid line Q1) of the NSR catalyst 7 acquired by the upstream NOx sensor 12 and the downstream NOx sensor 13 Based on the acquired NOx detection value downstream of the NSR catalyst 7 (see solid line Q2), the NOx purification rate detection value of the NSR catalyst 7 (see solid line Q) is calculated. In FIG. 7(d), only the NOx purification rate detection value when the engine 2 continues to be in steady operation is shown as the end face clogging determination NOx purification rate detection value.

ここで、図7(a),(e)に示されるように、期間T1では、エンジン2の定常運転状態の継続時間が継続時間閾値tに達することで、判定許可フラグが1に設定される。従って、NSR触媒7の端面詰まりの判定処理が許可されるため、NOx浄化率推定値とNOx浄化率検出値との差分であるNOx浄化率差分が算出される。このとき、NOx浄化率差分が規定値よりも小さいため、NSR触媒7の前端面7aに詰まりが生じていないと判定される。 Here, as shown in FIGS. 7A and 7E, in the period T1, the duration of the steady operation state of the engine 2 reaches the duration threshold t, so that the determination permission flag is set to 1. . Therefore, since the end face clogging determination process of the NSR catalyst 7 is permitted, the NOx purification rate difference, which is the difference between the NOx purification rate estimated value and the NOx purification rate detected value, is calculated. At this time, since the NOx purification rate difference is smaller than the specified value, it is determined that the front end surface 7a of the NSR catalyst 7 is not clogged.

その後、期間T2では、エンジン2が定常運転状態となるが、エンジン2の定常運転状態の継続時間が継続時間閾値tに達しないため、判定許可フラグが0に設定される。このため、NSR触媒7の端面詰まりの判定処理は行われない。 After that, in the period T2, the engine 2 enters a steady operating state, but the duration of the steady operating state of the engine 2 does not reach the duration threshold value t, so the determination permission flag is set to 0. Therefore, the end face clogging determination process of the NSR catalyst 7 is not performed.

その後、期間T3では、エンジン2の定常運転状態の継続時間が継続時間閾値tに達することで、判定許可フラグが1に設定される。従って、NSR触媒7の端面詰まりの判定処理が許可されるため、NOx浄化率差分が算出される。このとき、NOx浄化率差分が規定値以上であると共に、前回判定処理が行われた時からの経過時間が規定時間内である。従って、NSR触媒7の前端面7aに詰まりが生じている可能性があると判定される。 After that, in the period T3, the determination permission flag is set to 1 because the duration of the steady operation state of the engine 2 reaches the duration threshold t. Therefore, since the end face clogging determination process of the NSR catalyst 7 is permitted, the NOx purification rate difference is calculated. At this time, the NOx purification rate difference is equal to or greater than the specified value, and the elapsed time since the previous determination process was performed is within the specified time. Therefore, it is determined that the front end surface 7a of the NSR catalyst 7 may be clogged.

この場合には、インジェクタ6又はスロットルバルブ5が制御されることで、NSR触媒7に流入される排気ガスが昇温する。このため、排気ガスによってNSR触媒7の前端面7aの詰まり物質が燃焼除去される。 In this case, the temperature of the exhaust gas flowing into the NSR catalyst 7 is increased by controlling the injector 6 or the throttle valve 5 . Therefore, the exhaust gas burns and removes the clogging material on the front end face 7a of the NSR catalyst 7. As shown in FIG.

ところで、NSR触媒7の端面詰まりを検知する方法としては、例えばNSR触媒7の前端面7aへの詰まりの生成物質の流入積算量を検出し、その流入積算量から端面詰まりを推定したり、或いはNSR触媒7の上流側及び下流側の前後圧力差を検出し、その圧力差から端面詰まりを推定するといった方法がある。 By the way, as a method for detecting the end face clogging of the NSR catalyst 7, for example, the integrated inflow amount of clogging substances to the front end face 7a of the NSR catalyst 7 is detected, and the end face clogging is estimated from the integrated inflow amount. There is a method of detecting the pressure difference between the upstream side and the downstream side of the NSR catalyst 7 and estimating the end face clogging from the pressure difference.

