JP2016073021A - Power storage system and precharge method for power storage system - Google Patents

Power storage system and precharge method for power storage system Download PDF

Info

Publication number
JP2016073021A
JP2016073021A JP2014197223A JP2014197223A JP2016073021A JP 2016073021 A JP2016073021 A JP 2016073021A JP 2014197223 A JP2014197223 A JP 2014197223A JP 2014197223 A JP2014197223 A JP 2014197223A JP 2016073021 A JP2016073021 A JP 2016073021A
Authority
JP
Japan
Prior art keywords
voltage
battery pack
charged
battery packs
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014197223A
Other languages
Japanese (ja)
Other versions
JP6415218B2 (en
Inventor
隆雄 後藤
Takao Goto
隆雄 後藤
田見 佳晴
Yoshiharu Tami
田見  佳晴
裕介 勝山
Yusuke Katsuyama
裕介 勝山
輝三彰 谷口
Kimiaki Taniguchi
輝三彰 谷口
武藤 健
Takeshi Muto
健 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Telecommunication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Telecommunication Engineering Ltd filed Critical Hitachi Information and Telecommunication Engineering Ltd
Priority to JP2014197223A priority Critical patent/JP6415218B2/en
Publication of JP2016073021A publication Critical patent/JP2016073021A/en
Application granted granted Critical
Publication of JP6415218B2 publication Critical patent/JP6415218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the time required for precharge.SOLUTION: A power storage system (1) related to the present invention includes a plurality of battery packs (2a-2l), voltage detection parts (6a-6l) for detecting voltages of the battery packs, and a control part (7) which controls charging/discharging. The control part performs control in such a manner that a battery pack of a charging object with a highest voltage is selected from among a plurality of battery packs of charging objects, the battery pack of the charging object with the highest voltage is brought into a non-chargeable state, the remaining battery packs of the charging objects are charged with a constant current, the battery pack of the charging object with the highest voltage is brought into a chargeable state on the basis of the fact that voltages of the remaining battery packs rise to voltages within a predetermined allowable range with respect to the voltage of the battery pack of the charging object with the highest voltage, and constant current charging is completed.SELECTED DRAWING: Figure 2

Description

本発明は、蓄電システム及び蓄電システムのプリチャージ方法に関する。   The present invention relates to a power storage system and a method for precharging a power storage system.

複数の電池パックを並列接続した蓄電システムでは、例えば、初期設置時や電池パック交換時等に、並列接続された電池パック間での横流を抑止するためにプリチャージ(予備充電)を行うことにより各電池パックの端子電圧を均等化して、放電可能な通常状態にしている。   In a power storage system in which a plurality of battery packs are connected in parallel, for example, by performing precharging (preliminary charging) in order to suppress cross current between the battery packs connected in parallel at the time of initial installation or replacement of the battery pack. The terminal voltage of each battery pack is equalized so that the battery pack can be discharged normally.

この種の蓄電システムとして、例えば特許文献1が公知である。この特許文献1には、「並列接続された複数の電池パックの総ての電池パックを外部回路に接続して並列に充放電制御する制御手段を備えた蓄電システムにおいて、制御手段は、総ての電池パックを充電可能状態にして外部回路から給電を受けてプリチャージを行って総ての電池パックの電圧の差を所定の範囲内となるように充電し、その後に総ての電池パックを外部回路に対して充放電可能状態にする制御を行う」ことが記載されている(請求項1参照)。   As this type of power storage system, for example, Patent Document 1 is known. In this patent document 1, “all of the battery packs connected in parallel are connected to an external circuit, and in the power storage system provided with the control means for performing charge / discharge control in parallel, the control means are all All battery packs are charged so that the difference in voltage between all the battery packs is within a predetermined range by pre-charging with power supplied from an external circuit. The control to make the external circuit chargeable / dischargeable is performed "(refer to claim 1).

