JP2016074970A - 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射 - Google Patents

耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射 Download PDF

Info

Publication number
JP2016074970A
JP2016074970A JP2015142860A JP2015142860A JP2016074970A JP 2016074970 A JP2016074970 A JP 2016074970A JP 2015142860 A JP2015142860 A JP 2015142860A JP 2015142860 A JP2015142860 A JP 2015142860A JP 2016074970 A JP2016074970 A JP 2016074970A
Authority
JP
Japan
Prior art keywords
particles
coating
substrate
hydrophobic coating
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015142860A
Other languages
English (en)
Other versions
JP7036530B2 (ja
Inventor
グレゴリー・エム・ニューブルーム
M Newbloom Gregory
ウィリアム・エー・トンプソン
A Thompson William
マーク・ジェイ・フロニング
J Froning Marc
アラシュ・ガブチ
Ghabchi Arash
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2016074970A publication Critical patent/JP2016074970A/ja
Priority to JP2021189429A priority Critical patent/JP7279143B2/ja
Application granted granted Critical
Publication of JP7036530B2 publication Critical patent/JP7036530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/02Condensation polymers of aldehydes or ketones only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】溶射堆積プロセスによって基体の上に疎水性コーティングを形成するための方法を提供する。【解決手段】本方法は、初期粒子形態を有する粒子から成るコーティング前駆体を溶射装置に供給するステップと、溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップとを備え得る。本方法は更に、基体に向けて粒子を加速させるステップと、少なくともいくつかの粒子の初期粒子形態の一部が保持されている部分溶融状態において、粒子を基体に衝突させることによって、基体の上に疎水性コーティングを形成するステップとを備え得る。【選択図】図1

Description

本開示は、一般的に疎水性及び超疎水性/疎氷性コーティングに係り、特に溶射法を用いて基体表面の上に疎水性及び超疎水性/疎氷性コーティングを生成するための方法に関する。
耐久性のある疎水性及び超疎水性/疎氷性コーティングの開発については、航空宇宙産業、船舶産業、電力産業、輸送産業、建築産業、防衛産業等の多数の産業において大きな関心が持たれている。水及び氷を弾く疎水性及び超疎水性/疎氷性コーティングの性能は、コーティングされた部品に、濡れ、腐食、膨張、腐敗、ひび割れ、及び汚れに対する耐性等の有利な特性を与える。例えば、船体に塗布された疎水性コーティングは、水中での摩擦を減らして効率を改善することができ、また、高電圧線及び電話線の上の超疎水性/疎氷性コーティングは、冬の嵐で電線及び通信線の上に氷が形成されることを防止するのに役立ち得る。
コーティングの疎水性及び超疎水性/疎氷性は、コーティングの水接触角(θ)によって特徴付けられ、これは、水滴がコーティングの表面に接触する角度である。90°未満の水接触角(θ)を有するコーティングは親水性であると特徴付けられる一方、90°よりも大きな水接触角(θ)を有するコーティングは疎水性(撥水性)であると特徴付けられる。コーティングの水接触角(θ)が150°以上である場合、そのコーティングは疎水性であるが、“超疎水性”であると特徴付けられ、また、疎氷性(撥氷性)を有することが期待される。
疎水性及び超疎水性/疎氷性コーティングを生成するための複数の方法が、文献において報告されている。例えば、溶射プロセスを用いて、超疎水性をコーティングに与えるシリコンベースの粒子用のバインダーとして用いられるベースコーティングを堆積させることで、超疎水性及び凍結防止コーティングが生成されている。しかしながら、多くの既存の疎水性及び超疎水性/疎氷性コーティングには、基体への接着性が良くない、コーティングの耐久性が良くない等の欠点がある。更に、疎水性及び超疎水性/疎氷性コーティングを塗布するためのいくつかの方法は、真空条件に因ったり、マグネトロンスパッタリングや電着等の特別な方法に因ったりするものであり、研究室規模の量に制限され得る。
従って、既存の技術には解決すべき課題と制限がある。疎水性及び超疎水性/疎氷性コーティングを生成するための上述のシステムは効果的なものではあるが、大気条件下における大面積で及び/又は多様な形状での応用のために、そうした方法を改良することが望まれている。また、疎水性コーティング及び超疎水性/疎氷性コーティングの基体への接着性及び耐久性を改善することが望まれている。
大気条件下において多様な基体(大型基体を含む)の上に耐久性のある疎水性及び超疎水性/疎氷性コーティングを生成するための方法が開示される。本開示の一態様によると、溶射堆積プロセスによって基体の上に疎水性コーティングを形成するための方法が開示される。本方法は、初期粒子形態を有する複数の粒子を含み得るコーティング前駆体を溶射装置に供給するステップを備え得る。本方法は更に、溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップと、溶射装置を用いて基体に向けて粒子を加速させるステップとを備え得る。また、本方法は、少なくともいくつかの粒子の初期粒子形態の一部が保たれている部分溶融状態において粒子を基体に衝突させることによって基体の上に疎水性コーティングを形成するステップを更に備え得る。
本開示の他の態様によると、基体と、基体の表面に塗布された疎水性コーティングとを含む物品が開示される。疎水性コーティングは、溶射堆積プロセスによって基体の表面に塗布され得て、その溶射堆積プロセスは、1)初期粒子形態を有する複数の粒子を含み得るコーティング前駆体を溶射装置に供給するステップと、2)溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップと、3)溶射装置を用いて基体に向けて粒子を加速させるステップと、4)少なくともいくつかの粒子の初期粒子形態が保たれている部分溶融状態において粒子を基体に衝突させることによって、基体の上に疎水性コーティングを形成するステップとを備える。
本開示の他の態様によると、物品が開示される。その物品は、表面を有する基体と、基体の表面に塗布された疎水性コーティングとを備え得る。疎水性コーティングは、略1ナノメートルと略100マイクロメートルとの間の平均粗さを有し得て、また、疎水性コーティングは、溶射堆積プロセスによって基体の表面の上に部分的に溶融した粒子を堆積させることによって生成され得る。
上述の特徴、機能及び利点は、多様な実施形態において独立的に達成可能であり、又は他の実施形態において組み合わせ可能なものであるが、そうした実施形態の詳細は、以下の説明及び図面を参照することで理解できるものである。
本開示に従って構成された、基体の上に堆積され、水滴に対して水接触角(θ)を有する疎水性コーティングの概略図である。 本開示の方法に係る基体の上に疎水性コーティングを生成することに含まれ得る一連のステップを示すフローチャートである。 本開示の方法に係る溶射堆積プロセスによって基体の上に疎水性コーティングを堆積させることに含まれ得る一連のステップを示すフローチャートである。 本開示の方法に係る図3の溶射堆積プロセスを行うのに使用可能な溶射装置の部分断面図である。 本開示に従って構成された、図1の疎水性コーティングを生成するのに使用可能な異なる複数のコーティング前駆体組成の概略図である。 本開示に従って構成された、図5のコーティング前駆体組成(C)から形成された疎水性コーティングの概略図である。 本開示に従って構成された、図5のコーティング前駆体組成(D)から形成された疎水性コーティングの概略図である。 本開示の方法に係る熱溶射堆積プロセスを用いて疎水性コーティングの上に追加層を塗布することに含まれ得る一連のステップを示すフローチャートである。 本開示の方法に係る図8のステップの一部の概略図である。 本開示の方法に従って作製した多様なポリマー疎水性コーティングに対する、基体と溶射装置との間のスタンドオフ距離(d)・対・水接触角(θ)のデータプロットである。 本開示の方法に従って溶射条件を変化させて作成した多様な親水性、疎水性、及び、ほぼ超疎水性/疎氷性コーティングの水接触角(θ)を示すデータプロットである。
図面が必ずしも縮尺通りではなく、開示される実施形態が概略的に示される場合があることを理解されたい。更に、以下の詳細な説明は単に例示的なものであって、本発明、その応用、及びその使用を限定するものではないことを理解されたい。従って、本開示は、説明の利便性のために特定の例示的な実施形態として示され説明されるが、他の多様な種類の実施形態において、また多様な他のシステム及び環境において実施可能であることを理解されたい。
以下図面を参照し、特に図1を参照すると、疎水性コーティング16の塗布される表面14を有する基体12を含む物品10が示されている。疎水性コーティング16は、水滴17に対して90°以上の水接触角(θ)を示し得る。場合によっては、疎水性コーティング16の水接触角(θ)は150°を超え得て、この場合、疎水性コーティング16は超疎水性/疎氷性ともなり得る。従って、“疎水性”とは称されているが、疎水性コーティング16が、その水接触角(θ)の大きさに応じて、超疎水性/疎氷性も示し得ることを理解されたい。
非限定的な一例として、物品10は民間航空機の翼であり、表面14は民間航空機の翼の前縁であり得る。この例では、疎水性コーティング16は、翼の前縁を氷結から保護し得て、前縁を積極的に加熱するのに用いられる配線の必要性を低減又は無くし得る。代わりに、物品10は、疎水性及び/又は超疎水性/疎氷性の恩恵を受け得る他のあらゆる種類の部品、例えば、電話線、電力線、パイプ、橋、多様な種類の船舶機器等であり得るが、これらに限定されない。
疎水性コーティング16は粗面を有し得て、これが少なくとも部分的に疎水性コーティング16の疎水性に寄与し得る。その理由は、高疎水性である空気分子が、粗面の突出表面構造に取り込まれて、水及び氷を弾くからである。具体的には、疎水性コーティング16は、コーティングの表面に沿って山18及び谷20を含み得て、粗面を形成する。一般的に、疎水性コーティング16の平均粗さ(R)(又は、山18と谷20との間の平均距離)は、コーティング16を形成する最小粒子の直径に依存し得る。例えば、疎水性コーティング16の平均粗さ(R)は、略1ナノメートルから略500マイクロメートルの範囲内、又は略1ナノメートルから略100マイクロメートルの範囲内となり得るが、この範囲を超えて、サブナノメートル又はミリメートル範囲にもなり得る。場合によっては、疎水性コーティング16は、多重長さスケール表面粗さ(multi‐length scale surface roughness)を示し得て、山18と谷20との間の距離が少なくとも一桁(例えばナノスケールからマイクロスケール)で変化し得る。こうした多重長さスケール表面粗さは、コーティング16の疎水性又は超疎水性/疎氷性の効果を高めるのに特に有利になり得る。
基体12は多様な材料から形成され得て、例えば、ポリマー、複合材、金属、金属合金、セラミック、サーメット、これらの組み合わせ等から形成され得るが、これらに限定されない。また、疎水性コーティング16は、一種以上のポリマー、炭素、金属、金属合金、複合材、ナノ粒子、これらの組み合わせから形成され得る。特に、疎水性コーティング16は、溶射堆積プロセス、例えば、高速酸素燃料コーティング溶射(HVOF,high velocity oxy−fuel coating spraying)、プラズマ溶射、爆裂溶射、ワイヤアーク溶射、フレーム(火炎)溶射、温式溶射、冷式溶射、又は当業者に自明の他の種類の溶射堆積プロセスによって、疎水性コーティング16を基体12の表面14に塗布することができる。溶射堆積のパラメータを調整し、疎水性コーティング16を形成する粒子の溶融の程度を調整して、結果物のコーティングの表面粗さ/疎水性の程度、及び表面14に対する疎水性コーティング16の接着強度を制御することができる(以下の詳細な説明を参照)。特に、粒子の溶融の程度が高くなるほど、粒子がより平坦になり、自由に流れて、基体12に接着し、耐久性コーティングを与える。対照的に、粒子の溶融の程度が低くなるほど、粒子は、初期粒子形態をより保持して、より粗い/疎水性の表面を与える。従って、基体への接着性と表面粗さとの間のバランスをとるような粒子の溶融の適切な又は最適の程度に達するように必要に応じて、溶射堆積のパラメータを調整し得る(以下の詳細な説明を参照)。更に、溶射堆積プロセスを、大気条件下で行うことができ、また、大表面積(>>1m)並びに/又は湾曲した及び/若しくは不規則な形状を有する表面を有する基体等の多様な基体の上に高堆積速度で疎水性コーティング16を塗布するのに使用することができる。
図2は、物品10を生成するのに使用可能な方法の概略図を示す。第一ブロック22から開始して、物品10の応用に応じた多様な材料(例えば、ポリマー、金属、複合材、セラミック、サーミット等)から形成される多様な製品から、基体12を選択し得る。しかしながら、場合によっては、溶射条件が基体の選択を制限し得ることを留意されたい。例えば、特定の金属ベース粒子を溶融又は部分的に溶融させるに必要な高温条件において、特定のポリマー基体は溶融し得る。基体を選択すると、任意のブロック24に従って、基体の表面14を、任意で処理して、表面14を粗面化して、コーティングの接着を促進させ得る。表面14の粗面化は、機械的粗面化(例えば、グリットブラスト)、又は化学的粗面化(溶剤に晒す表面エッチング等)によって達成可能である。
次のブロック26に示されるように、溶射によって、疎水性コーティング16を処理された又は未処理の基体12の表面14に塗布し得る。以下で詳細に説明するように、溶射堆積用のパラメータを必要に応じて調整して、疎水性コーティング16を形成する粒子の溶融の程度を制御して、つまりは、結果物の疎水性コーティング16の疎水性及び耐久性を制御することができる。場合によっては、疎水性コーティング16の堆積の前、間、又は後に、基体12を任意で加熱又は冷却して、粒子の溶融の程度を更に制御することができる。生成されると、コーティングの酸化物含有量を高めること(任意のブロック28)によって、コーティングの表面エネルギーを低下させて、コーティングの疎水性を任意で高めることができる。何故ならば、低表面エネルギーのコーティング材料(例えば、酸化物等)はコーティングの水接触角(θ)を上昇させる傾向があるからである。非限定的な可能性として、コーティングを実質的に溶融させずに、コーティングの頂部層を炎にくぐらせること(加熱)によって、疎水性コーティング16の酸化物含有量を増大させることができるが、他の方法も使用可能である。
上記に加えて、任意のブロック30に従って、疎水性コーティング16の上に一つ以上の追加層を塗布することによって、疎水性コーティング16の疎水性を増大させることができる。疎水性コーティング16を生じさせるのに用いられる粒子よりも低い表面エネルギー及び/又は小さいサイズを有する粒子から、追加層を生じさせることによって、表面エネルギーを低下させて、及び/又は、最終的なコーティングの多重長さスケール粗さの程度を増大させることができる。粒子の多重層から形成され得る疎水性コーティング16とは対照的に、各追加層は、薄くて、単一の粒子層(例えば、単分子層)であり得る(図8〜図9及び以下の詳細な説明を参照)。
更なる可能性として、図示される任意のブロック28及びブロック30の組み合わせを行うことによって、疎水性コーティング16の疎水性を高めることができる。ブロック26の完了時に疎水性コーティング16が未だに疎水性又は超疎水性/疎氷性ではない場合、ブロック28及び/又はブロック30に従って疎水性コーティング16を処理して、コーティングの疎水性を、疎水性状態(つまり、90°以上の水接触角(θ))に、更には超疎水性/疎氷性状態(つまり、150°以上の水接触角(θ))に強化することができる。
次に図3及び図4を参照すると、溶射装置32を用いてブロック26を実行するための方法が示されている。溶射装置32は、溶射トーチ34、例えばHVOF溶射トーチ等であり得るが、他の種類の溶射堆積機器、例えば、プラズマ溶射トーチ、粉末式フレーム溶射トーチ、溶線式フレーム溶射トーチ、又は当業者に自明の他の種類の溶射機器も使用可能である。ブロック36から開始して、図示されるように、コーティング前駆体38を溶射トーチ34に供給し得る。例えば、コーティング前駆体38を、注入部40を通して溶射トーチ34に供給し得て、注入部40へコーティング前駆体38を提供する供給ライン42を用いる(図4を参照)。コーティング前駆体38は、初期粒径及び粒子形態を有する粒子から成る粉末状であり得る。本開示によると、“形態”との用語は粒子の形状を指称する。粉末の平均粒径は、略10ナノメートルから略100マイクロメートルの範囲となり得るが、この範囲外の粒径も場合によっては使用され得る。代わりに、コーティング前駆体38はワイヤ状又はロッド状であり得る。
次のブロック44に従って、溶射トーチで、コーティング前駆体38を、少なくとも部分的に溶融した状態に加熱し得る。より具体的には、コーティング前駆体38の少なくともいくつかの粒子を少なくとも部分的に溶融させて、表面14に対する粒子の接着を促進し得る。また、粒子が初期形態の少なくとも一部を保持するように、コーティング前駆体38の少なくともいくつかの粒子を部分的に溶融させて又は完全に未溶融にして、基体12に衝突する際に粗い表面を生じさせるようにし得る。溶射トーチ34がHVOF型トーチの場合、図4に示されるように、トーチ34の燃焼室48の出口から出て来るガス流46内に粒子を注入することによって、コーティング前駆体38の加熱を達成し得る。多様な溶射堆積パラメータ、例えば、燃料対酸素比、燃料及び酸素の全体積、及び/又は、酸素/燃料供給ライン50(図4参照)から燃焼室48内に供給される燃料及び酸素の供給量等を調整して、ガス流46の温度を調整することによって、ブロック44中におけるコーティング前駆体38の粒子の溶融の程度に対する制御を達成し得る。HVOF溶射を用いると、略0.5から約0.9の間の燃料対酸素比、略1.5から略2.2GPH(ガロン/時,gallon per hour)の間の燃料供給量、及び略600から略900SCFH(立方フィート/時,standard cubic feet per hour)の間の酸素供給量で、疎水性コーティングを生成し得る。しかしながら、粒子の種類、基体の種類、使用される溶射機器の種類等(これらに限定されるものではない)の実際上の多数の要因に応じて、溶射パラメータがこれらの範囲から顕著に逸脱し得ることは理解されたい。
溶射パラメータの選択では、コーティング前駆体38を形成する粒子の熱質量(つまり、溶融に必要なエネルギー)を考慮し得て、粒子の熱質量は、コーティング前駆体38を構成する粒子のサイズ、表面積、及び多孔度の関数となり得る。また、コーティング前駆体38が、複数の種類の粒子の混合物から形成される場合、上記パラメータを変更することによって、異なる粒子の溶融の相対的な程度を、少なくともある程度は調整することもできる。また、コーティング前駆体38がポリマー粒子を含む場合、低い燃料対酸素比(例えば、<1)を用いて、ポリマー粒子の完全な溶融及び/又は燃焼を防止し得ることも留意されたい。
ブロック44に続いて、次のブロック52に従って、少なくとも部分的に溶融したコーティング前駆体粒子を基体12の表面14に向けて加速させ得る。より具体的には、図4に示されるように、溶射トーチ34のノズル56から流出する噴流54において、コーティング前駆体粒子を基体12に向けて加速させ得る。次にブロック58に従って、コーティング前駆体38の少なくともいくつかの粒子の初期粒子形態の一部が保たれている部分溶融状態において、コーティング前駆体粒子を基体12に衝突させることができる。保たれた初期粒子形態は、結果物の疎水性コーティング16の粗さ(例えば、平均粗さ(R)等)と相関し得て、初期粒径と比較して粗さが小さいことは、保たれた粒子形態の部分が少ないことと相関している。ブロック58に続いて、次のブロック60に従って、疎水性コーティング16を提供し得る。
溶射トーチ34と基体12との間のスタンドオフ距離(d)は、ブロック52、58及び60の間において、疎水性コーティング16及び基体12の加熱量を規定するように変更され得て、小さなスタンドオフ距離(d)は、疎水性コーティング/基体の加熱を増大させ、また、疎水性コーティング16内の酸化物含有量を増やす傾向にある。大きなスタンドオフ距離(d)は、溶射トーチ34を出て行く粒子が少なくとも部分的に溶融せず、より硬い状態に達することを可能にすることによって、基体12に衝突する際により粗い/疎水性の表面を生じさせる。本出願人は、一般的に、略3インチから略17インチの範囲内のスタンドオフ距離(d)を用いて、HVOF溶射で疎水性コーティングを生成している。しかしながら、粒子の種類、基体の種類、他の溶射設定、使用される溶射機器の種類等(これらに限定されない)の多様な要因に応じて、場合によっては、この範囲外のスタンドオフ距離(d)も使用され得る。
また、溶射トーチ34が基体12の上を通過するラスター速度も、ブロック52、58及び60の間において、疎水性コーティング/基体の加熱の程度を規定するように変更され得て、速いラスター速度は疎水性コーティング/基体の加熱の程度を低減する。HVOF溶射を用いて、本出願人は、略900ミリメートル/秒から略1100ミリメートル/秒の範囲内のラスター速度を採用して、疎水性コーティングを生成している。しかしながら、粒子の種類、基体の種類、他の溶射設定、及び/又は、使用される溶射機器の種類等(これらに限定されない)の多様な要因に応じて、場合によっては、この範囲外のラスター速度も使用され得る。
図5は、コーティング前駆体38として使用可能な複数の異なる粒子組成の概略図を与える。コーティング前駆体(A)から説明すると、これは、単一の化学的同一性を有し、且つ単一の粒径及び粒子形態を有する単一成分62の粒子から成る。この場合、成分62は溶射堆積プロセス中に完全には溶融せず、少なくともいくつかの粒子が基体への衝突の際に初期粒子形態の少なくとも一部を保持して表面粗さを生じさせることを保証し得る。しかしながら、成分62の少なくともいくつかの粒子は少なくとも部分的に溶融して、粒子が基体12に適切に接着することを保証し得る。
コーティング前駆体組成(B)では、コーティング前駆体38は、単一の化学的同一性を有するが、粒径及び粒子形態の異なる単一成分63から成り得る。より具体的には、単一成分63は、50重量パーセントよりも多く存在し、二次成分65よりも大きな熱質量(例えば、より大きな半径、より少ない多孔性、及び/又はより小さな表面積等)を有する主成分64から成り得て、主成分64が溶融により多くのエネルギー/熱を必要とし得る。溶射堆積プロセス中において、主成分64は完全に未溶融のままで表面粗さを促進し得る一方、二次成分65の少なくともいくつかの粒子は少なくとも部分的に溶融して表面接着を促進する。代わりに、主成分64及び二次成分65が両方とも表面粗さ、更には多重長さスケール表面粗さに寄与し得る部分的溶融状態に、主成分64及び二次成分65を両方とも加熱し得る。この点に関して、コーティング前駆体組成(B)を用いて生成される疎水性コーティングの多重長さスケール表面粗さは、主成分64及び二次成分65の異なる粒径、及び/又は主成分64と二次成分65との溶融の相対的な程度に起因するものであり得る。コーティング前駆体組成(B)は、同じ化学的同一性を有するが粒径及び/又は粒子形態の異なる追加成分を更に含み得ることを理解されたい。
コーティング前駆体組成(C)では、コーティング前駆体38は、化学的同一性が異なるが粒径及び粒子形態が同じである二種以上の成分の混合物から成り得る。例えば、コーティング前駆体組成(C)は、50重量パーセントよりも多く存在する主成分66と、50重量パーセント未満の二次成分67とを含み得るが、追加成分も含まれ得る。主成分66が結果物の疎水性コーティング16に機械的特性(例えば、硬度、破壊靱性、弾性率、表面接着性、耐久性、耐摩耗性等)を与える一方、二次成分67が疎水性コーティング16に疎水性及び超疎水性/疎氷性(例えば、低表面エネルギー、粗さ等)を与え得る。従って、溶射堆積プロセス中において、主成分66が、表面接着を促進するように少なくとも部分的に溶融し得る一方、二次成分67は、その初期形態の少なくとも一部を保持して、粗い/疎水性の表面を生じさせるように少なくとも部分的に未溶融であり得る。しかしながら、場合によっては、主成分66及び二次成分67が両方とも、疎水性コーティング16の機械的特性及び疎水性に多様な程度で寄与し得る。主成分66及び二次成分67が同じ粒径及び粒子形態を有するので、コーティング前駆体組成(C)を用いて生成される疎水性コーティングの多重長さスケール表面粗さは、主成分66と二次成分676との溶融の相対的程度に起因するものとなり得る。
コーティング前駆体組成(D)の粒子は、化学的同一性が異なり、粒径及び粒子形態も異なる二種以上の成分の混合物を含み得る。例えば、コーティング前駆体組成(D)は、50重量パーセントよりも多く存在し、二次成分69とは異なる化学的同一性及び粒径/形態を有する主成分68を含み得るが、二種よりも多くの成分も使用可能である。主成分68及び二次成分69は、疎水性コーティング16に機械的特性(例えば、硬度、破壊靱性、弾性率、表面接着性、耐久性、耐摩耗性等)又は疎水性(例えば、粗さ、低表面エネルギー等)のいずれかを与え得る。主成分68が機械的特性を与え、二次成分69が疎水性を与える場合、主成分68は、基体12に十分に接着して、結果物の疎水性コーティング16の耐久性に寄与することを保証するように溶射堆積プロセスによって少なくとも部分的に溶融し得る一方、二次成分69は、初期粒子形態の少なくとも一部を保持して、結果物の疎水性コーティング16の粗さに寄与するように、少なくとも部分的に未溶融であり得る。代わりに、主成分68が疎水性を与える場合、主成分68は、その初期粒子形態の少なくとも一部を保持するように、溶射堆積プロセス中において少なくとも部分的に未溶融であり得て、二次成分69は、基体に十分に接着するように、少なくとも部分的に溶融し得る。しかしながら、主成分68及び二次成分69の各々が、機械的特性及び疎水性の多様な程度に寄与し得ることは理解されたい。また、コーティング前駆体組成(D)を用いて生成された疎水性コーティングの多重長さスケール表面粗さは、主成分68及び二次成分69の異なる粒径、及び/又は、主成分68及び二次成分69の溶融の多様な程度に起因するものであり得ることも理解されたい。
