WO2019093153A1 - Cell balance control device, and cell balance control method - Google Patents

Cell balance control device, and cell balance control method Download PDF

Info

Publication number
WO2019093153A1
WO2019093153A1 PCT/JP2018/039834 JP2018039834W WO2019093153A1 WO 2019093153 A1 WO2019093153 A1 WO 2019093153A1 JP 2018039834 W JP2018039834 W JP 2018039834W WO 2019093153 A1 WO2019093153 A1 WO 2019093153A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
charge
battery
cell
battery cells
Prior art date
Application number
PCT/JP2018/039834
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 善教
明彦 柴田
純一 仲宗根
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019093153A1 publication Critical patent/WO2019093153A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cell balance control device that equalizes the charge states of a plurality of battery cells connected in series that constitute a battery module, and a cell balance control method.
  • hybrid vehicles HVs
  • plug-in hybrid vehicles PSVs
  • EVs electric vehicles
  • a battery module in which a plurality of secondary batteries such as lithium ion batteries are connected in series is used.
  • the threshold voltage is determined based on the battery temperature detected by the temperature sensor, and the battery cell having a voltage higher than the threshold voltage is converted to a battery cell having a voltage lower than the threshold voltage.
  • a cell balance circuit composed of a plurality of transformers and switching elements is controlled so that current flows.
  • the cell balance control device described above it is possible to balance the voltages of the plurality of battery cells while considering the temperature of the battery.
  • a loss of power occurs each time current flows from a battery cell having a voltage higher than the threshold voltage to a battery cell having a voltage lower than the threshold voltage. . Therefore, a cell balance technique capable of further reducing power loss is desired.
  • the present invention has been made to solve the above-mentioned problems, and in a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series, which constitute a battery module, the charge states are equalized.
  • Cell balance control apparatus capable of reducing power loss due to
  • a cell balance control device is a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series, which constitutes a battery module, and a detection unit for detecting the charge state of each battery cell
  • a dead zone is provided based on the charge state of the cell, and a deviation of the charge state between each battery cell and a battery cell adjacent to the battery cell is calculated, and the battery cell having a high charge state when the deviation exceeds the dead zone.
  • the power transmission unit of the adjacent battery cell is drive-controlled so as to transmit the power to the battery cell in the low charge state.
  • a cell balance control method comprises detecting a charge state of each battery cell in a cell balance control method for equalizing the charge states of a plurality of battery cells connected in series constituting a battery module. For each battery cell, a dead zone is provided on the basis of the charge condition of each battery cell, and the deviation of the charge condition between each battery cell and the battery cell adjacent to the battery cell is calculated. And a control step of driving and controlling a power transmission unit of an adjacent battery cell so as to transmit power from a battery cell in a high state of charge to a battery cell in a low state of charge when exceeded.
  • a dead zone is provided for each battery cell based on the charge state of each battery cell, and the battery cell and the battery cell adjacent to the battery cell are provided.
  • the power transfer unit of the adjacent battery cell is configured to transmit power from the battery cell with high charge state to the battery cell with low charge state when the deviation of the charge state with is calculated and the deviation exceeds the dead zone.
  • Drive control is performed.
  • a dead zone (hysteresis) is provided based on the charge status (for example, charge amount / charge rate, voltage value, etc.) of each battery cell, and power is transmitted only when the deviation of the charge status exceeds the dead zone.
  • the frequency of power transmission can be reduced. As a result, it is possible to reduce the power loss due to the equalization of the charge state.
  • a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series that constitute a battery module, it is possible to reduce power loss due to the equalization of charge states.
  • FIG. 1 is a block diagram showing a functional configuration of the cell balance control apparatus 1.
  • FIG. 12 is a block diagram showing a circuit configuration of the cell balance control device 1.
  • the cell balance control device 1 includes a plurality of battery cells 111, 112, 113,..., 11n connected in series that constitute a battery module (assembled battery) 10 (where n is limited to one digit).
  • Cell balance control device that balances the charge state of the
  • the state of charge index indicating the state of charge
  • the battery cells 111, 112, 113,..., 11n for example, using a charge amount / state of charge (SOC) or a voltage value Can.
  • SOC state of charge
  • Can a voltage value is adopted as the state of charge of the battery cells 111, 112, 113, ..., 11n.
  • the cell balance control apparatus 1 mainly includes a plurality of voltage sensors 121, 122, 123, ..., 12n, a plurality of wireless power transmission units 301, 302, 303, ..., 30n, a plurality of cell balance controllers 501, , And 50 n.
  • the cell balance controllers 501, 502, 503, ..., 50n mainly include the control units 511, 512, 513, ..., 51n, and the wireless communication units 521, 522, 523, ..., 52n. Is configured. Each component will be described in detail below.
  • the battery module 10 is mounted on, for example, a hybrid vehicle (HV) or an electric vehicle (EV), and is configured by connecting, for example, several tens to several hundreds of battery cells 111 to 11 n in series. (Ie, configured as a high voltage battery of tens to hundreds of volts).
  • HV hybrid vehicle
  • EV electric vehicle
  • lithium ion batteries are preferably used as the battery cells 111 to 11 n.
  • a chargeable / dischargeable secondary battery such as a nickel cadmium battery can also be used.
  • Voltage sensors 121 to 12n for detecting terminal voltages (voltage values) of the battery cells 111 to 11n are connected to the battery cells 111 to 11n, respectively.
  • Each of the voltage sensors 121 to 12 n is electrically connected to the A / D input terminal of the corresponding cell balance controller 501 to 50 n, and a signal (voltage value) corresponding to the terminal voltage of each of the battery cells 111 to 11 n is After being A / D converted, they are read into the control units 511 to 51 n of the cell balance controllers 501 to 50 n.
  • wireless power transmission units 301 to 30n for transmitting power between the adjacent battery cells are disposed.
  • the wireless power transmission units 301 to 30n for example, an electromagnetic induction system that transmits power using induced magnetic flux generated between the power transmission side and the power reception side, and magnetic resonance of resonators on the power transmission side and the power reception side
  • Wireless power transmission such as magnetic resonance method for transmitting electric power, electric field coupling method for transmitting electric power using induced electric field generated between the electrode on the power transmission side and the electrode on the power transmission side arranged opposite to each other Can be used.
  • an electric field coupling method is adopted.
  • the wireless power transmission units 301 to 30 n include a power transmission module that transmits power and a power transmission electrode (active electrode on the power transmission side, passive electrode), and a power reception module that receives power and a power reception electrode (active electrode on the power reception side, passive electrode). It is configured to have a pair.
  • the power converted into alternating current by the power transmission module is transmitted to the power receiving side (adjacent battery cells 111 to 11 n) through a capacitor formed of a power transmission electrode and a power receiving electrode (power receiving electrodes of adjacent battery cells 111 to 11 n).
  • the power receiving module is configured to include a rectifier circuit and a voltage conversion circuit, and supplies DC power to the battery cells 111 to 11 n.
  • the wireless power transmission units 301 to 30 n have flat electrodes (power transmission electrodes and power reception electrodes) disposed on both sides of the battery cells 111 to 11 n formed in a substantially rectangular parallelepiped shape. That is, between the adjacent battery cells, flat plate-like electrodes are disposed to face each other, and power is delivered using the induced electric field generated between the flat plate-like electrodes.
  • positioned so as to mutually oppose is set to several mm, for example.
  • air may be used between the electrode and the electrode, or a dielectric or the like may be interposed. In the present embodiment, air is used.
  • the driving of each of the wireless power transmission units 301 to 30 n is controlled by the corresponding cell balance controller 501 to 50 n.
  • the cell balance controllers 501 to 50 n each wireless power transmission unit 301 to equalize the voltage values of the battery cells 111 to 11 n based on the detected voltage values (charging states) of the battery cells 111 to 11 n. Drive controls ⁇ 30n.
  • the cell balance controllers 501 to 50n mainly include control units 511 to 51n and wireless communication units 521 to 52n.
  • the wireless communication units 521 to 52n transmit and receive information such as voltage values of the own cell and the other battery cells 111 to 11n with the wireless communication units 521 to 52n of the adjacent battery cells 111 to 11n.
  • the wireless communication units 521 to 52n can use, for example, a communication method such as IrDA (Infrared Data Association), Bluetooth (registered trademark) Low Energy, Wi-Fi (registered trademark), NFC (Near Field Communication) or the like. In the present embodiment, IrDA is adopted.
  • Information such as voltage values of the other battery cells 111 to 11 n received by the wireless communication units 521 to 52 n is output to the control units 511 to 51 n.
  • Each of the control units 511 to 51n monitors the charge / discharge state (for example, charge amount / charge rate, voltage value, charge / discharge current, etc.) of the corresponding battery cell 111 to 11n, and the voltage of each battery cell 111 to 11n An equalization process (cell balance process) is performed to equalize the values.
  • the control units 511 to 51 n include a CPU that performs calculations, a ROM that stores programs for causing the CPU to execute each process, a RAM that stores various data such as calculation results, and the wireless power transmission units 301 to 30 n. It is configured to have an I / F such as a driver circuit to be driven. In the control units 511 to 51n, the CPU executes the programs stored in the ROM or the like to realize the above functions.
  • each of the control units 511 to 51 n sets dead zones on the + side and the ⁇ side with reference to the voltage value of each of the corresponding battery cells 111 to 11 n. .
  • the dead zone is set to, for example, a value (width) of ⁇ several% (for example, ⁇ 1%) with respect to the voltage value of the fully charged state of each of the battery cells 111 to 11 n. For example, when the voltage value in the fully charged state is 4.2 V and set to ⁇ 1% thereof, the dead zone is set to ⁇ 0.042 V.
  • each of the control units 511 to 51n calculates the deviation of the state of charge between the corresponding battery cell 111 to 11n and the battery cell 111 to 11n adjacent to the corresponding battery cell 111 to 11n.
  • each of the control units 511 to 51 n starts from the battery cell having a high voltage value (battery cell 112 in the example shown in FIG. 3) to the battery cell having a low voltage value (FIG. 3)
  • the wireless power transmission units 301 to 30n of the adjacent battery cells are driven and controlled to transmit power to the battery cell 113).
  • the dead band reference value also decreases with the decrease of the voltage value. It will decrease. Then, as shown in the lower part of FIG. 3, when the voltage difference (deviation) with the adjacent battery cells 111 to 11 n (the battery cell 113 in the example of FIG. 3) falls within the dead zone, 51 n (the control unit 512 and the control unit 513 in the example shown in FIG. 3) stop the equalization process. Then, the above equalization process is performed on all the control units 511 to 51n, that is, for all the battery cells 111 to 11n, the voltage values of the entire battery module 10 are equalized.
  • FIG. 2 is a flowchart showing the procedure of the equalization process (first control mode) by the cell balance control apparatus 1.
  • the processing shown in FIG. 2 is repeatedly performed mainly at each of the cell balance controllers 501 to 50n at a predetermined timing.
  • step S100 the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
  • step S102 it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (within the allowable range) (for example, fully charged) A determination is made as to whether it is within ⁇ 1% of the hourly voltage value.
  • a predetermined value within the allowable range
  • the process is temporarily left.
  • the deviation between the maximum value and the minimum value is larger than a predetermined value, the process proceeds to step S104.
  • step S104 a determination is made as to whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than a predetermined dead zone.
  • a predetermined dead zone since it is as having mentioned above, detailed description is abbreviate
  • the process proceeds to step S106.
  • the process proceeds to step S108.
  • step S106 power is transmitted from the battery cell having a high voltage value (the battery cell 112 in the example of FIG. 3 described above) to the battery cell having a low voltage value (the battery cell 113 in the example of FIG. 3)
  • the wireless power transmission units 301 to 30 n of the battery cells are drive-controlled.
  • step S108 a determination is made as to whether or not the process of step S104 and step S106 described above has been performed for all of the battery cells 111 to 11n.
  • the process returns to step S104, and the above-described steps S104 to S104 are performed until the process is completed for all the battery cells 111 to 11n.
  • the process of S108 is repeatedly performed.
  • the process when the process is executed for all the battery cells 111 to 11 n, the process temporarily exits.
  • the present process is performed again at a predetermined timing, and the equalization process is repeatedly performed until the above-described step S102 is affirmed (that is, until the equalization is completed).
  • the state of charge (voltage value) is equalized in the entire battery module 10.
  • the information to that effect is notified to the upper-level system when equalization of the charge state is completed. It is good also as composition.
  • a dead zone is provided for each of the battery cells 111 to 11 n based on the voltage value of each of the battery cells 111 to 11 n. Deviations of voltage values between the battery cells 111 to 11n and the battery cells 111 to 11n adjacent to the battery cells 111 to 11n are calculated, and when the deviation exceeds the dead zone, the battery cells 111 to 111n having high voltage values
  • the wireless power transmission units 301 to 30 n are drive-controlled to transmit power from 11 n to the battery cells 111 to 11 n having low voltage values. As described above, by using wireless power transmission to transfer power, it is possible to reduce wiring (wire harness) and to reduce the weight of the device.
  • the degree of freedom in layout can be enhanced. Furthermore, since the dead zone is provided based on the voltage value of each of the battery cells 111 to 11n and the power is transmitted only when the deviation of the voltage value exceeds the dead zone, the frequency of power transmission can be reduced. As a result, it is possible to achieve both the weight reduction of the battery module 10 and the reduction of the power loss due to the equalization of the voltage value.
  • the width of the dead zone is a fixed value (for example, ⁇ 1% of the fully charged voltage value), but the width of the dead zone may be variable (second Control form).
  • the cell balance controllers 501 to 50 n control units 511 to 51 n control the voltage values of all of the plurality of battery cells 111 to 11 n according to the degree of variation (for example, all battery cells 111 to 11 n).
  • the degree of variation for example, all battery cells 111 to 11 n.
  • the cell balance controllers 501 to 50 n increase the width of the dead zone when the variation of the voltage value is large, and reduce the width of the dead zone when the variation is small.
  • the dead zone width is the temperature of the battery cells 111 to 11 n, the target equalization time, the allowable power consumption, and / or the allowable error (the above-mentioned allowable range).
  • the dead zone may be changed by any one of the plurality of cell balance controllers 501 to 50n, or it may be communicably connected to all the cell balance controllers 501 to 50n.
  • a master controller may be further provided to integrally control all the cell balance controllers 501 to 50n, and the master controller may perform the configuration.
  • FIG. 4 is a flowchart showing the processing procedure of the equalization process according to the second control mode.
  • the processing shown in FIG. 4 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
  • step S200 the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
  • step S202 according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11n (for example, according to the deviation between the maximum value and the minimum value of the voltage values of all the battery cells 111 )
  • the width of the dead zone is set. For example, when the variation of the voltage value is large, the width of the dead zone is increased, and when the variation is small, the width of the dead zone is reduced.
  • step S204 it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ⁇ 1%.
  • a predetermined value for example, the voltage value in the fully charged state.
  • step S206 it is determined whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than the dead zone set in step S202.