特開2014−90595号公報JP 2014-90595 A

従来のプリチャージは、全ての電池パックを充電のみ可能な状態にして定電流充電を行い、電池パックの電圧を揃える。ただし、この方法では、最も電圧の高い電池パックに他の電池パック電圧が近づくと、最も電圧の高い電池パックにも充電電流が流れて、最も電圧の高い電池パックの電圧も上昇してしまい、電圧が揃うのに時間が掛かる。また、揃った電圧は元の電池パック電圧よりも高い電圧になる。この現象について図6(b)を用いて詳しく説明する。図6(b)に示すように、定電流充電を行うと電池パック2bの電圧V2が時間の経過に伴って上昇し、電池パック2aの電圧V1に近接した時間t1のとき、電圧V1の値が上昇する。電池パック2bの充電スイッチや放電スイッチ等のインピーダンスによる電圧降下分、充電電圧Vcgは電圧V2より高い電圧になるため、電圧V1と電圧V2が接近すると、充電電圧Vcgが電圧V1より高くなるためである。   In the conventional precharge, all the battery packs are charged only, and constant current charging is performed, so that the voltages of the battery packs are made uniform. However, in this method, when another battery pack voltage approaches the battery pack with the highest voltage, the charging current flows through the battery pack with the highest voltage, and the voltage of the battery pack with the highest voltage also rises. It takes time for the voltages to be aligned. The aligned voltages are higher than the original battery pack voltage. This phenomenon will be described in detail with reference to FIG. As shown in FIG. 6B, when the constant current charging is performed, the voltage V2 of the battery pack 2b rises with time, and at time t1 close to the voltage V1 of the battery pack 2a, the value of the voltage V1 Rises. The charge voltage Vcg is higher than the voltage V2 due to the voltage drop due to the impedance of the charge switch and the discharge switch of the battery pack 2b. Therefore, when the voltage V1 and the voltage V2 approach each other, the charge voltage Vcg becomes higher than the voltage V1. is there.

そのため、電池パック2aと電池パック2bとの電圧差が縮まり難くなり、定電流充電完了のタイミングが時間t3まで遅延する。その結果、従来のプリチャージ方法では、プリチャージの所要時間が定電流充電完了の遅延分長くなるという課題がある。この課題を解決するための技術について、特許文献1では何ら言及されていない。   Therefore, the voltage difference between the battery pack 2a and the battery pack 2b is not easily reduced, and the constant current charging completion timing is delayed until time t3. As a result, the conventional precharge method has a problem that the time required for precharge is increased by the delay of completion of constant current charging. Patent Document 1 does not mention any technique for solving this problem.

本発明は、上記課題を解決するためになされたものであり、その目的は、複数の電池パックを並列接続した蓄電システムにおいて、プリチャージの所要時間を短縮することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to shorten the time required for precharging in a power storage system in which a plurality of battery packs are connected in parallel.

上記目的を達成するために、本発明に係る蓄電システムは、並列に接続された複数の電池パックと、前記各電池パックの電圧を検出する電圧検出部と、充放電の制御を行う制御部と、を備え、前記制御部は、前記電圧検出部の検出結果に基づいて、前記複数の電池パックのうちの全ての電池パックまたは予め定めた条件を満たす一部の電池パックで構成される複数の充電対象の電池パックの中から、最も電圧の高い充電対象の電池パックを選択し、前記最も電圧の高い充電対象の電池パックを充電不能な状態にすると共に、前記複数の充電対象の電池パックのうち前記最も電圧の高い充電対象の電池パックを除いた残りの充電対象の電池パックを定電流充電し、前記残りの充電対象の電池パックが前記最も電圧の高い充電対象の電池パックの電圧と予め定めた許容範囲内まで上昇したことに基づき、前記最も電圧の高い充電対象の電池パックを充電可能な状態とすると共に、定電流充電を完了するよう制御することを特徴とする。   To achieve the above object, a power storage system according to the present invention includes a plurality of battery packs connected in parallel, a voltage detection unit that detects a voltage of each of the battery packs, and a control unit that controls charge and discharge. The control unit includes a plurality of battery packs or a plurality of battery packs satisfying a predetermined condition based on a detection result of the voltage detection unit. The charging target battery pack having the highest voltage is selected from the charging target battery packs, the charging target battery pack having the highest voltage is made unchargeable, and the plurality of charging target battery packs The remaining charge target battery packs except for the highest voltage charge target battery pack are subjected to constant current charging, and the remaining charge target battery packs are charged with the highest voltage charge target battery packs. Based on the increased to within the allowable range determined in advance and pressure, the addition to the ready charge a battery pack of the most voltage high charging target, and controlling so as to complete the constant-current charging.

本発明によれば、複数の電池パックを並列接続した蓄電システムにおいて、プリチャージの所要時間を短縮することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。   ADVANTAGE OF THE INVENTION According to this invention, the required time of a precharge can be shortened in the electrical storage system which connected the some battery pack in parallel. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第1実施形態に係る蓄電システムが適用された無停電電源装置の内部構成を示すブロック図。The block diagram which shows the internal structure of the uninterruptible power supply to which the electrical storage system which concerns on 1st Embodiment of this invention was applied. 本発明の第1実施形態に係る蓄電システムの詳細を示すブロック図。The block diagram which shows the detail of the electrical storage system which concerns on 1st Embodiment of this invention. プリチャージ中の電池パックの充放電スイッチの動作状態を示す図。The figure which shows the operation state of the charging / discharging switch of the battery pack in precharge. プリチャージ中の電池パックの状態の変化等を示すタイムチャート。The time chart which shows the change of the state of the battery pack, etc. during a precharge. 図1に示す無停電電源装置(UPS)の動作説明図。Operation | movement explanatory drawing of the uninterruptible power supply (UPS) shown in FIG. 本実施形態(a)と従来技術(b)とのプリチャージ時間の比較を示す図。The figure which shows the comparison of the precharge time of this embodiment (a) and prior art (b).

