JPH11313445A - Charging of lead-acid battery and apparatus thereof - Google Patents

Charging of lead-acid battery and apparatus thereof

Info

Publication number
JPH11313445A
JPH11313445A JP10132629A JP13262998A JPH11313445A JP H11313445 A JPH11313445 A JP H11313445A JP 10132629 A JP10132629 A JP 10132629A JP 13262998 A JP13262998 A JP 13262998A JP H11313445 A JPH11313445 A JP H11313445A
Authority
JP
Japan
Prior art keywords
charging
storage battery
voltage
constant
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10132629A
Other languages
Japanese (ja)
Inventor
Mikio Nakajima
幹雄 仲島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKUU KK
Showa Corp KK
Original Assignee
NIKKUU KK
Showa Corp KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKUU KK, Showa Corp KK filed Critical NIKKUU KK
Priority to JP10132629A priority Critical patent/JPH11313445A/en
Publication of JPH11313445A publication Critical patent/JPH11313445A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce charging time by parallel-connecting a plurality of lead-acid batteries to a charging apparatus for charging, and avoid overcharging and the shortage of charging by discriminating the time, at which charging of respective batteries has been completed properly by means of a full-charge discriminating circuit. SOLUTION: A plurality of batteries B1 , B2 , B3 are parallel-connected with a constant current-voltage charging apparatus 2, and during a charging period by a constant current charging system, the respective batteries or respective groups of batteries connected in parallel are charged appropriately by switching selection switches S1 -S3 . When all the batteries reach a fixed charging voltage, switching to constant voltage charging system is conducted, so that the respective batteries connected in parallel are charged at constant voltage. The terminal voltage of the respective batteries is sampled continuously within this period. Based on the fluctuations in a measured terminal voltage value, the fully-charged conditions of respective batteries are discriminated respectively by means of a full-charging discriminating circuit provided in a controller 4, the fully-charged batteries and charged additionally for a fixed period to have the charging finished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、充電電源を用いて鉛蓄
電池を充電する方法およびその装置に関し、特に、一般
自動車、ゴルフカート、フオークリフト、車椅子、電気
自動車等の車両や、掃除機等に用いられる自動車用鉛蓄
電池またはサイクル用鉛蓄電池の充電用に適した充電方
法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for charging a lead storage battery using a charging power source, and more particularly to vehicles such as general automobiles, golf carts, forklifts, wheelchairs, electric automobiles, vacuum cleaners and the like. The present invention relates to a charging method and a device suitable for charging a lead storage battery for a vehicle or a lead storage battery for a cycle used in a vehicle.

【0002】[0002]

【従来の技術】一般に車載用またはサイクル用の鉛蓄電
池は、2V×6セルの12Vバッテリーが使用されてい
るが、それを充電する場合は、図5に示すように、通
常、充電用電源装置51に直列に2個または3個の蓄電
池B1〜B3を接続し、2個の場合は24V、3個の場
合は36Vとみなして、それに見合う充電用電源装置を
使用して充電をしている。なお、図中、1は交流電源、
52は変圧器、53は整流器、54は負荷を示す。
2. Description of the Related Art In general, a 12V battery of 2V.times.6 cells is used as a lead-acid battery for use in a vehicle or for a cycle. When charging the battery, as shown in FIG. Two or three storage batteries B1 to B3 are connected in series to 51, and two batteries are regarded as 24V and three batteries are regarded as 36V, and charging is performed using a charging power supply device corresponding thereto. . In the figure, 1 is an AC power supply,
52 is a transformer, 53 is a rectifier, and 54 is a load.

【0003】ところが、実際には個々の鉛蓄電池は残存
する電気容量がそれぞれ異なっているので、同一の充電
装置を使用しても満充電を迎える時期が異なってくる。
その結果、全体が同時に満充電を迎えることは少なく、
あるものは過充電になり、またあるものは充電不足にな
るという不都合が発生していた。
[0003] However, in practice, individual lead-acid batteries have different remaining electric capacities, and therefore, the timing of full charge differs even when the same charging device is used.
As a result, it is unlikely that the whole will be fully charged at the same time,
Some were overcharged, while others were undercharged.

【0004】また、複数個直列に接続して充電すると、
マイナス極に近い鉛蓄電池から比重が上がるので、マイ
ナス極に近い鉛蓄電池は過充電になり、その反面プラス
極に近い鉛蓄電池は充電不足になるという傾向が見られ
る。
When a plurality of batteries are connected in series and charged,
Since the specific gravity increases from the lead storage battery near the minus pole, the lead storage battery near the minus pole tends to be overcharged, while the lead storage battery near the plus pole tends to be undercharged.

【0005】[0005]

【発明が解決しようとする課題】そこで、充電中、各鉛
蓄電池の端子電圧を測定し、一定の電圧に達したら、満
充電したものと見做す方法が考えられる。ところが、新
しい鉛蓄電池と旧い鉛蓄電池では、満充電の端子電圧が
異なり、旧い鉛蓄電池程、満充電の端子電圧が低いの
で、過充電に落ちやすいという欠点がある。特に、密閉
型蓄電池は過充電に陥ると、電極が再生不能になるばか
りでなく、内部に発生した酸素ガスのために蓄電池が爆
発するという危険を伴うので、満充電の時期の判定は極
めて重要である。
Therefore, a method is considered in which the terminal voltage of each lead-acid battery is measured during charging, and when the voltage reaches a certain level, it is considered that the battery is fully charged. However, the new lead-acid battery and the old lead-acid battery have different full-charge terminal voltages, and the older lead-acid battery has a lower fully-charged terminal voltage, and thus has the disadvantage of easily falling into overcharge. In particular, if the sealed storage battery is overcharged, not only will the electrode become unreproducible, but the storage battery will also explode due to oxygen gas generated inside, so it is extremely important to determine the timing of full charge. It is.

【0006】本発明は、上記の欠点を除き、同一の充電
装置を用いて、複数の鉛蓄電池を同時に充電する際に、
全ての鉛蓄電池が短時間で、しかも均一な状態で満充電
になるような充電方法およびその装置を提供することを
第1の目的とするものである。
[0006] The present invention eliminates the above-mentioned drawbacks and provides a method for simultaneously charging a plurality of lead-acid batteries using the same charging device.
It is a first object of the present invention to provide a charging method and an apparatus for fully charging all lead-acid batteries in a short time and in a uniform state.

【0007】また、本発明は、容量の小さい充電装置を
用いても、短時間で多数の鉛蓄電池を同時に充電するこ
とができる充電方法およびその装置を提供することを第
2の目的とするものである。
A second object of the present invention is to provide a charging method and a device capable of simultaneously charging a large number of lead-acid batteries in a short time even if a small-capacity charging device is used. It is.