  • the process proceeds to step S208.
  • the process proceeds to step S210.
  • step S208 the wireless power transmission units 301 to 30n of the adjacent battery cells are drive-controlled so that the power is transmitted from the battery cell having a high voltage value to the battery cell having a low voltage value.
  • step S210 a determination is made as to whether or not the process of step S206 and step S208 described above has been performed for all the battery cells 111 to 11n.
  • the process returns to step S206, and the above-described steps S206 to S206 until the process for all the battery cells 111 to 11n is completed.
  • the process of S210 is repeatedly performed.
  • the process temporarily exits.
  • the present process is performed again at a predetermined timing, and the equalization process is repeatedly performed until the above-described step S204 is affirmed (that is, until the equalization is completed). As a result, the voltage values of the entire battery module 10 are equalized.
  • the width of the dead zone is dynamically set in accordance with the degree of the variation of the voltage values of all of the plurality of battery cells 111 to 11n. Therefore, the width of the dead zone is more appropriate according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11 n (for example, according to the maximum value and the minimum value of the voltage values of all the battery cells 111 It can be set to Therefore, for example, when the variation of the voltage value is large, the width of the dead zone is increased, and when the variation is small, the width of the dead zone is reduced to further equalize the state of charge of the plurality of battery cells 111 to 11n. It becomes possible to do efficiently.
  • the cell balance controllers 501 to 50 n first perform the respective battery cells 111 to 11 n for the respective battery cells 111 to 11 n. And the adjacent battery cells 111 to 11 n on one side (the battery cell 111 and the battery cell 112 in the example of FIG. 6A, etc.) are paired (first combination).
  • the cell balance controllers 501 to 50 n provide dead zones based on the voltage values of the battery cells 111 to 11 n for each pair, and are paired with the battery cells 111 to 11 n and the battery cells 111 to 11 n.
  • the deviation of the voltage value between the battery cells 111 to 11n is calculated, and when the deviation exceeds the dead zone, the power is transmitted from the battery cells 111 to 11n having a high voltage value to the battery cells 111 to 11n having a low voltage value.
  • the wireless power transmission units 301 to 30 n of the battery cells 111 to 11 n in a pair are driven and controlled.
  • the cell balance controllers 501 to 50n display the battery cells 111 to 11n adjacent to the other battery cells 111 to 11n (the battery cells in the example of FIG. 6B). 112 and the battery cell 113, etc.) are paired (second combination) (ie, the pair is rearranged).
  • the cell balance controllers 501 to 50 n form dead zones based on the voltage values of the battery cells 111 to 11 n for each pair, and are paired with the battery cells 111 to 11 n and the battery cells 111 to 11 n.
  • the deviation of the voltage value between the battery cells 111 to 11n is calculated, and when the deviation exceeds the dead zone, the power is transmitted from the battery cells 111 to 11n having a high voltage value to the battery cells 111 to 11n having a low voltage value.
  • the wireless power transmission units 301 to 30 n of the battery cells 111 to 11 n in a pair are driven and controlled.
  • the setting (recombination) of the pair may be performed by one of the cell balance controllers 501 to 50n among the plurality of cell balance controllers 501 to 50n, and communication with all the cell balance controllers 501 to 50n is possible.
  • the master controller may be further provided with a master controller that is connected to and integrally controls all the cell balance controllers 501 to 50n.
  • FIG. 5 is a flowchart showing the processing procedure of the equalization processing according to the third control mode.
  • the processing shown in FIG. 5 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
  • step S300 for each of the battery cells 111 to 11n, the battery cells 111 to 11n and the adjacent battery cells 111 to 11n on one side are set as a pair (first combination) (FIG. a) see).
  • step S302 the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
  • step S304 it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ⁇ 1%.
  • a predetermined value for example, the voltage value in the fully charged state.
  • the process is temporarily left. Then, as described above, the present process is executed again at a predetermined timing.
  • the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S306.
  • step S306 it is determined whether or not the deviation of the voltage values of the battery cells 111 to 11n is equal to or greater than a predetermined dead zone in the set pair.
  • the process proceeds to step S308.
  • the process proceeds to step S310.
  • step S308 the wireless power transmission units 301 to 30n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values in the set pair. Be done.
  • step S310 a determination is made as to whether or not the process of step S306 and step S308 described above has been performed for all pairs.
  • the process returns to step S306, and the above-described processes of steps S306 to S310 are repeatedly executed until the processes for all the pairs are completed.
  • the process proceeds to step S312.
  • step S312 rearrangement of pairs is performed. That is, when a pair is formed with battery cells 111 to 11 n adjacent to one side, the pair is rearranged so that a pair is formed with battery cells 111 to 11 n adjacent to the other side ( See FIG. 6 (b)). When this process (pair rearrangement) is repeated an even number of times and the battery cells 111 to 11 n adjacent to the other side are paired, the battery cells 111 to 11 n adjacent to one side are performed. The pair is rearranged so that the pair is formed. Thereafter, the process proceeds to step S302. Then, the above-mentioned steps S302 to S312 are repeated again until the step S304 is affirmed (ie, the equalization is completed). As a result, the voltage values of the entire battery module 10 are equalized.
  • the pair thus, the voltage values of the battery cells 111 to 11 n can be equalized sequentially.
  • the influence can be suppressed only in the battery cells 111 to 11 n forming a pair, It is possible to prevent the influence (failure) from affecting the battery cells 111 to 11 n other than the pair. Therefore, it is possible to further improve the safety.
  • the cell balance controllers 501 to 50n even if the deviation between the adjacent battery cells is within the dead zone, the variation width of the state of charge of all the battery cells 111 to 11n exceeds the predetermined value.
  • the width of the dead zone is changed to a smaller value (fourth control mode).
  • the dead zone in the locked state may be changed by any one of the cell balance controllers 501 to 50n among the plurality of cell balance controllers 501 to 50n, and communication with all the cell balance controllers 501 to 50n is possible.
  • the master controller may be further provided with a master controller that is connected to and integrally controls all the cell balance controllers 501 to 50n.
  • FIG. 7 is a flowchart showing the processing procedure of the equalization processing according to the fourth control mode.
  • the processing shown in FIG. 7 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
  • step S400 the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
  • step S402 according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11n (for example, according to the deviation between the maximum value and the minimum value of the voltage values of all the battery cells 111 )
  • the width of the dead zone is set. For example, when the degree of variation is large, the width of the dead zone is increased, and when the degree of variation is small, the width of the dead zone is reduced.
  • step S404 it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ⁇ 1%.
  • a predetermined value for example, the voltage value in the fully charged state.
  • step S406 it is determined whether the deviation of the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than the set dead zone.
  • the process proceeds to step S408.
  • the process proceeds to step S410.
  • step S408 the wireless power transmission units 301 to 30n of the adjacent battery cells 111 to 11n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values. Be done.
  • step S410 a determination is made as to whether or not the process of step S406 and step S408 described above has been performed for all the battery cells 111 to 11n.
  • the process returns to step S406, and the above-described steps S406 to S406 are performed until the process is completed for all the battery cells 111 to 11n.
  • the process of S410 is repeatedly performed.
  • the process proceeds to step S412.
  • step S412 a determination is made as to whether power transfer has taken place (ie, is locked or not).
  • the process proceeds to step S414, and the value of the dead zone width is smaller than the value set in step S402 ( For example, zero) is set.
  • the process proceeds to step S406, and the above-described processes of steps S406 to S414 are performed until power transfer is performed again (that is, until the locked state is cancelled).
  • the power transfer ie, when the lock state is not set
  • the process is temporarily left.
  • the present process is executed again at a predetermined timing. As a result, the state of charge of the entire battery module 10 is equalized.
  • the fourth control mode although the deviation of the voltage value between the adjacent battery cells falls within the dead zone, the variation width of the state of charge of all the battery cells 111 to 11 n is If the predetermined value is exceeded, the width of the dead zone is reduced (eg, to zero). Therefore, canceling the lock state described above, that is, preventing the equalization process from being stopped even though the variation as a whole is not settled (that is, not equalized). It is possible to reliably equalize the voltage values of the battery cells 111 to 11 n.
  • the variation width of the voltage values of all the battery cells 111 to 11n exceeds a predetermined value, even though the deviation is within the dead zone between the adjacent battery cells.
  • the cell balance controllers 501 to 50 n first determine the average value of the voltage values of all the battery cells 111 to 11 n, as shown in FIG. Next, the cell balance controllers 501 to 50n obtain linear approximation formulas for the voltage values of all the battery cells 111 to 11n.
  • the plurality of battery cells 111 to 11 n are arranged along the horizontal axis (that is, the horizontal axis is an array of battery cells 111 to 11 n), and the vertical axis is the voltage value of each of the battery cells 111 to 11 n
  • the horizontal axis is an array of battery cells 111 to 11 n
  • the vertical axis is the voltage value of each of the battery cells 111 to 11 n
  • the cell balance controllers 501 to 50 n are battery cells positioned on the side where the inclination of the linear approximation formula decreases from the battery cells 111 to 11 n regardless of the dead zone for the battery cells 111 to 11 n whose voltage value exceeds the average value.
  • the wireless power transmission units 301 to 30 n are drive-controlled to transmit power to 111 to 11 n (that is, the inclination of the linear approximation formula approaches zero). Therefore, power is transferred to the adjacent battery cells 111 to 11 n until the voltage values of the battery cells 111 to 11 n whose voltage value exceeds the average value match the average value. In the meantime, even if the voltage values of the adjacent battery cells 111 to 11 n exceed the average value, the power transfer is continuously performed.
  • acquisition of the linear approximation formula in the locked state may be performed by any one of the plurality of cell balance controllers 501 to 50n, or all the cell balance controllers 501 to 50n may be used.
  • a master controller connected communicably and integrally controlling all the cell balance controllers 501 to 50 n may be further provided, and the master controller may perform the configuration.
  • FIG. 9 is a flowchart showing the procedure of the equalization process according to the fifth control mode.
  • the processing shown in FIG. 9 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
  • step S500 the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
  • step S502 it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ⁇ 1%.
  • a predetermined value for example, the voltage value in the fully charged state.
  • the process is temporarily left.
  • the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S504.
  • step S504 it is determined whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or more than the set dead zone.
  • the process proceeds to step S506.
  • the process proceeds to step S508.
  • step S506 the wireless power transmission units 301 to 30n of the adjacent battery cells 111 to 11n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values. Be done. Thereafter, the process proceeds to step S508.
  • step S508 a determination is made as to whether or not the process of step S504 and step S506 described above has been performed for all of the battery cells 111 to 11n.
  • the process returns to step S504, and the above-described steps S504 to S504 are performed until the process is completed for all the battery cells 111 to 11n.
  • the process of S508 is repeatedly performed.
  • the process proceeds to step S510.
  • step S510 a determination is made as to whether power transfer has taken place (ie, is it in a locked state).
  • the process is temporarily left out. Then, as described above, the present process is executed again at a predetermined timing. On the other hand, when the power transfer has not been performed (when in the locked state), the process proceeds to step S512.
  • step S512 the average value of the voltage values of all the battery cells 111 to 11n is obtained. Then, in step S514, a linear approximation formula is obtained for the voltage values of all the battery cells 111 to 11n.
  • step S516 it is determined whether or not the voltage values of the battery cells 111 to 11n are equal to or greater than the average value.
  • the process proceeds to step S518.
  • the process proceeds to step S520.
  • step S5128 for the battery cells 111 to 11n whose voltage value exceeds the average value, regardless of the dead zone, the battery cells 111 to 11n are positioned adjacent to the battery cell 111 on the side where the inclination of the linear approximation formula decreases.
  • the wireless power transmission units 301 to 30 n are drive-controlled so that power is transmitted to 11 n (that is, the slope of the linear approximation formula becomes zero). Thereafter, the process proceeds to step S520.
  • step S520 a determination is made as to whether or not the process of step S516 and step S518 described above has been performed for all of the battery cells 111-11n.
  • the process returns to step S516, and the above-described steps S516 to S516 are performed until the process is completed for all the battery cells 111 to 11n.
  • the process of S520 is repeatedly performed.
  • the process is temporarily left out. Then, as described above, the present process is executed again at a predetermined timing. As a result, the state of charge of the entire battery module 10 is equalized.
  • the variation width of the voltage values of all the battery cells 111 to 11 n is in spite of the fact that the deviation of the voltage value is within the dead zone between the adjacent battery cells. If it exceeds the predetermined value, the average value of the voltage values of all the battery cells 111 to 11 n is determined, and a linear approximation formula for the voltage values of all the battery cells 111 to 11 n is determined.
  • the present invention has been described above, but the present invention is not limited to the above-described embodiment (first to fifth control modes), and various modifications are possible.
  • the voltage value is used as an index indicating the charge state of the battery cells 111 to 11n, but instead of the voltage value, for example, charge and discharge currents are integrated to estimate SOC (current integration method)
  • SOC current integration method
  • the SOC may be used as an indicator that indicates the state of charge.
  • multiple battery modules 10 may be connected in parallel.
  • the delivery (equalization processing) of the power is stopped, but the deviation of the voltage values of the adjacent battery cells 111 to 11n
  • a predetermined constant amount of power may be delivered.
  • the tendency of variation in voltage values of the battery modules 10 battery cells 111 to 11 n
  • the dead zone may be corrected (variable) using the learning result. In this way, individual differences and aging deterioration of the battery module 10 can be absorbed.
  • the widths of the dead zone provided on the + side and the dead zone provided on the ⁇ side are the same, but the widths of the dead zone provided on the + side and the dead zone provided on the ⁇ side may be different. Further, the width of the dead zone or the detected voltage value may be corrected according to the temperature of the battery cells 111 to 11 n or the like.
  • wireless communication is used for communication among the cell balance controllers 501 to 50n (wireless communication units 521 to 52n), but for example, CAN (Controller Area Network), UART (Universal Asynchronous Receiver / Transmitter), Wired communication such as SPI (Serial Peripheral Interface) may be employed. However, it is preferable to use wireless communication from the viewpoint of weight reduction of the device, freedom of configuration, and the like.
  • communication is performed between adjacent cell balance controllers 501 to 50n (wireless communication units 521 to 52n). However, communication may be performed between any cell balance controllers 501 to 50n. .
  • one of the plurality of cell balance controllers 501 to 50n has the master function, but as shown in FIG.
  • the master controller 70 may be configured to be communicably connected to all the cell balance controllers 501 to 50n and collectively control all the cell balance controllers 501 to 50n.
  • the power is transmitted wirelessly in the above embodiment, the power may be transmitted by wire.
  • the present invention can be suitably applied to, for example, a BMS (battery management system).