以下、本発明に係る蓄電システムの実施形態を図に基づき説明する。   Hereinafter, an embodiment of a power storage system according to the present invention will be described with reference to the drawings.

「第1実施形態」
図1は、本発明の第1実施形態に係る蓄電システムが適用された無停電電源装置の内部構成を示すブロック図であり、図2は、本発明の第1実施形態に係る蓄電システムの詳細を示すブロック図である。図1に示すように、無停電電源装置(以下、UPSと言う)20は、商用電源(系統)11と交流負荷12との間に接続され、商用電源11からの電力供給を受けて充電すると共に、商用電源11を供給できない非常時において、内部に蓄えた電力を交流負荷12に供給する。なお、図1においてRYはリレーである。
“First Embodiment”
FIG. 1 is a block diagram showing an internal configuration of an uninterruptible power supply to which a power storage system according to the first embodiment of the present invention is applied, and FIG. 2 shows details of the power storage system according to the first embodiment of the present invention. FIG. As shown in FIG. 1, an uninterruptible power supply (hereinafter referred to as UPS) 20 is connected between a commercial power source (system) 11 and an AC load 12, and is charged by receiving power supply from the commercial power source 11. At the same time, in an emergency in which the commercial power supply 11 cannot be supplied, the power stored inside is supplied to the AC load 12. In FIG. 1, RY is a relay.

UPS20は、双方向インバータ13と、双方向DC/DCコンバータ14と、蓄電システム1とを備えて構成される。蓄電システム1は、複数個(例えば12個)の電池パック2a〜2lと、制御部7とを備える。この制御部7は、各電池パック2a〜2lの充放電制御を行うほか、双方向インバータ13及び双方向DC/DCコンバータ14の状態監視及び制御も行っている。   The UPS 20 includes a bidirectional inverter 13, a bidirectional DC / DC converter 14, and the power storage system 1. The power storage system 1 includes a plurality of (for example, twelve) battery packs 2 a to 2 l and a control unit 7. The control unit 7 performs charge / discharge control of each of the battery packs 2a to 2l, and also performs state monitoring and control of the bidirectional inverter 13 and the bidirectional DC / DC converter 14.

次に、図2を用いて電池パック2a〜2lの詳細構成を説明する。図2に示すように、電池パック2aは、充電許可回路である充電スイッチ3a及び放電許可回路である放電スイッチ4aが蓄電池5aと直列に接続されて構成されている。また、電池パック2aは、蓄電池5aの端子電圧を検出するための電圧センサ(電圧検出部)6aを備える。なお、電池パックの個数は仕様に応じて適宜決定すれば良い。   Next, the detailed configuration of the battery packs 2a to 2l will be described with reference to FIG. As shown in FIG. 2, the battery pack 2a is configured by connecting a charge switch 3a, which is a charge permission circuit, and a discharge switch 4a, which is a discharge permission circuit, in series with a storage battery 5a. Moreover, the battery pack 2a is provided with the voltage sensor (voltage detection part) 6a for detecting the terminal voltage of the storage battery 5a. In addition, what is necessary is just to determine the number of battery packs suitably according to a specification.

蓄電池5aは、例えば、複数のリチウムイオン二次電池セルを直列及び(又は)並列接続してなる組電池によって構成される。   The storage battery 5a is configured by, for example, an assembled battery formed by connecting a plurality of lithium ion secondary battery cells in series and / or in parallel.

充電スイッチ3aは、充電方向の通電可否を制御する半導体スイッチ(例えばパワーMOSFET)と該半導体スイッチに逆並列接続したダイオードによって構成する。なお、ダイオードの代わりに半導体スイッチに寄生素子として形成されるボディダイオードを用いても良い。   The charging switch 3a includes a semiconductor switch (for example, a power MOSFET) that controls whether or not energization is possible in the charging direction, and a diode connected in reverse parallel to the semiconductor switch. A body diode formed as a parasitic element in the semiconductor switch may be used instead of the diode.