【0008】さらに、本発明は、軽量で持運びが容易
で、車や機器に直接搭載することが可能な鉛蓄電池用の
充電装置を低コストで提供することを第3の目的とする
ものである。
A third object of the present invention is to provide a low-cost charging device for a lead storage battery which is lightweight, easy to carry, and can be directly mounted on a car or equipment. is there.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鉛蓄電池
に対して定電圧充電をする場合、満充電の時期に到達す
れば、鉛蓄電池の端子電圧は安定し、変動がなくなるこ
とを経験的に把握し、この現象を満充電判定の手段に用
いることによって、上記目的を達成し得ることを見出し
たものである。
Means for Solving the Problems When charging a lead storage battery at a constant voltage, the present inventors consider that the terminal voltage of the lead storage battery becomes stable and does not fluctuate when the full charge time is reached. It has been found that the above object can be achieved by grasping empirically and using this phenomenon as a means for judging full charge.

【0010】すなわち、本発明の鉛蓄電池の充電方法
は、充電用電源に対して複数の蓄電池を並列に接続して
充電する方法において、充電電圧が予め設定された電圧
設定値に達するまでは定電流充電方式で充電し、該電圧
設定値に達してからは、各蓄電池の端子電圧をそれぞれ
サンプリング計測しながら定電圧充電方式で充電し、そ
の計測されたサンプリング値が一定期間に亘り実質的に
変動しなくなった蓄電池から、満充電したものと判断し
て所定の追い充電を行なった後、順次充電を終了させる
ことを特徴とするものである。
That is, according to the method of charging a lead storage battery of the present invention, a method of connecting a plurality of storage batteries in parallel to a charging power source and charging the battery until the charging voltage reaches a preset voltage set value. After charging by the current charging method and reaching the voltage set value, charging is performed by the constant voltage charging method while sampling and measuring the terminal voltage of each storage battery, and the measured sampling value is substantially over a certain period. It is characterized in that it is determined that the storage battery is no longer fluctuated, that the battery has been fully charged, predetermined additional charging is performed, and then charging is sequentially terminated.

【0011】本発明において、対象とする鉛蓄電池と
は、一般自動車用鉛蓄電池は勿論のこと、ゴルフカー
ト、フオークリフト、車椅子、電気自動車等に使用され
るサイクル用鉛蓄電池も含まれる。また、格子合金とし
てアンチモン合金を使用する標準鉛蓄電池以外にカルシ
ウム合金を使用する鉛蓄電池(通称カルシウム蓄電池)
もその対象として含まれる。さらに、本発明の充電方法
および装置は、通常の開放型の鉛蓄電池のほか密閉型の
鉛蓄電池にも使用できるものである。
In the present invention, the target lead storage battery includes not only a lead storage battery for general vehicles but also a lead storage battery for cycles used in golf carts, forklifts, wheelchairs, electric vehicles and the like. In addition to standard lead-acid batteries that use antimony alloys as lattice alloys, lead-acid batteries that use calcium alloys (commonly known as calcium storage batteries)
Is also included as a target. Further, the charging method and device of the present invention can be used for a closed lead storage battery as well as a normal open lead storage battery.

【0012】本発明における充電方法は、最初は定電流
充電方式で充電し、蓄電池の充電量がほぼ80%〜85
%に達したら定電圧充電方式に切り換えるている。この
切り換えのための、設定電圧は17.2V〜17.5V
(カルシウム電池の場合は16Vmax)が目安であ
る。
According to the charging method of the present invention, the battery is charged by a constant current charging method at first, and the charged amount of the storage battery is approximately 80% to 85%
%, It switches to the constant voltage charging method. The set voltage for this switching is 17.2V to 17.5V
(16 Vmax in the case of a calcium battery) is a standard.

【0013】定電圧充電方式による充電が開始されると
同時に、端子電圧のサンプリングを開始する。満充電判
定法としては、定電圧充電方式による充電期間に移行し
た後に、各蓄電池の端子電圧を個々に一定周期で測定
し、その測定値が一定期間に渡り実質的に変動しなくな
った時点を満充電と判定する。
At the same time as charging by the constant voltage charging method is started, sampling of the terminal voltage is started. As a full charge determination method, after shifting to the charging period by the constant voltage charging method, the terminal voltage of each storage battery is individually measured at a fixed cycle, and the time when the measured value does not substantially fluctuate over a certain period is determined. It is determined that the battery is fully charged.

【0014】ここで、端子電圧の測定値が実質的に変動
しないとは、各測定値が全く同じか、変動範囲が±1/
100V〜1/20Vの場合を云う。すなわち、標準鉛
蓄電池の場合は、定電流充電方式で充電すると、約4〜
5時間で充電電圧がほぼ17Vに達する。この時の端子
電圧はほぼ16Vになるが、それ以上はほとんど上がら
なくなる。
Here, the fact that the measured value of the terminal voltage does not substantially fluctuate means that the measured values are exactly the same or the fluctuation range is ± 1/1.
It means the case of 100V to 1 / 20V. In other words, in the case of a standard lead-acid battery, when charged by the constant current charging method, about 4 to
The charging voltage reaches almost 17 V in 5 hours. The terminal voltage at this time is approximately 16 V, but hardly increases beyond that.

【0015】このように測定値が変動しなくなる期間
(以下端子電圧の安定状態と称する)は、端子電圧がほ
ぼ16Vになってから3±1時間継続し、その後は、−
△Vの期間、いわゆる過充電の期間に移行する。
The period during which the measured value does not fluctuate (hereinafter referred to as a stable state of the terminal voltage) continues for 3 ± 1 hours after the terminal voltage becomes approximately 16 V, and thereafter, −
The period shifts to a period of ΔV, a so-called overcharge period.

【0016】端子電圧のサンプリングは、例えば、1分
間隔で各蓄電池毎に行う。そして、各蓄電池毎に、初回
の端子電圧の測定値V(i)を最初の基準値Vsとして
設定し、次回の測定値V(i+1)と比較する。両者が
一致したとき、すなわち、±1/100〜1/20Vの
誤差範囲で一致した場合は、さらに次の測定値V(i+
2)を読み込み、これを基準値Vsと比較する。
The sampling of the terminal voltage is performed, for example, for each storage battery at one-minute intervals. Then, for each storage battery, the first measured value V (i) of the terminal voltage is set as the first reference value Vs, and is compared with the next measured value V (i + 1). When they match, that is, when they match within an error range of ± 1/100 to 1 / 20V, the next measured value V (i +
2) is read and compared with the reference value Vs.

