JP2016074937A - Gold alloy and manufacturing method of molded body - Google Patents

Gold alloy and manufacturing method of molded body Download PDF

Info

Publication number
JP2016074937A
JP2016074937A JP2014204980A JP2014204980A JP2016074937A JP 2016074937 A JP2016074937 A JP 2016074937A JP 2014204980 A JP2014204980 A JP 2014204980A JP 2014204980 A JP2014204980 A JP 2014204980A JP 2016074937 A JP2016074937 A JP 2016074937A
Authority
JP
Japan
Prior art keywords
mass
gold alloy
less
manufacturing
laser sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014204980A
Other languages
Japanese (ja)
Other versions
JP6356034B2 (en
Inventor
今井 庸介
Yosuke Imai
庸介 今井
土井 義規
Yoshinori Doi
義規 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2014204980A priority Critical patent/JP6356034B2/en
Publication of JP2016074937A publication Critical patent/JP2016074937A/en
Application granted granted Critical
Publication of JP6356034B2 publication Critical patent/JP6356034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a powder gold alloy capable of easily manufacturing a molded body with high quality according to a design without increasing cost such as equipment cost and suitable for molding by laser sintering.SOLUTION: There is provided a powder gold alloy used for a manufacturing method of a molded body with using laser sintering and consisted by Au of 10 to 88 mass%, Ag of 50 mass% or less, Pt of 10 mass% or less, Pd of 56 mass% or less, Cu of 20 mass% or less, one or both of Ir and Ru of total 0 to 0.3 mass% and one or a plurality of selected from Zn, In, Sn, Ga, Si, Ge, Co and P of total 15 mass% or less.SELECTED DRAWING: None

Description

本発明は、レーザー焼結(レーザーシンタリング,レーザー溶融,金属光造形)によって立体造形物を製造する際に用いる粉末状の金合金と、粉末状金合金を用いた造形体の製造方法に関するものである。   The present invention relates to a powdered gold alloy used when manufacturing a three-dimensional structure by laser sintering (laser sintering, laser melting, metal stereolithography), and a method for manufacturing a shaped body using the powdered gold alloy. It is.

従来より、義歯、装飾品や機械部品などの金属製立体造形物の製造に際しては、主として、金属を溶かして鋳型に流し込む「精密鋳造法」が利用されてきた。しかしながら、鋳造により立体造形物を製造する際には、凝固収縮巣、ブローホール、ホットスポット、鋳肌荒れ、湯まわり不良といった鋳造欠陥を招く虞がある。そこで、このような欠陥を招くことなく、造形体を設計どおりに簡単に製造できる方法が検討されている。   Conventionally, in manufacturing metal three-dimensional shaped objects such as dentures, ornaments, and machine parts, a “precision casting method” in which metal is melted and poured into a mold has been mainly used. However, when manufacturing a three-dimensional molded article by casting, there is a possibility of causing casting defects such as solidification shrinkage nests, blowholes, hot spots, rough casting surfaces, and poor hot water. Therefore, a method for easily manufacturing a shaped body as designed without causing such a defect has been studied.

一方、CADデータから直接、立体造形物を製作する方法として、レーザー焼結(Selective Laser Sintering)と称される方法が提案されている。このレーザー焼結では、粉末状金属を一層ごとに平面状にならして、レーザーで目的部分のみを焼結させて設計形状に仕上げてゆく。このような方法によれば、金属を溶かして鋳型に流し込む工程が一切不要となり、前述したような鋳造欠陥を招くことなく、様々な立体造形物を作製することが可能である。   On the other hand, a method called laser sintering (Selective Laser Sintering) has been proposed as a method for producing a three-dimensional structure directly from CAD data. In this laser sintering, the powdered metal is flattened for each layer, and only the target portion is sintered with a laser to finish the design shape. According to such a method, the process of melting the metal and pouring it into the mold becomes unnecessary, and various three-dimensional objects can be produced without incurring the casting defects as described above.

特開2009−270130号公報JP 2009-270130 A

例えば、特許文献1には、レーザー焼結を利用して金属製の立体造形物を作成する方法が開示されている。   For example, Patent Document 1 discloses a method of creating a metal three-dimensional structure using laser sintering.

しかしながら、特許文献1に開示された方法は、造形体の原料として銀または銀合金を利用することを技術的前提としている。銀や銀合金は、光の吸収率が極めて低く、また熱伝導率が高いため、極めて高いエネルギー密度のレーザー光を照射する必要があり、設備費等が高くなるといったコスト面における問題が生じる。   However, the method disclosed in Patent Document 1 is based on the technical premise that silver or a silver alloy is used as a raw material for a shaped body. Silver and silver alloys have extremely low light absorptivity and high thermal conductivity. Therefore, it is necessary to irradiate laser light with an extremely high energy density, which causes a problem in terms of cost such as high equipment costs.

また、銀や銀合金からなる粉末原料に対して、高いエネルギー密度のレーザー光を利用してレーザー焼結を施した場合には、粉末原料の所定部位(レーザー光の照射部位)が均等に溶融せず、造形体の表面に激しい凸凹形成や多孔質になるなど、造形体の品質面において問題が生じる。   In addition, when laser sintering is applied to a powder material made of silver or a silver alloy using a laser beam with a high energy density, the predetermined part (laser light irradiation part) of the powder material is evenly melted. However, there is a problem in terms of quality of the shaped body, such as formation of severe irregularities on the surface of the shaped body and a porous structure.

また特許文献1では、銀や銀合金の光吸収率の低さを補うべく、銀粉末や銀合金粉末に対して硫化処理を施し、その粉末表面に黒みを付けることが提案されている。しかし、この方法では、硫化処理のための工程とコストが余分にかかるといった問題が生じることになる。   Further, Patent Document 1 proposes that a silver powder or silver alloy powder is subjected to a sulfiding treatment to make the powder surface black in order to compensate for the low light absorption rate of silver or silver alloy. However, in this method, there arises a problem that an extra step and cost for the sulfuration treatment are required.

そこで上述した従来技術の問題点に鑑み、本発明の目的は、設備費等のコストを増加することなく、高品質の造形体を設計どおりに簡単に製造することができる、レーザー焼結による造形に適した粉末状金合金と、これを用いた造形体の製造方法を提供することにある。   Therefore, in view of the problems of the prior art described above, the object of the present invention is to form a laser-sintered model that can easily produce a high-quality model as designed without increasing the cost of equipment and the like. Is to provide a powdery gold alloy suitable for the manufacturing method and a method for producing a shaped body using the same.

本願発明者は、レーザー焼結(レーザーシンタリング,レーザー溶融,金属光造形)を利用した立体造形物の製造に適した金属材料について研究を重ねた結果、所定の組成範囲で構成される粉末状の金属材料が、レーザー焼結を利用した立体造形物の製造に適していることを見出した。   The inventors of the present application have conducted research on metal materials suitable for the production of three-dimensional objects using laser sintering (laser sintering, laser melting, metal stereolithography). It was found that this metal material is suitable for the production of a three-dimensional structure using laser sintering.

すなわち、本発明の金合金は、レーザー焼結を利用した造形体の製造方法で用いる粉末状の金合金であって、Auを10〜88mass%、Agを50mass%以下、Ptを10mass%以下、Pdを56mass%以下、Cuを20mass%以下、Ir及び/又はRuを0〜0.3mass%、Zn,In,Sn,Ga,Si,Ge,Co,Pの一群から選ばれた一種又は二種以上を合計で15mass%以下、の成分から構成されることを特徴とする金合金である。
なお、この金合金において、Ir及び/又はRuは任意成分であり、必ずしも含有している必要はない。
また、前記粉末状金合金は、ほぼ球状であって、平均粒径が20〜100μmであることが好ましい。これにより、粉末状金合金を造形装置のステージ上に均等で平坦に曳くことができ、より良い品質の造形体を製造することが可能になる。
That is, the gold alloy of the present invention is a powdery gold alloy used in the manufacturing method of a shaped body using laser sintering, Au is 10 to 88 mass%, Ag is 50 mass% or less, Pt is 10 mass% or less, Pd is 56 mass% or less, Cu is 20 mass% or less, Ir and / or Ru is 0 to 0.3 mass%, one or more selected from the group consisting of Zn, In, Sn, Ga, Si, Ge, Co, and P Is a gold alloy characterized by comprising a total of 15 mass% or less.
In this gold alloy, Ir and / or Ru are optional components and need not necessarily be contained.
The powdery gold alloy is preferably substantially spherical and has an average particle size of 20 to 100 μm. As a result, the powdered gold alloy can be evenly and evenly spread on the stage of the modeling apparatus, and a modeled body with better quality can be manufactured.

また、本発明の造形体の製造方法は、粉末状の金合金を曳く工程と、曳いた前記粉末状の金合金の所定部分に対してレーザービームを照射する工程と、を含む複数工程を繰り返すレーザー焼結を利用した造形体の製造方法であって、前記粉末状の金合金が、Auを12〜76mass%、Agを9〜50mass%、Ptを0〜1mass%、Pdを0〜20mass%、Cuを14〜20mass%、Ir及び/又はRuを0〜0.1mass%、Zn,In,Sn,Ga,Si,Ge,Co,Pから選ばれた一種又は二種以上を合計で2mass%以下、の成分から構成されることを特徴とする造形体の製造方法である。
なお、この造形体製造方法において、Pt及びPdは任意成分であり、またIr及び/又はRuは任意の成分であり、これらは必ずしも含有している必要はない。
Moreover, the manufacturing method of the shaped body of the present invention repeats a plurality of steps including a step of spreading a powdered gold alloy and a step of irradiating a predetermined portion of the sowed powdered gold alloy with a laser beam. A method for producing a shaped body using laser sintering, wherein the powdered gold alloy is Au 12 to 76 mass%, Ag 9 to 50 mass%, Pt 0 to 1 mass%, Pd 0 to 20 mass% Cu, 14-20 mass%, Ir and / or Ru, 0-0.1 mass%, one or more selected from Zn, In, Sn, Ga, Si, Ge, Co, P, or a total of 2 mass% or less It is comprised from these components, It is a manufacturing method of the molded object characterized by the above-mentioned.
In this method for producing a shaped body, Pt and Pd are optional components, and Ir and / or Ru are optional components, and these do not necessarily have to be contained.

本発明を利用して製造される造形体の具体例としては、貴金属製の義歯、装飾品、機械部品、やそれらの試作品などが挙げられる。   Specific examples of the shaped body produced by using the present invention include precious metal dentures, ornaments, machine parts, and prototypes thereof.

鋳造欠陥を招くことがなく、品質が良くて、設計どおりの立体造形物を簡単に製造することができる。しかも、本発明で用いる粉末金属は銀を主成分としていないので、高エネルギー密度のレーザー光を使用する必要がなく、設備費等が高額になることがない。   There is no casting defect, the quality is good, and a three-dimensional object as designed can be easily manufactured. Moreover, since the powder metal used in the present invention does not contain silver as a main component, it is not necessary to use a laser beam having a high energy density, so that the equipment cost and the like are not increased.

レーザー焼結装置の仕組みを示す概略図Schematic showing the mechanism of laser sintering equipment 実施例3で作成した義歯(造形体)Denture created in Example 3 (molded body)

はじめに、レーザー焼結装置の仕組みを、図1に基づいて説明する。
図1は、本発明で利用可能なレーザー焼結装置の概略構成を示す図である。
First, the mechanism of the laser sintering apparatus will be described with reference to FIG.
FIG. 1 is a diagram showing a schematic configuration of a laser sintering apparatus that can be used in the present invention.

図1右側の粉末供給室2に、立体造形物の原料となる金属粉末4をセットする。利用可能な粉末状金属の組成範囲は前述したとおりである。なお、本発明を利用して製造できる立体造形物の種類は特に限定されず、例えば、後述する義歯のほか、機械部品、装飾品、各種試作品などを製造することが可能である。   In the powder supply chamber 2 on the right side of FIG. The composition range of the powdered metal that can be used is as described above. In addition, the kind of three-dimensional molded item which can be manufactured using this invention is not specifically limited, For example, in addition to the denture mentioned later, it is possible to manufacture a machine part, a decorative article, various prototypes, etc.

粉末供給室2にセットされた金属粉末4は、昇降テーブル6により上方に押し上げられ、更に、スキージングブレード8によって造形エリア10の昇降式造形ステージ12の上方へ水平に曳いて、該金属粉末を平面状にならし、所定の厚さの金属粉末層を形成する。この粉末層の厚さは、調整可能であり、例えば20〜50μmとすることができる(図1の粉末層h)。   The metal powder 4 set in the powder supply chamber 2 is pushed upward by the lifting table 6 and further spread horizontally by the squeezing blade 8 above the lifting / lowering modeling stage 12 in the modeling area 10. The metal powder layer having a predetermined thickness is formed by flattening. The thickness of this powder layer can be adjusted, for example, can be 20 to 50 μm (powder layer h in FIG. 1).

続いて、レーザー光源14より照射されたレーザー光を、レーザー光走査装置16によって、造形エリア10の所定位置に導き、造形ステージ12の上方に曳かれた金属粉末層の特定部分に照射する。これにより、造形ステージ上の特定部位の金属粉末18が焼結又は溶融する。   Subsequently, the laser beam emitted from the laser light source 14 is guided to a predetermined position in the modeling area 10 by the laser beam scanning device 16, and is irradiated to a specific portion of the metal powder layer placed above the modeling stage 12. Thereby, the metal powder 18 in a specific part on the modeling stage is sintered or melted.

レーザー照射が終わると、造形エリア10の昇降式造形ステージ12が粉末層hの高さ分だけ降下する。   When the laser irradiation is finished, the elevating modeling stage 12 in the modeling area 10 is lowered by the height of the powder layer h.

再び、粉末供給室2の昇降テーブル6により、粉末供給室2の金属粉末4が、粒子層hの高さだけ押し上げられ、スキージングブレード8によって造形エリア10の方へ水平に曳かれる。   Again, the lifting / lowering table 6 of the powder supply chamber 2 pushes up the metal powder 4 in the powder supply chamber 2 by the height of the particle layer h, and horizontally squeezes it toward the modeling area 10 by the squeezing blade 8.

すなわちレーザー焼結を利用した造形方法では、
(1)造形エリアに所定厚さの金属粉末を平らに曳く工程と、
(2)曳いた金属粉末層の所定部位に対してレーザービームを照射する工程と、
を繰り返して、設計形状の立体物を造形するのである。
In other words, in the modeling method using laser sintering,
(1) a step of flatly spreading a metal powder having a predetermined thickness on a modeling area;
(2) a step of irradiating a predetermined portion of the spread metal powder layer with a laser beam;
The three-dimensional object of the design shape is formed by repeating the above.

これらの工程を繰り返すことで、造形ステージ12の上方に曳いた金属粉末層の特定部分を焼結または溶融させ、その焼結または溶融させた層を積層していくことにより、立体的な造形物を形成していく。なお、一層ごとに、レーザー照射する走査パターンは、事前に装置に入力した3次元CADデータによって与えられる。   By repeating these steps, a specific part of the metal powder layer spread above the modeling stage 12 is sintered or melted, and the sintered or melted layer is laminated to form a three-dimensional modeled object. Will be formed. Note that the scanning pattern for laser irradiation for each layer is given by three-dimensional CAD data input to the apparatus in advance.

なお、上述した実施形態では省略しているが、上記(1)(2)の工程に加えて、造形物に切削加工を施す工程を含んでいてもよい。この切削加工は、たとえば、エンドミルによって造形物(造形途中の焼結体)の輪郭を高速・精密に切削、仕上げることによって行われる。   In addition, although omitted in the above-described embodiment, in addition to the steps (1) and (2), a step of cutting the shaped article may be included. This cutting process is performed, for example, by cutting and finishing the contour of a modeled object (sintered body during modeling) at high speed and with an end mill.

以下、本発明の具体的実施例について説明する。なお、以下の実施例は例示であり、特許請求の範囲に記載の本発明はこれらに限定されるものではない。   Hereinafter, specific examples of the present invention will be described. In addition, the following Examples are illustrations and this invention as described in a claim is not limited to these.

表1に示す組成の各合金粉末を用意し、前述したレーザー焼結を利用して立体造形物を作製した。表1の実施例1〜実施例7に記載の合金粉末は、ガスアトマイズ装置によって球状粉末を作製した。篩にて分球後、粒径20〜50μmの粉末を得た。比較例の銀粉末は、粒径7.8μmの粉末を用いた。実施例3で作製した立体造形物(義歯)を図2に示す。   Each alloy powder having the composition shown in Table 1 was prepared, and a three-dimensionally shaped object was prepared using the laser sintering described above. The alloy powders described in Examples 1 to 7 in Table 1 were produced as spherical powders using a gas atomizer. After sieving with a sieve, a powder having a particle size of 20 to 50 μm was obtained. As the silver powder of the comparative example, a powder having a particle size of 7.8 μm was used. The three-dimensional structure (denture) produced in Example 3 is shown in FIG.

なお、比較例の銀粉末は、光の吸収率が極めて低く、また熱伝導率が高かったため、レーザー焼結により造形することはできなかった。   In addition, since the silver powder of the comparative example had very low light absorptivity and high heat conductivity, it could not be modeled by laser sintering.

続いて、作成した実施例および比較例の義歯について、外観を観察して、欠陥の有無や品質等について評価した。結果を表2に示す。   Subsequently, the appearance of the created dentures of Examples and Comparative Examples was observed, and the presence or absence of defects, quality, and the like were evaluated. The results are shown in Table 2.

表2に示すとおり、実施例で造形した義歯は、設計どおりの形状・寸法を具備し、外観に欠陥は全く認められず、義歯としての使用に十分耐えうることが確認できた。   As shown in Table 2, the dentures modeled in the examples had the shapes and dimensions as designed, no defects were observed in the appearance, and it was confirmed that they could sufficiently withstand use as dentures.

2 粉末供給室
4 金属粉末
6 昇降テーブル
8 スキージングブレード
10 造形エリア
12 造形ステージ
14 レーザー光源
16 レーザー光走査装置
18 金属粉末
2 Powder supply chamber 4 Metal powder 6 Lifting table 8 Squeezing blade 10 Modeling area 12 Modeling stage 14 Laser light source 16 Laser beam scanning device 18 Metal powder

Claims (2)

レーザー焼結を利用した造形体の製造方法で用いる粉末状の金合金であって、
Auを10〜88mass%、
Agを50mass%以下、
Ptを10mass%以下、
Pdを56mass%以下、
Cuを20mass%以下、
Ir,Ruの一方又は双方を合計で0〜0.3mass%、及び
Zn,In,Sn,Ga,Si,Ge,Co,Pから選ばれた一又は複数を合計で15mass%以下、
から構成される金合金。
It is a powdered gold alloy used in a manufacturing method of a shaped body using laser sintering,
10 to 88 mass% of Au,
Ag less than 50mass%,
Pt below 10mass%,
Pd 56 mass% or less,
Cu is 20 mass% or less,
One or both of Ir and Ru in total 0-0.3 mass%, and
One or more selected from Zn, In, Sn, Ga, Si, Ge, Co, and P in total 15 mass% or less,
A gold alloy composed of
粉末状の金合金を曳く工程と、
曳いた前記粉末状の金合金の所定部分に対してレーザービームを照射する工程と、
を含む複数工程を繰り返すレーザー焼結を利用した造形体の製造方法であって、
前記粉末状の金合金が、
Auを12〜76mass%、
Agを9〜50mass%、
Ptを0〜1mass%、
Pdを0〜20mass%、
Cuを14〜20mass%、
Ir,Ruの一方又は双方を合計で0〜0.1mass%、及び
Zn,In,Sn,Ga,Si,Ge,Co,Pから選ばれた一又は複数を合計で2mass%以下、
から構成される造形体の製造方法。
A step of spreading a powdered gold alloy;
Irradiating a predetermined portion of the powdered gold alloy with a laser beam;
A method of manufacturing a shaped body using laser sintering that repeats a plurality of steps including:
The powdered gold alloy is
12 to 76 mass% of Au,
9-50 mass% Ag,
Pt 0 ~ 1mass%,
Pd 0 ~ 20mass%,
14-20 mass% Cu,
One or both of Ir and Ru in total 0 to 0.1 mass%, and
2 mass% or less of one or more selected from Zn, In, Sn, Ga, Si, Ge, Co, P in total,
The manufacturing method of the molded object comprised from this.
JP2014204980A 2014-10-03 2014-10-03 Method for producing gold alloy and shaped body Active JP6356034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014204980A JP6356034B2 (en) 2014-10-03 2014-10-03 Method for producing gold alloy and shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204980A JP6356034B2 (en) 2014-10-03 2014-10-03 Method for producing gold alloy and shaped body

Publications (2)

Publication Number Publication Date
JP2016074937A true JP2016074937A (en) 2016-05-12
JP6356034B2 JP6356034B2 (en) 2018-07-11

Family

ID=55949715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204980A Active JP6356034B2 (en) 2014-10-03 2014-10-03 Method for producing gold alloy and shaped body

Country Status (1)

Country Link
JP (1) JP6356034B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066038A (en) * 2016-10-19 2018-04-26 重靖 成瀬 Jewelry gold alloy
US20190368005A1 (en) * 2018-06-01 2019-12-05 Omega Sa Timepiece or piece of jewellery or gemstone jewellery made of gold
KR102247697B1 (en) * 2020-01-08 2021-05-03 박시곤 Precious metal alloy composition and its manufacturing method
JP7429011B2 (en) 2020-12-21 2024-02-07 石福金属興業株式会社 Probe pin materials and probe pins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037002A1 (en) * 2003-09-17 2007-02-15 Lena Thorsson Powder for manufacturing precious metal products by free forming fabrication and products
US20070033805A1 (en) * 2003-09-17 2007-02-15 Christer Jonsson Method of producing jewelry and other precious metal products with complex geometries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037002A1 (en) * 2003-09-17 2007-02-15 Lena Thorsson Powder for manufacturing precious metal products by free forming fabrication and products
US20070033805A1 (en) * 2003-09-17 2007-02-15 Christer Jonsson Method of producing jewelry and other precious metal products with complex geometries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066038A (en) * 2016-10-19 2018-04-26 重靖 成瀬 Jewelry gold alloy
US20190368005A1 (en) * 2018-06-01 2019-12-05 Omega Sa Timepiece or piece of jewellery or gemstone jewellery made of gold
KR102247697B1 (en) * 2020-01-08 2021-05-03 박시곤 Precious metal alloy composition and its manufacturing method
JP7429011B2 (en) 2020-12-21 2024-02-07 石福金属興業株式会社 Probe pin materials and probe pins

Also Published As

Publication number Publication date
JP6356034B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN104259459B (en) A kind of method using selective laser melting process to prepare titanium alloy handicraft
JP6356034B2 (en) Method for producing gold alloy and shaped body
JP5250338B2 (en) Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP6132523B2 (en) Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product
CN107405688B (en) Method and device for producing three-dimensional objects with improved surface quality
CN108393492A (en) A method of shaping complexity NiTi alloy components using increasing material manufacturing
RU2015125546A (en) METHOD FOR LAYERED PRODUCTION OF THE PART BY SELECTIVE MELTING OR SELECTIVE SINTERING OF POWDERS OF A POWDER WITH OPTIMAL DENSITY BY A HIGH-ENERGY BEAM
CN105562696A (en) Metal 3D printing method
WO2013128416A2 (en) Silver-based alloy powder for manufacturing of 3-dimensional metal objects
JPWO2016031279A1 (en) Additive manufacturing powder and additive manufacturing method
JP2008081840A (en) Metal powder for metal photofabrication and method of metal photofabrication using the same
JP6635227B1 (en) Manufacturing method of three-dimensional shaped object
US20170016093A1 (en) Method of manufacturing aluminum alloy articles
JP2017186653A (en) Three-dimensional shape molded article and manufacturing method therefor
JP2020073714A (en) Method for additionally manufacturing three-dimensional object
JP4915660B2 (en) Manufacturing method of three-dimensional shaped object
US20170016094A1 (en) Method of manufacturing aluminum alloy articles
JP2018533675A5 (en)
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP6711868B2 (en) Continuous additive manufacturing of high pressure turbines
JP3752427B2 (en) Solid object modeling method
CN105798294A (en) Rapid part prototyping method for refractory materials
JP2005048234A (en) Metallic powder for metal light beam fabrication
US20130273501A1 (en) Method of making dental prosthesis and ductile alloys for use therein
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R150 Certificate of patent or registration of utility model

Ref document number: 6356034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250