放電スイッチ4aは、放電方向の通電可否を制御する半導体スイッチ(例えばパワーMOSFET)と該半導体スイッチに逆並列接続したダイオードによって構成する。なお、ダイオードの代わりに該半導体スイッチに寄生素子として形成されるボディダイオードを用いても良い。   The discharge switch 4a includes a semiconductor switch (for example, a power MOSFET) that controls whether or not energization is performed in the discharge direction, and a diode that is connected in reverse parallel to the semiconductor switch. A body diode formed as a parasitic element in the semiconductor switch may be used instead of the diode.

電池パック2b〜2lも電池パック2aと同一の構成であるため、ここでの説明は省略する。なお、図2において、R1〜R12は配線抵抗、Icgは双方向DC/DCコンバータ14を介して各電池パックに流れる充電電流、Vcgは充電電圧、I1〜I12は各電池パックに流れる電流、V1〜V12は各電池パックの端子電圧、をそれぞれ示す。   Since the battery packs 2b to 2l have the same configuration as the battery pack 2a, the description thereof is omitted here. In FIG. 2, R1 to R12 are wiring resistances, Icg is a charging current flowing through each battery pack via the bidirectional DC / DC converter 14, Vcg is a charging voltage, I1 to I12 are currents flowing through each battery pack, V1 -V12 shows the terminal voltage of each battery pack, respectively.

次に、蓄電システム1におけるプリチャージの制御方法について説明する。図3はプリチャージ中の各電池パックの充放電スイッチの動作状態を示す図、図4はプリチャージ中の電池パックの状態の変化等を示すタイムチャート、図5はUPSの動作説明図、図6は本実施形態と従来技術とのプリチャージ時間の比較を示す図である。第1実施形態では、全ての電池パック2a〜2lを充電対象としている。なお、電池パック2aの電圧V1が最も電圧が高い電池パックである場合を例に挙げて、以下にプリチャージ制御について説明する。   Next, a precharge control method in the power storage system 1 will be described. FIG. 3 is a diagram showing the operating state of the charge / discharge switch of each battery pack during precharging, FIG. 4 is a time chart showing changes in the state of the battery pack during precharging, etc., FIG. 6 is a diagram showing a comparison of precharge time between the present embodiment and the prior art. In the first embodiment, all the battery packs 2a to 21 are charged. The precharge control will be described below by taking as an example a case where the battery pack 2a has the highest voltage V1.

(第1ステップ)
プリチャージが開始されると、制御部7は各電圧センサ6a〜6lからのセンサデータに基づき各電池パック2a〜2lの電圧を測定する。そして、制御部7は電圧が最大の電池パックを選定する(ここでは、電池パック2aが最大電圧である場合を説明しているので、電池パック2aが選定される)。
(First step)
When the precharge is started, the control unit 7 measures the voltages of the battery packs 2a to 2l based on the sensor data from the voltage sensors 6a to 6l. And the control part 7 selects the battery pack with the largest voltage (here, since the case where the battery pack 2a is the maximum voltage is described, the battery pack 2a is selected).

(第2ステップ)
次に、制御部7は、最大電圧の電池パック2aの充電スイッチ3aをオフにし(充電不能状態)、その他の電池パック2b〜2lの充電スイッチ3b〜3lをオンにする(図3参照)。即ち、電池パック2a以外の電池パック2b〜2lを充電可能状態にする。なお、図3に示すように、プリチャージ中は全ての電池パック2a〜2lの放電スイッチ4a〜4lがオフに制御される。
(Second step)
Next, the control unit 7 turns off the charging switch 3a of the battery pack 2a having the maximum voltage (unchargeable state), and turns on the charging switches 3b to 3l of the other battery packs 2b to 2l (see FIG. 3). That is, the battery packs 2b to 2l other than the battery pack 2a are brought into a chargeable state. As shown in FIG. 3, the discharge switches 4a to 4l of all the battery packs 2a to 2l are controlled to be off during the precharge.

次に、制御部7からの指令により双方向インバータ13、双方向DC/DCコンバータ14が動作し、電池パックに対して定電流充電を開始する。このとき、電池パック2aは充電スイッチ3aがオフになっているので、充電されない。定電流充電が行われると、図4に示すように、最大電圧以外の電池パック2b〜2lの電圧及び電流が上昇する。   Next, the bidirectional inverter 13 and the bidirectional DC / DC converter 14 are operated by a command from the control unit 7 and start constant current charging for the battery pack. At this time, the battery pack 2a is not charged because the charging switch 3a is off. When the constant current charging is performed, the voltage and current of the battery packs 2b to 2l other than the maximum voltage are increased as shown in FIG.