Abstract

Control units (511-51n) respectively belonging to cell balance controllers (501-50n) set dead zones for respective battery cells (111-11n) using the state of charge of each battery cell (111-11n) as a reference. Each control unit (511-51n) calculates the deviation between the state of charge of the respective battery cell thereof (111-11n) and the battery cell (111-11n) adjacent to said battery cell (111-11n), and if the deviation exceeds the dead zones, the control unit (511-51n) controls and drives a wireless power transmitter (301-30n) of the adjacent battery cell to transmit electric power from the battery cell (111-11n) with a high state of charge to the battery cell (111-11n) with a low state of charge.

Description

セルバランス制御装置、及び、セルバランス制御方法Cell balance control apparatus and cell balance control method
 本発明は、電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御装置、及び、セルバランス制御方法に関する。 The present invention relates to a cell balance control device that equalizes the charge states of a plurality of battery cells connected in series that constitute a battery module, and a cell balance control method.
 近年、エンジンと電動モータとを併用することで車両の燃料消費率を効果的に向上させることができるハイブリッド自動車(HV)やプラグイン・ハイブリッド自動車(PHV)が広く実用化されている。また、電動モータのみを動力源とし、排気ガスを排出しない電気自動車(EV)も実用化されている。例えば、このようなハイブリッド自動車や電気自動車では、リチウムイオン電池などの二次電池を複数直列に接続した電池モジュールが用いられている。 In recent years, hybrid vehicles (HVs) and plug-in hybrid vehicles (PHVs) that can effectively improve the fuel consumption rate of vehicles by using an engine and an electric motor in combination have been widely put to practical use. In addition, electric vehicles (EVs) that use only an electric motor as a power source and do not discharge exhaust gas have also been put to practical use. For example, in such hybrid vehicles and electric vehicles, a battery module in which a plurality of secondary batteries such as lithium ion batteries are connected in series is used.
 ここで、電池モジュールの長寿命化や電力の利用効率向上のためには各電池セルの充電状態のばらつきが所定の範囲内に維持されるように使用することが重要である。しかしながら、内部抵抗や周囲温度などのばらつきにより各電池セルの充電状態にばらつきが生じる。そこで、電池モジュールを構成する複数の電池セルの充電状態のばらつきを抑える技術、すなわち、各電池セルの充電状態を均等化するセルバランス制御装置が提案されている(例えば特許文献1参照)。 Here, in order to prolong the life of the battery module and to improve the utilization efficiency of power, it is important to use it so that the variation in the state of charge of each battery cell is maintained within a predetermined range. However, variations occur in the charge state of each battery cell due to variations in internal resistance, ambient temperature, and the like. In view of the above, there has been proposed a technology for suppressing variations in the state of charge of a plurality of battery cells constituting a battery module, that is, a cell balance control device for equalizing the state of charge of each battery cell (see, for example, Patent Document 1).
 特許文献1に記載のセルバランス制御装置では、温度センサにより検出された電池温度に基づいて閾値電圧が決定され、この閾値電圧よりも高い電圧の電池セルから閾値電圧よりも低い電圧の電池セルに電流が流れるように、複数のトランス及びスイッチング素子からなるセルバランス回路が制御される。 In the cell balance control device described in Patent Document 1, the threshold voltage is determined based on the battery temperature detected by the temperature sensor, and the battery cell having a voltage higher than the threshold voltage is converted to a battery cell having a voltage lower than the threshold voltage. A cell balance circuit composed of a plurality of transformers and switching elements is controlled so that current flows.
特開2013-5678号公報JP, 2013-5678, A
 上述したセルバランス制御装置によれば、電池の温度を考慮しながら複数の電池セルの電圧のバランスを図ることができる。しかしながら、複数の電池セルの電圧バラツキを解消(均等化)するため、閾値電圧よりも高い電圧の電池セルから閾値電圧よりも低い電圧の電池セルに電流が流されるたびに電力のロスが発生する。そのため、電力ロスをより低減することのできるセルバランス技術が望まれている。 According to the cell balance control device described above, it is possible to balance the voltages of the plurality of battery cells while considering the temperature of the battery. However, in order to eliminate (equalize) voltage variations of a plurality of battery cells, a loss of power occurs each time current flows from a battery cell having a voltage higher than the threshold voltage to a battery cell having a voltage lower than the threshold voltage. . Therefore, a cell balance technique capable of further reducing power loss is desired.
 本発明は、上記問題点を解消する為になされたものであり、電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御装置において、充電状態の均等化による電力ロスを低減することが可能なセルバランス制御装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and in a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series, which constitute a battery module, the charge states are equalized. Cell balance control apparatus capable of reducing power loss due to
 本発明に係るセルバランス制御装置は、電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御装置において、各電池セルの充電状態を検出する検出部と、各電池セル毎に設けられ、隣り合う電池セル間で電力を伝送する電力伝送部と、電力伝送部を駆動制御する制御部とを備え、該制御部が、各電池セルそれぞれについて、各電池セルの充電状態を基準として不感帯を設けるとともに、各電池セルと当該電池セルと隣り合う電池セルとの充電状態の偏差を演算し、当該偏差が不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、隣り合う電池セルの電力伝送部を駆動制御することを特徴とする。 A cell balance control device according to the present invention is a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series, which constitutes a battery module, and a detection unit for detecting the charge state of each battery cell A power transmission unit provided for each battery cell for transmitting power between adjacent battery cells, and a control unit for driving and controlling the power transmission unit, the control unit for each of the battery cells A dead zone is provided based on the charge state of the cell, and a deviation of the charge state between each battery cell and a battery cell adjacent to the battery cell is calculated, and the battery cell having a high charge state when the deviation exceeds the dead zone. The power transmission unit of the adjacent battery cell is drive-controlled so as to transmit the power to the battery cell in the low charge state.
 本発明に係るセルバランス制御方法は、電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御方法において、各電池セルそれぞれの充電状態を検出する検出ステップと、各電池セルそれぞれについて、各電池セルの充電状態を基準として不感帯を設けるとともに、各電池セルと、当該電池セルと隣り合う電池セルとの充電状態の偏差を演算し、当該偏差が不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、隣り合う電池セルの電力伝送部を駆動制御する制御ステップとを備えることを特徴とする。 A cell balance control method according to the present invention comprises detecting a charge state of each battery cell in a cell balance control method for equalizing the charge states of a plurality of battery cells connected in series constituting a battery module. For each battery cell, a dead zone is provided on the basis of the charge condition of each battery cell, and the deviation of the charge condition between each battery cell and the battery cell adjacent to the battery cell is calculated. And a control step of driving and controlling a power transmission unit of an adjacent battery cell so as to transmit power from a battery cell in a high state of charge to a battery cell in a low state of charge when exceeded.
 本発明に係るセルバランス制御装置又はセルバランス制御方法によれば、各電池セルそれぞれについて、各電池セルの充電状態を基準として不感帯が設けられるとともに、各電池セルと当該電池セルと隣り合う電池セルとの充電状態の偏差が演算され、当該偏差が不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、隣り合う電池セルの電力伝送部が駆動制御される。また、各電池セルそれぞれの充電状態(例えば充電量/充電率、電圧値など)を基準として不感帯(ヒステリシス)を設け、充電状態の偏差が当該不感帯を超えた場合に限り電力を伝送するようにしたため、電力の伝送頻度を低減することができる。その結果、充電状態の均等化による電力ロスを低減することが可能となる。 According to the cell balance control device or the cell balance control method of the present invention, a dead zone is provided for each battery cell based on the charge state of each battery cell, and the battery cell and the battery cell adjacent to the battery cell are provided. The power transfer unit of the adjacent battery cell is configured to transmit power from the battery cell with high charge state to the battery cell with low charge state when the deviation of the charge state with is calculated and the deviation exceeds the dead zone. Drive control is performed. In addition, a dead zone (hysteresis) is provided based on the charge status (for example, charge amount / charge rate, voltage value, etc.) of each battery cell, and power is transmitted only when the deviation of the charge status exceeds the dead zone. Thus, the frequency of power transmission can be reduced. As a result, it is possible to reduce the power loss due to the equalization of the charge state.
 本発明によれば、電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御装置において、充電状態の均等化による電力ロスを低減することが可能となる。 According to the present invention, in a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series that constitute a battery module, it is possible to reduce power loss due to the equalization of charge states. .
実施形態に係るセルバランス制御装置の機能構成を示すブロック図である。It is a block diagram showing functional composition of a cell balance control device concerning an embodiment. 実施形態に係るセルバランス制御装置による均等化処理(第1の制御形態)の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the equalization process (1st control form) by the cell balance control apparatus which concerns on embodiment. 第1の制御形態に係る不感帯を用いた均等化処理を説明するための図である。It is a figure for demonstrating the equalization process using the dead zone which concerns on a 1st control form. 実施形態に係るセルバランス制御装置による均等化処理(第2の制御形態)の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the equalization process (2nd control form) by the cell balance control apparatus which concerns on embodiment. 実施形態に係るセルバランス制御装置による均等化処理(第3の制御形態)の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the equalization process (3rd control form) by the cell balance control apparatus which concerns on embodiment. 第3の制御形態に係る均等化処理におけるペアリングの仕方を説明するための図である。It is a figure for demonstrating the method of pairing in the equalization process which concerns on a 3rd control form. 実施形態に係るセルバランス制御装置による均等化処理(第4の制御形態)の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the equalization process (4th control form) by the cell balance control apparatus which concerns on embodiment. 第4の制御形態に係る均等化処理におけるロック状態を説明するための図である。It is a figure for demonstrating the lock state in the equalization process which concerns on a 4th control form. 実施形態に係るセルバランス制御装置による均等化処理(第5の制御形態)の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the equalization process (5th control form) by the cell balance control apparatus which concerns on embodiment. 第5の制御形態に係る直線近似式を用いた均等化処理を説明するための図である。It is a figure for demonstrating the equalization process using the linear approximation formula which concerns on a 5th control form. 変形例に係るセルバランス制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the cell balance control apparatus which concerns on a modification. 実施形態に係るセルバランス制御装置の回路構成を示すブロック図である。It is a block diagram showing the circuit composition of the cell balance control device concerning an embodiment.
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Further, in the respective drawings, the same elements are denoted by the same reference numerals, and duplicate explanations will be omitted.
 まず、図1及び図12を併せて用いて、実施形態に係るセルバランス制御装置1の構成について説明する。図1は、セルバランス制御装置1の機能構成を示すブロック図である。また、図12は、セルバランス制御装置1の回路構成を示すブロック図である。 First, the configuration of the cell balance control apparatus 1 according to the embodiment will be described using FIG. 1 and FIG. 12 together. FIG. 1 is a block diagram showing a functional configuration of the cell balance control apparatus 1. FIG. 12 is a block diagram showing a circuit configuration of the cell balance control device 1.
 セルバランス制御装置1は、電池モジュール(組電池)10を構成する、直列に接続された複数の電池セル111,112,113,・・・,11n(ただし、nは一桁の数には限られない)の充電状態を均等化するアクティブ方式のセルバランス制御装置である。ここで、電池セル111,112,113,・・・,11nの充電状態(充電状態を示す指標)としては、例えば、充電量/充電率(SOC:State Of Charge)や電圧値などを用いることができる。なお、本実施形態では、電池セル111,112,113,・・・,11nの充電状態として電圧値を採用した。 The cell balance control device 1 includes a plurality of battery cells 111, 112, 113,..., 11n connected in series that constitute a battery module (assembled battery) 10 (where n is limited to one digit). Cell balance control device that balances the charge state of the Here, as the state of charge (index indicating the state of charge) of the battery cells 111, 112, 113,..., 11n, for example, using a charge amount / state of charge (SOC) or a voltage value Can. In the present embodiment, a voltage value is adopted as the state of charge of the battery cells 111, 112, 113, ..., 11n.
 セルバランス制御装置1は、主として、複数の電圧センサ121,122,123,・・・,12n、複数の無線電力伝送部301,302,303,・・・,30n、複数のセルバランスコントローラ501,502,503,・・・,50n、を備えて構成されている。また、セルバランスコントローラ501,502,503,・・・,50nは、主として、制御部511,512,513,・・・,51n、無線通信部521,522,523,・・・,52nを有して構成されている。以下、各構成要素について詳細に説明する。 The cell balance control apparatus 1 mainly includes a plurality of voltage sensors 121, 122, 123, ..., 12n, a plurality of wireless power transmission units 301, 302, 303, ..., 30n, a plurality of cell balance controllers 501, , And 50 n. In addition, the cell balance controllers 501, 502, 503, ..., 50n mainly include the control units 511, 512, 513, ..., 51n, and the wireless communication units 521, 522, 523, ..., 52n. Is configured. Each component will be described in detail below.
 電池モジュール10は、例えば、ハイブリッド自動車(HV)や電気自動車(EV)等に搭載されるものであり、電池セル111~11nが、例えば、数十から百数十個、直列に接続されて構成(すなわち、数十から数百Vの高電圧バッテリとして構成)されている。 The battery module 10 is mounted on, for example, a hybrid vehicle (HV) or an electric vehicle (EV), and is configured by connecting, for example, several tens to several hundreds of battery cells 111 to 11 n in series. (Ie, configured as a high voltage battery of tens to hundreds of volts).
 電池セル111~11nは、例えば、リチウムイオン電池が好適に用いられる。ただし、リチウムイオン電池に代えて、ニッケルカドミウム電池などの充放電可能な二次電池を用いることもできる。 For example, lithium ion batteries are preferably used as the battery cells 111 to 11 n. However, instead of the lithium ion battery, a chargeable / dischargeable secondary battery such as a nickel cadmium battery can also be used.
 各電池セル111~11nそれぞれには、各電池セル111~11nの端子電圧(電圧値)を検出する電圧センサ121~12nが接続されている。各電圧センサ121~12nは、対応するセルバランスコントローラ501~50nのA/D入力端子と電気的に接続されており、各電池セル111~11nの端子電圧に対応した信号(電圧値)が、A/D変換された後、セルバランスコントローラ501~50nの制御部511~51nに読み込まれる。 Voltage sensors 121 to 12n for detecting terminal voltages (voltage values) of the battery cells 111 to 11n are connected to the battery cells 111 to 11n, respectively. Each of the voltage sensors 121 to 12 n is electrically connected to the A / D input terminal of the corresponding cell balance controller 501 to 50 n, and a signal (voltage value) corresponding to the terminal voltage of each of the battery cells 111 to 11 n is After being A / D converted, they are read into the control units 511 to 51 n of the cell balance controllers 501 to 50 n.