しかし、NSR触媒7の前端面7aへの詰まりの生成物質の流入積算量を検出する方法では、生成物質の流入積算量の検出精度によって誤推定する可能性がある。また、圧力が上昇しないような端面詰まりでも、NSR触媒7の浄化性能が悪化するため、NSR触媒7の前後圧力差を検出する方法では、端面詰まりを推定することができない場合がある。従って、NSR触媒7の端面詰まりによりNSR触媒7の浄化性能が低下する前にNSR触媒7の端面詰まりを解消するためには、余裕を持って端面詰まりを検知して、排気ガスを昇温する必要がある。この場合には、NSR触媒7の端面詰まりの検知頻度が多くなる。その結果、排気ガスを昇温させる頻度が多くなると、燃費悪化を引き起こしてしまう。 However, in the method of detecting the accumulated inflow amount of the product clogging the front end face 7a of the NSR catalyst 7, there is a possibility of erroneous estimation depending on the detection accuracy of the accumulated inflow amount of the product material. Even if the pressure does not rise, the purification performance of the NSR catalyst 7 deteriorates. Therefore, the method of detecting the pressure difference between the front and rear sides of the NSR catalyst 7 may not be able to estimate the end face clogging. Therefore, in order to eliminate the end face clogging of the NSR catalyst 7 before the purification performance of the NSR catalyst 7 deteriorates due to the end face clogging of the NSR catalyst 7, the end face clogging is detected with a margin and the temperature of the exhaust gas is raised. There is a need. In this case, the frequency of detection of end face clogging of the NSR catalyst 7 increases. As a result, when the frequency of raising the temperature of the exhaust gas increases, the fuel efficiency deteriorates.

そのような課題に対し、本実施形態では、NSR触媒7の現在の状態に基づいて、NSR触媒7のNOx浄化率推定値が算出されると共に、NSR触媒7の上流側及び下流側に存在するNOxを検出する上流側NOxセンサ12及び下流側NOxセンサ13の検出値に基づいて、NSR触媒7のNOx浄化率検出値が算出される。そして、NOx浄化率推定値とNOx浄化率検出値との差分が算出され、その差分が規定時間内に規定値以上となったときに、NSR触媒7の前端面7aに詰まりが生じている可能性があると判定される。従って、NOx浄化率推定値とNOx浄化率検出値との差分が想定よりも短期間で大きくなったときは、NSR触媒7の劣化ではなく、NSR触媒7の前端面7aに詰まりが生じている可能性があると判定されることとなる。これにより、NSR触媒7の端面詰まりの検知精度が向上する。その結果、NSR触媒7の浄化性能が低下する前にNSR触媒7の前端面7aの詰まりを抑制するために、NSR触媒7の端面詰まりを頻繁に検知するといったことが解消される。つまり、NSR触媒7の端面詰まりの検知頻度を少なくすることができる。 In response to such a problem, in the present embodiment, the NOx purification rate estimated value of the NSR catalyst 7 is calculated based on the current state of the NSR catalyst 7, and The NOx purification rate detection value of the NSR catalyst 7 is calculated based on the detection values of the upstream NOx sensor 12 and the downstream NOx sensor 13 that detect NOx. Then, the difference between the NOx purification rate estimated value and the NOx purification rate detected value is calculated, and when the difference becomes equal to or larger than the specified value within the specified time, it is possible that the front end surface 7a of the NSR catalyst 7 is clogged. determined to be viable. Therefore, when the difference between the NOx purification rate estimated value and the NOx purification rate detected value becomes larger in a shorter period of time than expected, the NSR catalyst 7 is not deteriorated, but the front end surface 7a of the NSR catalyst 7 is clogged. It is judged to be possible. As a result, the detection accuracy of end face clogging of the NSR catalyst 7 is improved. As a result, frequent detection of end face clogging of the NSR catalyst 7 in order to suppress clogging of the front end face 7a of the NSR catalyst 7 before the purification performance of the NSR catalyst 7 deteriorates is eliminated. In other words, the frequency of detection of end face clogging of the NSR catalyst 7 can be reduced.