(第3ステップ)
その後、電池パック2b〜2lいずれかの電圧が電池パック2aの電圧に略等しくなったことを条件に、制御部7は電池パック2aの充電スイッチ3aをオンにして、電池パック2aを充電可能状態にする。そして、制御部7は、双方向DC/DCコンバータ14に対して現在の出力電圧を電圧リミット値に設定する。これにより、定電流充電から定電圧充電に切り替わる。即ち、時間t2(図6(a)参照)以降は定電圧充電を行う。
(Third step)
Thereafter, on condition that the voltage of any one of the battery packs 2b to 2l is substantially equal to the voltage of the battery pack 2a, the control unit 7 turns on the charging switch 3a of the battery pack 2a to charge the battery pack 2a. To. Then, the control unit 7 sets the current output voltage to the voltage limit value for the bidirectional DC / DC converter 14. Thereby, it switches from constant current charge to constant voltage charge. That is, constant voltage charging is performed after time t2 (see FIG. 6A).

(第4ステップ)
制御部7は、時間t2以降であって充電終止電流値を検出したタイミングで定電圧充電を停止する。制御部7は、充電スイッチ3a〜3l及び放電スイッチ4a〜4lをオンにして充放電が可能な状態(通常状態)となる。このように、本実施形態では第1ステップから第4ステップまでの処理を行って、プリチャージが完了する。
(4th step)
The controller 7 stops the constant voltage charging at the timing after the time t2 and when the charge end current value is detected. The control part 7 will be in the state (normal state) in which charging switch 3a-3l and discharge switch 4a-4l can be turned on, and charging / discharging is possible. Thus, in the present embodiment, the processing from the first step to the fourth step is performed, and the precharge is completed.

なお、充電終止電流値とは、電池を満充電と判定するための電流閾値のことである。具体的には、リチウムイオン電池の一般的な充電方法である定電流−定電圧充電を実施するように構成すると、定電圧充電に移行した後は充電電流が減少していくが、ある充電電流値以下となったときには満充電と判断して充電動作を完全停止する。このときの電流値が充電終止電流値である。   The charge end current value is a current threshold value for determining that the battery is fully charged. Specifically, when configured to perform constant current-constant voltage charging, which is a general charging method for lithium ion batteries, the charging current decreases after shifting to constant voltage charging. When it becomes less than the value, it is determined that the battery is fully charged, and the charging operation is completely stopped. The current value at this time is the charge end current value.

UPS20の動作について補足すると、図5(a)に示すように、電池パックが並列接続されていない状態でUPS20が停止していた場合、系統入力がオンになると、UPS20は、起動時の処理を行った後、電池パック2a〜2lのプリチャージを行い、通常状態にする。また、図5(b)に示すように、UPS20が通常状態にあるときに電池パックを交換する場合、UPS20は、電池パックを交換後にプリチャージを行って通常状態にする。   Supplementing the operation of the UPS 20, as shown in FIG. 5A, when the UPS 20 is stopped when the battery packs are not connected in parallel, when the system input is turned on, the UPS 20 After that, the battery packs 2a to 2l are precharged to return to the normal state. Further, as shown in FIG. 5B, when the battery pack is replaced when the UPS 20 is in the normal state, the UPS 20 performs precharging after the battery pack is replaced to return to the normal state.

以上説明したように、従来であれば定電圧充電に移行するタイミングが時間t3まで遅れていたが、本実施形態では、電池パック2aの充電スイッチ3aをオフにして充電不能な状態として、その他の電池パック2b〜2lを定電流充電した後に、全ての電池パック2a〜2lを定電圧充電に移行するようにしたので、定電圧充電に移行するタイミングを時間t2まで短縮できる。その結果、プリチャージの所要時間を、時間t3と時間t2の差の分だけ短縮することができる。さらに、プリチャージ中に各電池パック2a〜2lの電圧はV1より高くならないため、過電圧による各電池パック2a〜2lのダメージを防止できるという利点もある。   As described above, in the prior art, the timing of shifting to constant voltage charging was delayed until time t3. However, in this embodiment, the charging switch 3a of the battery pack 2a is turned off so that charging cannot be performed. Since all the battery packs 2a to 2l are shifted to constant voltage charging after the battery packs 2b to 21 are charged with constant current, the timing for shifting to constant voltage charging can be shortened to time t2. As a result, the time required for precharging can be shortened by the difference between time t3 and time t2. Further, since the voltage of each of the battery packs 2a to 2l does not become higher than V1 during the precharge, there is an advantage that damage of each of the battery packs 2a to 2l due to overvoltage can be prevented.