 また、各電池セル111~11nそれぞれには、隣り合う電池セル間で相互に電力を伝送する無線電力伝送部301~30nが配設されている。無線電力伝送部301~30nとしては、例えば、送電側と受電側との間で発生する誘導磁束を利用して電力を送電する電磁誘導方式、送電側と受電側の共振器を磁界共鳴させて電力を伝送する磁界共鳴方式、対向させて配置された送電側の電極と受電側の電極との間に生じる誘導電界を利用して電力を伝送する電界結合方式などの無線電力伝送(ワイヤレス給電)を用いることができる。なお、本実施形態では電界結合方式を採用した。 In each of the battery cells 111 to 11n, wireless power transmission units 301 to 30n for transmitting power between the adjacent battery cells are disposed. As the wireless power transmission units 301 to 30n, for example, an electromagnetic induction system that transmits power using induced magnetic flux generated between the power transmission side and the power reception side, and magnetic resonance of resonators on the power transmission side and the power reception side Wireless power transmission (wireless power supply) such as magnetic resonance method for transmitting electric power, electric field coupling method for transmitting electric power using induced electric field generated between the electrode on the power transmission side and the electrode on the power transmission side arranged opposite to each other Can be used. In the present embodiment, an electric field coupling method is adopted.
 無線電力伝送部301~30nは、電力を送る送電モジュールと送電電極(送電側のアクティブ電極、パッシブ電極)、及び、電力を受け取る受電モジュールと受電電極(受電側のアクティブ電極、パッシブ電極)を2対有して構成されている。送電モジュールで交流に変換された電力は、送電電極と受電電極(隣接する電池セル111~11nの受電電極)とで構成されたキャパシタを通して受電側(隣接する電池セル111~11n)に伝送される。受電モジュールは整流回路と電圧変換回路を有して構成されており、電池セル111~11nに直流電力を供給する。 The wireless power transmission units 301 to 30 n include a power transmission module that transmits power and a power transmission electrode (active electrode on the power transmission side, passive electrode), and a power reception module that receives power and a power reception electrode (active electrode on the power reception side, passive electrode). It is configured to have a pair. The power converted into alternating current by the power transmission module is transmitted to the power receiving side (adjacent battery cells 111 to 11 n) through a capacitor formed of a power transmission electrode and a power receiving electrode (power receiving electrodes of adjacent battery cells 111 to 11 n). . The power receiving module is configured to include a rectifier circuit and a voltage conversion circuit, and supplies DC power to the battery cells 111 to 11 n.
 より詳細には、無線電力伝送部301~30nは、略直方体状に形成された電池セル111~11nの両側面に配設された平板状の電極(送電電極及び受電電極)を有しており、すなわち、隣接する電池セル間に、対向するように平板状の電極が配設され、当該平板状の電極間に生じる誘導電界を利用して電力の受け渡しを行う。なお、互いに対向するように配設された平板状の電極間の距離(ギャップ)は、例えば数mmに設定される。また、電極と電極との間は、エアでもよく、誘電体などを挟んでもよい。なお、本実施形態ではエアとした。各無線電力伝送部301~30nの駆動は、対応するセルバランスコントローラ501~50nによって制御される。 More specifically, the wireless power transmission units 301 to 30 n have flat electrodes (power transmission electrodes and power reception electrodes) disposed on both sides of the battery cells 111 to 11 n formed in a substantially rectangular parallelepiped shape. That is, between the adjacent battery cells, flat plate-like electrodes are disposed to face each other, and power is delivered using the induced electric field generated between the flat plate-like electrodes. In addition, the distance (gap) between the flat-shaped electrodes arrange | positioned so as to mutually oppose is set to several mm, for example. Further, air may be used between the electrode and the electrode, or a dielectric or the like may be interposed. In the present embodiment, air is used. The driving of each of the wireless power transmission units 301 to 30 n is controlled by the corresponding cell balance controller 501 to 50 n.
 セルバランスコントローラ501~50nは、検出された各電池セル111~11nの電圧値(充電状態)に基づいて、各電池セル111~11nの電圧値を均等化するように、各無線電力伝送部301~30nを駆動制御する。セルバランスコントローラ501~50nは、主として、制御部511~51n、及び、無線通信部521~52nを有している。 The cell balance controllers 501 to 50 n each wireless power transmission unit 301 to equalize the voltage values of the battery cells 111 to 11 n based on the detected voltage values (charging states) of the battery cells 111 to 11 n. Drive controls ~ 30n. The cell balance controllers 501 to 50n mainly include control units 511 to 51n and wireless communication units 521 to 52n.
 無線通信部521~52nは、隣接する電池セル111~11nの無線通信部521~52nとの間で、例えば自セル及び他の電池セル111~11nの電圧値などの情報を送受信する。無線通信部521~52nは、例えば、IrDA(Infrared Data Association)、Bluetooth(登録商標)Low Energy、Wi-Fi(登録商標)、NFC(Near Field Communication)などの通信方式を用いることができる。なお、本実施形態では、IrDAを採用した。無線通信部521~52nによって受信された、他の電池セル111~11nの電圧値などの情報は、制御部511~51nに出力される。 The wireless communication units 521 to 52n transmit and receive information such as voltage values of the own cell and the other battery cells 111 to 11n with the wireless communication units 521 to 52n of the adjacent battery cells 111 to 11n. The wireless communication units 521 to 52n can use, for example, a communication method such as IrDA (Infrared Data Association), Bluetooth (registered trademark) Low Energy, Wi-Fi (registered trademark), NFC (Near Field Communication) or the like. In the present embodiment, IrDA is adopted. Information such as voltage values of the other battery cells 111 to 11 n received by the wireless communication units 521 to 52 n is output to the control units 511 to 51 n.
 各制御部511~51nそれぞれは、対応する電池セル111~11nの充放電状態(例えば、充電量/充電率、電圧値、充放電電流など)を監視するとともに、各電池セル111~11nの電圧値を均等化するように、均等化処理(セルバランス処理)を実行する。制御部511~51nは、演算を行うCPU、該CPUに各処理を実行させるためのプログラム等を記憶するROM、演算結果などの各種データを記憶するRAM、及び、無線電力伝送部301~30nを駆動するドライバ回路等のI/Fを有して構成されている。制御部511~51nでは、ROMなどに記憶されているプログラムがCPUによって実行されることにより、上記機能が実現される。 Each of the control units 511 to 51n monitors the charge / discharge state (for example, charge amount / charge rate, voltage value, charge / discharge current, etc.) of the corresponding battery cell 111 to 11n, and the voltage of each battery cell 111 to 11n An equalization process (cell balance process) is performed to equalize the values. The control units 511 to 51 n include a CPU that performs calculations, a ROM that stores programs for causing the CPU to execute each process, a RAM that stores various data such as calculation results, and the wireless power transmission units 301 to 30 n. It is configured to have an I / F such as a driver circuit to be driven. In the control units 511 to 51n, the CPU executes the programs stored in the ROM or the like to realize the above functions.
 各制御部511~51nそれぞれは、図3の上段に示されるように、対応する電池セル111~11nについて、各電池セル111~11nの電圧値を基準として+側及び-側に不感帯を設定する。なお、図3の例では、電池セル112について不感帯を設ける場合を示した。ここで、不感帯は、例えば、各電池セル111~11nの満充電状態の電圧値に対して、±数%(例えば±1%)の値(幅)に設定される。例えば、満充電状態の電圧値が4.2Vであり、その±1%に設定した場合には、不感帯は±0.042Vに設定される。 As shown in the upper part of FIG. 3, each of the control units 511 to 51 n sets dead zones on the + side and the − side with reference to the voltage value of each of the corresponding battery cells 111 to 11 n. . In addition, in the example of FIG. 3, the case where the dead zone was provided about the battery cell 112 was shown. Here, the dead zone is set to, for example, a value (width) of ± several% (for example, ± 1%) with respect to the voltage value of the fully charged state of each of the battery cells 111 to 11 n. For example, when the voltage value in the fully charged state is 4.2 V and set to ± 1% thereof, the dead zone is set to ± 0.042 V.
 また、各制御部511~51nそれぞれは、対応する電池セル111~11nと、当該電池セル111~11nと隣り合う電池セル111~11nとの充電状態の偏差を演算する。 Further, each of the control units 511 to 51n calculates the deviation of the state of charge between the corresponding battery cell 111 to 11n and the battery cell 111 to 11n adjacent to the corresponding battery cell 111 to 11n.
 そして、各制御部511~51nそれぞれは、上記偏差が不感帯を超えた場合に、電圧値の高い電池セル(図3に示す例では電池セル112)から電圧値の低い電池セル(図3に示す例では電池セル113)へ電力を伝送するように、隣り合う電池セル(図3に示す例では電池セル112と電池セル113)の無線電力伝送部301~30nを駆動制御する。 Then, when the deviation exceeds the dead zone, each of the control units 511 to 51 n starts from the battery cell having a high voltage value (battery cell 112 in the example shown in FIG. 3) to the battery cell having a low voltage value (FIG. 3) In the example, the wireless power transmission units 301 to 30n of the adjacent battery cells (the battery cell 112 and the battery cell 113 in the example shown in FIG. 3) are driven and controlled to transmit power to the battery cell 113).
 なお、均等化処理の実行中、電力の伝送とともに、電池セル111~11n(図3の例では電池セル112)の電圧値が低下するため、その電圧値の低下に伴い、不感帯の基準値も低下することとなる。そして、図3の下段に示されるように、隣接する電池セル111~11n(図3の例では電池セル113)との電圧差(偏差)が不感帯内に入ったときに、各制御部511~51n(図3に示す例では制御部512と制御部513)は均等化処理を停止する。そして、上記均等化処理がすべての制御部511~51nにおいて、すなわち、すべての電池セル111~11nに対して実行されることにより、電池モジュール10全体として、電圧値が均等化される。 Since the voltage values of the battery cells 111 to 11 n (the battery cell 112 in the example of FIG. 3) decrease along with the transmission of power during the equalization process, the dead band reference value also decreases with the decrease of the voltage value. It will decrease. Then, as shown in the lower part of FIG. 3, when the voltage difference (deviation) with the adjacent battery cells 111 to 11 n (the battery cell 113 in the example of FIG. 3) falls within the dead zone, 51 n (the control unit 512 and the control unit 513 in the example shown in FIG. 3) stop the equalization process. Then, the above equalization process is performed on all the control units 511 to 51n, that is, for all the battery cells 111 to 11n, the voltage values of the entire battery module 10 are equalized.
 次に、図2を参照しつつ、セルバランス制御装置1の動作(第1の制御形態)について説明する。図2は、セルバランス制御装置1による均等化処理(第1の制御形態)の処理手順を示すフローチャートである。図2に示される処理は、主としてセルバランスコントローラ501~50nそれぞれによって、所定のタイミングで繰り返して実行される。 Next, the operation (first control mode) of the cell balance control device 1 will be described with reference to FIG. FIG. 2 is a flowchart showing the procedure of the equalization process (first control mode) by the cell balance control apparatus 1. The processing shown in FIG. 2 is repeatedly performed mainly at each of the cell balance controllers 501 to 50n at a predetermined timing.
 まず、ステップS100では、各電圧センサ121~12nにより検出された、すべての電池セル111~11nの電圧値が読み込まれる。次に、ステップS102では、読み込まれたすべての電池セル111~11nの電圧値の最大値と最小値との偏差が所定値以下(許容範囲内)であるか否か(例えば、満充電状態のときの電圧値の±1%以内であるか否か)についての判断が行われる。ここで、最大値と最小値との偏差が所定値以下である場合には、一旦、本処理から抜ける。一方、最大値と最小値との偏差が所定値よりも大きいときには、ステップS104に処理が移行する。 First, in step S100, the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read. Next, in step S102, it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (within the allowable range) (for example, fully charged) A determination is made as to whether it is within ± 1% of the hourly voltage value. Here, when the deviation between the maximum value and the minimum value is equal to or less than a predetermined value, the process is temporarily left. On the other hand, when the deviation between the maximum value and the minimum value is larger than a predetermined value, the process proceeds to step S104.
 ステップS104では、両隣の電池セル111~11nの電圧値との偏差が予め定められた不感帯以上である否かについての判断が行われる。なお、不感帯の設定方法については、上述したとおりであるので、ここでは詳細な説明を省略する。ここで、電圧値の偏差が不感帯以上である場合には、ステップS106に処理が移行する。一方、電圧値の偏差が不感帯未満であるときには、ステップS108に処理が移行する。 In step S104, a determination is made as to whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than a predetermined dead zone. In addition, about the setting method of a dead zone, since it is as having mentioned above, detailed description is abbreviate | omitted here. Here, when the deviation of the voltage value is equal to or greater than the dead zone, the process proceeds to step S106. On the other hand, when the deviation of the voltage value is less than the dead zone, the process proceeds to step S108.
 ステップS106では、電圧値の高い電池セル(上述した図3の例では電池セル112)から電圧値の低い電池セル(図3の例では電池セル113)へ電力が伝送されるように、隣り合う電池セル(図3の例では電池セル112と電池セル113)の無線電力伝送部301~30nが駆動制御される。 In step S106, power is transmitted from the battery cell having a high voltage value (the battery cell 112 in the example of FIG. 3 described above) to the battery cell having a low voltage value (the battery cell 113 in the example of FIG. 3) The wireless power transmission units 301 to 30 n of the battery cells (the battery cells 112 and 113 in the example of FIG. 3) are drive-controlled.
 続いて、ステップS108では、すべての電池セル111~11nについて、上述した、ステップS104及びステップS106の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべての電池セル111~11nについて処理が実行されていない場合には、ステップS104に処理が戻され、すべての電池セル111~11nについて処理が済むまで、上述したステップS104~ステップS108の処理が繰り返し実行される。一方、すべての電池セル111~11nについて処理が実行されたときには、一旦、本処理から抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行され、上述したステップS102が肯定されるまで(すなわち、均等化が完了するまで)均等化処理が繰り返して実行される。その結果、電池モジュール10全体として、充電状態(電圧値)が均等化される。なお、上位のシステム(例えば、電池モジュール10全体を管理するバッテリ・マネジメント・システムなど)が有る場合には、充電状態の均等化が終了した場合に、その旨の情報を当該上位システムに通知する構成としてもよい。 Subsequently, in step S108, a determination is made as to whether or not the process of step S104 and step S106 described above has been performed for all of the battery cells 111 to 11n. Here, if the process has not been executed for all the battery cells 111 to 11n, the process returns to step S104, and the above-described steps S104 to S104 are performed until the process is completed for all the battery cells 111 to 11n. The process of S108 is repeatedly performed. On the other hand, when the process is executed for all the battery cells 111 to 11 n, the process temporarily exits. Then, as described above, the present process is performed again at a predetermined timing, and the equalization process is repeatedly performed until the above-described step S102 is affirmed (that is, until the equalization is completed). As a result, the state of charge (voltage value) is equalized in the entire battery module 10. If there is a higher-level system (for example, a battery management system that manages the entire battery module 10, etc.), the information to that effect is notified to the upper-level system when equalization of the charge state is completed. It is good also as composition.
 ここで、6個の電池セルを直列に接続した電池モジュールのモデルを用いてシミュレーションを行い、不感帯を設けた場合(本実施形態)と、不感帯をもうけない場合(比較例)とで、均等化処理に伴う電力ロスの大きさを比較した。その結果、不感帯を設けた場合には、不感帯をもうけない場合よりも、均等化処理に伴う電力ロスが62.6%減少するという効果が確認された。 Here, simulation is performed using a model of a battery module in which six battery cells are connected in series, and equalization is made between the case where a dead zone is provided (this embodiment) and the case where a dead zone is not obtained (comparative example) The magnitude of the power loss associated with the processing was compared. As a result, when the dead zone is provided, the power loss associated with the equalization process is reduced by 62.6% as compared with the case where the dead zone is not provided.