図6は、コーティング前駆体組成(C)を用いて作製された疎水性コーティング16の概略図を示し、主成分66及び二次成分67は、化学的同一性が異なるが、同じ粒径及び粒子形態を有する。非限定的な可能性として、主成分66は、疎水性コーティング16の機械的特性に寄与し得るポリエーテルエーテルケトン(PEEK,polyetheretherketone)の粒子であり得て、二次成分67は、より低表面エネルギーを有し、疎水性コーティング16の疎水性に寄与し得るポリテトラフルオロエチレン(PTFE,polytetrafluoroethylene)の粒子であり得る。図7は、コーティング前駆体組成(D)を用いて作製された疎水性コーティング16の概略図であり、主成分68及び二次成分69が、異なる化学的同一性と、異なる粒径/粒子形態とを有する。非限定的な可能性として、主成分68はPEEK粒子から形成され得て、二次成分69はPTFE粒子から形成され得るが、他の組み合わせも可能である。
図8〜図9を参照すると、任意のブロック30に従って、疎水性コーティング16の上に一つ以上の追加層70を適用するための方法が示されている。ブロック30は、まず、上述のように(つまりブロック36のように)、ブロック74に従って溶射トーチ34に二次粒子72を供給することによって行われ得る。二次粒子72は、疎水性コーティング16を生成するのに用いられるコーティング前駆体粒子38よりも少なくとも一桁小さな粒径及び/又は低い表面エネルギーを有し得る。溶射トーチ34を用いて、二次粒子72を少なくとも部分溶融状態に加熱して、基体に向けて12加速させて、少なくともいくつかの二次粒子72の初期粒子形態の一部が保たれている部分的溶融状態において基体12に衝突させて、疎水性コーティング16の上に追加層70を提供する(ブロック76、ブロック78、ブロック80及びブロック82)。コーティング前駆体38の堆積について上述したように、溶射堆積パラメータ、例えば、燃料対酸素比、燃料及び酸素の全体積、燃料及び酸素の供給量、スタンドオフ距離(d)、及び/又は溶射トーチ34のラスター速度等を変更することによって、ブロック76、ブロック78及びブロック80の間における二次粒子72の溶融の程度を調整し得る。具体的には、溶射堆積パラメータを調整して、二次粒子72を、疎水性コーティング16への接着を促進するのに十分なだけ溶融させるが、少なくともいくつかの二次粒子72がその初期粒子形態の一部を保持して表面粗さを高めるように完全には溶融させないことを保証する。
結果物の疎水性コーティング16は、二次粒子72によって与えられるより低い表面エネルギーの結果としての疎水性の増強(水滴17に対するより大きな水接触角(θ)によって示されるような増強)、及び/又は、より小さな二次粒子72によって与えられる表面粗さの増強を有し得る。例えば、二次粒子72が、コーティング前駆体38の粒子よりも少なくとも一桁小さい場合、追加層70は、疎水性コーティング16に多重長さスケール表面粗さを導入し得る。コーティング16の多重長さスケール表面粗さ及び疎水性を更に増強するため、図8〜図9の方法を繰り返すことによって、疎水性コーティング16の上に複数の追加層70を堆積させ得て、各追加層70は、その前の層の粒径よりも小さな粒径を有する。
追加層70(一層又は複数層)は、疎水性コーティング16の疎水性を増強するためだけに使用され得るものであるので、各追加層70は単分子層(例えば、単一粒子の厚さを有するもの)等の非常に薄い層となり得て、つまり、疎水性コーティング16よりも実質的に薄い。考えられる一つの構成として、各追加層70は、二次粒子72の単分子層であり得て、疎水性コーティング16の表面の略70%から略150%を覆い得るが、場合によっては、二次粒子72の表面被覆率はこの範囲を超え得る。従って、追加層70は、疎水性コーティング16が追加層70を通して目に見えるように、少なくとも部分的に透明であり得る。
実施例
本開示の方法を用いて、ポリエーテルエーテルケトン(PEEK)等の熱可塑性ポリマー粉末から疎水性コーティングを生成した。具体的には、HVOF溶射機器を用いて、図3〜図4の方法に従って、50マイクロメートルの粒径を有するPEEK粉末を堆積させた。典型的なHVOF溶射プロセスは、1000℃を超える温度に粒子を加熱するので、HVOF溶射トーチを、低い燃料対酸素比(略0.65)及び大きなスタンドオフ距離(d)に設定して、PEEK粒子への全入熱を減らして、ポリマー粒子の完全な溶融及び/又は燃焼を防止した。表1は、多様なスタンドオフ距離(d)においてHVOF溶射によって生成したPEEKコーティングの平均粗さ深さ(mean roughness depth)(R)、平均粗さ(average roughness)(R)、相対的酸化物含有量を示す。表から見て取れるように、大きなスタンドオフ距離(d)ではPEEK粒子の加熱/溶融が低減するので、PEEKコーティングの粗さは、スタンドオフ距離(d)が増大するのと共に増大する。対照的に、堆積膜の加熱の増大が酸化物含有量を高めるので、小さなスタンドオフ距離(d)は高い酸化物含有量(つまり、低い表面エネルギー)をもたらす。従って、PEEKコーティングの粗さ、酸化物含有量、最終的な疎水性の程度を制御するように、溶射パラメータを変更し得る。
Figure 2016074970
また、本出願人は、HVOFトーチの多様なスタンドオフ距離(d)で生成した多様なポリマー粉末組成の疎水性(水接触角(θ)で測定する)を調べた。特に、図10は、略0.65の燃料対酸素比におけるスタンドオフ距離(d)の関数として、多様なポリマーベースコーティングの水接触角(θ)を示す。プロットから見て取れるように、50マイクロメートルのPEEK粒子から生成した純PEEKコーティングの疎水性(つまり、水接触角(θ))は、スタンドオフ距離(d)の増大と共に、概して増大するが、これは堆積したPEEK粒子の加熱/溶融及び粗さの減少のためである。50マイクロメートルのポリテトラフルオロエチレン(PTFE)粒子をドープした50マイクロメートルのPEEK粒子においても同様の傾向が観測され、水接触角(θ)は、大きなスタンドオフ距離(d)において超疎水性/疎氷性の領域に近づいている。PEEK及びPTFEの混合物は、コーティング前駆体組成(C)(例えば、異なる化学的同一性及び同じ粒径)のカテゴリーに分類され、PEEK粒子が機械的特性を与え、PTFE粒子が、そのより低い表面エネルギーのために疎水性を与える。興味深いことに、1%のPTFEという低さでのPEEK粒子のドーピング(99/1のPEEK/PTFE)が、純PEEK粒子から形成された粒子に対して疎水性の増強を示すのに十分であった。
また、図11に示されるように、本出願人は、溶射堆積によって、ポリマー及び金属粒子(PEEK+ステンレス鋼(SS,stainless steel))の粉末及び金属粒子(銅)の粉末から疎水性及びほぼ超疎水性/疎氷性領域の水接触角(θ)を有するコーティングを生成した。特に、図11に示される結果物のコーティングの疎水性の程度に対する制御は、多様な溶射パラメータ、例えば、スタンドオフ距離(d)、基体の上の通過回数、燃料及び酸素の流量、燃料対酸素比(図11に示される各試験番号に対する溶射パラメータを示す以下の表2を参照)。
Figure 2016074970
以上のように、本開示は、溶射堆積パラメータを調整することによって、多様な前駆体、例えば、ポリマー粉末、金属又は金属合金粉末、ポリマー粉末及び金属/金属合金粉末の混合物、ポリマー粉末及びポリマー又は金属/金属合金ナノ粒子の混合物等(これらに限定されない)から疎水性及び超疎水性/疎氷性コーティングを生成するのに使用可能である。この点に関して、複合材(例えば、ナノ粒子を担持したポリマー等)は、優れた接着性及び多重長さスケール粗さを有するように設計され得るので、コーティング前駆体として機能し得る点に留意されたい。また、本開示の溶射コーティングを用いて、基体表面に他の種類の特性、例えば、汚染防止特性、導電性、及び/又は殺菌性等(これらに限定されない)も与え得る。例えば、金属ナノ粒子(例えば銅ナノ粒子)から形成されたコーティングが導電性や殺菌性を与え得る一方、特定の種類のポリマー(例えば双生イオンポリマー等)を用いて汚染防止特性を与え得る。
更に、本開示は以下の項に係る実施形態を有する。
項1
溶射堆積プロセスによって基体の上に疎水性コーティングを形成するための方法であって、初期粒子形態を有する複数の粒子を含むコーティング前駆体を溶射装置に供給するステップと、溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップと、溶射装置を用いて基体に向けて粒子を加速させるステップと、少なくともいくつかの粒子の初期粒子形態の一部が保たれている部分溶融状態において粒子を基体に衝突させることによって、基体の上に疎水性コーティングを形成するステップとを備えた方法。
項2
疎水性コーティングが略1ナノメートルと略100マイクロメートルとの間の平均粗さを示す、前記方法。
項3
コーティング前駆体が、略10ナノメートルと略100マイクロメートルとの間の平均粒径を有する粉末を備える、前記方法。
項4
溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップが、溶射装置の酸素供給量及び燃料供給量を調整することによって、溶射装置のガス流の温度を制御することを備える、前記方法。
項5
部分溶融状態において粒子を基体に衝突させることによって、基体の上に疎水性コーティングを形成するステップが、溶射装置と基体との間のスタンドオフ距離を調整することを備える、前記方法。
項6
疎水性コーティングを加熱して、疎水性コーティングの酸化物含有量を高めるステップを更に備えた前記方法。
項7
コーティング前駆体が、単一の化学的同一性と、単一の粒径と、単一の粒子形態とを有する単一の成分から成る、前記方法。
項8
コーティング前駆体が、主成分と、主成分よりも小さな熱質量を有する二次成分とから成り、主成分及び二次成分が同じ化学的同一性と、異なる粒径と、異なる粒子形態とを有し、コーティング前駆体が50重量パーセントよりも多い主成分から成る、前記方法。
項9
コーティング前駆体が主成分と二次成分とから成り、主成分及び二次成分が、異なる化学的同一性と、同じ粒径と、同じ粒子形態とを有し、コーティング前駆体が50重量パーセントよりも多い主成分から成る、前記方法。
項10
コーティング前駆体が主成分と二次成分とから成り、主成分及び二次成分が、異なる化学的同一性と、異なる粒径と、異なる粒子形態とを有し、コーティング前駆体が50重量パーセントよりも多い主成分から成る、前記方法。
項11
溶射堆積プロセスによって疎水性コーティングの上に追加層を塗布するステップを更に備え、追加層を塗布するステップが、初期粒子形態を有する複数の二次粒子(その二次粒子は、コーティング前駆体の粒子よりも低い表面エネルギー及び小さな粒径のうち少なくとも一方を有する)を溶射装置に供給するステップと、溶射装置を用いて二次粒子を加熱して、二次粒子を少なくとも部分的に溶融させるステップと、溶射装置を用いて基体に向けて二次粒子を加速させるステップと、少なくともいくつかの二次粒子の初期粒子形態の一部が保たれている部分溶融状態において二次粒子を基体に衝突させることによって、疎水性コーティングの上に追加層を形成するステップとを備える、前記方法。
項12
追加層が、疎水性コーティングの表面の略70%から略150%を覆う単分子層である、前記方法。
項13
二次粒子が、コーティング前駆体の粒子よりも少なくとも一桁小さな粒径を有する、前記方法。
項14
追加層を含む疎水性コーティングが、多重長さスケール表面粗さを示す、前記方法。
項15
基体と、基体の表面に塗布された疎水性コーティングとを含む物品であって、疎水性コーティングが溶射堆積プロセスによって基体の表面に塗布されていて、溶射堆積プロセスが、初期粒子形態を有する粒子を含むコーティング前駆体を溶射装置に供給するステップと、溶射装置を用いて粒子を加熱して、粒子を少なくとも部分的に溶融させるステップと、溶射装置を用いて基体に向けて粒子を加速させるステップと、少なくともいくつかの粒子の初期粒子形態の一部が保たれている部分溶融状態において粒子を基体に衝突させることによって、基体の上に疎水性コーティングを形成するステップとを備える、物品。
項16
疎水性コーティングが略1ナノメートルと略100マイクロメートルとの間の平均粗さを示す、前記物品。
項17
コーティング前駆体が、略10ナノメートルと略100マイクロメートルとの間の平均粒径を有する粉末を備える、前記物品。
項18
粉末がポリマー粉末である、前記物品。
項19
溶射堆積プロセスによって疎水性コーティングの上に塗布された追加層を更に備え、溶射堆積プロセスが、初期粒子形態を有する複数の二次粒子(その二次粒子は、コーティング前駆体の粒子よりも低い表面エネルギー及び小さな粒径のうち少なくとも一方を有する)を溶射装置に供給するステップと、溶射装置を用いて二次粒子を加熱して、二次粒子を少なくとも部分的に溶融させるステップと、溶射装置を用いて基体に向けて二次粒子を加速させるステップと、少なくともいくつかの二次粒子の初期粒子形態の一部が保たれている部分溶融状態において二次粒子を基体に衝突させることによって、疎水性コーティングの上に追加層を形成するステップとを備える、前記物品。
項20
表面を有する基体と、基体の表面に塗布された疎水性コーティングとを備えた物品であって、疎水性コーティングが略1ナノメートルと略100マイクロメートルとの間の平均粗さを有し、疎水性コーティングが、溶射堆積プロセスによって基体の表面の上に部分的に溶融した粒子を堆積させることによって生成されている、物品。
一般的に、本開示の技術は、多様な設定、例えば、疎水性及び超疎水性/疎氷性の表面を有する部品の恩恵を受け得る産業応用等(これに限定されるものではない)における産業上の利用可能性を有する。疎水性及び超疎水性/疎氷性コーティングを生成するための他の方法とは対照的に、本開示の技術は、溶射堆積法のみによって、多様な出発前駆体粉末(ポリマー粉末を含む)から疎水性及び超疎水性/疎氷性コーティングを生成するものである。本開示の方法は、高堆積速度で大気条件下において、多様な産業製品、大面積の製品(例えば、船舶設備、橋、パイプ、航空機の翼等)に耐久性のある疎水性及び超疎水性/疎氷性コーティングを塗布するのに用いることができる。溶射技術は典型的には、平滑な金属、セラミック又はサーメットコーティングを塗布するのに用いられるものであるが、本開示では、コーティング前駆体の溶融の程度を制御することによって粗面化/疎水性コーティングを生じさせるのに溶射堆積プロセスを行い、基体に衝突する際に初期粒子形態の少なくとも一部が保たれるようにする。具体的には、溶射堆積パラメータ、例えば、燃料対酸素比、スタンドオフ距離(d)、燃料及び酸素の供給量、ラスター速度等を変更することによって、結果物のコーティングの溶融の程度及び粗さを調整し得る。本開示の技術は、広範な分野、例えば、航空宇宙産業、船舶産業、電力産業、輸送産業、建築産業、防衛産業等(これらに限定されない)における多様な産業上の利用可能性を見出すものであると期待される。
10 物品
12 基体
14 基体表面
16 疎水性コーティング
17 水滴
18 山
20 谷
32 溶射装置
34 溶射トーチ
38 コーティング前駆体
40 注入部
42 供給ライン
46 ガス流
48 燃焼室
50 燃料供給ライン
54 噴流
56 ノズル
70 追加層
72 二次粒子

Claims (15)

  1. 溶射堆積プロセスによって基体(12)の上に疎水性コーティング(16)を形成するための方法であって、
    初期粒子形態を有する複数の粒子を含むコーティング前駆体(38)を溶射装置(32)に供給するステップ(36)と、
    前記溶射装置(32)を用いて前記粒子を加熱して、前記粒子を少なくとも部分的に溶融させるステップ(44)と、
    前記溶射装置(32)を用いて前記基体(12)に向けて前記粒子を加速させるステップ(52)と、
    少なくともいくつかの前記粒子の初期粒子形態の一部が保たれている部分溶融状態において前記粒子を前記基体(12)に衝突させることによって、前記基体(12)の上に前記疎水性コーティング(16)を形成するステップ(58)とを備えた方法。
  2. 前記疎水性コーティング(16)が略1ナノメートルと略100マイクロメートルとの間の平均粗さを示す、請求項1に記載の方法。
  3. 前記コーティング前駆体(38)が、略10ナノメートルと略100マイクロメートルとの間の平均粒径を有する粉末を備える、請求項1に記載の方法。
  4. 前記溶射装置(32)を用いて前記粒子を加熱して、前記粒子を少なくとも部分的に溶融させるステップが、前記溶射装置(32)の酸素供給量及び燃料供給量を調整することによって、前記溶射装置のガス流の温度を制御することを備える、請求項1に記載の方法。
  5. 前記部分溶融状態において前記粒子を前記基体(12)に衝突させることによって、前記基体(12)の上に前記疎水性コーティング(16)を形成するステップが、前記溶射装置(32)と前記基体(12)との間のスタンドオフ距離(d)を調整することを備える、請求項1に記載の方法。
  6. 前記疎水性コーティング(16)を加熱して、前記疎水性コーティングの酸化物含有量を高めるステップ(28)を更に備えた請求項1から5のいずれか一項に記載の方法。
  7. 前記コーティング前駆体が、単一の化学的同一性と、単一の粒径と、単一の粒子形態とを有する単一の成分(62)から成る、請求項1に記載の方法。
  8. 前記コーティング前駆体が、主成分(64)と、前記主成分よりも小さな熱質量を有する二次成分(65)とから成り、前記主成分及び前記二次成分が、同じ化学的同一性(63)と、異なる粒径と、異なる粒子形態とを有し、前記コーティング前駆体(38)が、50重量パーセントよりも多い前記主成分(64)から成る、請求項1に記載の方法。
  9. 前記コーティング前駆体(38)が主成分(66)と二次成分(67)とから成り、前記主成分及び前記二次成分(67)が、異なる化学的同一性と、同じ粒径と、同じ粒子形態とを有し、前記コーティング前駆体(38)が、50重量パーセントよりも多い前記主成分(66)から成る、請求項1に記載の方法。
  10. 前記コーティング前駆体が主成分(68)と二次成分(69)とから成り、前記主成分(68)及び前記二次成分(69)が、異なる化学的同一性と、異なる粒径と、異なる粒子形態とを有し、前記コーティング前駆体(38)が、50重量パーセントよりも多い前記主成分(68)から成る、請求項1に記載の方法。
  11. 溶射堆積プロセスによって前記疎水性コーティングの上に追加層(70)を塗布するステップを更に備え、前記追加層を塗布するステップが、
    初期粒子形態を有する複数の二次粒子(72)であって、前記コーティング前駆体(38)の粒子よりも低い表面エネルギー及び小さな粒径のうち少なくとも一方を有する二次粒子(72)を前記溶射装置(32)に供給することステップ(74)と、
    前記溶射装置(32)を用いて前記二次粒子を加熱して、前記二次粒子(72)を少なくとも部分的に溶融させるステップ(76)と、
    前記溶射装置を用いて前記基体に向けて前記二次粒子(72)を加速させるステップ(78)と、
    少なくともいくつかの前記二次粒子(72)の初期粒子形態の一部が保持されている部分溶融状態において前記二次粒子(72)を前記基体に衝突させることによって、前記疎水性コーティング(16)の上に前記追加層を形成するステップとを備える、請求項1から10のいずれか一項に記載の方法。
  12. 前記追加層が、前記疎水性コーティング(16)の表面の略70%から略150%を覆う単分子層である、請求項11に記載の方法。
  13. 前記二次粒子が、前記コーティング前駆体(38)の粒子よりも少なくとも一桁小さな粒径(65、69)を有する、請求項11に記載の方法。
  14. 前記追加層(70)を含む前記疎水性コーティング(16)が、多重長さスケール表面粗さを示す、請求項11に記載の方法。
  15. 表面(14)を有する基体(12)と、
    前記基体(12)の表面(14)に塗布された疎水性コーティング(16)とを備えた物品であって、
    前記疎水性コーティング(16)が略1ナノメートルと略100マイクロメートルとの間の平均粗さを有し、前記疎水性コーティング(16)が、溶射堆積プロセスによって前記基体(12)の表面の上に部分的に溶融した粒子を堆積させることによって生成されている、物品。
JP2015142860A 2014-10-07 2015-07-17 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射 Active JP7036530B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021189429A JP7279143B2 (ja) 2014-10-07 2021-11-22 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/508,846 2014-10-07
US14/508,846 US11459481B2 (en) 2014-10-07 2014-10-07 Thermal spray for durable and large-area hydrophobic and superhydrophobic/icephobic coatings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021189429A Division JP7279143B2 (ja) 2014-10-07 2021-11-22 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射

Publications (2)

Publication Number Publication Date
JP2016074970A true JP2016074970A (ja) 2016-05-12
JP7036530B2 JP7036530B2 (ja) 2022-03-15

Family

ID=54359706

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015142860A Active JP7036530B2 (ja) 2014-10-07 2015-07-17 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射
JP2021189429A Active JP7279143B2 (ja) 2014-10-07 2021-11-22 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021189429A Active JP7279143B2 (ja) 2014-10-07 2021-11-22 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射

Country Status (4)

Country Link
US (1) US11459481B2 (ja)
EP (1) EP3006590B1 (ja)
JP (2) JP7036530B2 (ja)
CA (1) CA2897696C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079823A1 (ja) * 2019-10-25 2021-04-29 株式会社エンプラス 複合凹凸構造体の製造方法およびその用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459481B2 (en) 2014-10-07 2022-10-04 The Boeing Company Thermal spray for durable and large-area hydrophobic and superhydrophobic/icephobic coatings
DE102017131397A1 (de) * 2017-12-28 2019-07-04 Raantec Gmbh & Co. Kg Verfahren und Vorrichtung zum Versiegeln eines Fügespalts
CN115210296B (zh) 2019-12-11 2023-06-13 适应性表面技术股份有限公司 侧链官能化的有机硅氧烷聚合物、涂料组合物及其防冰涂料
CN112030095A (zh) * 2020-08-14 2020-12-04 北京科技大学 一种在工件表面超音速火焰喷涂耐磨耐蚀镍铬涂层的方法
CN115029655B (zh) * 2022-05-12 2023-07-18 山东科技大学 一种超疏水铁基非晶梯度涂层及其制备方法
CN115478242B (zh) * 2022-09-16 2024-02-20 西安交通大学 一种基于表面高硬度凸点强化的高耐磨超疏水涂层及其大面积制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217458A (ja) * 1989-02-20 1990-08-30 Nkk Corp セラミックスとプラスチックの混合溶射法
JPH07506514A (ja) * 1992-08-28 1995-07-20 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 料理器具コーティングシステム
JPH0827555A (ja) * 1994-07-12 1996-01-30 Nippon Steel Corp 溶融金属めっき用スリットノズル
JP2000096203A (ja) * 1998-09-23 2000-04-04 Camco Internatl Inc ポリマ―材料の溶射適用方法
JP2004283699A (ja) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd 高耐久性コーティングを施したガス使用設備用部材
JP2006083279A (ja) * 2004-09-15 2006-03-30 Seiko Epson Corp 撥液性粒子および撥液性粒子の製造方法
JP2009131851A (ja) * 2009-03-13 2009-06-18 Fujico Co Ltd 光触媒機能皮膜の形成方法
JP2014028395A (ja) * 2012-06-25 2014-02-13 Nippon Steel & Sumitomo Metal 熱間加工用潤滑剤および潤滑被膜ならびに熱間加工方法
US20140178641A1 (en) * 2012-12-21 2014-06-26 General Electric Company Methods of coating a surface and articles with coated surface
CN105316619A (zh) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0772514B1 (de) 1994-07-29 1998-12-23 Wilhelm Barthlott Selbstreinigende oberflächen von gegenständen sowie verfahren zur herstellung derselben
US5716422A (en) * 1996-03-25 1998-02-10 Wilson Greatbatch Ltd. Thermal spray deposited electrode component and method of manufacture
US6136453A (en) * 1998-11-24 2000-10-24 General Electric Company Roughened bond coat for a thermal barrier coating system and method for producing
US6327452B1 (en) * 2000-02-14 2001-12-04 Xerox Corporation Donor rolls and methods of making donor rolls
AUPQ859000A0 (en) * 2000-07-06 2000-07-27 Commonwealth Scientific And Industrial Research Organisation Apparatus for surface engineering
US6838157B2 (en) * 2002-09-23 2005-01-04 Siemens Westinghouse Power Corporation Method and apparatus for instrumenting a gas turbine component having a barrier coating
AU2003901734A0 (en) * 2003-04-11 2003-05-01 Unisearch Limited Transparent superhydrophobic coating
US7579088B2 (en) * 2004-12-02 2009-08-25 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Increasing and maintaining the hydrophilic nature of an oxidized plastic surface
DE102005004829B4 (de) 2005-02-02 2007-06-06 STE Gesellschaft für Dichtungstechnik mbH Artikel mit Antihaftbeschichtung, Verfahren zu dessen Herstellung und dessen Verwendung
US7527832B2 (en) * 2005-04-27 2009-05-05 Ferro Corporation Process for structuring self-cleaning glass surfaces
JP2009524732A (ja) 2006-01-26 2009-07-02 ジオム コーポレイション 少なくとも2つの熱可塑性樹脂を含む粉末溶射組成物
US7946303B2 (en) * 2006-09-29 2011-05-24 Lam Research Corporation Carrier for reducing entrance and/or exit marks left by a substrate-processing meniscus
JP5558807B2 (ja) * 2007-03-22 2014-07-23 株式会社東芝 真空成膜装置用部品及び真空成膜装置
GB2467780A (en) 2009-02-16 2010-08-18 Univ Sheffield Liquid Composite Materials
DE102010000344A1 (de) * 2010-02-09 2011-08-11 BAF Industrie- und Oberflächentechnik GmbH, 36452 Metallisches Bauteil, Verfahren zur Herstellung eines metallischen Bauteils und Beschlag, Möbel und/oder Haushaltsgroßgerät
BR112015006860B1 (pt) 2012-09-27 2022-08-16 Shield Aerodynamics Llc Carapaça de proteção ambiental
US9670304B2 (en) 2012-11-05 2017-06-06 Liang Wang Composite for preventing ice adhesion
KR101519709B1 (ko) * 2013-03-05 2015-05-12 기아자동차주식회사 고속화염용사 코팅법과 플라즈마 이온 질화법를 이용한 금형의 보정 및 재생 방법
US11459481B2 (en) 2014-10-07 2022-10-04 The Boeing Company Thermal spray for durable and large-area hydrophobic and superhydrophobic/icephobic coatings

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217458A (ja) * 1989-02-20 1990-08-30 Nkk Corp セラミックスとプラスチックの混合溶射法
JPH07506514A (ja) * 1992-08-28 1995-07-20 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 料理器具コーティングシステム
JPH0827555A (ja) * 1994-07-12 1996-01-30 Nippon Steel Corp 溶融金属めっき用スリットノズル
JP2000096203A (ja) * 1998-09-23 2000-04-04 Camco Internatl Inc ポリマ―材料の溶射適用方法
JP2004283699A (ja) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd 高耐久性コーティングを施したガス使用設備用部材
JP2006083279A (ja) * 2004-09-15 2006-03-30 Seiko Epson Corp 撥液性粒子および撥液性粒子の製造方法
JP2009131851A (ja) * 2009-03-13 2009-06-18 Fujico Co Ltd 光触媒機能皮膜の形成方法
JP2014028395A (ja) * 2012-06-25 2014-02-13 Nippon Steel & Sumitomo Metal 熱間加工用潤滑剤および潤滑被膜ならびに熱間加工方法
US20140178641A1 (en) * 2012-12-21 2014-06-26 General Electric Company Methods of coating a surface and articles with coated surface
CN105316619A (zh) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079823A1 (ja) * 2019-10-25 2021-04-29 株式会社エンプラス 複合凹凸構造体の製造方法およびその用途

Also Published As

Publication number Publication date
US11459481B2 (en) 2022-10-04
CA2897696C (en) 2021-06-08
US20160096972A1 (en) 2016-04-07
EP3006590B1 (en) 2021-03-31
EP3006590A1 (en) 2016-04-13
CA2897696A1 (en) 2016-04-07
JP2022022255A (ja) 2022-02-03
JP7036530B2 (ja) 2022-03-15
JP7279143B2 (ja) 2023-05-22

Similar Documents

Publication Publication Date Title
JP7279143B2 (ja) 耐久性があり大面積の疎水性及び超疎水性/疎氷性コーティング用の溶射
Lupoi et al. Deposition of metallic coatings on polymer surfaces using cold spray
Lee et al. Correlation between Al2O3 particles and interface of Al–Al2O3 coatings by cold spray
JP6446175B2 (ja) 溶射被覆した強化ポリマー複合材料
Amin et al. A review on thermal spray coating processes
Kuroda et al. Warm spraying—a novel coating process based on high-velocity impact of solid particles
Kim et al. Superhard nano WC–12% Co coating by cold spray deposition
Ravi et al. Fabrication of micro-/nano-structured super-hydrophobic fluorinated polymer coatings by cold-spray
Sahab et al. Impact of plasma spray variables parameters on mechanical and wear behaviour of plasma sprayed Al2O3 3% wt TiO2 coating in abrasion and erosion application
JP2000096203A (ja) ポリマ―材料の溶射適用方法
Lima et al. Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray
JP2010047825A (ja) 金属皮膜の形成方法及び航空宇宙構造部材
Djendel et al. Characterization of alumina-titania coatings produced by atmospheric plasma spraying on 304 SS steel
JP5605901B2 (ja) コールドスプレー法による金属材料の補修方法及びコールドスプレー用粉末材料の製造方法、並びに、コールドスプレー皮膜
Arif et al. Effect of spraying parameters on surface roughness, deposition efficiency, and microstructure of electric arc sprayed brass coating
Swain et al. Solid particle erosion wear of plasma sprayed NiTi alloy used for aerospace applications
JP7419384B2 (ja) 加熱装置、そのための用途、オーム抵抗コーティング、コールドスプレーを用いたコーティングの堆積方法、及びそこで使用するための粒子のブレンド
Fu et al. HVOF sprayed Al–Cu–Cr quasicrystalline coatings from coarse feedstock powders
Bijalwan et al. Single-step approach to tune the wettability of plasma sprayed crystalline and amorphous Fe-based coating
Lee et al. Effect of SiC particle size on cold sprayed Al–SiC composite coatings
CN108715989A (zh) 一种等离子喷涂绝缘涂层的制备方法
Sakaki Cold Spray Process~ Overview and Application Trends~
JP5960191B2 (ja) 遮熱コーティング部材の製造方法
KR100797827B1 (ko) 탄소섬유-에폭시 복합재에의 코팅방법
JP5598901B2 (ja) 樹脂コーティング部材と樹脂コーティング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201026

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210614

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220104

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220207

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7036530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150