「第2実施形態」
次に、本発明の第2実施形態に係る蓄電システムについて説明する。なお、第2実施形態に係る蓄電システムは、第1実施形態に係る蓄電システムと同一の構成であり、相違する部分は、制御部7によるプリチャージの制御だけである。よって、ハード構成についての図示及び説明は省略し、制御についてのみ説明する。
“Second Embodiment”
Next, a power storage system according to the second embodiment of the present invention will be described. The power storage system according to the second embodiment has the same configuration as that of the power storage system according to the first embodiment, and the only difference is the control of precharge by the control unit 7. Therefore, illustration and description of the hardware configuration are omitted, and only control will be described.

プリチャージが開始されると、制御部7は各電池パック2a〜2lの電圧をチェックし、予め定めた条件を満たす電池パックのみを選定する。ここで、上記した予め定めた条件として、例えば、電池パック2a〜2lのうち電圧が高い方からN個(Nは2以上の自然数)、電池パック2a〜2lのうち電圧が低い方からN個、電池パック2a〜2lのうち電圧差の少ないN個、という3つの条件の中から何れかを設定すると電池パックの設置位置番号を条件とするより短時間でプリチャージが完了する可能性が高い。   When precharging is started, the control unit 7 checks the voltage of each of the battery packs 2a to 2l and selects only the battery pack that satisfies a predetermined condition. Here, as the predetermined condition described above, for example, N of the battery packs 2a to 2l having a higher voltage (N is a natural number of 2 or more), and N of the battery packs 2a to 2l having a lower voltage. If any one of the three conditions of the battery packs 2a to 2l with a small voltage difference is set, it is more likely that the precharge will be completed in a shorter time than the condition of the battery pack installation position number. .

そして、制御部7は、充電対象として選んだ特定の電池パックの中から最も電圧の高い電池パックを選定し、その電池パックの充電スイッチをオフ、残りの電池パックの充電スイッチをオン、充電対象外の電池パックの充電スイッチをオフにしてから定電流充電を行い、電圧値が充電対象の電池パックの最大値と略同一になると最も電圧の高い電池パックも充電可能な状態にして定電流充電を完了する。選定された電池パックに対するプリチャージが完了すると、制御部7は、選定された電池パックのみを放電可能状態にする。   Then, the control unit 7 selects the battery pack having the highest voltage from the specific battery pack selected as the charging target, turns off the charging switch of the battery pack, turns on the charging switch of the remaining battery packs, Turn off the charging switch of the external battery pack and perform constant current charging. When the voltage value is approximately the same as the maximum value of the battery pack to be charged, make the battery pack with the highest voltage ready for charging and constant current charging. To complete. When the precharge for the selected battery pack is completed, the control unit 7 sets only the selected battery pack in a dischargeable state.

この構成によれば、必要な電池パックのみをプリチャージするので、プリチャージの所要時間をさらに短縮することができる。勿論、全ての電池パックをプリチャージする場合には、第1実施形態に記載の通り、最大電圧の電池パック以外の残りの電池パック全てをプリチャージする必要がある。   According to this configuration, since only the necessary battery pack is precharged, the time required for precharge can be further shortened. Of course, when all the battery packs are precharged, it is necessary to precharge all the remaining battery packs other than the battery pack having the maximum voltage as described in the first embodiment.

また、定電圧充電への移行をさらに早くするために、充電対象の電池パックのうち残りの電池パックが最大電圧の電池パックと略同一にある手前であっても予め定めた許容電圧値に到達した場合に、定電流充電から定電圧充電に移行させるよう、制御部7が双方向DC/DCコンバータ14を制御して電池パックの充電を制御するようにしても良い。   In addition, in order to make the transition to constant voltage charging even faster, a predetermined allowable voltage value is reached even if the remaining battery pack is almost the same as the battery pack of the maximum voltage among the battery packs to be charged. In this case, the control unit 7 may control the bidirectional DC / DC converter 14 to control the charging of the battery pack so that the constant current charging is shifted to the constant voltage charging.