 以上、詳細に説明したように、本実施形態(第1の制御形態)によれば、各電池セル111~11nそれぞれについて、各電池セル111~11nの電圧値を基準として不感帯が設けられるとともに、各電池セル111~11nと、当該電池セル111~11nと隣り合う電池セル111~11nとの電圧値の偏差が演算され、当該偏差が不感帯を超えた場合に、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力を伝送するように無線電力伝送部301~30nが駆動制御される。このように、電力の受け渡しを行うために無線電力伝送を用いることにより、配線(ワイヤハーネス)を削減することができ、装置を軽量化することができる。また、レイアウトの自由度を高めることができる。さらに、各電池セル111~11nそれぞれの電圧値を基準として不感帯を設け、電圧値の偏差が不感帯を超えた場合に限り電力を伝送するようにしたため、電力の伝送頻度を低減することができる。その結果、電池モジュール10の軽量化と、電圧値の均等化による電力ロスの低減とを両立することが可能となる。 As described above in detail, according to the present embodiment (first control mode), a dead zone is provided for each of the battery cells 111 to 11 n based on the voltage value of each of the battery cells 111 to 11 n. Deviations of voltage values between the battery cells 111 to 11n and the battery cells 111 to 11n adjacent to the battery cells 111 to 11n are calculated, and when the deviation exceeds the dead zone, the battery cells 111 to 111n having high voltage values The wireless power transmission units 301 to 30 n are drive-controlled to transmit power from 11 n to the battery cells 111 to 11 n having low voltage values. As described above, by using wireless power transmission to transfer power, it is possible to reduce wiring (wire harness) and to reduce the weight of the device. In addition, the degree of freedom in layout can be enhanced. Furthermore, since the dead zone is provided based on the voltage value of each of the battery cells 111 to 11n and the power is transmitted only when the deviation of the voltage value exceeds the dead zone, the frequency of power transmission can be reduced. As a result, it is possible to achieve both the weight reduction of the battery module 10 and the reduction of the power loss due to the equalization of the voltage value.
 (第2の制御形態)
 上述した実施形態(第1の制御形態)では、不感帯の幅を固定値(例えば満充電状態の電圧値の±1%)としたが、不感帯の幅を可変する構成としてもよい(第2の制御形態)。
(Second control mode)
In the above-described embodiment (first control mode), the width of the dead zone is a fixed value (for example, ± 1% of the fully charged voltage value), but the width of the dead zone may be variable (second Control form).
 第2の制御形態では、セルバランスコントローラ501~50n(制御部511~51n)は、複数の電池セル111~11nすべての電圧値のばらつきの程度に応じて(例えば、すべての電池セル111~11nの電圧値の最大値と最小値との偏差に応じて)、不感帯の幅を可変する。セルバランスコントローラ501~50nは、例えば、電圧値のばらつき具合が大きい場合には不感帯の幅を大きくし、ばらつき具合が小さいときには不感帯の幅を小さくする。なお、不感帯の幅は、上述した電圧値のばらつきの程度に加えて、又は代えて、電池セル111~11nの温度、目標均等化時間、許容電力消費量、及び/又は、許容誤差(上記許容範囲)等に基づいて設定してもよい。このような場合には、電池セル111~11nの温度が高いほど、目標均等化時間が短いほど、許容電力消費量が小さいほど、許容誤差が大きいほど、不感帯の幅が大きくされる。なお、不感帯の変更などは、複数のセルバランスコントローラ501~50nのうち、いずれかのセルバランスコントローラ501~50nで行う構成としてもよいし、すべてのセルバランスコントローラ501~50nと通信可能に接続され、すべてのセルバランスコントローラ501~50nを統括的に制御するマスタコントローラをさらに設け、該マスタコントローラで行う構成としてもよい。 In the second control mode, the cell balance controllers 501 to 50 n (control units 511 to 51 n) control the voltage values of all of the plurality of battery cells 111 to 11 n according to the degree of variation (for example, all battery cells 111 to 11 n). Of the dead band according to the deviation between the maximum value and the minimum value of the voltage value of The cell balance controllers 501 to 50 n, for example, increase the width of the dead zone when the variation of the voltage value is large, and reduce the width of the dead zone when the variation is small. The dead zone width is the temperature of the battery cells 111 to 11 n, the target equalization time, the allowable power consumption, and / or the allowable error (the above-mentioned allowable range). It may be set based on the range etc. In such a case, as the temperature of the battery cells 111 to 11n increases, the target equalization time decreases, the allowable power consumption decreases, and the tolerance increases, the width of the dead zone increases. The dead zone may be changed by any one of the plurality of cell balance controllers 501 to 50n, or it may be communicably connected to all the cell balance controllers 501 to 50n. Alternatively, a master controller may be further provided to integrally control all the cell balance controllers 501 to 50n, and the master controller may perform the configuration.
 この第2の制御形態について、図4を参照しつつ説明する。図4は、第2の制御形態に係る均等化処理の処理手順を示すフローチャートである。図4に示される処理も、主としてセルバランスコントローラ501~50nによって、所定のタイミングで繰り返して実行される。 The second control mode will be described with reference to FIG. FIG. 4 is a flowchart showing the processing procedure of the equalization process according to the second control mode. The processing shown in FIG. 4 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
 まず、ステップS200では、各電圧センサ121~12nにより検出された、すべての電池セル111~11nの電圧値が読み込まれる。 First, in step S200, the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
 次に、ステップS202では、複数の電池セル111~11nすべての電圧値のばらつきの程度に応じて(例えば、すべての電池セル111~11nの電圧値の最大値と最小値との偏差に応じて)不感帯の幅が設定される。例えば、電圧値のばらつき具合が大きい場合には不感帯の幅が大きくされ、ばらつき具合が小さいときには不感帯の幅が小さくされる。 Next, in step S202, according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11n (for example, according to the deviation between the maximum value and the minimum value of the voltage values of all the battery cells 111 ) The width of the dead zone is set. For example, when the variation of the voltage value is large, the width of the dead zone is increased, and when the variation is small, the width of the dead zone is reduced.
 続いて、ステップS204では、読み込まれたすべての電池セル111~11nの電圧値の最大値と最小値との偏差が所定値以下であるか否か(例えば、満充電状態のときの電圧値の±1%以内であるか否か)についての判断が行われる。ここで、最大値と最小値との偏差が所定値以下である場合には、一旦、本処理から抜ける。一方、最大値と最小値との偏差が所定値よりも大きいときには、ステップS206に処理が移行する。 Subsequently, in step S204, it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ± 1%. Here, when the deviation between the maximum value and the minimum value is equal to or less than a predetermined value, the process is temporarily left. On the other hand, when the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S206.
 ステップS206では、両隣の電池セル111~11nの電圧値との偏差が、ステップS202で設定された不感帯以上である否かについての判断が行われる。
ここで、電圧値の偏差が不感帯以上である場合には、ステップS208に処理が移行する。一方、電圧値の偏差が不感帯未満であるときには、ステップS210に処理が移行する。
In step S206, it is determined whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than the dead zone set in step S202.
Here, if the deviation of the voltage value is equal to or greater than the dead zone, the process proceeds to step S208. On the other hand, when the deviation of the voltage value is less than the dead zone, the process proceeds to step S210.
 ステップS208では、電圧値の高い電池セルから電圧値の低い電池セルへ電力が伝送されるように、隣り合う電池セルの無線電力伝送部301~30nが駆動制御される。 In step S208, the wireless power transmission units 301 to 30n of the adjacent battery cells are drive-controlled so that the power is transmitted from the battery cell having a high voltage value to the battery cell having a low voltage value.
 続いて、ステップS210では、すべての電池セル111~11nについて、上述した、ステップS206及びステップS208の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべての電池セル111~11nについて処理が実行されていない場合には、ステップS206に処理が戻され、すべての電池セル111~11nについて処理が済むまで、上述したステップS206~ステップS210の処理が繰り返し実行される。一方、すべての電池セル111~11nについて処理が実行されたときには、一旦、本処理から抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行され、上述したステップS204が肯定されるまで(すなわち、均等化が完了するまで)均等化処理が繰り返して実行される。その結果、電池モジュール10全体として、電圧値が均等化される。 Subsequently, in step S210, a determination is made as to whether or not the process of step S206 and step S208 described above has been performed for all the battery cells 111 to 11n. Here, if the process has not been executed for all the battery cells 111 to 11n, the process returns to step S206, and the above-described steps S206 to S206 until the process for all the battery cells 111 to 11n is completed. The process of S210 is repeatedly performed. On the other hand, when the process is executed for all the battery cells 111 to 11 n, the process temporarily exits. Then, as described above, the present process is performed again at a predetermined timing, and the equalization process is repeatedly performed until the above-described step S204 is affirmed (that is, until the equalization is completed). As a result, the voltage values of the entire battery module 10 are equalized.
 本実施形態(第2の制御形態)によれば、複数の電池セル111~11nすべての電圧値のばらつきの程度に応じて、不感帯の幅が動的に設定される。そのため、複数の電池セル111~11nすべての電圧値のばらつき具合に応じて(例えば、すべての電池セル111~11nの電圧値の最大値と最小値とに応じて)、不感帯の幅をより適切に設定することができる。よって、例えば、電圧値のばらつき具合が大きい場合には不感帯の幅を大きくし、ばらつき具合が小さいときには不感帯の幅を小さくすることにより、複数の電池セル111~11nの充電状態の均等化をより効率的に行うことが可能となる。 According to the present embodiment (second control mode), the width of the dead zone is dynamically set in accordance with the degree of the variation of the voltage values of all of the plurality of battery cells 111 to 11n. Therefore, the width of the dead zone is more appropriate according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11 n (for example, according to the maximum value and the minimum value of the voltage values of all the battery cells 111 It can be set to Therefore, for example, when the variation of the voltage value is large, the width of the dead zone is increased, and when the variation is small, the width of the dead zone is reduced to further equalize the state of charge of the plurality of battery cells 111 to 11n. It becomes possible to do efficiently.
 (第3の制御形態)
 上述した実施形態(第1の制御形態)では、両隣の電池セル111~11nと同時に電力の受け渡しを行う構成としたが、まず、一方の側に隣接する電池セル111~11nとペアを組み、当該ペア内で電力の受け渡しを行い、その後、他方の側に隣接する電池セル111~11nとペアを組み替え、当該ペア内で電力の受け渡しを行う構成(すなわち、交互にペアを組み替えて均等化を行う構成)としてもよい(第3の制御形態)。
(Third control mode)
In the above-described embodiment (first control mode), power is delivered at the same time as the battery cells 111 to 11n on both sides, but first, a pair is formed with the battery cells 111 to 11n adjacent to one side, A configuration in which power is exchanged within the pair, and then the battery cells 111 to 11n adjacent to the other side are re-paired, and power is exchanged within the pair (that is, the pairs are alternately rearranged to achieve equalization The configuration to be performed) may be adopted (third control mode).
 より詳細には、第3の実施形態では、まず、図6(a)に示されるように、セルバランスコントローラ501~50nは、まず、各電池セル111~11nそれぞれについて、各電池セル111~11nと一方の側の隣り合う電池セル111~11n(図6(a)の例では、電池セル111と電池セル112、など)とをペア(第1の組み合わせ)とする。そして、セルバランスコントローラ501~50nは、そのペア毎に、各電池セル111~11nの電圧値を基準として不感帯を設けるともに、各電池セル111~11nと、当該電池セル111~11nとペアとされた電池セル111~11nとの電圧値の偏差を演算し、当該偏差が不感帯を超えた場合に、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力を伝送するように、ペアとされた電池セル111~11nの無線電力伝送部301~30nを駆動制御する。 More specifically, in the third embodiment, first, as shown in FIG. 6A, the cell balance controllers 501 to 50 n first perform the respective battery cells 111 to 11 n for the respective battery cells 111 to 11 n. And the adjacent battery cells 111 to 11 n on one side (the battery cell 111 and the battery cell 112 in the example of FIG. 6A, etc.) are paired (first combination). The cell balance controllers 501 to 50 n provide dead zones based on the voltage values of the battery cells 111 to 11 n for each pair, and are paired with the battery cells 111 to 11 n and the battery cells 111 to 11 n. The deviation of the voltage value between the battery cells 111 to 11n is calculated, and when the deviation exceeds the dead zone, the power is transmitted from the battery cells 111 to 11n having a high voltage value to the battery cells 111 to 11n having a low voltage value. As described above, the wireless power transmission units 301 to 30 n of the battery cells 111 to 11 n in a pair are driven and controlled.
 その後、セルバランスコントローラ501~50nは、図6(b)に示されるように、各電池セル111~11nと他方の側の隣り合う電池セル111~11n(図6(b)の例では電池セル112と電池セル113、など)とをペア(第2の組み合わせ)とする(すなわちペアを組み替える)。そして、セルバランスコントローラ501~50nは、そのペア毎に、各電池セル111~11nの電圧値を基準として不感帯を設けるとともに、各電池セル111~11nと、当該電池セル111~11nとペアとされた電池セル111~11nとの電圧値の偏差を演算し、当該偏差が不感帯を超えた場合に、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力を伝送するように、ペアとされた電池セル111~11nの無線電力伝送部301~30nを駆動制御する。なお、ペアの設定(組み替え)などは、複数のセルバランスコントローラ501~50nのうち、いずれかのセルバランスコントローラ501~50nで行う構成としてもよいし、すべてのセルバランスコントローラ501~50nと通信可能に接続され、すべてのセルバランスコントローラ501~50nを統括的に制御するマスタコントローラをさらに設け、該マスタコントローラで行う構成としてもよい。 Thereafter, as shown in FIG. 6B, the cell balance controllers 501 to 50n display the battery cells 111 to 11n adjacent to the other battery cells 111 to 11n (the battery cells in the example of FIG. 6B). 112 and the battery cell 113, etc.) are paired (second combination) (ie, the pair is rearranged). The cell balance controllers 501 to 50 n form dead zones based on the voltage values of the battery cells 111 to 11 n for each pair, and are paired with the battery cells 111 to 11 n and the battery cells 111 to 11 n. The deviation of the voltage value between the battery cells 111 to 11n is calculated, and when the deviation exceeds the dead zone, the power is transmitted from the battery cells 111 to 11n having a high voltage value to the battery cells 111 to 11n having a low voltage value. As described above, the wireless power transmission units 301 to 30 n of the battery cells 111 to 11 n in a pair are driven and controlled. The setting (recombination) of the pair may be performed by one of the cell balance controllers 501 to 50n among the plurality of cell balance controllers 501 to 50n, and communication with all the cell balance controllers 501 to 50n is possible. The master controller may be further provided with a master controller that is connected to and integrally controls all the cell balance controllers 501 to 50n.
 次に、図5を参照しつつ、第3の制御形態について説明する。図5は、第3の制御形態に係る均等化処理の処理手順を示すフローチャートである。図5に示される処理も、主としてセルバランスコントローラ501~50nによって、所定のタイミングで繰り返して実行される。 Next, a third control mode will be described with reference to FIG. FIG. 5 is a flowchart showing the processing procedure of the equalization processing according to the third control mode. The processing shown in FIG. 5 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
 まず、ステップS300では、各電池セル111~11nそれぞれについて、各電池セル111~11nと一方の側の隣り合う電池セル111~11nとがペア(第1の組み合わせ)として設定される(図6(a)参照)。 First, in step S300, for each of the battery cells 111 to 11n, the battery cells 111 to 11n and the adjacent battery cells 111 to 11n on one side are set as a pair (first combination) (FIG. a) see).