また、本実施形態では、NSR触媒7の前端面7aに詰まりが発生している可能性があると判定されると、NSR触媒7に流入される排気ガスが昇温するため、NSR触媒7の前端面7aに詰まった物質が燃焼除去される。従って、NSR触媒7の端面詰まりが抑制される。このとき、上述したようにNSR触媒7の端面詰まりの検知頻度が少なくなるため、排気ガスを昇温させる頻度も少なくなる。従って、燃費悪化を防ぐことができる。 Further, in this embodiment, when it is determined that the front end surface 7a of the NSR catalyst 7 may be clogged, the temperature of the exhaust gas flowing into the NSR catalyst 7 rises. Substances clogging the front end face 7a are burned and removed. Therefore, clogging of the end faces of the NSR catalyst 7 is suppressed. At this time, as described above, the frequency of detection of end face clogging of the NSR catalyst 7 is reduced, so the frequency of raising the temperature of the exhaust gas is also reduced. Therefore, deterioration of fuel efficiency can be prevented.

また、本実施形態では、NSR触媒7に流入される排気ガスの温度及び流量と、NSR触媒7の劣化度、NOx吸蔵量及び硫黄被毒量とに基づいて、NSR触媒7のNOx浄化率推定値が算出される。従って、NSR触媒7の現在の状態が適切に得られるため、NSR触媒7のNOx浄化率推定値を精度良く算出することができる。 Further, in the present embodiment, the NOx purification rate of the NSR catalyst 7 is estimated based on the temperature and flow rate of the exhaust gas flowing into the NSR catalyst 7, the degree of deterioration of the NSR catalyst 7, the NOx storage amount, and the sulfur poisoning amount. value is calculated. Therefore, since the current state of the NSR catalyst 7 can be obtained appropriately, the NOx purification rate estimated value of the NSR catalyst 7 can be calculated with high accuracy.

また、本実施形態では、排気ガスが安定状態であるときに、詰まり判定部17による判定処理の実行が許可される。このため、NSR触媒7の端面詰まりの判定処理に適した条件の排気ガスが得られるときに、詰まり判定部17による判定処理の実行が許可される。従って、NSR触媒7の端面詰まりの検知精度が更に向上する。 Further, in the present embodiment, execution of the determination process by the clogging determination unit 17 is permitted when the exhaust gas is in a stable state. For this reason, the clogging determination unit 17 is permitted to perform the determination process when the exhaust gas under conditions suitable for the end face clogging determination process of the NSR catalyst 7 is obtained. Therefore, the detection accuracy of end face clogging of the NSR catalyst 7 is further improved.

また、本実施形態では、排気ガスの安定状態が一定時間継続しているときに、詰まり判定部17による判定処理の実行が許可される。このため、詰まり判定部17による1回の判定処理期間におけるNOx浄化率推定値及びNOx浄化率検出値のばらつきの影響が少なくなる。従って、NSR触媒7の端面詰まりの検知精度が一層向上する。 Further, in the present embodiment, execution of the determination process by the clogging determination unit 17 is permitted when the stable state of the exhaust gas continues for a certain period of time. Therefore, the influence of variations in the NOx purification rate estimated value and the NOx purification rate detected value during one determination processing period by the clogging determination unit 17 is reduced. Therefore, the detection accuracy of end face clogging of the NSR catalyst 7 is further improved.

また、本実施形態では、上流側NOxセンサ12及び下流側NOxセンサ13を用いることにより、精度が高いNOx浄化率検出値が得られるため、NSR触媒7の端面詰まりの検知精度がより一層向上する。 In addition, in the present embodiment, by using the upstream NOx sensor 12 and the downstream NOx sensor 13, a highly accurate NOx purification rate detection value can be obtained, so the end face clogging detection accuracy of the NSR catalyst 7 is further improved. .

なお、本発明は、上記実施形態には限定されない。例えば上記実施形態では、排気ガスの安定状態が一定時間継続するときに、詰まり判定部17による判定処理の実行が許可されているが、特にその形態には限られず、例えば排気ガスの状態に関わらず、定期的に詰まり判定部17による判定処理の実行を許可してもよい。 In addition, this invention is not limited to the said embodiment. For example, in the above-described embodiment, when the exhaust gas is in a stable state for a certain period of time, execution of the determination process by the clogging determination unit 17 is permitted. Instead, execution of the determination process by the clogging determination unit 17 may be permitted periodically.

また、上記実施形態では、NSR触媒7の上流側に存在するNOxを検出する上流側NOxセンサ12と、NSR触媒7の下流側に存在するNOxを検出する下流側NOxセンサ13とが備えられているが、特にその形態に限られず、上流側NOxセンサ12については無くてもよい。この場合には、例えば第1浄化率算出部15により算出されたNSR触媒7の上流側のNOx推定値と下流側NOxセンサ13により取得されたNSR触媒7の下流側のNOx検出値とに基づいて、NSR触媒7のNOx浄化率検出値を算出してもよい。また、下流側NOxセンサ13により取得されたNSR触媒7の下流側のNOx検出値に基づいて、NSR触媒7におけるNOxのすり抜け量を算出することで、NSR触媒7のNOx浄化率検出値を算出してもよい。 Further, in the above embodiment, the upstream NOx sensor 12 that detects NOx existing upstream of the NSR catalyst 7 and the downstream NOx sensor 13 that detects NOx existing downstream of the NSR catalyst 7 are provided. However, the present invention is not particularly limited to that form, and the upstream NOx sensor 12 may be omitted. In this case, for example, based on the NOx estimated value on the upstream side of the NSR catalyst 7 calculated by the first purification rate calculator 15 and the NOx detection value on the downstream side of the NSR catalyst 7 obtained by the downstream NOx sensor 13 , the NOx purification rate detection value of the NSR catalyst 7 may be calculated. Also, based on the downstream NOx detection value of the NSR catalyst 7 acquired by the downstream NOx sensor 13, the amount of NOx passing through the NSR catalyst 7 is calculated, thereby calculating the NOx purification rate detection value of the NSR catalyst 7. You may

また、上記実施形態では、排気通路4にNSR触媒7が配設されているが、本発明は、排気通路4にSCR(SelectiveCatalytic Reduction)触媒が配設されたエンジンシステムにも適用可能である。SCR触媒は、排出ガス中に尿素水を噴射することでNOxを浄化するNOx浄化触媒である。 Further, although the NSR catalyst 7 is arranged in the exhaust passage 4 in the above embodiment, the present invention can also be applied to an engine system in which an SCR (Selective Catalytic Reduction) catalyst is arranged in the exhaust passage 4. The SCR catalyst is a NOx purification catalyst that purifies NOx by injecting urea water into the exhaust gas.

1…エンジンシステム、2…エンジン、4…排気通路、7…NSR触媒(NOx浄化触媒)、7a…前端面(端面)、12…上流側NOxセンサ(NOx検出部)、13…下流側NOxセンサ(NOx検出部)、15…第1浄化率算出部、16…第2浄化率算出部、17…詰まり判定部、18…排気昇温部、19…判定適否判断部。 DESCRIPTION OF SYMBOLS 1... Engine system, 2... Engine, 4... Exhaust passage, 7... NSR catalyst (NOx purification catalyst), 7a... Front end face (end face), 12... Upstream NOx sensor (NOx detector), 13... Downstream NOx sensor (NOx detection unit) 15 First purification rate calculation unit 16 Second purification rate calculation unit 17 Clogging determination unit 18 Exhaust gas temperature raising unit 19 Judgment propriety determination unit.

Claims (6)

エンジンと、
前記エンジンと接続され、前記エンジン内で発生した排気ガスが流れる排気通路と、
前記排気通路に配設され、前記排気ガスに含まれるNOxを浄化するNOx浄化触媒と、
前記NOx浄化触媒の少なくとも下流側に存在するNOxを検出するNOx検出部と、
前記NOx浄化触媒の現在の状態に基づいて、前記NOx浄化触媒のNOx浄化率推定値を算出する第1浄化率算出部と、
前記NOx検出部の検出値に基づいて、前記NOx浄化触媒のNOx浄化率検出値を算出する第2浄化率算出部と、
前記第1浄化率算出部により算出された前記NOx浄化率推定値と前記第2浄化率算出部により算出された前記NOx浄化率検出値との差分を算出し、前記NOx浄化率推定値と前記NOx浄化率検出値との差分が規定時間内に規定値以上となったときに、前記NOx浄化触媒の端面に詰まりが生じている可能性があると判定する詰まり判定部とを備えるエンジンシステム。
engine and
an exhaust passage connected to the engine through which exhaust gas generated in the engine flows;
a NOx purification catalyst disposed in the exhaust passage to purify NOx contained in the exhaust gas;
a NOx detector that detects NOx existing at least downstream of the NOx purification catalyst;
a first purification rate calculation unit that calculates an estimated NOx purification rate of the NOx purification catalyst based on the current state of the NOx purification catalyst;
a second purification rate calculation unit that calculates the NOx purification rate detection value of the NOx purification catalyst based on the detection value of the NOx detection unit;
calculating a difference between the NOx purification rate estimated value calculated by the first purification rate calculation section and the NOx purification rate detected value calculated by the second purification rate calculation section; an engine system comprising: a clogging determination unit that determines that there is a possibility that an end face of the NOx purification catalyst is clogged when a difference from the NOx purification rate detection value becomes equal to or greater than a prescribed value within a prescribed time.
前記詰まり判定部により前記NOx浄化触媒の端面に詰まりが生じている可能性があると判定されたときに、前記NOx浄化触媒に流入される前記排気ガスを昇温させる排気昇温部を更に備える請求項1記載のエンジンシステム。 The exhaust temperature raising unit further comprises an exhaust temperature raising unit for raising the temperature of the exhaust gas flowing into the NOx purification catalyst when the clogging judgment unit judges that there is a possibility that the end face of the NOx purification catalyst is clogged. The engine system according to claim 1. 前記第1浄化率算出部は、前記NOx浄化触媒に流入される前記排気ガスの温度及び流量と、前記NOx浄化触媒の劣化度、NOx吸蔵量及び硫黄被毒量とに基づいて、前記NOx浄化触媒のNOx浄化率推定値を算出する請求項1または2記載のエンジンシステム。 The first purification rate calculation unit calculates the NOx purification based on the temperature and flow rate of the exhaust gas flowing into the NOx purification catalyst, the deterioration degree of the NOx purification catalyst, the NOx storage amount, and the sulfur poisoning amount. 3. The engine system according to claim 1, wherein an estimated NOx purification rate of the catalyst is calculated. 前記排気ガスが安定状態であるかどうかを判断し、前記排気ガスが安定状態であるときに、前記詰まり判定部による判定処理の実行を許可する判定適否判断部を更に備える請求項1~3の何れか一項記載のエンジンシステム。 4. The apparatus according to any one of claims 1 to 3, further comprising a determination propriety determination unit that determines whether the exhaust gas is in a stable state and permits execution of determination processing by the clogging determination unit when the exhaust gas is in a stable state. An engine system according to any preceding claim. 前記判定適否判断部は、前記排気ガスの安定状態が一定時間継続しているときに、前記詰まり判定部による判定処理の実行を許可する請求項4記載のエンジンシステム。 5. The engine system according to claim 4, wherein the determination propriety determination section permits execution of determination processing by the clogging determination section when the stable state of the exhaust gas continues for a certain period of time. 前記NOx検出部の数が2つであり、
前記NOx検出部は、前記NOx浄化触媒の上流側及び下流側に存在するNOxを検出する請求項1~5の何れか一項記載のエンジンシステム。
The number of the NOx detection units is two,
The engine system according to any one of claims 1 to 5, wherein the NOx detector detects NOx existing upstream and downstream of the NOx purification catalyst.
JP2020096953A 2020-06-03 2020-06-03 engine system Active JP7283444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020096953A JP7283444B2 (en) 2020-06-03 2020-06-03 engine system
DE102021114111.7A DE102021114111A1 (en) 2020-06-03 2021-06-01 Machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020096953A JP7283444B2 (en) 2020-06-03 2020-06-03 engine system

Publications (2)

Publication Number Publication Date
JP2021188592A JP2021188592A (en) 2021-12-13
JP7283444B2 true JP7283444B2 (en) 2023-05-30

Family

ID=78605383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020096953A Active JP7283444B2 (en) 2020-06-03 2020-06-03 engine system

Country Status (2)

Country Link
JP (1) JP7283444B2 (en)
DE (1) DE102021114111A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222401A1 (en) 2011-02-23 2012-09-06 Robert Bosch Gmbh Method for operating an exhaust system of an internal combustion engine
WO2014092159A1 (en) 2012-12-13 2014-06-19 トヨタ自動車株式会社 Fault diagnosis device for exhaust purification system
JP2017040165A (en) 2015-08-17 2017-02-23 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018200021A (en) 2017-05-26 2018-12-20 トヨタ自動車株式会社 DIAGNOSTIC DEVICE FOR DETERIORATION IN NOx STORAGE REDUCTION CATALYST

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222401A1 (en) 2011-02-23 2012-09-06 Robert Bosch Gmbh Method for operating an exhaust system of an internal combustion engine
WO2014092159A1 (en) 2012-12-13 2014-06-19 トヨタ自動車株式会社 Fault diagnosis device for exhaust purification system
JP2017040165A (en) 2015-08-17 2017-02-23 トヨタ自動車株式会社 Control device of internal combustion engine
JP2018200021A (en) 2017-05-26 2018-12-20 トヨタ自動車株式会社 DIAGNOSTIC DEVICE FOR DETERIORATION IN NOx STORAGE REDUCTION CATALYST

Also Published As

Publication number Publication date
JP2021188592A (en) 2021-12-13
DE102021114111A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
US8056404B2 (en) Output calibration apparatus and output calibration method for NOx sensor
JP6323354B2 (en) Exhaust gas purification device for internal combustion engine
JP4798511B2 (en) NOx purification device diagnostic device
GB2517376A (en) Exhaust emission purification device for internal combustion engine
JP2008303742A (en) Device for diagnosing deterioration of catalyst
KR20190069592A (en) Fault diagnosis system of exhaust purification system
JP2010185325A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP2011226312A (en) Exhaust emission control system and method of controlling the same
US8955309B2 (en) Method for adapting an exothermic reaction in the exhaust system of a motor vehicle
CN111502850B (en) Control device for internal combustion engine
US8601793B2 (en) Malfunction diagnostic device for exhaust gas control device
US11008918B2 (en) Exhaust gas purification apparatus for an internal combustion engine
CN109958513B (en) Abnormality diagnosis system for exhaust gas purification device
WO2007138454A1 (en) Exhaust purification device and method of internal combustion engine
JP5787083B2 (en) Exhaust gas purification device for internal combustion engine
JP7283444B2 (en) engine system
JP2011106415A (en) Responsiveness deterioration detecting device of oxygen concentration sensor
JP4349219B2 (en) Exhaust gas purification device for internal combustion engine
AU2014298123A1 (en) Control device for internal combustion engine and method of controlling internal combustion engine
JP7234950B2 (en) Exhaust purification control device for internal combustion engine
JP2019035380A (en) Exhaust emission control device for internal combustion engine
KR101610114B1 (en) Control method for maintaining performance of lnt and the control system thereof
JP2005155401A (en) Air fuel ratio control device for internal combustion engine
JP2013234624A (en) Abnormality determination system for exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7283444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151