尚、本発明は、上述した実施形態に限定するものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。   In addition, this invention is not limited to embodiment mentioned above, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 蓄電システム
2a〜2l 電池パック
3a〜3l 充電スイッチ
4a〜4l 放電スイッチ
5a〜5l 蓄電池
6a〜6l 電圧センサ(電圧検出部)
7 制御部

DESCRIPTION OF SYMBOLS 1 Power storage system 2a-2l Battery pack 3a-3l Charge switch 4a-4l Discharge switch 5a-5l Storage battery 6a-6l Voltage sensor (voltage detection part)
7 Control unit

Claims (4)

並列に接続された複数の電池パックと、前記各電池パックの電圧を検出する電圧検出部と、充放電の制御を行う制御部と、を備え、
前記制御部は、
前記電圧検出部の検出結果に基づいて、前記複数の電池パックのうちの全ての電池パックまたは予め定めた条件を満たす一部の電池パックで構成される複数の充電対象の電池パックの中から、最も電圧の高い充電対象の電池パックを選択し、前記最も電圧の高い充電対象の電池パックを充電不能な状態にすると共に、前記複数の充電対象の電池パックのうち前記最も電圧の高い充電対象の電池パックを除いた残りの充電対象の電池パックを定電流充電し、
前記残りの充電対象の電池パックが前記最も電圧の高い充電対象の電池パックの電圧と予め定めた許容範囲内まで上昇したことに基づき、前記最も電圧の高い充電対象の電池パックを充電可能な状態とすると共に、定電流充電を完了するよう制御することを特徴とする蓄電システム。
A plurality of battery packs connected in parallel; a voltage detection unit that detects the voltage of each battery pack; and a control unit that controls charge and discharge.
The controller is
Based on the detection result of the voltage detection unit, from among a plurality of battery packs to be charged configured by all battery packs of the plurality of battery packs or some battery packs satisfying a predetermined condition, The battery pack with the highest voltage to be charged is selected, the battery pack with the highest voltage to be charged is made unchargeable, and the battery with the highest voltage among the plurality of battery packs to be charged is selected. Charge the remaining battery pack except the battery pack at a constant current,
Based on the fact that the remaining battery pack to be charged has risen to a predetermined allowable range with the voltage of the battery pack to be charged having the highest voltage, a state in which the battery pack to be charged with the highest voltage can be charged And a control system for controlling to complete the constant current charging.
請求項1において、
前記残りの充電対象の電池パックと前記最も電圧の高い充電対象の電池パックの電圧とが略同一であることを前記予め定めた許容範囲に設定したことを特徴とする蓄電システム。
In claim 1,
The power storage system according to claim 1, wherein the predetermined allowable range is set such that the remaining battery pack to be charged and the voltage of the battery pack to be charged having the highest voltage are substantially the same.
請求項1または2において、
前記複数の電池パックのうち電圧の高い方からN個(ただし、Nは2以上の自然数)、前記複数の電池パックのうち電圧の低い方からN個、及び前記複数の電池パックのうち電圧差の少ないN個の中から何れかを前記予め定めた条件に設定したことを特徴とする蓄電システム。
In claim 1 or 2,
N of the plurality of battery packs having the highest voltage (where N is a natural number of 2 or more), N of the plurality of battery packs having the lowest voltage, and the voltage difference of the plurality of battery packs A power storage system characterized in that any one of N having a small number is set to the predetermined condition.
並列に接続された複数の電池パックと、前記各電池パックの電圧を検出する電圧検出部と、充放電の制御を行う制御部と、を備えた蓄電システムのプリチャージ方法であって、
前記電圧検出部の検出結果に基づいて、前記複数の電池パックのうちの全ての電池パックまたは予め定めた条件を満たす一部の電池パックで構成される複数の充電対象の電池パックの中から、最も電圧の高い充電対象の電池パックを選択する第1ステップと、
前記最も電圧の高い充電対象の電池パックを充電不能な状態にすると共に、前記複数の充電対象の電池パックのうち前記最も電圧の高い充電対象の電池パックを除いた残りの充電対象の電池パックを定電流充電する第2ステップと、
前記残りの充電対象の電池パックが前記最も電圧の高い充電対象の電池パックの電圧と予め定めた許容範囲内まで上昇したことに基づき、前記最も電圧の高い充電対象の電池パックを充電可能な状態にすると共に、定電流充電を完了する第3ステップと、を含むことを特徴とする蓄電システムのプリチャージ方法。
A precharge method for a power storage system, comprising: a plurality of battery packs connected in parallel; a voltage detection unit that detects a voltage of each battery pack; and a control unit that performs charge / discharge control,
Based on the detection result of the voltage detection unit, from among a plurality of battery packs to be charged configured by all battery packs of the plurality of battery packs or some battery packs satisfying a predetermined condition, A first step of selecting a battery pack to be charged with the highest voltage;
The charging target battery pack having the highest voltage is made unchargeable, and the remaining charging target battery packs excluding the charging target battery pack having the highest voltage among the plurality of charging target battery packs. A second step of constant current charging;
Based on the fact that the remaining battery pack to be charged has risen to a predetermined allowable range with the voltage of the battery pack to be charged having the highest voltage, a state in which the battery pack to be charged with the highest voltage can be charged And a third step of completing the constant current charging.
JP2014197223A 2014-09-26 2014-09-26 Storage system and storage system precharge method Expired - Fee Related JP6415218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014197223A JP6415218B2 (en) 2014-09-26 2014-09-26 Storage system and storage system precharge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014197223A JP6415218B2 (en) 2014-09-26 2014-09-26 Storage system and storage system precharge method