 次に、ステップS302では、各電圧センサ121~12nにより検出された、すべての電池セル111~11nの電圧値が読み込まれる。次に、ステップS304では、読み込まれたすべての電池セル111~11nの電圧値の最大値と最小値との偏差が所定値以下であるか否か(例えば、満充電状態のときの電圧値の±1%以内であるか否か)についての判断が行われる。ここで、最大値と最小値との偏差が所定値以下である場合には、一旦、本処理から抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行される。一方、最大値と最小値との偏差が所定値よりも大きいときには、ステップS306に処理が移行する。 Next, in step S302, the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read. Next, in step S304, it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ± 1%. Here, when the deviation between the maximum value and the minimum value is equal to or less than a predetermined value, the process is temporarily left. Then, as described above, the present process is executed again at a predetermined timing. On the other hand, when the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S306.
 ステップS306では、設定されたペアにおいて、電池セル111~11nの電圧値の偏差が予め定められた不感帯以上である否かについての判断が行われる。ここで、電圧値の偏差が不感帯以上である場合には、ステップS308に処理が移行する。一方、電圧値の偏差が不感帯未満であるときには、ステップS310に処理が移行する。 In step S306, it is determined whether or not the deviation of the voltage values of the battery cells 111 to 11n is equal to or greater than a predetermined dead zone in the set pair. Here, when the deviation of the voltage value is equal to or greater than the dead zone, the process proceeds to step S308. On the other hand, when the deviation of the voltage value is less than the dead zone, the process proceeds to step S310.
 ステップS308では、設定されたペアの中で、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力が伝送されるように、無線電力伝送部301~30nが駆動制御される。 In step S308, the wireless power transmission units 301 to 30n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values in the set pair. Be done.
 続いて、ステップS310では、すべてのペアについて、上述した、ステップS306及びステップS308の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべてのペアについて処理が実行されていない場合には、ステップS306に処理が戻され、すべてのペアについて処理が済むまで、上述したステップS306~ステップS310の処理が繰り返し実行される。一方、すべてのペアについて処理が実行されたときには、ステップS312に処理が移行する。 Subsequently, in step S310, a determination is made as to whether or not the process of step S306 and step S308 described above has been performed for all pairs. Here, when the process has not been executed for all the pairs, the process returns to step S306, and the above-described processes of steps S306 to S310 are repeatedly executed until the processes for all the pairs are completed. . On the other hand, when the process has been executed for all the pairs, the process proceeds to step S312.
 ステップS312では、ペアの組み替えが行われる。すなわち、一方の側に隣接する電池セル111~11nとペアが組まれている場合には、他方の側に隣接する電池セル111~11nとペアが組まれるように、ペアの組み替えが行われる(図6(b)参照)。なお、本処理(ペアの組み替え)が偶数回繰り返して実行され、他方の側に隣接する電池セル111~11nとペアが組まれている場合には、一方の側に隣接する電池セル111~11nとペアが組まれるように、ペアの組み替えが行われる。その後、ステップS302に処理が移行される。そして、ステップS304が肯定されるまで(すなわち、均等化が完了するまで)、上述したステップS302~ステップS312が、再度、繰り返して実行される。その結果、電池モジュール10全体として、電圧値が均等化される。 In step S312, rearrangement of pairs is performed. That is, when a pair is formed with battery cells 111 to 11 n adjacent to one side, the pair is rearranged so that a pair is formed with battery cells 111 to 11 n adjacent to the other side ( See FIG. 6 (b)). When this process (pair rearrangement) is repeated an even number of times and the battery cells 111 to 11 n adjacent to the other side are paired, the battery cells 111 to 11 n adjacent to one side are performed. The pair is rearranged so that the pair is formed. Thereafter, the process proceeds to step S302. Then, the above-mentioned steps S302 to S312 are repeated again until the step S304 is affirmed (ie, the equalization is completed). As a result, the voltage values of the entire battery module 10 are equalized.
 本実施形態(第3の制御形態)によれば、例えば、ハードウェア上の制約から、両隣の電池セル111~11nとの間で同時に電力の受け渡しを行うことができない場合であっても、ペアを組み替えることにより、順次、電池セル111~11nの電圧値の均等化を行うことができる。また、電池セル間で電力の受け渡しを行っている最中に、万が一、ショート等の不具合が発生したとしてもその影響をペアになっている電池セル111~11nの中だけに抑えることができ、そのペア以外の電池セル111~11nに影響(不具合)が及ぶことを防止できる。よって、安全性をより向上させることが可能となる。 According to the present embodiment (third control mode), for example, even if power can not be simultaneously delivered to and from the battery cells 111 to 11n on both sides due to hardware limitations, the pair Thus, the voltage values of the battery cells 111 to 11 n can be equalized sequentially. In addition, even if a failure such as a short circuit occurs during the delivery of power between the battery cells, the influence can be suppressed only in the battery cells 111 to 11 n forming a pair, It is possible to prevent the influence (failure) from affecting the battery cells 111 to 11 n other than the pair. Therefore, it is possible to further improve the safety.
 (第4の制御形態)
 ところで、上述した実施形態(第1~第3の制御形態)では、図8に示されるように、隣り合う電池セル間で電圧値の偏差が不感帯内に納まりつつ、すべての電池セル111~11nでみると全体的には電圧値の偏差が所定値内に納まっていない場合、すなわち、連続する一定領域(区間)内の電池セル111~11nにおいて、隣り合う電池セル間で電圧値の偏差が不感帯内に納まりつつ、電圧値が単調減少しているような場合には、全体的にみるとばらつきが収まっていない(すなわち、均等化されていない)にもかかわらず、均等化処理が停止(すなわち、すべての無線電力伝送部301~30nが停止)してしまう(所謂ロック状態になってしまう)ことが生じ得る。
(Fourth control mode)
By the way, in the above-described embodiment (first to third control modes), as shown in FIG. 8, all battery cells 111 to 11 n while the deviation of the voltage value is within the dead zone between the adjacent battery cells. In general, when the deviation of the voltage value does not fall within the predetermined value, that is, the deviation of the voltage value between the adjacent battery cells in the battery cells 111 to 11 n in the continuous constant area (section) If the voltage value decreases monotonously while staying within the dead zone, the equalization process stops (although the variation does not fall within the whole (that is, it is not equalized)) That is, it may occur that all the wireless power transmission units 301 to 30 n stop (become so-called locked state).
 そこで、セルバランスコントローラ501~50nは、隣り合う電池セル間で偏差が不感帯内に納まっているにもかかわらず、すべての電池セル111~11nの充電状態のばらつき幅が所定値を超えている場合には、不感帯の幅を小さく変更することが好ましい(第4の制御形態)。なお、ロック状態における不感帯の変更などは、複数のセルバランスコントローラ501~50nのうち、いずれかのセルバランスコントローラ501~50nで行う構成としてもよいし、すべてのセルバランスコントローラ501~50nと通信可能に接続され、すべてのセルバランスコントローラ501~50nを統括的に制御するマスタコントローラをさらに設け、該マスタコントローラで行う構成としてもよい。 Therefore, in the cell balance controllers 501 to 50n, even if the deviation between the adjacent battery cells is within the dead zone, the variation width of the state of charge of all the battery cells 111 to 11n exceeds the predetermined value. Preferably, the width of the dead zone is changed to a smaller value (fourth control mode). The dead zone in the locked state may be changed by any one of the cell balance controllers 501 to 50n among the plurality of cell balance controllers 501 to 50n, and communication with all the cell balance controllers 501 to 50n is possible. The master controller may be further provided with a master controller that is connected to and integrally controls all the cell balance controllers 501 to 50n.
 この第4の制御形態について、図7を参照しつつ説明する。図7は、第4の制御形態に係る均等化処理の処理手順を示すフローチャートである。図7に示される処理も、主としてセルバランスコントローラ501~50nによって、所定のタイミングで繰り返して実行される。 The fourth control mode will be described with reference to FIG. FIG. 7 is a flowchart showing the processing procedure of the equalization processing according to the fourth control mode. The processing shown in FIG. 7 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
 まず、ステップS400では、各電圧センサ121~12nにより検出された、すべての電池セル111~11nの電圧値が読み込まれる。 First, in step S400, the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
 次に、ステップS402では、複数の電池セル111~11nすべての電圧値のばらつきの程度に応じて(例えば、すべての電池セル111~11nの電圧値の最大値と最小値との偏差に応じて)不感帯の幅が設定される。例えば、ばらつき具合が大きい場合には不感帯の幅が大きくされ、ばらつき具合が小さいときには不感帯の幅が小さくされる。 Next, in step S402, according to the degree of variation of the voltage values of all the plurality of battery cells 111 to 11n (for example, according to the deviation between the maximum value and the minimum value of the voltage values of all the battery cells 111 ) The width of the dead zone is set. For example, when the degree of variation is large, the width of the dead zone is increased, and when the degree of variation is small, the width of the dead zone is reduced.
 続いて、ステップS404では、読み込まれたすべての電池セル111~11nの電圧値の最大値と最小値との偏差が所定値以下であるか否か(例えば、満充電状態のときの電圧値の±1%以内であるか否か)についての判断が行われる。ここで、最大値と最小値との電圧値の偏差が所定値以下である場合には、一旦、本処理から抜ける。一方、最大値と最小値との偏差が所定値よりも大きいときには、ステップS406に処理が移行する。 Subsequently, in step S404, it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ± 1%. Here, when the deviation of the voltage value between the maximum value and the minimum value is equal to or less than a predetermined value, the process is temporarily left. On the other hand, when the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S406.
 ステップS406では、両隣の電池セル111~11nの電圧値の偏差が、設定された不感帯以上である否かについての判断が行われる。ここで、電圧値の偏差が不感帯以上である場合には、ステップS408に処理が移行する。一方、電圧値の偏差が不感帯未満であるときには、ステップS410に処理が移行する。 In step S406, it is determined whether the deviation of the voltage values of the battery cells 111 to 11n on both sides is equal to or greater than the set dead zone. Here, when the deviation of the voltage value is equal to or greater than the dead zone, the process proceeds to step S408. On the other hand, when the deviation of the voltage value is less than the dead zone, the process proceeds to step S410.
 ステップS408では、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力が伝送されるように、隣り合う電池セル111~11nの無線電力伝送部301~30nが駆動制御される。 In step S408, the wireless power transmission units 301 to 30n of the adjacent battery cells 111 to 11n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values. Be done.
 続いて、ステップS410では、すべての電池セル111~11nについて、上述した、ステップS406及びステップS408の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべての電池セル111~11nについて処理が実行されていない場合には、ステップS406に処理が戻され、すべての電池セル111~11nについて処理が済むまで、上述したステップS406~ステップS410の処理が繰り返し実行される。一方、すべての電池セル111~11nについて処理が実行されたときには、ステップS412に処理が移行する。 Subsequently, in step S410, a determination is made as to whether or not the process of step S406 and step S408 described above has been performed for all the battery cells 111 to 11n. Here, if the process has not been executed for all the battery cells 111 to 11n, the process returns to step S406, and the above-described steps S406 to S406 are performed until the process is completed for all the battery cells 111 to 11n. The process of S410 is repeatedly performed. On the other hand, when the process is executed for all the battery cells 111 to 11n, the process proceeds to step S412.
 ステップS412では、電力の移動が行われたか否か(すなわち、ロック状態になっているか否か)についての判断が行われる。ここで、電力の移動が行われなかった場合(ロック状態になっている場合)には、ステップS414に処理が移行し、不感帯の幅として、上記ステップS402で設定された値よりも小さい値(例えばゼロ)が設定される。そして、ステップS406に処理が移行され、再度、電力の移動が行われるまで(すなわち、ロック状態が解消されるまで)、上述したステップS406~ステップS414の処理が実行される。一方、電力の移動が行われたとき(すなわち、ロック状態になっていないとき)には、本処理から一旦抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行される。その結果、電池モジュール10全体として、充電状態が均等化される。 In step S412, a determination is made as to whether power transfer has taken place (ie, is locked or not). Here, when the power transfer is not performed (when in the locked state), the process proceeds to step S414, and the value of the dead zone width is smaller than the value set in step S402 ( For example, zero) is set. Then, the process proceeds to step S406, and the above-described processes of steps S406 to S414 are performed until power transfer is performed again (that is, until the locked state is cancelled). On the other hand, when the power transfer is performed (ie, when the lock state is not set), the process is temporarily left. Then, as described above, the present process is executed again at a predetermined timing. As a result, the state of charge of the entire battery module 10 is equalized.
 本実施形態(第4の制御形態)によれば、隣り合う電池セル間で電圧値の偏差が不感帯内に納まっているにもかかわらず、すべての電池セル111~11nの充電状態のばらつき幅が所定値を超えている場合には、不感帯の幅が小さく(例えばゼロに)変更される。そのため、上述したロック状態を解消すること、すなわち、全体的にみるとばらつきが収まっていない(すなわち、均等化されていない)にもかかわらず、均等化処理が停止してしまうことを防止することができ、確実に電池セル111~11nの電圧値の均等化を行うことが可能となる。 According to the present embodiment (the fourth control mode), although the deviation of the voltage value between the adjacent battery cells falls within the dead zone, the variation width of the state of charge of all the battery cells 111 to 11 n is If the predetermined value is exceeded, the width of the dead zone is reduced (eg, to zero). Therefore, canceling the lock state described above, that is, preventing the equalization process from being stopped even though the variation as a whole is not settled (that is, not equalized). It is possible to reliably equalize the voltage values of the battery cells 111 to 11 n.
 (第5の制御形態)
 上述した第4の制御形態では、ロック状態となったときに、不感帯の値を小さくした(例えばゼロにした)が、すべての電池セル111~11nの電圧値に対する直線近似式を求め、該直線近似式の傾きがゼロとなるように電力を受け渡す構成としてもよい(第5の制御形態)。
(Fifth control mode)
In the fourth control mode described above, when the locked state is obtained, the value of the dead zone is reduced (for example, made zero), but a linear approximation formula is obtained for the voltage values of all the battery cells 111 to 11n. The power may be delivered so that the slope of the approximate expression becomes zero (fifth control mode).
 より詳細には、第5の実施形態では、隣り合う電池セル間で偏差が不感帯内に納まっているにもかかわらず、すべての電池セル111~11nの電圧値のばらつき幅が所定値を超えている場合(すなわち、ロック状態にあるときに)に、セルバランスコントローラ501~50nは、まず、図10に示されるように、すべての電池セル111~11nの電圧値の平均値を求める。次に、セルバランスコントローラ501~50nは、すべての電池セル111~11nの電圧値に対する直線近似式を求める。より具体的には、複数の電池セル111~11nを横軸に沿って並べて配列し(すなわち、横軸を電池セル111~11nの配列とし)、縦軸を各電池セル111~11nの電圧値として、電圧値のばらつきに対する直線近似式を求める。 More specifically, in the fifth embodiment, the variation width of the voltage values of all the battery cells 111 to 11n exceeds a predetermined value, even though the deviation is within the dead zone between the adjacent battery cells. In the case of being in the locked state (ie, in the locked state), the cell balance controllers 501 to 50 n first determine the average value of the voltage values of all the battery cells 111 to 11 n, as shown in FIG. Next, the cell balance controllers 501 to 50n obtain linear approximation formulas for the voltage values of all the battery cells 111 to 11n. More specifically, the plurality of battery cells 111 to 11 n are arranged along the horizontal axis (that is, the horizontal axis is an array of battery cells 111 to 11 n), and the vertical axis is the voltage value of each of the battery cells 111 to 11 n As a formula, a linear approximation formula for variation in voltage value is obtained.
 そして、セルバランスコントローラ501~50nは、電圧値が平均値を超える電池セル111~11nについて、不感帯にかかわらず、当該電池セル111~11nから、直線近似式の傾きが下がる側に位置する電池セル111~11nに電力を伝送するように(すなわち、直線近似式の傾きがゼロに近づくように)無線電力伝送部301~30nを駆動制御する。そのため、電圧値が平均値を超える電池セル111~11nの電圧値が平均値と一致するまで、隣接する電池セル111~11nに電力が移される。なお、その間、隣接する電池セル111~11nの電圧値が平均値を超えたとしても、継続して電力の移動が行われる。 Then, the cell balance controllers 501 to 50 n are battery cells positioned on the side where the inclination of the linear approximation formula decreases from the battery cells 111 to 11 n regardless of the dead zone for the battery cells 111 to 11 n whose voltage value exceeds the average value. The wireless power transmission units 301 to 30 n are drive-controlled to transmit power to 111 to 11 n (that is, the inclination of the linear approximation formula approaches zero). Therefore, power is transferred to the adjacent battery cells 111 to 11 n until the voltage values of the battery cells 111 to 11 n whose voltage value exceeds the average value match the average value. In the meantime, even if the voltage values of the adjacent battery cells 111 to 11 n exceed the average value, the power transfer is continuously performed.
 なお、ロック状態における直線近似式の取得などは、複数のセルバランスコントローラ501~50nのうち、いずれかのセルバランスコントローラ501~50nで行う構成としてもよいし、すべてのセルバランスコントローラ501~50nと通信可能に接続され、すべてのセルバランスコントローラ501~50nを統括的に制御するマスタコントローラをさらに設け、該マスタコントローラで行う構成としてもよい。 Note that acquisition of the linear approximation formula in the locked state may be performed by any one of the plurality of cell balance controllers 501 to 50n, or all the cell balance controllers 501 to 50n may be used. A master controller connected communicably and integrally controlling all the cell balance controllers 501 to 50 n may be further provided, and the master controller may perform the configuration.
 次に、図9を参照しつつ、第5の制御形態について説明する。図9は、第5の制御形態に係る均等化処理の処理手順を示すフローチャートである。図9に示される処理も、主としてセルバランスコントローラ501~50nによって、所定のタイミングで繰り返して実行される。 Next, a fifth control mode will be described with reference to FIG. FIG. 9 is a flowchart showing the procedure of the equalization process according to the fifth control mode. The processing shown in FIG. 9 is also repeatedly executed mainly at predetermined timings by the cell balance controllers 501 to 50n.
 まず、ステップS500では、各電圧センサ121~12nにより検出された、すべての電池セル111~11nの電圧値が読み込まれる。 First, in step S500, the voltage values of all the battery cells 111 to 11n detected by the voltage sensors 121 to 12n are read.
 次に、ステップS502では、読み込まれたすべての電池セル111~11nの電圧値の最大値と最小値との偏差が所定値以下であるか否か(例えば、満充電状態のときの電圧値の±1%以内であるか否か)についての判断が行われる。ここで、最大値と最小値との偏差が所定値以下である場合には、一旦、本処理から抜ける。一方、最大値と最小値との偏差が所定値よりも大きいときには、ステップS504に処理が移行する。 Next, in step S502, it is determined whether or not the deviation between the maximum value and the minimum value of the voltage values of all the read battery cells 111 to 11n is equal to or less than a predetermined value (for example, the voltage value in the fully charged state). A determination is made as to whether it is within ± 1%. Here, when the deviation between the maximum value and the minimum value is equal to or less than a predetermined value, the process is temporarily left. On the other hand, when the deviation between the maximum value and the minimum value is larger than the predetermined value, the process proceeds to step S504.
 ステップS504では、両隣の電池セル111~11nの電圧値との偏差が、設定された不感帯以上である否かについての判断が行われる。ここで、電圧値の偏差が不感帯以上である場合には、ステップS506に処理が移行する。一方、電圧値の偏差が不感帯未満であるときには、ステップS508に処理が移行する。 In step S504, it is determined whether the deviation from the voltage values of the battery cells 111 to 11n on both sides is equal to or more than the set dead zone. Here, when the deviation of the voltage value is equal to or larger than the dead zone, the process proceeds to step S506. On the other hand, when the deviation of the voltage value is less than the dead zone, the process proceeds to step S508.
 ステップS506では、電圧値の高い電池セル111~11nから電圧値の低い電池セル111~11nへ電力が伝送されるように、隣り合う電池セル111~11nの無線電力伝送部301~30nが駆動制御される。その後、ステップS508に処理が移行する。 In step S506, the wireless power transmission units 301 to 30n of the adjacent battery cells 111 to 11n control driving so that power is transmitted from the battery cells 111 to 11n having high voltage values to the battery cells 111 to 11n having low voltage values. Be done. Thereafter, the process proceeds to step S508.
 ステップS508では、すべての電池セル111~11nについて、上述した、ステップS504及びステップS506の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべての電池セル111~11nについて処理が実行されていない場合には、ステップS504に処理が戻され、すべての電池セル111~11nについて処理が済むまで、上述したステップS504~ステップS508の処理が繰り返し実行される。一方、すべての電池セル111~11nについて処理が実行されたときには、ステップS510に処理が移行する。 In step S508, a determination is made as to whether or not the process of step S504 and step S506 described above has been performed for all of the battery cells 111 to 11n. Here, if the process has not been executed for all the battery cells 111 to 11n, the process returns to step S504, and the above-described steps S504 to S504 are performed until the process is completed for all the battery cells 111 to 11n. The process of S508 is repeatedly performed. On the other hand, when the process is executed for all the battery cells 111 to 11n, the process proceeds to step S510.
 ステップS510では、電力の移動が行われたか否か(すなわち、ロック状態になっているか否か)についての判断が行われる。ここで、電力の移動が行われた場合(ロック状態になっていない場合)には、本処理から一旦抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行される。一方、電力の移動が行われなかったとき(ロック状態になっている場合)には、ステップS512に処理が移行する。 In step S510, a determination is made as to whether power transfer has taken place (ie, is it in a locked state). Here, when the movement of the power is performed (when not in the locked state), the process is temporarily left out. Then, as described above, the present process is executed again at a predetermined timing. On the other hand, when the power transfer has not been performed (when in the locked state), the process proceeds to step S512.
 ステップS512では、すべての電池セル111~11nの電圧値の平均値が求められる。そして、ステップS514では、すべての電池セル111~11nの電圧値に対する直線近似式が求められる。 In step S512, the average value of the voltage values of all the battery cells 111 to 11n is obtained. Then, in step S514, a linear approximation formula is obtained for the voltage values of all the battery cells 111 to 11n.
 続いて、ステップS516では、電池セル111~11nの電圧値が平均値以上であるか否かについての判断が行われる。ここで、電池セル111~11nの電圧値が平均値以上である場合には、ステップS518に処理が移行する。一方、電池セル111~11nの電圧値が平均値未満であるときには、ステップS520に処理が移行する。 Subsequently, in step S516, it is determined whether or not the voltage values of the battery cells 111 to 11n are equal to or greater than the average value. Here, when the voltage values of the battery cells 111 to 11n are equal to or more than the average value, the process proceeds to step S518. On the other hand, when the voltage values of the battery cells 111 to 11n are less than the average value, the process proceeds to step S520.
 ステップS518では、電圧値が平均値を超える電池セル111~11nについて、不感帯にかかわらず、当該電池セル111~11nから、直線近似式の傾きが下がる側に位置する(隣接する)電池セル111~11nに対して電力が伝送されるように(すなわち、直線近似式の傾きがゼロになるように)、無線電力伝送部301~30nが駆動制御される。その後、ステップS520に処理が移行する。 In step S518, for the battery cells 111 to 11n whose voltage value exceeds the average value, regardless of the dead zone, the battery cells 111 to 11n are positioned adjacent to the battery cell 111 on the side where the inclination of the linear approximation formula decreases. The wireless power transmission units 301 to 30 n are drive-controlled so that power is transmitted to 11 n (that is, the slope of the linear approximation formula becomes zero). Thereafter, the process proceeds to step S520.
 ステップS520では、すべての電池セル111~11nについて、上述した、ステップS516及びステップS518の処理が実行されたか否かについての判断が行われる。ここで、まだ、すべての電池セル111~11nについて処理が実行されていない場合には、ステップS516に処理が戻され、すべての電池セル111~11nについて処理が済むまで、上述したステップS516~ステップS520の処理が繰り返し実行される。一方、すべての電池セル111~11nについて処理が実行されたときには、本処理から一旦抜ける。そして、上述したように、所定のタイミングで、再度、本処理が実行される。その結果、電池モジュール10全体として、充電状態が均等化される。 In step S520, a determination is made as to whether or not the process of step S516 and step S518 described above has been performed for all of the battery cells 111-11n. Here, if the process has not been executed for all the battery cells 111 to 11n, the process returns to step S516, and the above-described steps S516 to S516 are performed until the process is completed for all the battery cells 111 to 11n. The process of S520 is repeatedly performed. On the other hand, when the process is executed for all the battery cells 111 to 11 n, the process is temporarily left out. Then, as described above, the present process is executed again at a predetermined timing. As a result, the state of charge of the entire battery module 10 is equalized.
 本実施形態(第5の制御形態)によれば、隣り合う電池セル間で電圧値の偏差が不感帯内に納まっているにもかかわらず、すべての電池セル111~11nの電圧値のばらつき幅が所定値を超えている場合には、すべての電池セル111~11nの電圧値の平均値が求められるとともに、すべての電池セル111~11nの電圧値に対する直線近似式が求められ、電圧値が平均値を超える電池セル111~11nについて、不感帯にかかわらず、当該電池セル111~11nから、直線近似式の傾きが下がる側に位置する(隣接する)電池セル111~11nに電力が伝送されるように(すなわち、直線近似式の傾きがゼロになるように)無線電力伝送部301~30nが駆動制御される。そのため、上述したロック状態を解消すること、すなわち、全体的にみるとばらつきが収まっていない(すなわち、均等化されていない)にもかかわらず、均等化処理が停止してしまうことを防止することができ、確実に電池セル111~11nの均等化を行うことが可能となる。 According to the present embodiment (fifth control mode), the variation width of the voltage values of all the battery cells 111 to 11 n is in spite of the fact that the deviation of the voltage value is within the dead zone between the adjacent battery cells. If it exceeds the predetermined value, the average value of the voltage values of all the battery cells 111 to 11 n is determined, and a linear approximation formula for the voltage values of all the battery cells 111 to 11 n is determined. For battery cells 111 to 11n exceeding the value, regardless of the dead zone, power is transmitted from the battery cells 111 to 11n to the battery cells 111 to 11n located (adjacent) on the side where the inclination of the linear approximation formula decreases The wireless power transmission units 301 to 30 n are driven and controlled (ie, the inclination of the linear approximation formula becomes zero). Therefore, canceling the lock state described above, that is, preventing the equalization process from being stopped even though the variation as a whole is not settled (that is, not equalized). As a result, the battery cells 111 to 11 n can be reliably equalized.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態(第1~第5の制御形態)に限定されるものではなく種々の変形が可能である。例えば、上記実施形態では、電池セル111~11nの充電状態を示す指標として電圧値を用いたが、電圧値に代えて、例えば、充放電電流を積算してSOCを推定し(電流積算法)、該SOCを充電状態を示す指標として用いてもよい。また、上記実施形態では、セルバランス制御装置1が、一つの電池モジュール10を備えている場合を例にして説明したが、電池モジュール10が、複数、並列に接続されていてもよい。 The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment (first to fifth control modes), and various modifications are possible. For example, in the above embodiment, the voltage value is used as an index indicating the charge state of the battery cells 111 to 11n, but instead of the voltage value, for example, charge and discharge currents are integrated to estimate SOC (current integration method) The SOC may be used as an indicator that indicates the state of charge. Moreover, although the case where the cell balance control apparatus 1 was equipped with the one battery module 10 was made into the example and demonstrated in the said embodiment, multiple battery modules 10 may be connected in parallel.
 上記実施形態では、隣り合う電池セル111~11nの電圧値の偏差が不感帯内に入ったときに電力の受け渡し(均等化処理)を停止したが、隣り合う電池セル111~11nの電圧値の偏差が不感帯内に入ったときに、予め定められた一定の電力量を受け渡す構成としてもよい。また、例えば、電池モジュール10(電池セル111~11n)の電圧値のばらつきの傾向を学習し、その学習結果を用いて不感帯を補正(可変)する構成としてもよい。このようにすれば、電池モジュール10の個体差や経年劣化を吸収することもできる。 In the above embodiment, when the deviation of the voltage values of the adjacent battery cells 111 to 11n falls within the dead zone, the delivery (equalization processing) of the power is stopped, but the deviation of the voltage values of the adjacent battery cells 111 to 11n When it enters the dead zone, a predetermined constant amount of power may be delivered. Further, for example, the tendency of variation in voltage values of the battery modules 10 (battery cells 111 to 11 n) may be learned, and the dead zone may be corrected (variable) using the learning result. In this way, individual differences and aging deterioration of the battery module 10 can be absorbed.
 上記実施形態では、+側に設ける不感帯と-側に設ける不感帯の幅を同一にしたが、+側に設ける不感帯と-側に設ける不感帯の幅を異ならせてもよい。また、不感帯の幅又は検出された電圧値を電池セル111~11nの温度などに応じて補正する構成としてもよい。 In the above embodiment, the widths of the dead zone provided on the + side and the dead zone provided on the − side are the same, but the widths of the dead zone provided on the + side and the dead zone provided on the − side may be different. Further, the width of the dead zone or the detected voltage value may be corrected according to the temperature of the battery cells 111 to 11 n or the like.
 上記実施形態では、各セルバランスコントローラ501~50n(無線通信部521~52n)間の通信に、無線通信を用いたが、例えば、CAN(Controller Area Network)、UART(Universal Asynchronous Receiver/Transmitter)、SPI(Serial Peripheral Interface)などの有線通信を採用してもよい。ただし、装置の軽量化や構成の自由度などの観点からは無線通信を用いることが好ましい。また、上記実施形態では、隣り合うセルバランスコントローラ501~50n(無線通信部521~52n)間で通信を行う構成としたが、任意のセルバランスコントローラ501~50n間で通信を行う構成としてもよい。 In the above embodiment, wireless communication is used for communication among the cell balance controllers 501 to 50n (wireless communication units 521 to 52n), but for example, CAN (Controller Area Network), UART (Universal Asynchronous Receiver / Transmitter), Wired communication such as SPI (Serial Peripheral Interface) may be employed. However, it is preferable to use wireless communication from the viewpoint of weight reduction of the device, freedom of configuration, and the like. In the above embodiment, communication is performed between adjacent cell balance controllers 501 to 50n (wireless communication units 521 to 52n). However, communication may be performed between any cell balance controllers 501 to 50n. .
 上記実施形態(第2~第5制御形態)では、複数のセルバランスコントローラ501~50nのうち、いずれかのセルバランスコントローラ501~50nにマスタ機能を持たせたが、図11に示されるように、別途、すべてのセルバランスコントローラ501~50nと通信可能に接続され、すべてのセルバランスコントローラ501~50nを統括的に制御するマスタコントローラ70を備える構成としてもよい。 In the above embodiment (second to fifth control modes), one of the plurality of cell balance controllers 501 to 50n has the master function, but as shown in FIG. Alternatively, the master controller 70 may be configured to be communicably connected to all the cell balance controllers 501 to 50n and collectively control all the cell balance controllers 501 to 50n.
 上記実施形態では、電力を無線で伝送する構成としたが、電力を有線で伝送する構成としてもよい。なお、本発明は、例えば、BMS(バッテリ・マネージメント・システム)などに好適に適用することができる。 Although the power is transmitted wirelessly in the above embodiment, the power may be transmitted by wire. The present invention can be suitably applied to, for example, a BMS (battery management system).
 1 セルバランス制御装置
 10 電池モジュール
 111,112,113,・・・,11n 電池セル
 121,122,123,・・・,12n 電圧センサ
 301,302,303,・・・,30n 無線電力伝送部
 501,502,503,・・・,50n セルバランスコントローラ
 511,512,513,・・・,51n 制御部
 521,522,523,・・・,52n 無線通信部
 