【0017】しかし、例えばn回目の測定値V(i+
n)が基準値Vsと一致しないときは、n回目の測定値
V(i+n)を新たな基準値Vsnとして設定し、次の
測定値と比較する。このように、最新の設定値とその後
読み込んだ測定値とを順次比較して両者が一致した回数
Kを記録し、Kの値が閾値Nに達すれば、満充電したも
のと判定する。
However, for example, the n-th measurement value V (i +
If n) does not match the reference value Vs, the n-th measurement value V (i + n) is set as a new reference value Vsn and compared with the next measurement value. In this way, the latest set value is sequentially compared with the subsequently read measurement value, and the number K of times when they match is recorded. When the value of K reaches the threshold value N, it is determined that the battery is fully charged.

【0018】満充電の判定の基礎となる「測定値が実質
的に変動しない一定期間」とは、経験的に10〜40分
であり、好ましくは15〜20分である。蓄電池の充電
率が80%程度に達すると、短時間例えば、5〜6分に
亙って端子電圧が変動しなくなることがままあるので、
10分より少ない閾値を設定することは、満充電の判定
誤差を招く危険があるので好ましくない。
The "fixed period in which the measured value does not substantially fluctuate", which is the basis of the judgment of full charge, is empirically 10 to 40 minutes, preferably 15 to 20 minutes. When the charge rate of the storage battery reaches about 80%, the terminal voltage may not fluctuate for a short time, for example, for 5 to 6 minutes.
Setting a threshold value smaller than 10 minutes is not preferable because there is a risk of causing a determination error of full charge.

【0019】また、端子電圧が安定状態に達しても外乱
等により瞬間的に端子電圧が高くなることがある。この
場合は、外乱による異常値の次に設定された基準値から
一致回数のカウントをやり直すことになる。端子電圧の
安定状態は通常、3時間±1時間続くので、40分より
長い閾値の設定は、追充電(通常40分〜1時間)が、
安定状態の期間内に終了しなくなる可能性があるので好
ましくない。したがって、この閾値Nは、1分間隔でサ
ンプリングするときは、10〜40、好ましくは15〜
20である。
Further, even when the terminal voltage reaches a stable state, the terminal voltage may increase instantaneously due to disturbance or the like. In this case, the number of times of matching is counted again from the reference value set next to the abnormal value due to the disturbance. Since the stable state of the terminal voltage usually lasts 3 hours ± 1 hour, setting the threshold longer than 40 minutes requires additional charging (usually 40 minutes to 1 hour).
It is not preferable because it may not be completed within the period of the stable state. Therefore, this threshold value N is 10 to 40 when sampling at one minute intervals, preferably 15 to 40.
20.

【0020】なお、カルシウム蓄電池の場合は、満充電
の端子電圧が標準鉛蓄電池よりも約1V低いので、定電
流充電から定電圧充電に切り換える時期の判定、および
定電圧の設定電圧はいずれも標準鉛蓄電池の場合に比べ
て、約1V低く設定される。また、定電流充電から定電
圧充電に切り換える判定に用いられる充電電圧の電圧設
定値は、定電圧充電期間の定電圧設定値と等しくしても
良いが、それよりも若干低めに設定した方が、システム
設計上好ましい。
In the case of a calcium storage battery, since the terminal voltage of the fully charged battery is about 1 V lower than that of the standard lead storage battery, the determination of the timing of switching from the constant current charging to the constant voltage charging and the set voltage of the constant voltage are all standard. It is set to be about 1 V lower than in the case of a lead storage battery. Further, the voltage setting value of the charging voltage used for the determination of switching from the constant current charging to the constant voltage charging may be equal to the constant voltage setting value in the constant voltage charging period, but it is better to set the voltage slightly lower than that. This is preferable in system design.

【0021】通常、鉛蓄電池の定電流・定電圧充電用の
電源としては、100Vまたは200Vの交流の商用電
源が用いられている。交流を直流に変換する定電流・定
電圧充電装置としては、通常、サイリスタ式、トランジ
スタ式、スイッチングレギュレータ式等が用いられてい
る。特に、スイッチングレギュレータ式の定電流・定電
圧充電装置は、軽量、小型で可搬性に優れているが、大
容量のものは製作困難で市場には出回っていない。
Usually, a 100 V or 200 V AC commercial power supply is used as a power supply for charging a constant current and a constant voltage of a lead storage battery. As a constant current / constant voltage charging device for converting an alternating current into a direct current, a thyristor type, a transistor type, a switching regulator type, or the like is generally used. In particular, switching regulator type constant current / constant voltage chargers are lightweight, small and excellent in portability, but large capacity ones are difficult to manufacture and are not on the market.

【0022】そこで、本発明では、定電流・定電圧充電
装置に多数の蓄電池を並列に接続して充電する方法にお
いて、定電流充電方式で充電する期間は、個々の蓄電池
毎にまたは平列に接続された複数の蓄電池のグループ毎
に、個別に順次充電を行なうことにより、小容量なトラ
ンジスタ式やスイチングレギュレータ式を使用しても多
数の蓄電池を同時に短時間で充電することが可能になっ
た。
Therefore, according to the present invention, in the method of charging by connecting a large number of storage batteries in parallel to the constant current / constant voltage charging device, the period of charging by the constant current charging method is for each storage battery or in parallel. By separately charging each group of a plurality of connected storage batteries, it is possible to charge a large number of storage batteries simultaneously in a short time even when using a small-capacity transistor type or switching regulator type. Was.

【0023】本発明の充電方法を実現するための充電装
置は、定電流・定電圧充電装置;この定電流・定電圧充
電装置の出力を並列に接続された電力線を介して複数の
蓄電池に供給するための複数の接続端子を有する充電用
コネクタ;各蓄電池の端子電圧を測定するための電圧測
定器;充電時間を計測するためのタイマー;前記定電流
・定電圧充電装置の端子と各蓄電池の端子間の接続を開
閉するための切換えスイッチおよび、前記切換えスイッ
チの開閉を制御するためのコントローラとを備えてい
る。
A charging device for realizing the charging method of the present invention is a constant current / constant voltage charging device; an output of the constant current / constant voltage charging device is supplied to a plurality of storage batteries via a power line connected in parallel. A charging connector having a plurality of connection terminals for performing charging; a voltage measuring device for measuring a terminal voltage of each storage battery; a timer for measuring a charging time; A changeover switch for opening and closing the connection between the terminals and a controller for controlling opening and closing of the changeover switch are provided.

【0024】そして、このコントローラは、各蓄電池の
充電電圧が予め設定された電圧設定値に到達するまで
は、定電流充電方式によって充電を行い、全ての蓄電池
が上記電圧設定値に達してからは定電圧充電方式によっ
て充電を行なうように、上記定電流・定電圧充電装置を
制御すると共に、前記定電圧充電方式によって充電を行
なう期間は、全ての蓄電池に対して並列に充電電流を供
給しながら、一定周期で各蓄電池の端子電圧を測定し、
その測定値が一定期間に亘り変動しなくなった蓄電池か
ら順に充電を終了させるように、前記切換えスイッチの
開閉を制御するように構成されている。
This controller performs charging by a constant current charging method until the charging voltage of each storage battery reaches a preset voltage set value, and after all storage batteries have reached the above-mentioned voltage set value, the controller performs charging. The constant current / constant voltage charging device is controlled so as to perform charging by the constant voltage charging method, and during the period of charging by the constant voltage charging method, the charging current is supplied to all the storage batteries in parallel. , Measure the terminal voltage of each storage battery at regular intervals,
The opening and closing of the changeover switch is controlled so that charging is terminated in order from the storage battery whose measured value does not fluctuate for a certain period.

【0025】また、前記コントローラは、定電流充電方
式によって充電を行う期間は、各蓄電池毎または並列に
接続された複数の蓄電池のグループ毎に、個別に順次充
電を行なうように、前記切換えスイッチの開閉を制御す
るように構成されている。
[0025] Further, during the period in which charging is performed by the constant current charging method, the controller sets the changeover switch so as to perform charging individually and sequentially for each storage battery or for each group of a plurality of storage batteries connected in parallel. It is configured to control opening and closing.

【0026】さらに、前記コントローラは、各蓄電池の
端子電圧を個々に一定の周期で測定するためのサンプリ
ング回路、このサンプリング回路によって計測された各
蓄電池の端子電圧の変動によって各蓄電池の満充電の状
態を判定する満充電判定回路、およびこの満充電判定回
路の判定結果に応じて、前記定電流・定電圧充電装置と
個々の蓄電池との接続を遮断する信号を出力する開閉信
号出力回路とを備えている。
Further, the controller includes a sampling circuit for measuring the terminal voltage of each storage battery individually at a constant period, and a state of full charge of each storage battery based on a fluctuation of the terminal voltage of each storage battery measured by the sampling circuit. And a switching signal output circuit that outputs a signal for disconnecting the connection between the constant current / constant voltage charging device and each storage battery in accordance with the determination result of the full charge determination circuit. ing.

【0027】前記定電流・定電圧充電装置と各蓄電池の
接続端子の間に電流制限素子をそれぞれ挿入する。これ
によって、定電圧充電期間に大電流が流れても、自動的
にカットして、機器および蓄電池の安全を保障するとと
もに、充電電圧の均一性を確保することができる。
A current limiting element is inserted between the constant current / constant voltage charger and the connection terminal of each storage battery. As a result, even if a large current flows during the constant voltage charging period, the current is automatically cut to ensure the safety of the device and the storage battery and to ensure the uniformity of the charging voltage.

【0028】この目的の電流制限素子としては、ニクロ
ム線、サイリスタ等が使用可能であるが、安価にして動
作性に優れたニクロム線が最も好ましい。
As the current limiting element for this purpose, a nichrome wire, a thyristor or the like can be used, but a nichrome wire which is inexpensive and has excellent operability is most preferable.

【0029】[0029]

【実施例】図1は、定電流・定電圧充電装置を用いた充
電回路の1例を示すもので、1は交流電源、2はトラン
ジスタ式の定電流・定電圧充電装置で、出力電圧を4段
に切り換えられるように構成されている。3は充電用コ
ネクタで、この例では3つの蓄電池B1,B2,B3に
並列に充電電流を供給するように接続端子B11,B1
2;B21,B22;B31,B32が設けられてい
る。
FIG. 1 shows an example of a charging circuit using a constant current / constant voltage charger. Reference numeral 1 denotes an AC power supply, and 2 denotes a transistor type constant current / constant voltage charger. It is configured so that it can be switched to four stages. Reference numeral 3 denotes a charging connector. In this example, connection terminals B11 and B1 are connected so as to supply charging current to three storage batteries B1, B2 and B3 in parallel.
2; B21, B22; B31, B32 are provided.

【0030】S0は交流電源の回路を開閉するためのリ
レー、S1は充電装置2と蓄電池B1とを結ぶ回線上に
設けられたリレー、S2は充電装置2と蓄電池B2とを
結ぶ回線上に設けられたリレー、S3は充電装置2と蓄
電池B3とを結ぶ回線上に設けられたリレーである。S
4、S5、S6、S7は定電流・定電圧充電装置2の出
力電圧切り替え用のリレーで、S4−S5−S6−S7
と切り換えるたびに1Vずつ出力電圧が上昇する。
S0 is a relay for opening and closing the circuit of the AC power supply, S1 is a relay provided on the line connecting the charging device 2 and the storage battery B1, and S2 is provided on a line connecting the charging device 2 and the storage battery B2. The relay S3 is a relay provided on a line connecting the charging device 2 and the storage battery B3. S
Reference numerals 4, S5, S6 and S7 are relays for switching the output voltage of the constant current / constant voltage charging device 2, and S4-S5-S6-S7
The output voltage rises by 1V each time is switched.

【0031】4は定電流・定電圧充電装置2の動作を制
御すると共に、各蓄電池の端子電圧に応じてリレーS
1,S2,S3を開閉制御するためのコントローラであ
る。L0は電流を計測するための計測線、L1は蓄電池
B1の端子電圧を測定するための計測線、L2は蓄電池
B2の端子電圧を測定するための計測線、L3は蓄電池
B3の端子電圧を測定するための計測線である。
4 controls the operation of the constant current / constant voltage charger 2 and relays S in accordance with the terminal voltage of each storage battery.
A controller for controlling the opening and closing of S1, S2 and S3. L0 is a measurement line for measuring a current, L1 is a measurement line for measuring a terminal voltage of the storage battery B1, L2 is a measurement line for measuring a terminal voltage of the storage battery B2, and L3 is a terminal voltage of the storage battery B3. This is a measurement line for performing

【0032】T0〜T3は各蓄電池の電流または端子電
圧を増幅するためのトランジスタ、T4〜T11はリレ
ーS0〜S7を制御するためのトランジスタである。R
0は電流を測定するための分流器である。
T0 to T3 are transistors for amplifying the current or terminal voltage of each storage battery, and T4 to T11 are transistors for controlling the relays S0 to S7. R
0 is a shunt for measuring current.

【0033】R1は充電装置2と蓄電池B1とを結ぶ回
線上に挿入された電流制限素子、R2は充電装置2と蓄
電池B2とを結ぶ回線上に挿入された電流制限素子、R
3は充電装置2と蓄電池B3とを結ぶ回線上に挿入され
た電流制限素子である。
R1 is a current limiting element inserted on a line connecting charging device 2 and storage battery B1, R2 is a current limiting element inserted on a line connecting charging device 2 and storage battery B2, R
Reference numeral 3 denotes a current limiting element inserted on a line connecting the charging device 2 and the storage battery B3.

【0034】コントローラ4は図2に示すように、定電
流・定電圧充電装置2等を制御するための制御部41、
蓄電池B1〜Bnの端子電圧をサンプリングするサンプ
リング回路42、充電装置2と蓄電池B1〜Bnとの間
に設けられた切替えスイッチS1〜Snを選択的に開閉
する開閉信号出力回路43、サンプリングの周期を制御
するタイマ44、サンプリング値を保存するためのメモ
リ45を備えている。さらに制御部41内には、満充電
を判定する満充電判定回路411等が内蔵されている。
As shown in FIG. 2, the controller 4 includes a control unit 41 for controlling the constant current / constant voltage charging device 2 and the like.
A sampling circuit 42 for sampling the terminal voltages of the storage batteries B1 to Bn, an open / close signal output circuit 43 for selectively opening and closing the changeover switches S1 to Sn provided between the charging device 2 and the storage batteries B1 to Bn. It has a timer 44 for controlling and a memory 45 for storing the sampling value. Further, the control unit 41 includes a full charge determination circuit 411 for determining full charge, and the like.

【0035】次の、この充電回路の動作について説明す
る。まず、充電用コネクター3に3個のカルシウム蓄電
池B1、B2、B3を並列に接続する。そして、リレー
S0を閉じて定電流・定電圧充電装置2に交流電源1を
接続する。
Next, the operation of the charging circuit will be described. First, three calcium storage batteries B1, B2, and B3 are connected to the charging connector 3 in parallel. Then, the relay S0 is closed and the AC power supply 1 is connected to the constant current / constant voltage charging device 2.

【0036】最初は蓄電池B1に対して定電流充電を行
なう。そのために、リレーS1を閉じ、リレーS2、S
3を開く。充電装置2のリレーS4を閉じ、リレーS
5、S6を開いて、11Vの出力電圧を蓄電池1にかけ
る。
First, the storage battery B1 is charged at a constant current. For this purpose, the relay S1 is closed and the relays S2, S
Open 3. The relay S4 of the charging device 2 is closed and the relay S
5. Open S6 and apply 11V output voltage to the storage battery 1.

【0037】図4に示すように、定電流の設定値Icを
当初約15Aに設定すると充電電流Ixは時間と共に減
少する。この電流値はマイクロセコンドという単位で常
に計測され、電流Ixが下限値Iaの12Aまたはそれ
以下に減少すると、コントーラ4はリレーをS4からS
5に切り換えて出力電圧を1V上昇させる。電流Ixは
再び上昇するがしばらくするとまた低下する。電流が再
度下限値を割ったところで、リレーをS5からS6に切
り換えて出力電圧を1V上昇させる。
As shown in FIG. 4, when the set value Ic of the constant current is initially set to about 15 A, the charging current Ix decreases with time. This current value is always measured in units of microseconds. When the current Ix decreases to the lower limit value Ia of 12 A or less, the controller 4 switches the relay from S4 to S4.
5 to increase the output voltage by 1V. The current Ix rises again, but drops again after a while. When the current again falls below the lower limit, the relay is switched from S5 to S6 to increase the output voltage by 1V.

【0038】蓄電池B1の充電電圧が設定電圧Vaの1
5V(A点)に達すると、コントローラ4は、リレーを
S1からS2に切り換えて蓄電池B2の充電回路を接続
する。蓄電池B2に対して、蓄電池B1と同様な定電流
充電を行なう。このようにして全ての蓄電池B1〜B3
が設定電圧に達すれば、コントローラ4は、リレーS1
〜S3を閉じ、蓄電池B1〜B3を定電流・定電圧充電
装置2に対して並列に接続して、充電電圧を定電圧設定
値Vcの16Vに設定して定電圧充電を開始するように
定電流・定電圧充電装置2を制御する。
The charging voltage of the storage battery B1 is 1 of the set voltage Va.
When the voltage reaches 5 V (point A), the controller 4 switches the relay from S1 to S2 and connects the charging circuit of the storage battery B2. The same constant current charging as that of the storage battery B1 is performed on the storage battery B2. Thus, all the storage batteries B1 to B3
Reaches the set voltage, the controller 4 operates the relay S1
To S3 are closed, and the storage batteries B1 to B3 are connected in parallel to the constant current / constant voltage charger 2 so that the charging voltage is set to the constant voltage set value Vc of 16 V and constant voltage charging is started. The current / constant voltage charging device 2 is controlled.

【0039】定電圧充電を開始すると各蓄電池B1〜B
3の端子電圧Viは、図4に示すように次第に上昇する
が、やがて、フラットになりほとんど、変化しなくな
る。この図は代表的な1つ蓄電池についての端子電圧の
カーブを記録したもので、実際には、それぞれの蓄電池
毎に異なる端子電圧のカーブが記録される。
When the constant voltage charging is started, each of the storage batteries B1 to B
The terminal voltage Vi of No. 3 gradually rises as shown in FIG. 4, but eventually becomes flat and hardly changes. In this figure, the curve of the terminal voltage for one typical storage battery is recorded. In practice, the curve of the terminal voltage different for each storage battery is recorded.

【0040】一方、定電圧充電を開始すと同時に、端子
電圧のサンプリングを開始する。端子電圧のサンプリン
グは各蓄電池毎に1分間隔で行なう。蓄電池B1〜B3
の端子電圧はそれぞれ回線L1〜L3を介してトランジ
スタT1〜T3で増幅されて、コントローラ4に取り込
まれる。
On the other hand, simultaneously with the start of the constant voltage charging, the sampling of the terminal voltage is started. The sampling of the terminal voltage is performed at one-minute intervals for each storage battery. Storage batteries B1 to B3
Are amplified by the transistors T1 to T3 via the lines L1 to L3, respectively, and taken into the controller 4.

【0041】最初に計測された端子電圧Viは基準値V
sとしてメモリに設定され、次回の測定値V(i+1)
と比較される。その差がある誤差範囲(±1/100〜
1/20V)の場合には変動しないとみなされ、次に読
み込まれた測定値V(i+2)が基準値Vsと比較され
る。その測定値が実質的に変動しない状態、すなわち、
端子電圧の安定状態が一定期間、例えば15分にわった
て維持された時(図中B−C)に、その蓄電池は満充電
したものと見做される。そして、追い充電を一定時間例
えば40分(図中、C−D)行なった後、充電を終了す
る。なお、△Vは過充電を示す。
The terminal voltage Vi measured first is the reference value V
is set in the memory as s, and the next measured value V (i + 1)
Is compared to Error range with the difference (± 1/100 ~
In the case of 1 / 20V), it is considered that there is no change, and the measured value V (i + 2) read next is compared with the reference value Vs. When the measured value does not substantially fluctuate, that is,
When the stable state of the terminal voltage is maintained for a certain period of time, for example, 15 minutes (B-C in the figure), the storage battery is considered to be fully charged. Then, after the additional charge is performed for a predetermined time, for example, 40 minutes (CD in the figure), the charge is terminated. Note that ΔV indicates overcharge.

【0042】コントローラ4のマイクロコンピュータを
用いた定電流充電の電流制御回路、定電流充電から定電
圧充電への移行回路および満充電の判定回路のフローチ
ャートを図3によって、説明する。
A flow chart of a current control circuit for constant current charging using a microcomputer of the controller 4, a circuit for shifting from constant current charging to constant voltage charging, and a circuit for determining full charge will be described with reference to FIG.

【0043】まず、充電すべき蓄電池の電圧を測定し
て、初期充電電圧を決定し、定電流充電方式で充電を開
始する。それと同時に、一定周期で充電電流を測定す
る。測定した充電電流Ixが設定値Iaよりも大きい場
合は、再度、充電電流を測定する。充電電流Ixが設定
値Iaと同じかそれを下回った時は、充電電圧を測定す
る。充電電圧の測定値Vxが設定値Vaよりも低くなれ
ば、充電電圧を例えば1V増加する。
First, the voltage of the storage battery to be charged is measured, the initial charging voltage is determined, and charging is started by the constant current charging method. At the same time, the charging current is measured at regular intervals. When the measured charging current Ix is larger than the set value Ia, the charging current is measured again. When the charging current Ix is equal to or lower than the set value Ia, the charging voltage is measured. When the measured value Vx of the charging voltage becomes lower than the set value Va, the charging voltage is increased by, for example, 1V.

【0044】このループを繰り返すことにより、充電電
流をほぼ一定に維持して充電を継続する。そして、測定
値Vxが設定値Vaと等しいかそれよりも大きくなった
ならば(図4においてA点)、定電圧充電用の充電電圧
Vc を設定し、以後は定電圧充電方式によって、充電
を続行する。
By repeating this loop, charging is maintained while the charging current is kept substantially constant. When the measured value Vx is equal to or greater than the set value Va (point A in FIG. 4), a charging voltage Vc for constant voltage charging is set, and thereafter, charging is performed by the constant voltage charging method. continue.

【0045】定電圧充電期間中は、一定間隔で蓄電池の
端子電圧を測定する。まず、初回の測定値Viを基準値
Vsとしてメモリに設定する。そして、次回の測定値V
(i+1)を基準値Vsと比較する。両者が一致した場
合は一致回数累積カウンタを加算し、次回の測定値V
(i+2)を読み込み基準値Vsと比較する。一致すれ
ばカウンタを加算し、その数Kが設定値Nと等しくなれ
ば、一定期間にわたって端子電圧が変化しなかったもの
と見做して、満充電したものと判定する。
During the constant voltage charging period, the terminal voltage of the storage battery is measured at regular intervals. First, the first measured value Vi is set in the memory as the reference value Vs. Then, the next measured value V
(I + 1) is compared with the reference value Vs. If both match, the accumulative count counter is added, and the next measured value V
(I + 2) is compared with the read reference value Vs. If they match, the counter is incremented. If the number K becomes equal to the set value N, it is considered that the terminal voltage has not changed for a certain period of time, and it is determined that the battery has been fully charged.

【0046】しかし、その途中で測定値V(i+n)が
基準値Vsと一致しない場合は、測定値V(i+n)を
新たな基準値Vsnとして設定すると同時に、一致回数
累積カウンタの累積数Kをクリアする。そして新規に、
基準値Vsnとそれ以降の測定値との比較を開始する。
そして、カウンタ数Kが設定値Nに達すれば、満充電と
判定される。満充電と判定た蓄電池はさらに所定時間追
い充電を行なって、充電を終了する。
However, if the measured value V (i + n) does not coincide with the reference value Vs in the middle, the measured value V (i + n) is set as a new reference value Vsn, and at the same time, the accumulated number K of the coincidence number counter is incremented. clear. And newly,
The comparison between the reference value Vsn and the subsequent measured values is started.
When the counter number K reaches the set value N, it is determined that the battery is fully charged. The storage battery that has been determined to be fully charged is further charged for a predetermined time, and charging is completed.

【0047】この実施例では、満充電判定回路におい
て、端子電圧の測定値の比較を、最初に取り込んだ測定
値または、不一致になった直後に新たに取り込んだ測定
値を基準値とし、この基準値とそれ以後の測定値とを比
較している。かりに、直前の測定値同志を比較した場合
には、本発明の方法では、測定値の一致条件に許容範囲
(±1/100V〜1/20V)を設けているので、そ
の許容範囲の誤差が累積され危険性がある。これに反し
て、本発明の方法によるときは、一致回数がいくら多く
なっても、その最大誤差は上記の許容範囲内に納まるこ
とになる。
In this embodiment, in the full charge determination circuit, the measured value of the terminal voltage is compared with the measured value taken first or the measured value newly taken immediately after the mismatch, and this reference value Values are compared with subsequent measurements. In contrast, when the immediately preceding measured values are compared with each other, according to the method of the present invention, an allowable range (± 1/100 V to 1/20 V) is provided in the condition for matching the measured values. Cumulative and dangerous. On the other hand, according to the method of the present invention, the maximum error is within the above-mentioned allowable range, no matter how many times the number of matches is increased.

【0048】また、この実施例では、定電流充電期間中
は、蓄電池1個づつ充電しているので、充電器の容量は
小さいもので済むが、充電時間が長くかかるという欠点
がある。そこで、蓄電池を2個づつグループにして充電
すれば、充電器の容量は、3個同時にする場合に比べて
2/3になり、充電時間も1個づつ充電する場合に比べ
て、1/2になる。
Further, in this embodiment, during the constant current charging period, since the storage batteries are charged one by one, the capacity of the charger can be small, but there is a disadvantage that the charging time is long. Therefore, when the storage batteries are charged in groups of two, the capacity of the charger is reduced to two thirds as compared with the case where three batteries are simultaneously charged, and the charging time is reduced to one half compared with the case where the storage batteries are charged one by one. become.

【0049】さらに、2個づつグループ化して充電する
場合に、半周期づつずらせて2個組合せれば(最初は1
個だけを半分充電する)、3個同時にする場合に比べて
充電器の容量は1/2、充電時間も1個づつ充電する場
合に比べて、1/2強になる。
Further, in the case of charging by grouping two batteries at a time, if two batteries are combined by being shifted by a half cycle (at first,
(Only half of the battery is charged.) The capacity of the charger is half that of the case where three batteries are charged simultaneously, and the charging time is slightly more than half that of the case where one battery is charged one by one.

【0050】[0050]

【発明の効果】本発明の鉛蓄電池の充電方法およびその
装置では、充電している蓄電池の端子電圧のサンプリン
グ値が一定期間に亘り実質的に変動しなくなった状態に
よって満充電を判定しているので、複数個同時に充電す
る場合、蓄電池の新旧や残存電気量の多寡に左右されず
に、各蓄電池ごとに、常に、正しい満充電の状態を検出
することができ、過充電や充電不足を回避することがで
きる。
According to the method and the apparatus for charging a lead storage battery of the present invention, full charge is determined based on a state where the sampling value of the terminal voltage of the storage battery being charged does not substantially fluctuate for a certain period. Therefore, when charging multiple batteries at the same time, it is possible to always detect the correct state of full charge for each battery, regardless of whether the battery is old or new or the amount of remaining electricity, and avoid overcharging and insufficient charging can do.

【0051】本発明の鉛蓄電池の充電方法およびその装
置では、充電電圧が予め設定された電圧設定値に達する
までは、定電流充電方式によって充電し、上記電圧設定
値に達すれば、複数の蓄電池に対して並列接続した状態
で定電圧充電方式で充電しているので、充電時間を短縮
することができる。
In the method and apparatus for charging a lead storage battery according to the present invention, the battery is charged by a constant current charging method until the charging voltage reaches a preset voltage set value. Are charged in a constant voltage charging mode in a state of being connected in parallel to the battery, so that the charging time can be reduced.

【0052】本発明の鉛蓄電池の充電方法およびその装
置では、定電流充電方式によって充電する期間、すなわ
ち最も多くの電力量を消費する期間だけ、個々の蓄電池
毎に、または、並列に接続された複数の蓄電池のグルー
プ毎に、個別に順次充電を行なうようにしたので、電気
容量の小さな充電装置を用いても充電することができ
る。
In the method and the apparatus for charging a lead storage battery of the present invention, the batteries are connected for each individual storage battery or in parallel during the period of charging by the constant current charging method, that is, the period of consuming the largest amount of power. Since charging is performed individually and sequentially for each group of a plurality of storage batteries, charging can be performed using a charging device having a small electric capacity.

【0053】また、このように定電流充電方式によって
充電する期間に個別に順次充電することによって、比較
的容量が小さく軽量なトランスレス充電装置を使用する
ことができ、その結果、ゴルフカート、車椅子、掃除機
等の軽量機器において充電器搭載タイプの機器構成を実
現することが可能になる。
Further, by individually and sequentially charging during the charging period by the constant current charging method as described above, it is possible to use a transformerless charging device having a relatively small capacity and a light weight. In addition, it is possible to realize a device configuration of a charger mounted type in a lightweight device such as a vacuum cleaner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の充電装置の実施形態を示す回路図FIG. 1 is a circuit diagram showing an embodiment of a charging device of the present invention.

【図2】図1の装置におけるコントローラの構成を示す
ブロック図
FIG. 2 is a block diagram showing a configuration of a controller in the apparatus shown in FIG.

【図3】図1の装置における定電流・定電圧制御手段の
ソフトウエアのフローチャート
FIG. 3 is a software flowchart of a constant current / constant voltage control means in the apparatus of FIG. 1;

【図4】本発明の充電特性を示すグラフFIG. 4 is a graph showing charging characteristics of the present invention.

【図5】従来の充電装置の回路図FIG. 5 is a circuit diagram of a conventional charging device.

【符号の説明】[Explanation of symbols]

1 電源 2 定電流・定電圧充電装置 3 充電用コネクタ 4 コントローラ Reference Signs List 1 power supply 2 constant current / constant voltage charger 3 charging connector 4 controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充電用電源に対して複数の蓄電池を並列
に接続して充電する方法において、充電電圧が予め設定
された電圧設定値に達するまでは定電流充電方式で充電
し、該電圧設定値に達してからは、各蓄電池の端子電圧
をそれぞれサンプリング計測しながら定電圧充電方式で
充電し、その計測されたサンプリング値が一定期間に亘
り実質的に変動しなくなった蓄電池から、満充電したも
のと判断して所定の追い充電を行なった後、順次充電を
終了させることを特徴とする鉛蓄電池の充電方法。
In a method of charging a plurality of storage batteries connected in parallel to a charging power source, charging is performed by a constant current charging method until a charging voltage reaches a preset voltage set value. After reaching the value, the storage battery was charged by the constant voltage charging method while sampling and measuring the terminal voltage of each storage battery, and the storage battery from which the measured sampling value did not substantially fluctuate for a certain period was fully charged. A method of charging a lead storage battery, comprising: performing a predetermined additional charge upon completion of the charge; and sequentially terminating the charge.
【請求項2】 上記定電流充電方式で充電する期間は、
個々の蓄電池毎にまたは平列に接続された複数の蓄電池
のグループ毎に、個別に順次充電を行なうことを特徴と
する請求項1記載の鉛蓄電池の充電方法。
2. A period for charging by the constant current charging method is as follows:
2. The method for charging a lead storage battery according to claim 1, wherein the charging is performed sequentially for each individual storage battery or for each group of a plurality of storage batteries connected in parallel.
【請求項3】 定電流・定電圧充電装置;この定電流・
定電圧充電装置の出力を並列に接続された電力線を介し
て複数の蓄電池に供給するための複数の接続端子を有す
る充電用コネクタ;各蓄電池の端子電圧を測定するため
の電圧測定器;充電時間を計測するためのタイマー;前
記定電流・定電圧充電装置の端子と各蓄電池の端子間の
接続を開閉するための切換えスイッチおよび、前記切換
えスイッチの開閉を制御するためのコントローラとを備
え、このコントローラは、各蓄電池の充電電圧が予め設
定された電圧設定値に到達するまでは、定電流充電方式
によって各蓄電池の充電を行い、全ての蓄電池が上記電
圧設定値に達してからは定電圧充電方式によって各蓄電
池の充電を行なうように、上記定電流・定電圧充電装置
を制御すると共に、前記定電圧充電方式によって充電を
行なう期間は、全ての蓄電池に対して並列に充電電流を
供給しながら、一定周期で各蓄電池の端子電圧を測定
し、その端子電圧の測定値が一定期間に亘り変動しなく
なった蓄電池から順に充電を終了させるように、前記切
換えスイッチの開閉を制御するように構成されているこ
とを特徴とする鉛蓄電池の充電装置。
3. A constant current / constant voltage charging device;
A charging connector having a plurality of connection terminals for supplying an output of a constant voltage charging device to a plurality of storage batteries via power lines connected in parallel; a voltage measuring device for measuring a terminal voltage of each storage battery; a charging time A switch for opening and closing a connection between a terminal of the constant current / constant voltage charger and a terminal of each storage battery; and a controller for controlling opening and closing of the switch. The controller charges each storage battery by a constant current charging method until the charging voltage of each storage battery reaches a preset voltage set value, and after all the storage batteries reach the above-mentioned voltage set value, the controller performs constant voltage charging. The constant-current / constant-voltage charging device is controlled so that each storage battery is charged according to the method, and charging is performed by the constant-voltage charging method during the entire period. While supplying the charging current to the storage batteries in parallel, the terminal voltage of each storage battery is measured at a fixed period, and the charging is terminated in order from the storage battery whose measured value of the terminal voltage has not fluctuated for a certain period. A lead-acid battery charging device configured to control opening and closing of the changeover switch.
【請求項4】 前記コントローラは、前記定電流充電方
式によって充電を行う期間は、各蓄電池毎または並列に
接続された複数の蓄電池のグループ毎に、個別に順次充
電を行なうように、前記切換えスイッチの開閉を制御す
るように構成されていることを特徴とする請求項3記載
の鉛蓄電池の充電装置。
4. The change-over switch according to claim 1, wherein during the period of charging by the constant-current charging method, charging is performed individually and sequentially for each storage battery or for each group of a plurality of storage batteries connected in parallel. The lead-acid battery charging device according to claim 3, wherein the device is configured to control opening and closing of the battery.
【請求項5】 前記コントローラは、各蓄電池の端子電
圧を個々に一定の周期で測定するためのサンプリング回
路、このサンプリング回路によって計測された各蓄電池
の端子電圧の変動によって各蓄電池の満充電の状態を判
定する満充電判定回路、およびこの満充電判定回路の判
定結果に応じて、前記定電流・定電圧充電装置と個々の
蓄電池との接続を遮断する信号を出力する開閉信号出力
回路とを備えたことを特徴とする請求項3または請求項
4記載の鉛蓄電池の充電装置。
5. A controller according to claim 1, wherein said controller measures a terminal voltage of each storage battery individually at a constant period, and a state of full charge of each storage battery based on a fluctuation of a terminal voltage of each storage battery measured by the sampling circuit. And a switching signal output circuit that outputs a signal for disconnecting the connection between the constant current / constant voltage charging device and each storage battery in accordance with the determination result of the full charge determination circuit. The charging device for a lead storage battery according to claim 3 or 4, wherein:
【請求項6】 前記定電流・定電圧充電装置と各蓄電池
の接続端子の間に電流制限素子をそれぞれ挿入すること
を特徴とする請求項3、請求項4または請求項5記載の
鉛蓄電池の充電装置。
6. The lead storage battery according to claim 3, wherein a current limiting element is inserted between the constant current / constant voltage charger and a connection terminal of each storage battery. Charging device.
JP10132629A 1998-04-28 1998-04-28 Charging of lead-acid battery and apparatus thereof Pending JPH11313445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10132629A JPH11313445A (en) 1998-04-28 1998-04-28 Charging of lead-acid battery and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10132629A JPH11313445A (en) 1998-04-28 1998-04-28 Charging of lead-acid battery and apparatus thereof

Publications (1)

Publication Number Publication Date
JPH11313445A true JPH11313445A (en) 1999-11-09

Family

ID=15085802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10132629A Pending JPH11313445A (en) 1998-04-28 1998-04-28 Charging of lead-acid battery and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH11313445A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045183A (en) * 2009-08-20 2011-03-03 Ricoh Elemex Corp Charging/discharging device
WO2012077160A1 (en) * 2010-12-08 2012-06-14 株式会社 日立製作所 Nonaqueous secondary battery and secondary battery system
JP2016073021A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Power storage system and precharge method for power storage system
CN112271347A (en) * 2020-11-19 2021-01-26 江苏盛达环保设备有限公司 Vacuum formation process of lead-acid storage battery
CN113964920A (en) * 2021-11-30 2022-01-21 苏州新应期电子科技有限公司 Battery charging and discharging circuit of emergency power supply
CN116278963A (en) * 2023-04-18 2023-06-23 安徽威斯姆电子科技有限公司 Intelligent high-frequency charger of electric forklift and charging method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045183A (en) * 2009-08-20 2011-03-03 Ricoh Elemex Corp Charging/discharging device
WO2012077160A1 (en) * 2010-12-08 2012-06-14 株式会社 日立製作所 Nonaqueous secondary battery and secondary battery system
JP2016073021A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Power storage system and precharge method for power storage system
CN112271347A (en) * 2020-11-19 2021-01-26 江苏盛达环保设备有限公司 Vacuum formation process of lead-acid storage battery
CN113964920A (en) * 2021-11-30 2022-01-21 苏州新应期电子科技有限公司 Battery charging and discharging circuit of emergency power supply
CN116278963A (en) * 2023-04-18 2023-06-23 安徽威斯姆电子科技有限公司 Intelligent high-frequency charger of electric forklift and charging method thereof

Similar Documents

Publication Publication Date Title
CN101421902B (en) Charging method and battery pack
US6054840A (en) Power supply device
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
US20010001533A1 (en) Method and apparatus for charging a rechargeable battery with monitoring of battery temperature rate of change
JPH09130982A (en) Dual-purpose battery charger and control method therefor
CN103001299A (en) Charger
JP2003503992A (en) Method and apparatus for charging a rechargeable battery
CN101636872A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
CN101960689A (en) Recharging device and recharging method
JPH07240235A (en) Charging method for secondary battery
JPH0997629A (en) Plural lithium ion secondary battery charging method
US5233284A (en) System and method for rapid charging of a battery
CA2393006A1 (en) Charge maintenance system for lead-acid battery
JPH11341694A (en) Charging method of secondary battery
JPH11313445A (en) Charging of lead-acid battery and apparatus thereof
JPH1189104A (en) Charging method for lead battery
JP3435613B2 (en) Battery pack charging device
CN111525654A (en) Circuit and method for time-sharing charging of batteries in battery pack
JPH1174001A (en) Charging method for lead-acid battery
JPH09163624A (en) Secondary battery charging method
JPH10285816A (en) Method and equipment for constant-current and constant-voltage charging
JPH08115748A (en) Method and device for charging secondary battery
WO2021186937A1 (en) Battery pack, charging system, and method for charging battery pack
JP3286357B2 (en) Charger
JPH04274776A (en) Detecting device of lifetime of ni-cd storage battery