Publications (2)

Publication Number Publication Date
JP2016073021A true JP2016073021A (en) 2016-05-09
JP6415218B2 JP6415218B2 (en) 2018-10-31

Family

ID=55865064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014197223A Expired - Fee Related JP6415218B2 (en) 2014-09-26 2014-09-26 Storage system and storage system precharge method

Country Status (1)

Country Link
JP (1) JP6415218B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183395A1 (en) * 2016-04-21 2017-10-26 株式会社豊田自動織機 Battery pack
JP2017212868A (en) * 2016-05-20 2017-11-30 株式会社東芝 Power supply device
US10122208B2 (en) 2016-05-20 2018-11-06 Kabushiki Kaisha Toshiba Power device
JP2020005386A (en) * 2018-06-27 2020-01-09 株式会社Soken Power supply system
JP2022029299A (en) * 2020-08-04 2022-02-17 矢崎総業株式会社 Charge control device, battery system, and charge control method
WO2023238712A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Battery pack charging method and power storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313445A (en) * 1998-04-28 1999-11-09 Nikkuu:Kk Charging of lead-acid battery and apparatus thereof
JP2008220104A (en) * 2007-03-06 2008-09-18 Canon Inc Charger and charge control method for the same
JP2012222980A (en) * 2011-04-11 2012-11-12 Denso Corp Secondary battery status adjustment device
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313445A (en) * 1998-04-28 1999-11-09 Nikkuu:Kk Charging of lead-acid battery and apparatus thereof
JP2008220104A (en) * 2007-03-06 2008-09-18 Canon Inc Charger and charge control method for the same
JP2012222980A (en) * 2011-04-11 2012-11-12 Denso Corp Secondary battery status adjustment device
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183395A1 (en) * 2016-04-21 2017-10-26 株式会社豊田自動織機 Battery pack
JPWO2017183395A1 (en) * 2016-04-21 2018-08-09 株式会社豊田自動織機 Battery pack
JP2017212868A (en) * 2016-05-20 2017-11-30 株式会社東芝 Power supply device
US10122208B2 (en) 2016-05-20 2018-11-06 Kabushiki Kaisha Toshiba Power device
JP2020005386A (en) * 2018-06-27 2020-01-09 株式会社Soken Power supply system
JP7071229B2 (en) 2018-06-27 2022-05-18 株式会社Soken Power system
JP2022029299A (en) * 2020-08-04 2022-02-17 矢崎総業株式会社 Charge control device, battery system, and charge control method
JP7220960B2 (en) 2020-08-04 2023-02-13 矢崎総業株式会社 Charge/discharge control device, battery system, and charge/discharge control method
WO2023238712A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Battery pack charging method and power storage system

Also Published As

Publication number Publication date
JP6415218B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6415218B2 (en) Storage system and storage system precharge method
EP2418751B1 (en) Battery charger and battery charging method
US9209637B2 (en) Battery control apparatus
JP5618393B2 (en) Power storage system and secondary battery control method
KR101702824B1 (en) Electricity storage element charging method and electricity storage device
WO2016113791A1 (en) Cell device, charging control device, and charging control method
KR101084828B1 (en) Battery pack and Charging Control Method for Battery Pack
JP6196466B2 (en) Power supply
CN102195333A (en) Direct-current power source apparatus
EP3922503B1 (en) Load access detection method, switch circuit and battery management system
JP5567040B2 (en) Secondary battery control device
KR102342841B1 (en) Battery management apparatus, and battery pack and power system including the same
JP6824295B2 (en) Electrical equipment
US20110193527A1 (en) Lithium Battery Module
JP2020043653A (en) Power storage device and charging method
KR20130013108A (en) Balancing apparatus of secondary battery
US11110817B2 (en) Equalization control device and in-vehicle power supply device
KR20180035080A (en) Battery cell balancing circuit
JP2016040999A (en) Charged state equalization method of storage battery device
JP2019106816A (en) Electrical power system
JP2009207253A (en) Battery-charging system and battery-charging method
JP2020048318A (en) Secondary battery device
JP2016154423A (en) Voltage balance device
EP2782206B1 (en) Battery control device
JP2021061717A (en) Cell balance control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees