JP2016154423A - Voltage balance device - Google Patents

Voltage balance device Download PDF

Info

Publication number
JP2016154423A
JP2016154423A JP2015032275A JP2015032275A JP2016154423A JP 2016154423 A JP2016154423 A JP 2016154423A JP 2015032275 A JP2015032275 A JP 2015032275A JP 2015032275 A JP2015032275 A JP 2015032275A JP 2016154423 A JP2016154423 A JP 2016154423A
Authority
JP
Japan
Prior art keywords
secondary battery
potential side
low
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015032275A
Other languages
Japanese (ja)
Inventor
青山 秀次
Hideji Aoyama
秀次 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRT KK
Original Assignee
IRT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRT KK filed Critical IRT KK
Priority to JP2015032275A priority Critical patent/JP2016154423A/en
Publication of JP2016154423A publication Critical patent/JP2016154423A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a voltage balance device capable of suppressing useless power consumption when equalizing output voltages of a plurality of secondary batteries.SOLUTION: A voltage balance device 20 comprises a plurality of high-potential-side charge circuits 41 and a plurality of low-potential-side charge circuits 42 correspondingly to a plurality of cells B (secondary batteries) that are connected in series. If output voltages of neighboring cells B are different, the high-potential-side charge circuit 41 or the low-potential-side charge circuit 42 corresponding to a cell of a higher output voltage between both cells B uses that cell B as a power source to charge a cell B of a lower output voltage. Namely, in the voltage balance device, output voltages of the plurality of cells are equalized by supplying power of a cell B of a relatively high output voltage to a cell B of a low output voltage. Therefore, in comparison with the prior arts, useless power consumption with equalizing the output voltages of a group of cells B can be suppressed.SELECTED DRAWING: Figure 2

Description

本発明は、直列接続された複数の二次電池の出力電圧を均一化する電圧バランス装置に関する。   The present invention relates to a voltage balance device that equalizes output voltages of a plurality of secondary batteries connected in series.

一般に知られているように、直列接続された複数の二次電池の出力電圧のばらつきは、二次電池の過充電及び過放電の原因になる。これに対し、出力電圧が相対的に高い二次電池に抵抗放電回路を接続して強制的に放電させることで、複数の二次電池の出力電圧の均一化を図った電圧バランス装置が知られている(例えば、特許文献1参照)。   As is generally known, variations in output voltage of a plurality of secondary batteries connected in series cause overcharge and overdischarge of the secondary battery. On the other hand, there is known a voltage balance device that equalizes the output voltage of a plurality of secondary batteries by connecting a resistance discharge circuit to a secondary battery having a relatively high output voltage and forcibly discharging it. (For example, refer to Patent Document 1).

特開2014−116992号公報(段落[0003],[0004])JP 2014-116992 A (paragraphs [0003], [0004])

しかしながら、上記した従来の電圧バランス装置では、電力が無駄に消費されることが問題になっていた。   However, the conventional voltage balance device described above has a problem that power is wasted.

本発明は、上記事情に鑑みてなされたもので、複数の二次電池の出力電圧を均一化する際の無駄な電力消費を抑えることが可能な電圧バランス装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a voltage balance device capable of suppressing wasteful power consumption when equalizing output voltages of a plurality of secondary batteries.

上記目的を達成するためになされた請求項1の発明は、直列接続された複数の二次電池のそれぞれに対応して設けられ、それら対応する当該二次電池を電源として、当該二次電池の高電位側の隣の二次電池を充電することが可能な複数の高電位側充電回路と、前記複数の二次電池のそれぞれに対応して設けられ、それら対応する当該二次電池を電源として、当該二次電池の低電位側の隣の二次電池を充電することが可能な複数の低電位側充電回路と、隣り合う二次電池の出力電圧が異なる場合に、それら隣り合う二次電池のうち出力電圧が高い二次電池を前記電源とする前記高電位側充電回路又は前記低電位側充電回路を作動させて、出力電圧が低い前記二次電池を充電させる充電統括制御回路と、を有する電圧バランス装置である。   The invention of claim 1 made to achieve the above object is provided corresponding to each of a plurality of secondary batteries connected in series, and using the corresponding secondary battery as a power source, A plurality of high potential side charging circuits capable of charging the secondary battery adjacent to the high potential side and the plurality of secondary batteries are provided corresponding to each of the plurality of secondary batteries. A plurality of low-potential-side charging circuits capable of charging a secondary battery on the low-potential side of the secondary battery and the adjacent secondary batteries when the output voltages of the adjacent secondary batteries are different. A charge control circuit for charging the secondary battery having a low output voltage by operating the high-potential side charging circuit or the low-potential side charging circuit having a secondary battery having a high output voltage as the power source. A voltage balance device.

請求項2の発明は、前記高電位側充電回路は、前記電源となる前記当該二次電池の負極と前記高電位側の隣の二次電池である高電位側二次電池の正極との間に接続され、前記当該二次電池の負極側から第1スイッチ素子、第1ダイオードの順番に直列に並びかつ前記第1ダイオードのアノードが前記第1スイッチ素子側に配置された第1スイッチ・コイル回路と、前記第1ダイオードのアノードと前記高電位側二次電池の負極との間に接続された昇圧用コイルと、前記第1スイッチ素子をオンオフする第1スイッチ制御部と、を有する昇圧型DC−DCコンバータであり、前記低電位側充電回路は、前記電源となる前記当該二次電池の正極と前記低電位側の隣の二次電池である低電位側二次電池の負極との間に接続され、前記当該二次電池の正極側から第2スイッチ素子、第2ダイオードの順番に直列に並びかつ前記第2ダイオードのカソードが前記第2スイッチ素子側に配置された第2スイッチ・コイル回路と、前記第2ダイオードのカソードと前記低電位側二次電池の正極との間に接続された昇圧用コイルと、前記第2スイッチ素子をオンオフする第2スイッチ制御部と、を有する昇圧型DC−DCコンバータである請求項1に記載の電圧バランス装置である。   According to a second aspect of the present invention, the high potential side charging circuit is provided between a negative electrode of the secondary battery serving as the power source and a positive electrode of a high potential side secondary battery that is a secondary battery adjacent to the high potential side. The first switch coil is connected to the negative electrode side of the secondary battery, the first switch element and the first diode are arranged in series in this order, and the anode of the first diode is arranged on the first switch element side A step-up type comprising: a circuit; a step-up coil connected between an anode of the first diode and a negative electrode of the high-potential side secondary battery; and a first switch control unit for turning on and off the first switch element. A low-potential side charging circuit between a positive electrode of the secondary battery serving as the power source and a negative electrode of a low-potential side secondary battery that is a secondary battery adjacent to the low-potential side; Connected to the secondary battery A second switch coil circuit in which the second switch element and the second diode are arranged in series in this order from the pole side, and the cathode of the second diode is disposed on the second switch element side; and the cathode of the second diode The step-up DC-DC converter having a step-up coil connected between the positive electrode of the low-potential side secondary battery and a second switch control unit for turning on and off the second switch element. It is a voltage balance apparatus of description.

請求項3の発明は、電源となる前記当該二次電池が共通する前記高電位側充電回路及び前記低電位側充電回路は、前記当該二次電池の正極と負極との間に接続されかつその負極側から前記第1スイッチ素子、前記昇圧用コイル及び前記第2スイッチ素子が順番に直列に並んだダブルスイッチ・コイル回路を共有し、前記第1ダイオードは、アノードが前記第1スイッチ素子と前記昇圧用コイルとの共通接続部分に接続される一方、カソードが前記高電位側二次電池の正極に接続され、前記第2ダイオードは、カソードが前記第2スイッチ素子と前記昇圧用コイルとの共通接続部分に接続される一方、アノードが前記低電位側二次電池の負極に接続され、前記第2スイッチ素子がオフ状態で前記第1スイッチ素子がオンオフされることで前記低電位側充電回路が停止状態で前記高電位側充電回路が作動し、前記第1スイッチ素子がオフ状態で前記第2スイッチ素子がオンオフされることで前記高電位側充電回路が停止状態で前記低電位側充電回路が作動する請求項2に記載の電圧バランス装置である。   According to a third aspect of the present invention, the high potential side charging circuit and the low potential side charging circuit shared by the secondary battery serving as a power source are connected between a positive electrode and a negative electrode of the secondary battery and The first switch element, the boosting coil, and the second switch element share a double switch coil circuit in order from the negative electrode side, and the first diode has an anode connected to the first switch element and the first switch element. The cathode is connected to the positive electrode of the high-potential side secondary battery while the cathode is connected to the second switching element and the boosting coil while being connected to a common connection portion with the boosting coil. While being connected to the connection portion, the anode is connected to the negative electrode of the low-potential side secondary battery, and the first switch element is turned on / off while the second switch element is in the off state. The high-potential side charging circuit operates in a stopped state, the high-potential-side charging circuit operates, and the first switch element is in an off-state and the second switch element is turned on and off, so that the high-potential-side charging circuit is in a stopped state and the low-side charging circuit The voltage balance device according to claim 2, wherein the potential side charging circuit operates.

請求項4の発明は、前記複数の高電位側充電回路及び前記複数の低電位側充電回路には、共通の基準電源電流が予め設定されると共に、前記電源となる前記当該二次電池から流出する電流が、前記基準電源電流になるように制御する電流制御手段が備えられ、その電流制御手段は、前記電源となる前記当該二次電池と前記昇圧用コイルとを含む閉回路に設けられた電流検出用抵抗と、前記第1スイッチ制御部及び前記第2スイッチ制御部とからなり、前記第1スイッチ制御部及び前記第2スイッチ制御部が、前記基準電源電流の代用値である基準電圧と、前記当該二次電池からの電流の代用値である前記電流検出用抵抗の端末間電圧との偏差に基づいて前記第1スイッチ素子のオンオフのDUTY比を変更し、前記当該二次電池からの電流が前記基準電源電流となるようにフィードバック制御する請求項3に記載の電圧バランス装置である。   According to a fourth aspect of the present invention, a common reference power supply current is preset in the plurality of high potential side charging circuits and the plurality of low potential side charging circuits, and flows out of the secondary battery serving as the power source. Current control means for controlling the current to be the reference power supply current is provided, and the current control means is provided in a closed circuit including the secondary battery serving as the power supply and the boosting coil. A current detection resistor; and the first switch control unit and the second switch control unit, wherein the first switch control unit and the second switch control unit include a reference voltage that is a substitute value of the reference power supply current; Changing the ON / OFF DUTY ratio of the first switch element based on the deviation from the terminal voltage of the current detection resistor, which is a substitute value of the current from the secondary battery, Current A voltage balancing device according to claim 3, the feedback control so that the serial reference source current.

請求項5の発明は、前記複数の高電位側充電回路及び前記複数の低電位側充電回路に、前記電源となる前記当該二次電池から流出する電流が、予め定められた共通の基準電源電流になるように制御する電流制御手段が備えられた請求項1乃至3に記載の電圧バランス装置である。   According to a fifth aspect of the present invention, a current flowing out from the secondary battery serving as the power source is a predetermined common reference power source current for the plurality of high potential side charging circuits and the plurality of low potential side charging circuits. The voltage balance device according to claim 1, further comprising a current control unit that performs control so that

請求項6の発明は、前記充電統括制御回路は、前記複数の二次電池のうち出力電圧が異常に低い第1の二次電池と、出力電圧が異常に高い第2の二次電池との間に、通常の出力電圧の第3の二次電池が存在する場合に、それら第1、第2、第3の二次電池に対応した全ての前記高電位側充電回路又は全ての前記低電位側充電回路を同時に作動させて、前記第2の二次電池から前記第1の二次電池へと前記第3の二次電池を中継して電力を受け渡し、前記第1の二次電池を充電する請求項1乃至5に記載の電圧バランス装置である。   According to a sixth aspect of the present invention, the charge control circuit includes: a first secondary battery having an abnormally low output voltage among the plurality of secondary batteries; and a second secondary battery having an abnormally high output voltage. When there is a third secondary battery having a normal output voltage between them, all the high potential side charging circuits corresponding to the first, second and third secondary batteries or all the low potentials are provided. Side-side charging circuit is simultaneously operated to relay the third secondary battery from the second secondary battery to the first secondary battery to deliver power, and charge the first secondary battery. The voltage balance device according to claim 1.

請求項1の電圧バランス装置では、直列接続された複数の二次電池に対応して複数の高電位側充電回路と複数の低電位側充電回路とが備えられ、隣り合う二次電池の出力電圧が異なる場合に、それら両二次電池のうち出力電圧が高い当該二次電池の高電位側充電回路又は低電位側充電回路がその当該二次電池を電源として、出力電圧が低い二次電池を充電する。即ち、本発明の電圧バランス装置では、相対的に出力電圧が高い二次電池の電力を、出力電圧が低い二次電池に補充して複数の二次電池の出力電圧を均一化するので、従来のものに比べて、二次電池群の出力電圧の均一化に伴う無駄な電力消費を抑えることができる。   The voltage balance device according to claim 1 is provided with a plurality of high potential side charging circuits and a plurality of low potential side charging circuits corresponding to the plurality of secondary batteries connected in series, and the output voltage of adjacent secondary batteries. Are different from each other, the high-potential side charging circuit or the low-potential side charging circuit of the secondary battery having a high output voltage is used as a power source for the secondary battery having a low output voltage. Charge. That is, in the voltage balance device of the present invention, the power of the secondary battery having a relatively high output voltage is supplemented to the secondary battery having a low output voltage to equalize the output voltages of the plurality of secondary batteries. Compared to the above, it is possible to suppress wasteful power consumption accompanying the equalization of the output voltage of the secondary battery group.

ここで、高電位側充電回路及び低電位側充電回路は、昇圧型DC−DCコンバータであるので、トランスで電力変換するものに比べて効率良く充電を行うことができる。また、請求項2の構成によれば、高電位側充電回路及び低電位側充電回路の間で、昇圧用コイルを共有したので、電圧バランス装置の低コスト化、小型化が図られる。   Here, since the high-potential side charging circuit and the low-potential side charging circuit are step-up DC-DC converters, charging can be performed more efficiently than those in which power is converted by a transformer. According to the second aspect of the present invention, since the boosting coil is shared between the high-potential side charging circuit and the low-potential side charging circuit, the cost and size of the voltage balance device can be reduced.

さらに、請求項4及び5の発明によれば、電源となる当該二次電池から流出する電流が一定の基準電源電流になるように制御して充電を行うので、充電する二次電池から充電される二次電池へと過剰な電流が流れ込む事態が防がれる。また、その基準電源電流は、複数の高電位側充電回路及び複数の低電位側充電回路の間で共通しているので、請求項6の発明のように、第1、第2、第3の二次電池に対応した全ての高電位側充電回路又は全ての低電位側充電回路を同時に作動させて、第2の二次電池から第1の二次電池へと第3の二次電池を中継して電力を受け渡して充電を行うことができる。   Further, according to the inventions of claims 4 and 5, since charging is performed such that the current flowing out from the secondary battery serving as the power source becomes a constant reference power source current, charging is performed from the secondary battery to be charged. This prevents a situation where excessive current flows into the secondary battery. Further, since the reference power supply current is common among the plurality of high potential side charging circuits and the plurality of low potential side charging circuits, the first, second, and third as in the invention of claim 6. Relay the third secondary battery from the second secondary battery to the first secondary battery by simultaneously operating all the high potential side charging circuits or all the low potential side charging circuits corresponding to the secondary batteries. Then, power can be delivered and charged.

本発明の一実施形態に係る電圧バランス装置とセルストリングスの概念図1 is a conceptual diagram of a voltage balance device and cell strings according to an embodiment of the present invention. 電圧バランス装置のブロック図Block diagram of voltage balance device 電圧バランス装置の回路図Circuit diagram of voltage balance device 個別充電回路の回路図Circuit diagram of individual charging circuit 個別充電回路の回路図Circuit diagram of individual charging circuit 高電位側充電回路の回路図High-potential side charging circuit schematic 低電位側充電回路の回路図Circuit diagram of low potential side charging circuit

以下、本発明の一実施形態を図1〜図7に基づいて説明する。図1には、電気自動車やハイブリッド車等の車両に搭載されるバッテリー10が示されている。このバッテリー10は、1対のバッテリー電極10A,10Bの間に複数のバッテリーパック11を並列接続して備え、各バッテリーパック11は、本発明の「二次電池」に相当するリチウムイオンバッテリーセルB(以下、単に「セルB」という)を複数(例えば、96個)直列接続してなる。また、1対のバッテリー電極10A,10Bには、パワーコンディショナー14が接続され、そのパワーコンディショナー14にコンバータ16を介して発電機15が接続されると共に負荷17が接続され、これによりバッテリー10の充放電が行われる。なお、各セルBの出力電圧は、約3.7Vで適正値であり、4.5[V]以上で過充電、3.5[V]以下で過放電になる。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a battery 10 mounted on a vehicle such as an electric vehicle or a hybrid vehicle. The battery 10 includes a plurality of battery packs 11 connected in parallel between a pair of battery electrodes 10A and 10B. Each battery pack 11 is a lithium ion battery cell B corresponding to the “secondary battery” of the present invention. A plurality of (for example, 96) (hereinafter simply referred to as “cell B”) are connected in series. In addition, a power conditioner 14 is connected to the pair of battery electrodes 10A and 10B, and a generator 15 and a load 17 are connected to the power conditioner 14 via a converter 16, thereby charging the battery 10. Discharge occurs. The output voltage of each cell B is an appropriate value of about 3.7V, overcharged when it is 4.5 [V] or more, and overdischarged when it is 3.5 [V] or less.

なお、以下の説明においてセルB同士を区別しないで説明する場合には、単に「セルB」と記載し、セルB同士を区別して説明する場合には、バッテリーパック11の低電位側のセルBから順番に末尾に通し番号1,2,3,・・・を付して、例えば「セルB1、B2,B3,・・・」と記載する。   In the following description, when the cells B are not distinguished from each other, they are simply referred to as “cell B”, and when the cells B are distinguished from each other, the cells B on the low potential side of the battery pack 11 are described. .. Are added to the end in order, for example, “cells B1, B2, B3,...”.

本実施形態の電圧バランス装置20は、バッテリーパック11毎に1つずつ備えられ、図2には、1つのバッテリーパック11と1つの電圧バランス装置20とがブロック図で示されている。同図に示すように、電圧バランス装置20は、セルB毎に設けられた複数の電圧検出回路50及び個別充電回路21と、1つの充電統括制御回路40とを有する。そして、充電統括制御回路40が、電圧検出回路50群による各セルBの出力電圧の検出結果に基づいて複数の個別充電回路21の何れを作動させるかを制御する。   One voltage balance device 20 of this embodiment is provided for each battery pack 11, and FIG. 2 shows one battery pack 11 and one voltage balance device 20 in a block diagram. As shown in the figure, the voltage balance device 20 includes a plurality of voltage detection circuits 50 and individual charging circuits 21 provided for each cell B, and one charging control circuit 40. Then, the charge overall control circuit 40 controls which of the plurality of individual charging circuits 21 is operated based on the detection result of the output voltage of each cell B by the voltage detection circuit 50 group.

なお、本実施形態では、複数の電圧検出回路50が電圧バランス装置20の一部として備えられているが、電圧バランス装置20が電圧検出回路50群を備えず、車両に搭載されている他の回路が検出した各セルBの出力電圧の情報を取得する構成としてもよい。   In the present embodiment, the plurality of voltage detection circuits 50 are provided as a part of the voltage balance device 20, but the voltage balance device 20 does not include the voltage detection circuit 50 group, and is installed in the vehicle. It is good also as a structure which acquires the information of the output voltage of each cell B which the circuit detected.

各個別充電回路21は、充電統括制御回路40からの信号に応じて作動し、対応するセルBから受電して両隣のセルBの任意の一方を充電することができる。また、バッテリーパック11のうち最も高電位側のセルBに対応した個別充電回路21は、それより高電位側にはセルBがないので低電位側の隣のセルBのみを充電可能な構成をなし、最も低電位側のセルBに対応した個別充電回路21は、それより低電位側にはセルBがないので、高電位側の隣のセルBのみを充電可能な構成になっている。   Each individual charging circuit 21 operates in response to a signal from the charging overall control circuit 40, can receive power from the corresponding cell B, and charge any one of the adjacent cells B. In addition, the individual charging circuit 21 corresponding to the cell B on the highest potential side of the battery pack 11 has a configuration capable of charging only the cell B adjacent to the low potential side because there is no cell B on the higher potential side. None, the individual charging circuit 21 corresponding to the cell B on the lowest potential side has no cell B on the lower potential side, so that only the adjacent cell B on the higher potential side can be charged.

図3には、複数のセルBに接続された複数の個別充電回路21の回路図が示され、それら複数の個別充電回路21のうち1つのセルB49(以下、適宜、「当該セルB49」という)に対応した1つの個別充電回路21が図4に抜粋して示されている。その図4に示すように、個別充電回路21は、当該セルB49の1対の正電極と負電極の間に、本発明に係るダブルスイッチ・コイル回路24を有する。ダブルスイッチ・コイル回路24は、当該セルB49の正電極側から順番に、第2スイッチ22、昇圧用コイルL1、第1スイッチ23及び抵抗R1を直列接続してなる。なお、抵抗R1の両端末間には、バイパスコンデンサ29が接続されている。   FIG. 3 shows a circuit diagram of a plurality of individual charging circuits 21 connected to a plurality of cells B. Among the plurality of individual charging circuits 21, one cell B49 (hereinafter referred to as “the cell B49” as appropriate) is shown. 1 is shown in an excerpt in FIG. As shown in FIG. 4, the individual charging circuit 21 has a double switch coil circuit 24 according to the present invention between a pair of positive and negative electrodes of the cell B49. The double switch coil circuit 24 is formed by connecting the second switch 22, the boosting coil L1, the first switch 23, and the resistor R1 in series from the positive electrode side of the cell B49. A bypass capacitor 29 is connected between both terminals of the resistor R1.

第1スイッチ23はNチャンネルのMOSFETである一方、第2スイッチ22はPチャンネルのMOSFETである。そして、第1スイッチ23としてのMOSFETのドレインと第2スイッチ22としてのMOSFETのドレインとが昇圧用コイルL1にそれぞれ接続されている。また、第1スイッチ23と昇圧用コイルL1との共通接続部分には、第1ダイオードD1のアノードが接続され、その第1ダイオードD1のカソードが高電位側の隣のセルB50(以下、適宜「高電位側セルB50」という)の正電極に接続されている。さらには、第2スイッチ22と昇圧用コイルL1との共通接続部分には、第2ダイオードD2のカソードが接続され、その第2ダイオードD2のアノードが低電位側の隣のセルB48(以下、適宜「低電位側セルB48」という)の負電極に接続されている。   The first switch 23 is an N-channel MOSFET, while the second switch 22 is a P-channel MOSFET. The drain of the MOSFET as the first switch 23 and the drain of the MOSFET as the second switch 22 are connected to the boosting coil L1. In addition, the anode of the first diode D1 is connected to the common connection portion between the first switch 23 and the boosting coil L1, and the cathode of the first diode D1 is the cell B50 on the high potential side (hereinafter referred to as “ To the positive electrode of the high potential side cell B50 ". Furthermore, the cathode of the second diode D2 is connected to the common connection portion between the second switch 22 and the boosting coil L1, and the anode of the second diode D2 is the cell B48 adjacent to the low potential side (hereinafter referred to as appropriate). To the negative electrode of “low potential side cell B48”.

また、各セルBの1対の正電極と負電極の間には、ダブルスイッチ・コイル回路24と並列に平滑コンデンサCが接続されている。なお、図3〜図7おいて、各平滑コンデンサCを示す符号「C」の後には、対応するセルB44,B49,B50・・・等の末尾の番号と同じ番号が付されている。   A smoothing capacitor C is connected between the pair of positive and negative electrodes of each cell B in parallel with the double switch coil circuit 24. 3 to 7, the reference numeral “C” indicating each smoothing capacitor C is followed by the same number as the last number of the corresponding cells B44, B49, B50.

個別充電回路21には、第1と第2のスイッチ22,23をオンオフ制御するために、電源制御IC25とロジック回路26とが備えられ、これら電源制御IC25とロジック回路26とによって本発明に係る「第1スイッチ制御部」と「第2スイッチ制御部」とが構成されている。ロジック回路26は、アンドゲートG1とオアゲートG2とからなる。アンドゲートG1は、反転入力端子と非反転入力端子と有し、オアゲートG2は、1対の非反転入力端子(以下、単に「入力端子」という)を有する。また、アンドゲートG1の反転入力端子とオアゲートG2の一方の入力端子は、電源制御IC25の出力端子に共通接続されると共に、アンドゲートG1の入力端子とオアゲートG2の他方の入力端子は、フォトカプラP2(図5参照)を介して充電統括制御回路40の選択信号用出力端子に接続されている。   The individual charging circuit 21 is provided with a power supply control IC 25 and a logic circuit 26 for on / off control of the first and second switches 22 and 23, and the power supply control IC 25 and the logic circuit 26 are used to control the first and second switches 22 and 23. A “first switch control unit” and a “second switch control unit” are configured. The logic circuit 26 includes an AND gate G1 and an OR gate G2. The AND gate G1 has an inverting input terminal and a non-inverting input terminal, and the OR gate G2 has a pair of non-inverting input terminals (hereinafter simply referred to as “input terminals”). The inverting input terminal of the AND gate G1 and one input terminal of the OR gate G2 are commonly connected to the output terminal of the power supply control IC 25, and the input terminal of the AND gate G1 and the other input terminal of the OR gate G2 are connected to the photocoupler. It is connected to the selection signal output terminal of the charge overall control circuit 40 via P2 (see FIG. 5).

充電統括制御回路40は、各個別充電回路21に対して「HIGH」と「LOW」の二値信号である待機信号及び選択信号を出力する。充電統括制御回路40のうち選択信号を出力する選択信号用出力端子は、前述の通りでフォトカプラP2を介してロジック回路26に接続されている。一方、充電統括制御回路40のうち待機信号を出力する待機信号用出力端子は、フォトカプラP1を介して電源制御IC25に接続されている。   The charge overall control circuit 40 outputs a standby signal and a selection signal that are binary signals of “HIGH” and “LOW” to each individual charging circuit 21. The selection signal output terminal for outputting the selection signal in the charge control circuit 40 is connected to the logic circuit 26 via the photocoupler P2 as described above. On the other hand, the standby signal output terminal for outputting the standby signal in the charge control circuit 40 is connected to the power supply control IC 25 via the photocoupler P1.

充電統括制御回路40が出力する待機信号が「LOW」になると、電源制御IC25は、ロジック回路26への出力を「LOW」と「HIGH」とに交互に切り替える。このとき、選択信号が「LOW」になっていると、アンドゲートG1の出力が「LOW」に保持され、オアゲートG2の出力が「LOW」と「HIGH」とに切り替わる。これにより、第2スイッチ22がONに保持され、第1スイッチ23がONとOFFとに交互に切り替わり、個別充電回路21が、図6(A)に示した本発明に係る高電位側充電回路41(図6(A)参照)になって、当該セルB49の電力で高電位側セルB50を充電する。高電位側充電回路41に関しては次述する低電位側充電回路42と併せて後に詳説する。   When the standby signal output from the charge control circuit 40 becomes “LOW”, the power supply control IC 25 switches the output to the logic circuit 26 alternately between “LOW” and “HIGH”. At this time, if the selection signal is “LOW”, the output of the AND gate G1 is held at “LOW”, and the output of the OR gate G2 is switched between “LOW” and “HIGH”. As a result, the second switch 22 is held ON, the first switch 23 is alternately switched between ON and OFF, and the individual charging circuit 21 is switched to the high potential side charging circuit according to the present invention shown in FIG. 41 (see FIG. 6A), the high potential side cell B50 is charged with the power of the cell B49. The high potential side charging circuit 41 will be described later together with the low potential side charging circuit 42 described below.

一方、待機信号が「LOW」で選択信号が「HIGH」であると、オアゲートG2の出力が「HIGH」に保持され、アンドゲートG1の出力が「LOW」と「HIGH」とに切り替わる。これにより、第1スイッチ23がONに保持され、第2スイッチ22がONとOFFとに交互に切り替わり、個別充電回路21が図7(A)に示した本発明に係る低電位側充電回路42になって、当該セルB49の電力で低電位側セルB48を充電する。   On the other hand, when the standby signal is “LOW” and the selection signal is “HIGH”, the output of the OR gate G2 is held at “HIGH”, and the output of the AND gate G1 is switched between “LOW” and “HIGH”. As a result, the first switch 23 is held ON, the second switch 22 is alternately switched between ON and OFF, and the individual charging circuit 21 is switched to the low potential side charging circuit 42 according to the present invention shown in FIG. Then, the low potential side cell B48 is charged with the power of the cell B49.

また、充電統括制御回路40は、待機信号を「HIGH」にした場合には、選択信号を「LOW」にする。待機信号が「HIGH」になると、電源制御IC25は、ロジック回路26への出力を「LOW」に保持し、ロジック回路26が、電源制御IC25と充電統括制御回路40との両方から「LOW」の信号を受けることになる。これにより、アンドゲートG1とオアゲートG2の出力が共に「LOW」になり、第1と第2のスイッチ22,23が共にオフになって、昇圧用コイルL1等が当該セルB49から切り離される。   In addition, when the standby signal is set to “HIGH”, the charge overall control circuit 40 sets the selection signal to “LOW”. When the standby signal becomes “HIGH”, the power supply control IC 25 holds the output to the logic circuit 26 at “LOW”, and the logic circuit 26 is set to “LOW” from both the power supply control IC 25 and the charge control circuit 40. You will receive a signal. As a result, the outputs of the AND gate G1 and the OR gate G2 both become “LOW”, the first and second switches 22 and 23 are both turned off, and the boosting coil L1 and the like are disconnected from the cell B49.

即ち、充電統括制御回路40が待機信号を「HIGH」、選択信号を「LOW」としたことが、充電を禁じる待機指令を個別充電回路21に付与したことになり、充電統括制御回路40が待機信号を「LOW」、選択信号を「LOW」としたことが、高電位側セルB50への充電を命ずる高電位側セル充電指令を個別充電回路21に付与したことになり、さらには、充電統括制御回路40が待機信号を「LOW」、選択信号を「HIGH」としたことが、低電位側セルB48への充電を命ずる低電位側セル充電指令を個別充電回路21に付与したことになる。   That is, when the charging control circuit 40 sets the standby signal to “HIGH” and the selection signal is “LOW”, it means that the standby command for prohibiting charging is given to the individual charging circuit 21, and the charging control circuit 40 waits. When the signal is “LOW” and the selection signal is “LOW”, a high-potential side cell charge command for instructing charging of the high-potential side cell B50 is given to the individual charging circuit 21, and further, charge control When the control circuit 40 sets the standby signal to “LOW” and the selection signal to “HIGH”, it means that the low-potential side cell charging command for instructing charging to the low-potential side cell B48 is given to the individual charging circuit 21.

充電統括制御回路40から高電位側セル充電指令を受けた個別充電回路21は、前述の如く、図6(A)の高電位側充電回路41になる。この高電位側充電回路41は、図6(B)に整理して示されており、昇圧型のDC−DCコンバータであって以下のように動作する。即ち、第1スイッチ23がONすると当該セルB49から昇圧用コイルL1に電流が流れ、その電流は昇圧用コイルL1のインダクタンスにより徐々に大きくなる。そして、昇圧用コイルL1に流れる電流が飽和する前に第1スイッチ23がOFFし、電磁誘導により昇圧用コイルL1に急峻に大きな電流が流れ込んで昇圧用コイルL1の両端に当該セルB49の出力電圧より高い誘導電圧が発生し、その誘導電圧により昇圧用コイルL1と第1ダイオードD1と高電位側セルB50とを有する閉回路に電流が流れる。そして、この動作を繰り返すことで、個別充電回路21(高電位側充電回路41)は、当該セルB49を電源として高電位側セルB50を充電する。   The individual charging circuit 21 that has received the high-potential side cell charging command from the charging overall control circuit 40 becomes the high-potential side charging circuit 41 of FIG. The high-potential side charging circuit 41 is shown schematically in FIG. 6B, and is a step-up DC-DC converter that operates as follows. That is, when the first switch 23 is turned on, a current flows from the cell B49 to the boosting coil L1, and the current gradually increases due to the inductance of the boosting coil L1. Then, before the current flowing through the boosting coil L1 is saturated, the first switch 23 is turned off, and a large current suddenly flows into the boosting coil L1 due to electromagnetic induction, and the output voltage of the cell B49 is applied to both ends of the boosting coil L1. A higher induced voltage is generated, and a current flows through a closed circuit including the boosting coil L1, the first diode D1, and the high potential side cell B50 by the induced voltage. By repeating this operation, the individual charging circuit 21 (high potential side charging circuit 41) charges the high potential side cell B50 using the cell B49 as a power source.

上記した第1スイッチ23のON・OFF制御は、電源制御IC25によって行われる。ここで、全ての個別充電回路21の電源制御IC25には、本発明に係る基準電源電流の代用値である共通の基準電圧が設定されている。そして、電源制御IC25は、抵抗R1の両端末間電圧を当該セルB49から流出する電流の代用値として取り込み、基準電圧との偏差を求め、その偏差に基づいて第1スイッチ23のオンオフのDUTY比(例えば、ON DUTY比)を変更し、当該セルB49からの電流が基準電源電流になるようにフィードバック制御する。   The above-described ON / OFF control of the first switch 23 is performed by the power supply control IC 25. Here, a common reference voltage which is a substitute value of the reference power supply current according to the present invention is set in the power supply control ICs 25 of all the individual charging circuits 21. Then, the power supply control IC 25 takes in the voltage between both terminals of the resistor R1 as a substitute value of the current flowing out from the cell B49, obtains a deviation from the reference voltage, and based on the deviation, the ON / OFF DUTY ratio of the first switch 23 (For example, ON DUTY ratio) is changed, and feedback control is performed so that the current from the cell B49 becomes the reference power supply current.

充電統括制御回路40から低電位側セル充電指令を受けた個別充電回路21は、前述の如く、図7(A)の低電位側充電回路42になる。この低電位側充電回路42も、昇圧型のDC−DCコンバータであって(図7(B)参照)、前述の高電位側充電回路41と同じように動作し、当該セルB49を電源として低電位側セルB48を充電する。即ち、本実施形態の構成によれば、電源制御IC25は、高電位側充電回路41と低電位側充電回路42とを区別せずに制御することができる。   The individual charging circuit 21 that has received the low-potential side cell charging command from the charging overall control circuit 40 becomes the low-potential side charging circuit 42 of FIG. The low potential side charging circuit 42 is also a step-up DC-DC converter (see FIG. 7B), operates in the same manner as the above-described high potential side charging circuit 41, and uses the cell B49 as a power source. The potential side cell B48 is charged. That is, according to the configuration of the present embodiment, the power supply control IC 25 can control the high-potential side charging circuit 41 and the low-potential side charging circuit 42 without distinction.

なお、前述した通り、バッテリーパック11(図2参照)のうち高電位側の端部のセルBに対応した個別充電回路21は、低電位側の隣のセルBのみを充電できればよいので、図4に示した個別充電回路21から第1ダイオードD1と第1スイッチ23とオアゲートG2とを排除した構成をなし、バッテリーパック11のうち低電位側の端部のセルBに対応した個別充電回路21は、高電位側の隣のセルBのみを充電できればよいので、図4に示した個別充電回路21から第2ダイオードD2と第2スイッチ22とアンドゲートG1とを排除した構成になっている。   As described above, the individual charging circuit 21 corresponding to the cell B at the end on the high potential side of the battery pack 11 (see FIG. 2) only needs to charge the cell B adjacent on the low potential side. 4 to eliminate the first diode D1, the first switch 23, and the OR gate G2, and the individual charging circuit 21 corresponding to the cell B at the end of the battery pack 11 on the low potential side. Since only the cell B adjacent to the high potential side needs to be charged, the second diode D2, the second switch 22, and the AND gate G1 are excluded from the individual charging circuit 21 shown in FIG.

充電統括制御回路40は、所定周期(例えば、10[msec])で図示しない電位差検出処理を繰り返して実行し、バッテリーパック11(図2参照)の複数のセルBのうちそれぞれ隣り合ったセルB同士の出力電圧差を求め、予め定められた許容電圧差と比較して、出力電圧差が許容電圧差を超えかつ隣り合っているセルBのペア(以下、「要充放電ペア」という)を特定する。そして、要充放電ペアのうち出力電圧が高いセルBを電源とする個別充電回路21に、高電位側セル充電指令か低電位側セル充電指令かを付与して、個別充電回路21を高電位側充電回路41か低電位側充電回路42かとして作動させ、要充放電ペアのうち出力電圧が低いセルBを充電させる。また、その充電の結果、要充放電ペアの両セルBの出力電圧差が許容電圧差より小さくなったら(即ち、要充放電ペアの両セルBの出力電圧が許容電圧差の範囲で同一になったら)、充電統括制御回路40から個別充電回路21に待機指令を付与して充電を停止させる。これにより、要充放電ペアであった1対のセルBの出力電圧が、それら両セルBの出力電圧の平均に近づけられる。   The charge overall control circuit 40 repeatedly executes a potential difference detection process (not shown) at a predetermined cycle (for example, 10 [msec]), and each cell B adjacent to each other among the plurality of cells B of the battery pack 11 (see FIG. 2). The output voltage difference between the two is obtained, and compared with a predetermined allowable voltage difference, a pair of cells B in which the output voltage difference exceeds the allowable voltage difference and is adjacent (hereinafter referred to as “charge / discharge pair”). Identify. Then, a high potential side cell charge command or a low potential side cell charge command is given to the individual charge circuit 21 that uses the cell B having a high output voltage as a power source among the charge / discharge pairs required to make the individual charge circuit 21 a high potential. The battery B is operated as the side charging circuit 41 or the low potential side charging circuit 42, and the cell B having the low output voltage is charged in the charge / discharge pair. Further, as a result of the charging, if the output voltage difference between both cells B of the charge / discharge pair becomes smaller than the allowable voltage difference (that is, the output voltages of both cells B of the charge / discharge pair required are the same within the allowable voltage difference range). Then, the charging overall control circuit 40 gives a standby command to the individual charging circuit 21 to stop the charging. Thereby, the output voltage of a pair of cells B, which is a charge / discharge pair, is brought close to the average of the output voltages of both the cells B.

また、上述の処理が行われることで、例えば、当該セルB49が低電位側セルB48を充電したために当該セルB49と高電位側セルB50との出力電圧差が許容電圧差を超えた場合には、高電位側セルB50の電力で当該セルB49が充電されることになり、さらに、その結果、高電位側セルB50とその高電位側の隣のセルB51との出力電圧差が許容電圧差を超えた場合には、セルB51の電力でセルB50が充電されることになる。このように、複数のセルBが連動して充放電されることもあり、その結果、バッテリーパック11のセルB全体の出力電圧が均一化される。   In addition, when the above-described processing is performed, for example, when the cell B49 charges the low potential side cell B48, the output voltage difference between the cell B49 and the high potential side cell B50 exceeds the allowable voltage difference. Then, the cell B49 is charged by the power of the high potential side cell B50, and as a result, the output voltage difference between the high potential side cell B50 and the adjacent cell B51 on the high potential side becomes an allowable voltage difference. When it exceeds, cell B50 will be charged with the electric power of cell B51. Thus, the plurality of cells B may be charged and discharged in conjunction with each other, and as a result, the output voltage of the entire cell B of the battery pack 11 is made uniform.

また、充電統括制御回路40は、複数のセルBのうち出力電圧が異常に低い第1のセルB(過放電状態に近いセルB)と、出力電圧が異常に高い第2のセルB(過充電状態に近いセルB)とが、それらの間に通常の出力電圧の第3のセルBを挟んだ状態で検出されたときには、それら第1、第2、第3のセルBに対応した全ての高電位側充電回路41又は全ての低電位側充電回路42を同時に作動させて、第2のセルBから第1のセルBへと第3のセルBを中継して電力を受け渡す。これにより、過放電状態に近い第1のセルBと、過充電状態に近い第2のセルBとを、早急に正常な状態に戻すことができる。このとき、高電位側充電回路41又は低電位側充電回路42の全ての電源制御IC25は、電源となる当該セルBから流出する電流を一定の基準電源電流になるように制御するので、電力の中継により第3のセルBの出力電圧の変動が抑えられる。   In addition, the charge control circuit 40 includes a first cell B (cell B close to an overdischarge state) having an abnormally low output voltage among a plurality of cells B and a second cell B (excessive voltage) having an abnormally high output voltage. All of the cells corresponding to the first, second, and third cells B are detected when the cell B) close to the charged state is detected with the third cell B having a normal output voltage sandwiched between them. The high potential side charging circuit 41 or all of the low potential side charging circuits 42 are simultaneously operated to relay power from the second cell B to the first cell B through the third cell B. Thereby, the 1st cell B near an overdischarge state and the 2nd cell B near an overcharge state can be immediately returned to a normal state. At this time, all the power supply control ICs 25 of the high-potential side charging circuit 41 or the low-potential side charging circuit 42 control the current flowing out from the cell B serving as the power source to be a constant reference power supply current. The variation in the output voltage of the third cell B is suppressed by the relay.

このように本実施形態の電圧バランス装置20では、相対的に出力電圧が高いセルBの電力を、出力電圧が低いセルBに補充して複数のセルBの出力電圧を均一化するので、従来のものに比べて、セルB群の出力電圧の均一化に伴う無駄な電力消費を抑えることができる。また、高電位側充電回路41及び低電位側充電回路42は、昇圧型DC−DCコンバータであるので、トランスで電力変換するものに比べて効率良く、小型部品で充電を行うことができる。さらに、高電位側充電回路41及び低電位側充電回路42の間で、昇圧用コイルL1、電源制御IC25及びロジック回路26を共有したので電圧バランス装置20の低コスト化、小型化が図られる。しかも、高電位側充電回路41及び低電位側充電回路42は、電源となる当該セルBから流出する電流が、一定の基準電源電流になるように制御しているので、充電するセルBから充電されるセルBへと過剰な電流が流れ込む事態が防がれる。また、その基準電源電流は、複数の高電位側充電回路41及び複数の低電位側充電回路42の間で共通しているので、複数のセルBで順繰りに電力を受け渡すように充電を行うことができる。   As described above, in the voltage balance device 20 according to the present embodiment, the power of the cell B having a relatively high output voltage is supplemented to the cell B having a low output voltage to equalize the output voltages of the plurality of cells B. Compared to the above, wasteful power consumption associated with equalizing the output voltage of the cell B group can be suppressed. In addition, since the high potential side charging circuit 41 and the low potential side charging circuit 42 are step-up DC-DC converters, charging can be performed with small components more efficiently than those in which power is converted by a transformer. Furthermore, since the boosting coil L1, the power supply control IC 25, and the logic circuit 26 are shared between the high potential side charging circuit 41 and the low potential side charging circuit 42, the cost and size of the voltage balance device 20 can be reduced. Moreover, since the high potential side charging circuit 41 and the low potential side charging circuit 42 are controlled so that the current flowing out from the cell B serving as the power source becomes a constant reference power source current, charging is performed from the cell B to be charged. This prevents a situation where an excessive current flows into the cell B. Further, since the reference power supply current is common between the plurality of high potential side charging circuits 41 and the plurality of low potential side charging circuits 42, charging is performed so that power is sequentially delivered to the plurality of cells B. be able to.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態の電圧バランス装置20では、高電位側充電回路41と低電位側充電回路42とが昇圧用コイルL1、抵抗R1、電源制御IC25等を共有していたが、高電位側充電回路41と低電位側充電回路42とを別個に切り離して備えた構成にしてもよい。 (1) In the voltage balance device 20 of the above embodiment, the high potential side charging circuit 41 and the low potential side charging circuit 42 share the boosting coil L1, the resistor R1, the power supply control IC 25, etc. The charging circuit 41 and the low potential side charging circuit 42 may be separately provided.

(2)前記電圧バランス装置20は、車両に搭載された二次電池群(セルB群)の保護に使用されていたが、それに限定されるものではなく、例えば、家電製品や医療機器等に備えた二次電池群の保護に使用してもよい。 (2) The voltage balance device 20 has been used to protect the secondary battery group (cell B group) mounted on the vehicle, but is not limited thereto, for example, for home appliances and medical devices. You may use for protection of the secondary battery group provided.

(3)前記実施形態では、1つのセルBを本発明に係る1つの二次電池として、それら各二次電池毎に個別充電回路21が設けられていたが、複数のセルBを並列又は直列接続してなるセルグループを本発明に係る1つの二次電池として、それら各二次電池毎に個別充電回路21を設けてもよい。 (3) In the embodiment, one cell B is used as one secondary battery according to the present invention, and the individual charging circuit 21 is provided for each secondary battery. However, a plurality of cells B are connected in parallel or in series. A cell group formed by connecting the cells may be provided as a single secondary battery according to the present invention, and an individual charging circuit 21 may be provided for each secondary battery.

10 バッテリー
20 電圧バランス装置
22 第2スイッチ
23 第1スイッチ
25 電源制御IC(第1スイッチ制御部、第2スイッチ制御部)
26 ロジック回路(第1スイッチ制御部、第2スイッチ制御部)
40 充電統括制御回路
41 高電位側充電回路
42 低電位側充電回路
B セル(二次電池)
D1 第1ダイオード
D2 第2ダイオード
L1 昇圧用コイル
DESCRIPTION OF SYMBOLS 10 Battery 20 Voltage balance apparatus 22 2nd switch 23 1st switch 25 Power supply control IC (1st switch control part, 2nd switch control part)
26 Logic circuit (first switch control unit, second switch control unit)
40 charging control circuit 41 high potential side charging circuit 42 low potential side charging circuit B cell (secondary battery)
D1 1st diode D2 2nd diode L1 Boosting coil

Claims (6)

直列接続された複数の二次電池のそれぞれに対応して設けられ、それら対応する当該二次電池を電源として、当該二次電池の高電位側の隣の二次電池を充電することが可能な複数の高電位側充電回路と、
前記複数の二次電池のそれぞれに対応して設けられ、それら対応する当該二次電池を電源として、当該二次電池の低電位側の隣の二次電池を充電することが可能な複数の低電位側充電回路と、
隣り合う二次電池の出力電圧が異なる場合に、それら隣り合う二次電池のうち出力電圧が高い二次電池を前記電源とする前記高電位側充電回路又は前記低電位側充電回路を作動させて、出力電圧が低い前記二次電池を充電させる充電統括制御回路と、を有する電圧バランス装置。
It is provided corresponding to each of a plurality of secondary batteries connected in series, and the secondary battery adjacent to the high potential side of the secondary battery can be charged using the corresponding secondary battery as a power source. A plurality of high potential side charging circuits;
A plurality of low batteries provided corresponding to each of the plurality of secondary batteries and capable of charging a secondary battery adjacent to the low potential side of the secondary battery using the corresponding secondary battery as a power source. A potential side charging circuit;
When the output voltages of adjacent secondary batteries are different, the high-potential side charging circuit or the low-potential side charging circuit using the secondary battery having a high output voltage as the power source among the adjacent secondary batteries is operated. And a charge control circuit for charging the secondary battery having a low output voltage.
前記高電位側充電回路は、
前記電源となる前記当該二次電池の負極と前記高電位側の隣の二次電池である高電位側二次電池の正極との間に接続され、前記当該二次電池の負極側から第1スイッチ素子、第1ダイオードの順番に直列に並びかつ前記第1ダイオードのアノードが前記第1スイッチ素子側に配置された第1スイッチ・コイル回路と、前記第1ダイオードのアノードと前記高電位側二次電池の負極との間に接続された昇圧用コイルと、前記第1スイッチ素子をオンオフする第1スイッチ制御部と、を有する昇圧型DC−DCコンバータであり、
前記低電位側充電回路は、
前記電源となる前記当該二次電池の正極と前記低電位側の隣の二次電池である低電位側二次電池の負極との間に接続され、前記当該二次電池の正極側から第2スイッチ素子、第2ダイオードの順番に直列に並びかつ前記第2ダイオードのカソードが前記第2スイッチ素子側に配置された第2スイッチ・コイル回路と、前記第2ダイオードのカソードと前記低電位側二次電池の正極との間に接続された昇圧用コイルと、前記第2スイッチ素子をオンオフする第2スイッチ制御部と、を有する昇圧型DC−DCコンバータである請求項1に記載の電圧バランス装置。
The high potential side charging circuit includes:
Connected between the negative electrode of the secondary battery serving as the power source and the positive electrode of a high potential side secondary battery that is the secondary battery adjacent to the high potential side, and the first from the negative electrode side of the secondary battery A first switch coil circuit in which a switch element and a first diode are arranged in series in order and an anode of the first diode is disposed on the first switch element side; an anode of the first diode; A step-up DC-DC converter having a step-up coil connected between a negative electrode of a secondary battery and a first switch control unit for turning on and off the first switch element;
The low potential side charging circuit is:
Connected between the positive electrode of the secondary battery serving as the power source and the negative electrode of the low-potential side secondary battery, which is the secondary battery adjacent to the low-potential side, and second from the positive electrode side of the secondary battery. A second switch coil circuit in which a switch element and a second diode are arranged in series in order, and a cathode of the second diode is arranged on the second switch element side; a cathode of the second diode; 2. The voltage balance device according to claim 1, wherein the voltage balance device is a step-up DC-DC converter having a step-up coil connected between a positive electrode of a secondary battery and a second switch control unit that turns on and off the second switch element. .
電源となる前記当該二次電池が共通する前記高電位側充電回路及び前記低電位側充電回路は、前記当該二次電池の正極と負極との間に接続されかつその負極側から前記第1スイッチ素子、前記昇圧用コイル及び前記第2スイッチ素子が順番に直列に並んだダブルスイッチ・コイル回路を共有し、
前記第1ダイオードは、アノードが前記第1スイッチ素子と前記昇圧用コイルとの共通接続部分に接続される一方、カソードが前記高電位側二次電池の正極に接続され、
前記第2ダイオードは、カソードが前記第2スイッチ素子と前記昇圧用コイルとの共通接続部分に接続される一方、アノードが前記低電位側二次電池の負極に接続され、
前記第2スイッチ素子がオフ状態で前記第1スイッチ素子がオンオフされることで前記低電位側充電回路が停止状態で前記高電位側充電回路が作動し、前記第1スイッチ素子がオフ状態で前記第2スイッチ素子がオンオフされることで前記高電位側充電回路が停止状態で前記低電位側充電回路が作動する請求項2に記載の電圧バランス装置。
The high-potential side charging circuit and the low-potential side charging circuit shared by the secondary battery serving as a power source are connected between a positive electrode and a negative electrode of the secondary battery and are connected to the first switch from the negative electrode side. Sharing a double switch coil circuit in which the element, the step-up coil and the second switch element are arranged in series,
The first diode has an anode connected to a common connection portion between the first switch element and the boosting coil, and a cathode connected to a positive electrode of the high potential side secondary battery,
The second diode has a cathode connected to a common connection portion between the second switch element and the boosting coil, and an anode connected to a negative electrode of the low potential side secondary battery,
When the second switch element is turned off and the first switch element is turned on and off, the low potential side charging circuit is stopped and the high potential side charging circuit is operated. When the first switch element is turned off and the 3. The voltage balance device according to claim 2, wherein the low potential side charging circuit operates while the high potential side charging circuit is stopped by turning on and off the second switch element.
前記複数の高電位側充電回路及び前記複数の低電位側充電回路には、共通の基準電源電流が予め設定されると共に、前記電源となる前記当該二次電池から流出する電流が、前記基準電源電流になるように制御する電流制御手段が備えられ、
その電流制御手段は、前記電源となる前記当該二次電池と前記昇圧用コイルとを含む閉回路に設けられた電流検出用抵抗と、前記第1スイッチ制御部及び前記第2スイッチ制御部とからなり、
前記第1スイッチ制御部及び前記第2スイッチ制御部が、前記基準電源電流の代用値である基準電圧と、前記当該二次電池からの電流の代用値である前記電流検出用抵抗の端末間電圧との偏差に基づいて前記第1スイッチ素子のオンオフのDUTY比を変更し、前記当該二次電池からの電流が前記基準電源電流となるようにフィードバック制御する請求項3に記載の電圧バランス装置。
A common reference power supply current is preset in the plurality of high potential side charging circuits and the plurality of low potential side charging circuits, and a current flowing out from the secondary battery serving as the power supply is the reference power supply. Current control means for controlling to become current is provided,
The current control means includes: a current detection resistor provided in a closed circuit including the secondary battery serving as the power source and the boosting coil; and the first switch control unit and the second switch control unit. Become
The first switch control unit and the second switch control unit have a reference voltage that is a substitute value of the reference power supply current and a terminal voltage of the current detection resistor that is a substitute value of the current from the secondary battery. 4. The voltage balance device according to claim 3, wherein the ON / OFF DUTY ratio of the first switch element is changed on the basis of the deviation of the first switch element and feedback control is performed so that a current from the secondary battery becomes the reference power supply current.
前記複数の高電位側充電回路及び前記複数の低電位側充電回路に、前記電源となる前記当該二次電池から流出する電流が、予め定められた共通の基準電源電流になるように制御する電流制御手段が備えられた請求項1乃至3に記載の電圧バランス装置。   A current that controls the plurality of high-potential side charging circuits and the plurality of low-potential side charging circuits so that the current flowing out of the secondary battery serving as the power source becomes a predetermined common reference power source current. The voltage balance apparatus according to claim 1, further comprising a control unit. 前記充電統括制御回路は、前記複数の二次電池のうち出力電圧が異常に低い第1の二次電池と、出力電圧が異常に高い第2の二次電池との間に、通常の出力電圧の第3の二次電池が存在する場合に、それら第1、第2、第3の二次電池に対応した全ての前記高電位側充電回路又は全ての前記低電位側充電回路を同時に作動させて、前記第2の二次電池から前記第1の二次電池へと前記第3の二次電池を中継して電力を受け渡し、前記第1の二次電池を充電する請求項1乃至5に記載の電圧バランス装置。   The charge control circuit includes a normal output voltage between the first secondary battery having an abnormally low output voltage and the second secondary battery having an abnormally high output voltage among the plurality of secondary batteries. When the third secondary battery is present, all the high potential side charging circuits or all the low potential side charging circuits corresponding to the first, second, and third secondary batteries are operated simultaneously. And transferring the power from the second secondary battery to the first secondary battery via the third secondary battery to charge the first secondary battery. The voltage balance apparatus as described.
JP2015032275A 2015-02-20 2015-02-20 Voltage balance device Pending JP2016154423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032275A JP2016154423A (en) 2015-02-20 2015-02-20 Voltage balance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032275A JP2016154423A (en) 2015-02-20 2015-02-20 Voltage balance device

Publications (1)

Publication Number Publication Date
JP2016154423A true JP2016154423A (en) 2016-08-25

Family

ID=56760630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032275A Pending JP2016154423A (en) 2015-02-20 2015-02-20 Voltage balance device

Country Status (1)

Country Link
JP (1) JP2016154423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179774A1 (en) * 2017-03-31 2018-10-04 株式会社豊田中央研究所 Power supply device
WO2018220900A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Power supply device
WO2019093153A1 (en) * 2017-11-10 2019-05-16 株式会社村田製作所 Cell balance control device, and cell balance control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511944A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
JP2014075953A (en) * 2012-10-05 2014-04-24 Toyota Industries Corp Battery charger and voltage equalization method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511944A (en) * 2009-11-19 2013-04-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for equalizing the voltage of an electrical storage unit
JP2014075953A (en) * 2012-10-05 2014-04-24 Toyota Industries Corp Battery charger and voltage equalization method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179774A1 (en) * 2017-03-31 2018-10-04 株式会社豊田中央研究所 Power supply device
JP2018174607A (en) * 2017-03-31 2018-11-08 株式会社豊田中央研究所 Power supply
CN110476320A (en) * 2017-03-31 2019-11-19 株式会社丰田中央研究所 Power supply device
JP7056005B2 (en) 2017-03-31 2022-04-19 株式会社豊田中央研究所 Power supply
US11560060B2 (en) 2017-03-31 2023-01-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Power supply device
CN110476320B (en) * 2017-03-31 2023-06-20 株式会社丰田中央研究所 Power supply device
WO2018220900A1 (en) * 2017-06-01 2018-12-06 三菱電機株式会社 Power supply device
JPWO2018220900A1 (en) * 2017-06-01 2019-11-07 三菱電機株式会社 Power supply
CN110651409A (en) * 2017-06-01 2020-01-03 三菱电机株式会社 Power supply device
CN110651409B (en) * 2017-06-01 2022-12-02 三菱电机株式会社 Power supply device
WO2019093153A1 (en) * 2017-11-10 2019-05-16 株式会社村田製作所 Cell balance control device, and cell balance control method

Similar Documents

Publication Publication Date Title
TWI472123B (en) Battery systems and operational methods
US8736231B2 (en) Power management circuit for rechargeable battery stack
JP5498742B2 (en) Cell balancing system using transformer
US9270132B2 (en) Balancing method and battery system
US8120322B2 (en) Charge equalization apparatus
US8269455B2 (en) Charge balancing system
EP1388921A2 (en) Cell equalizing circuit
US20080272735A1 (en) Circuit arrangement and method for transferring electrical charge between accumulator arrangement
TWI804503B (en) Power storage system and electric equipment
JP6353062B2 (en) Electrochemical energy reservoir and method for equilibration
US9343918B2 (en) Balancing apparatus, balancing method, and battery module
JP2013078242A (en) Electric power supply device
JP2011083182A (en) Battery management system with energy balance among multiple battery cells
EP2179298A1 (en) Apparatus and method for sensing battery cell voltage using isolation capacitor
JPWO2014045659A1 (en) Secondary battery pack and authentication method
JP6639686B2 (en) Cell balancing system and control method
JP2009247145A (en) Power system
JP6066840B2 (en) Charge / discharge control circuit and battery device
JP6439866B2 (en) Power storage device and connection control method
JP2013013268A (en) Cell balancing apparatus
JP2012213291A (en) Auxiliary machinery battery charger
JP2016154423A (en) Voltage balance device
US9166431B2 (en) Battery charge circuit
JP2016040999A (en) Charged state equalization method of storage battery device
JP2013162540A (en) Battery equalization device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702