DESCRIPTION OF SYMBOLS 1 Cell balance control apparatus 10 Battery module 111, 112, 113, ..., 11 n Battery cell 121, 122, 123, ..., 12 n Voltage sensor 301, 302, 303, ..., 30 n Wireless electric power transmission part 501 , 502, 503, ..., 50 n cell balance controllers 511, 512, 513, ..., 51 n control units 521, 522, 523, ..., 52 n wireless communication units

Claims (16)

  1.  電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御装置において、
     各電池セルそれぞれの充電状態を検出する検出部と、
     前記各電池セル毎に設けられ、隣り合う電池セル間で電力を伝送する電力伝送部と、
     前記電力伝送部を駆動制御する制御部と、を備え、
     前記制御部は、前記各電池セルそれぞれについて、
      前記各電池セルの充電状態を基準として不感帯を設けるとともに、
      前記各電池セルと、当該電池セルと隣り合う電池セルとの充電状態の偏差を演算し、
      当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、隣り合う電池セルの電力伝送部を駆動制御する
     ことを特徴とするセルバランス制御装置。
    In a cell balance control device for equalizing the charge states of a plurality of battery cells connected in series, which constitute a battery module,
    A detection unit that detects the charge state of each battery cell;
    A power transfer unit provided for each of the battery cells for transmitting power between adjacent battery cells;
    A control unit that drives and controls the power transmission unit;
    The control unit is configured to control each of the battery cells
    While providing a dead zone based on the charge condition of each battery cell,
    Calculating the deviation of the state of charge between each of the battery cells and the battery cells adjacent to the battery cell;
    A cell characterized by driving and controlling a power transmission unit of an adjacent battery cell so as to transmit power from a battery cell with a high state of charge to a battery cell with a low state of charge when the deviation exceeds the dead zone. Balance control device.
  2.  前記不感帯は、前記電池セルの満充電状態に対する所定の比率を基にして予め設定されていることを特徴とする請求項1に記載のセルバランス制御装置。 The cell balance control device according to claim 1, wherein the dead zone is set in advance based on a predetermined ratio with respect to a fully charged state of the battery cell.
  3.  前記制御部は、前記複数の電池セルすべての充電状態のばらつきの程度に応じて、前記不感帯の幅を設定することを特徴とする請求項1に記載のセルバランス制御装置。 The cell balance control device according to claim 1, wherein the control unit sets the width of the dead zone in accordance with the degree of variation in the state of charge of all of the plurality of battery cells.
  4.  前記制御部は、前記各電池セルそれぞれについて、
      前記各電池セルと一方の隣り合う電池セルとをペアとし、当該ペア毎に、前記各電池セルの充電状態を基準として不感帯を設けるとともに、前記各電池セルと、当該電池セルとペアとされた電池セルとの充電状態の偏差を演算し、当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、ペアとされた電池セルの電力伝送部を駆動制御し、
      その後、前記各電池セルと他方の隣り合う電池セルとをペアとし、当該ペア毎に、前記各電池セルの充電状態を基準として不感帯を設けるとともに、前記各電池セルと、当該電池セルとペアとされた電池セルとの充電状態の偏差を演算し、当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、ペアとされた電池セルの電力伝送部を駆動制御する
     ことを特徴とする請求項1~3のいずれか1項に記載のセルバランス制御装置。
    The control unit is configured to control each of the battery cells
    The respective battery cells and one adjacent battery cell are paired, and a dead zone is provided for each pair based on the charge state of each battery cell, and each battery cell and the battery cell are paired A battery cell paired to calculate a deviation of the charge state from the battery cell and transmit power from the battery cell with high charge state to the battery cell with low charge state when the deviation exceeds the dead zone Drive control of the power
    Thereafter, each battery cell and the other adjacent battery cell are paired, and a dead zone is provided for each pair based on the charge state of each battery cell, and each battery cell and the battery cell are paired The deviation of the charge condition with the battery cell is calculated, and when the deviation exceeds the dead zone, the battery cell is paired to transmit power from the battery cell with high charge condition to the battery cell with low charge condition. The cell balance control device according to any one of claims 1 to 3, which controls driving of a power transmission unit of a battery cell.
  5.  前記制御部は、すべての隣り合う電池セル間で前記偏差が前記不感帯内に納まっているにもかかわらず、すべての前記電池セルの充電状態のばらつき幅が所定値を超えている場合には、前記不感帯の幅を小さくすることを特徴とする請求項1~4のいずれか1項に記載のセルバランス制御装置。 The control unit is configured to, in a case where the variation width of the state of charge of all the battery cells exceeds a predetermined value, although the deviation is within the dead zone among all the adjacent battery cells. The cell balance control device according to any one of claims 1 to 4, wherein the width of the dead zone is reduced.
  6.  前記制御部は、すべての隣り合う電池セル間で前記偏差が前記不感帯内に納まっているにもかかわらず、すべての前記電池セルの充電状態のばらつき幅が所定値を超えている場合に、すべての電池セルの充電状態の平均値を求めるとともに、すべての電池セルの充電状態に対する直線近似式を求め、充電状態が前記平均値を超える電池セルについて、前記不感帯にかかわらず、当該電池セルから、前記直線近似式の傾きが下がる側に位置する電池セルに電力を伝送するように、前記電力伝送部を駆動制御することを特徴とする請求項1~4のいずれか1項に記載のセルバランス制御装置。 The control unit is configured to perform all of the plurality of adjacent battery cells in the case where the variation width of the state of charge of all the battery cells exceeds a predetermined value although the deviation is within the dead zone. The average value of the state of charge of the battery cell is determined, and a linear approximation formula for the state of charge of all the battery cells is obtained, and for the battery cell whose state of charge exceeds the average value, regardless of the dead zone, from the battery cell The cell balance according to any one of claims 1 to 4, wherein the power transmission unit is drive-controlled to transmit power to a battery cell positioned on the side where the slope of the linear approximation formula decreases. Control device.
  7.  前記電力伝送部は、無線で電力を伝送する無線電力伝送部であることを特徴とする請求項1~6のいずれか1項に記載のセルバランス制御装置。 The cell balance control device according to any one of claims 1 to 6, wherein the power transmission unit is a wireless power transmission unit that wirelessly transmits power.
  8.  前記無線電力伝送部は、前記電池セル間に、対向して配設される平板状の電極を有し、該電極間に生じる誘導電界を利用して電力を伝送することを特徴とする請求項7に記載のセルバランス制御装置。 The wireless power transmission unit has flat plate electrodes disposed facing each other between the battery cells, and transmits power using an induced electric field generated between the electrodes. The cell balance control apparatus according to 7.
  9.  電池モジュールを構成する、直列に接続された複数の電池セルの充電状態を均等化するセルバランス制御方法において、
     各電池セルそれぞれの充電状態を検出する検出ステップと、
     前記各電池セルそれぞれについて、
      前記各電池セルの充電状態を基準として不感帯を設けるとともに、
      前記各電池セルと、当該電池セルと隣り合う電池セルとの充電状態の偏差を演算し、
      当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、隣り合う電池セルの電力伝送部を駆動制御する制御ステップと、
     を備えることを特徴とするセルバランス制御方法。
    In a cell balance control method for equalizing the charge states of a plurality of battery cells connected in series, which constitute a battery module,
    A detection step of detecting a charge state of each battery cell;
    For each of the battery cells,
    While providing a dead zone based on the charge condition of each battery cell,
    Calculating the deviation of the state of charge between each of the battery cells and the battery cells adjacent to the battery cell;
    A control step of driving and controlling a power transmission unit of an adjacent battery cell to transmit power from the battery cell with high charge state to the battery cell with low charge state when the deviation exceeds the dead zone;
    A cell balance control method comprising:
  10.  前記不感帯は、前記電池セルの満充電状態に対する所定の比率を基にして予め設定されていることを特徴とする請求項9に記載のセルバランス制御方法。 10. The cell balance control method according to claim 9, wherein the dead zone is preset based on a predetermined ratio with respect to a fully charged state of the battery cell.
  11.  前記制御ステップでは、前記複数の電池セルすべての充電状態のばらつきの程度に応じて、前記不感帯の幅を設定することを特徴とする請求項9に記載のセルバランス制御方法。 10. The cell balance control method according to claim 9, wherein in the control step, the width of the dead zone is set in accordance with the degree of variation in the state of charge of all of the plurality of battery cells.
  12.  前記制御ステップでは、前記各電池セルそれぞれについて、
      前記各電池セルと一方の隣り合う電池セルとをペアとし、当該ペア毎に、前記各電池セルの充電状態を基準として不感帯を設けるとともに、前記各電池セルと、当該電池セルとペアとされた電池セルとの充電状態の偏差を演算し、当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、ペアとされた電池セルの電力伝送部を駆動制御し、
      その後、前記各電池セルと他方の隣り合う電池セルとをペアとし、当該ペア毎に、前記各電池セルの充電状態を基準として不感帯を設けるとともに、前記各電池セルと、当該電池セルとペアとされた電池セルとの充電状態の偏差を演算し、当該偏差が前記不感帯を超えた場合に、充電状態の高い電池セルから充電状態の低い電池セルへ電力を伝送するように、ペアとされた電池セルの電力伝送部を駆動制御する
     ことを特徴とする請求項9~11のいずれか1項に記載のセルバランス制御方法。
    In the control step, for each of the battery cells,
    The respective battery cells and one adjacent battery cell are paired, and a dead zone is provided for each pair based on the charge state of each battery cell, and each battery cell and the battery cell are paired A battery cell paired to calculate a deviation of the charge state from the battery cell and transmit power from the battery cell with high charge state to the battery cell with low charge state when the deviation exceeds the dead zone Drive control of the power
    Thereafter, each battery cell and the other adjacent battery cell are paired, and a dead zone is provided for each pair based on the charge state of each battery cell, and each battery cell and the battery cell are paired The deviation of the charge condition with the battery cell is calculated, and when the deviation exceeds the dead zone, the battery cell is paired to transmit power from the battery cell with high charge condition to the battery cell with low charge condition. The cell balance control method according to any one of claims 9 to 11, wherein drive control of the power transmission unit of the battery cell is performed.
  13.  前記制御ステップでは、すべての隣り合う電池セル間で前記偏差が前記不感帯内に納まっているにもかかわらず、すべての前記電池セルの充電状態のばらつき幅が所定値を超えている場合には、前記不感帯の幅を小さくすることを特徴とする請求項9~12のいずれか1項に記載のセルバランス制御方法。 In the control step, even if the deviation is within the dead zone between all adjacent battery cells, if the variation width of the state of charge of all the battery cells exceeds a predetermined value, The cell balance control method according to any one of claims 9 to 12, wherein the width of the dead zone is reduced.
  14.  前記制御ステップでは、すべての隣り合う電池セル間で前記偏差が前記不感帯内に納まっているにもかかわらず、すべての前記電池セルの充電状態のばらつき幅が所定値を超えている場合に、すべての電池セルの充電状態の平均値を求めるとともに、すべての電池セルの充電状態に対する直線近似式を求め、充電状態が前記平均値を超える電池セルについて、前記不感帯にかかわらず、当該電池セルから、前記直線近似式の傾きが下がる側に位置する電池セルに電力を伝送するように、前記電力伝送部を駆動制御することを特徴とする請求項9~12のいずれか1項に記載のセルバランス制御方法。 In the control step, in the case where the variation width of the state of charge of all the battery cells exceeds a predetermined value, although the deviation is within the dead zone among all the adjacent battery cells. The average value of the state of charge of the battery cell is determined, and a linear approximation formula for the state of charge of all the battery cells is obtained, and for the battery cell whose state of charge exceeds the average value, regardless of the dead zone, from the battery cell The cell balance according to any one of claims 9 to 12, wherein the power transmission unit is drive-controlled to transmit power to a battery cell positioned on the side where the inclination of the linear approximation formula decreases. Control method.
  15.  前記電力伝送部は、無線で電力を伝送する無線電力伝送部であることを特徴とする請求項9~14のいずれか1項に記載のセルバランス制御方法。 The cell balance control method according to any one of claims 9 to 14, wherein the power transmission unit is a wireless power transmission unit that wirelessly transmits power.
  16.  前記無線電力伝送部は、前記電池セル間に、対向して配設される平板状の電極を有し、該電極間に生じる誘導電界を利用して電力を伝送することを特徴とする請求項15に記載のセルバランス制御方法。 The wireless power transmission unit has flat plate electrodes disposed facing each other between the battery cells, and transmits power using an induced electric field generated between the electrodes. The cell balance control method as described in 15.
PCT/JP2018/039834 2017-11-10 2018-10-26 Cell balance control device, and cell balance control method WO2019093153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-217017 2017-11-10
JP2017217017 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019093153A1 true WO2019093153A1 (en) 2019-05-16

Family

ID=66438375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039834 WO2019093153A1 (en) 2017-11-10 2018-10-26 Cell balance control device, and cell balance control method

Country Status (1)

Country Link
WO (1) WO2019093153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012804A1 (en) * 2019-07-23 2021-01-28 华为技术有限公司 Battery equalization circuit and control method therefor, and uninterrupted power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147171A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Electricity storage system and method for controlling discharging of said electricity storage system
JP2016154423A (en) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー Voltage balance device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147171A1 (en) * 2014-03-28 2015-10-01 日本電気株式会社 Electricity storage system and method for controlling discharging of said electricity storage system
JP2016154423A (en) * 2015-02-20 2016-08-25 有限会社アイ・アール・ティー Voltage balance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021012804A1 (en) * 2019-07-23 2021-01-28 华为技术有限公司 Battery equalization circuit and control method therefor, and uninterrupted power supply system

Similar Documents

Publication Publication Date Title
CN108292854B (en) Battery control device
EP2874270B1 (en) Battery pack and electric vehicle
US20170144565A1 (en) Power reserve apparatus, power system, and electric vehicle
JP5715694B2 (en) Battery control device, battery system
EP3373406B1 (en) Charging control device
JP6321763B1 (en) Power storage system, transportation device, and control method of power storage system
RU2559829C2 (en) Charging system for battery modules
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
CN103208835B (en) Battery management system with wireless charging
US20170166078A1 (en) Battery charge equalization system
JP7067440B2 (en) Cell balance controller
KR101956254B1 (en) Balancing control system by changing the current command according to the voltage value of the electric vehicle battery module
CN104011930A (en) Control apparatus and control method for lithium-ion secondary battery
WO2019093153A1 (en) Cell balance control device, and cell balance control method
KR20130081873A (en) Electric vehicle charge apparatus, module and method
US11108248B2 (en) Power supply system including high-voltage system and low-voltage system and insulation thereof
JP2020089055A (en) Cell balance system user interface
WO2013088695A2 (en) Battery cell voltage equalization apparatus
CN102257395A (en) Method of monitoring the voltage of an electrical energy generating element of a battery
WO2019093154A1 (en) Cell balance control device and cell balance control method
US11508997B2 (en) Battery control device and abnormality sensing method
KR20210155290A (en) Battery management system and battery rack for wireless charging
JP2013243790A (en) Apparatus for controlling power source
KR101844992B1 (en) Battery cell module apparatus, and battery energy storage apparatus
US20230039175A1 (en) Battery management device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP