JP5567040B2 - Secondary battery control device - Google Patents

Secondary battery control device Download PDF

Info

Publication number
JP5567040B2
JP5567040B2 JP2012008877A JP2012008877A JP5567040B2 JP 5567040 B2 JP5567040 B2 JP 5567040B2 JP 2012008877 A JP2012008877 A JP 2012008877A JP 2012008877 A JP2012008877 A JP 2012008877A JP 5567040 B2 JP5567040 B2 JP 5567040B2
Authority
JP
Japan
Prior art keywords
secondary battery
charge
temperature
charge state
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012008877A
Other languages
Japanese (ja)
Other versions
JP2013149471A (en
Inventor
行生 門田
裕二 沖田
麻美 水谷
智 天木
祐介 山下
進 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012008877A priority Critical patent/JP5567040B2/en
Publication of JP2013149471A publication Critical patent/JP2013149471A/en
Application granted granted Critical
Publication of JP5567040B2 publication Critical patent/JP5567040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の実施形態は、短時間に二次電池を昇温するための二次電池の制御装置に関する。   Embodiments described herein relate generally to a secondary battery control device for heating a secondary battery in a short time.

二次電池の充電および放電動作において、低温環境下では電池のインピーダンスが大きくなり、常温で充放電できた電力やエネルギー量が低温環境下では得られなくなる。この問題に対して、二次電池の外部にヒーター装置を設置して二次電池を昇温するといった方法も採用されているが、ヒーターで電力のロスが発生することと、二次電池の外部と内部で短時間に均等に昇温できないといった課題が残る。   In the charging and discharging operation of the secondary battery, the impedance of the battery becomes large in a low temperature environment, and the power and energy amount that can be charged and discharged at room temperature cannot be obtained in a low temperature environment. To solve this problem, a method is also adopted in which a heater device is installed outside the secondary battery to raise the temperature of the secondary battery. However, there is a loss of power in the heater, and the outside of the secondary battery. However, there remains a problem that the temperature cannot be increased uniformly in a short time.

そこで、二次電池の温度が所定値以下にある場合は、発電機からの充電と、インバータ負荷への放電により二次電池の充放電を繰り返して電池を昇温する方法が提案されている(例えば特許文献1を参照。)。また二次電池の充放電の繰り返しを二次電池と直流コンデンサの間で実施するといった方法も提案されている。(例えば特許文献2を参照。)。   Then, when the temperature of a secondary battery is below a predetermined value, the method of heating up a battery by repeating charging / discharging of a secondary battery by the charge from a generator and the discharge to an inverter load is proposed ( For example, see Patent Document 1.) In addition, a method has been proposed in which charging / discharging of the secondary battery is repeated between the secondary battery and the DC capacitor. (For example, refer to Patent Document 2).

特開2003−272712号公報JP 2003-272712 A 特開2007−12568号公報JP 2007-12568 A

高機能な二次電池(特にリチウムイオン二次電池)は内部抵抗が小さいため、低温環境下で二次電池を短時間に昇温するためには、二次電池に対して強制的に大電流を充放電しなければならない。そのためには、二次電池を充電するエネルギーの確保と二次電池を放電するエネルギーの消費先が問題となる。   High-performance secondary batteries (especially lithium ion secondary batteries) have a low internal resistance, so in order to raise the temperature of the secondary battery in a short time in a low temperature environment, the secondary battery is forced to have a large current. Must be charged and discharged. For this purpose, securing energy for charging the secondary battery and consuming energy for discharging the secondary battery become problems.

従来の技術では、特許文献1にて二次電池を充電するエネルギーの確保として商用電源やエンジン、二次電池を放電するエネルギーの消費先として、負荷やモータが提案されているが、この方法では二次電池の放電の際にエネルギーを捨てているだけで、ヒーターでも課題となった電力のロスが発生するといった問題が残ってしまう。また、特許文献2の二次電池の充放電エネルギーをコンデンサとの間でやり取りする方法では、電池を短時間で昇温するのに必要な大電流の充放電に対して、コンデンサの容量を相当大きくする必要があり、体積やコストの点で課題となる。   In the conventional technology, a load or a motor is proposed as a consumer of energy for discharging a commercial power source and an engine and a secondary battery as securing energy for charging a secondary battery in Patent Document 1, but in this method, Even if the energy is discarded when the secondary battery is discharged, there remains a problem that the loss of power, which is a problem with the heater, is generated. Moreover, in the method of exchanging the charge / discharge energy of the secondary battery of Patent Document 2 with the capacitor, the capacity of the capacitor is equivalent to the large current charge / discharge required to raise the temperature of the battery in a short time. It is necessary to increase the size, which is a problem in terms of volume and cost.

本実施形態の目的は、複数の二次電池を備えた蓄電装置において電池昇温に要する以外の電力ロスを無くし、短時間に二次電池を昇温可能な二次電池の制御装置を提供することにある。   An object of the present embodiment is to provide a secondary battery control device capable of eliminating a power loss other than that required for battery temperature rise in a power storage device including a plurality of secondary batteries and capable of raising the temperature of the secondary battery in a short time. There is.

本実施形態に係る二次電池の制御装置は、複数の二次電池を制御する装置であって、前記二次電池および二次電池セルの電圧を検出する電圧検出手段と、前記二次電池の温度を検出する温度検出手段と、前記複数の二次電池間を接続し、互いに一方の二次電池が放電した電力によって他方の二次電池を充電する充放電手段と、前記温度検出手段により検出された電池温度情報が予め設定した閾値温度よりも低い場合に、前記複数の二次電池間で前記充放電手段を用いて充電および放電を行い、前記充電および放電を行う二次電池および二次電池セルにおいて、前記電圧検出手段により検出された電圧情報が当該二次電池の上限電圧に到達したら充電を停止して放電もしくは休止に移行し、前記電圧検出手段により検出された電圧情報が当該二次電池の下限電圧に到達したら放電を停止して充電もしくは休止に移行するように前記充放電手段を制御する充放電制御手段とを具備する。   A control device for a secondary battery according to the present embodiment is a device that controls a plurality of secondary batteries, and includes a voltage detection unit that detects voltages of the secondary battery and the secondary battery cells, and Detected by temperature detecting means for detecting temperature, charging / discharging means for connecting the plurality of secondary batteries and charging the other secondary battery with the electric power discharged by one of the secondary batteries, and the temperature detecting means When the battery temperature information is lower than a preset threshold temperature, the charging and discharging means are used to charge and discharge between the plurality of secondary batteries, and the secondary battery and the secondary that perform the charging and discharging In the battery cell, when the voltage information detected by the voltage detection means reaches the upper limit voltage of the secondary battery, the charging is stopped and the battery shifts to discharge or pause, and the voltage information detected by the voltage detection means is It includes a charge and discharge control means for controlling the charging and discharging means so as to shift the charge or pause to stop discharging when it reaches the lower limit voltage of the battery.

第1実施形態に係る二次電池の制御装置を示す構成図。The block diagram which shows the control apparatus of the secondary battery which concerns on 1st Embodiment. 充放電制御手段の構成例を示す図。The figure which shows the structural example of a charging / discharging control means. 充放電制御手段の昇温動作パターンを示す図。The figure which shows the temperature rising operation pattern of a charging / discharging control means. 第2実施形態に係る二次電池の制御装置を示す構成図。The block diagram which shows the control apparatus of the secondary battery which concerns on 2nd Embodiment. 第3実施形態に係る二次電池の制御装置を示す構成図。The block diagram which shows the control apparatus of the secondary battery which concerns on 3rd Embodiment. 第4実施形態に係る二次電池の制御装置を示す構成図。The block diagram which shows the control apparatus of the secondary battery which concerns on 4th Embodiment. 充放電制御手段の制御の一例を示す図。The figure which shows an example of control of a charging / discharging control means. 第5実施形態に係る充放電制御手段の制御の一例を示す図。The figure which shows an example of control of the charging / discharging control means which concerns on 5th Embodiment. 第6実施形態に係る充放電制御手段の制御の一例を示す図。The figure which shows an example of control of the charging / discharging control means which concerns on 6th Embodiment. 第7実施形態に係る充放電制御手段の制御の一例を示す図。The figure which shows an example of control of the charging / discharging control means which concerns on 7th Embodiment. 第8実施形態に係る充放電制御手段の制御の一例を示す図。The figure which shows an example of control of the charging / discharging control means which concerns on 8th Embodiment. 第9実施形態に係る充放電制御手段の制御の一例を示す図。The figure which shows an example of control of the charging / discharging control means which concerns on 9th Embodiment.

以下、図面を参照しながら本実施形態に係る二次電池の制御装置を説明する。   The secondary battery control device according to this embodiment will be described below with reference to the drawings.

(第1実施形態)
図1は、第1実施形態に係る二次電池の制御装置を示す構成図である。図1において、この装置は、直流母線1、二次電池2、スイッチ手段3、二次電池2の電力を直流母線1と充放電するためのDC/DCコンバータ4、二次電池2および電池セルの電圧を検出する電圧検出手段5、二次電池2の温度を検出する電池温度検出手段6、二次電池2と異なる少なくとも1つの二次電池7、スイッチ手段8、二次電池7の電力を直流母線1と充放電するためのDC/DCコンバータ9、二次電池7および電池セルの電圧を検出する電圧検出手段10、二次電池7の温度を検出する電池温度検出手段11、二次電池2と二次電池7との間で充放電を行う充放電手段12、充放電手段12および各スイッチ手段3,8,14,15を制御する充放電制御手段13、二次電池2から充放電手段12を切り離すためのスイッチ手段14、二次電池7から充放電手段12を切り離すためのスイッチ手段15、および昇温開始信号16を有する。
(First embodiment)
FIG. 1 is a configuration diagram illustrating a control apparatus for a secondary battery according to the first embodiment. 1, this apparatus includes a DC bus 1, a secondary battery 2, a switch means 3, a DC / DC converter 4 for charging / discharging the power of the secondary battery 2 with the DC bus 1, a secondary battery 2, and a battery cell. The voltage detection means 5 for detecting the voltage of the battery, the battery temperature detection means 6 for detecting the temperature of the secondary battery 2, the at least one secondary battery 7 different from the secondary battery 2, the switch means 8, and the power of the secondary battery 7 DC / DC converter 9 for charging / discharging with DC bus 1, secondary battery 7, voltage detection means 10 for detecting the voltage of the battery cell, battery temperature detection means 11 for detecting the temperature of secondary battery 7, secondary battery Charging / discharging means 12 for charging / discharging between the secondary battery 7 and the secondary battery 7, charging / discharging control means 13 for controlling the charging / discharging means 12 and each switch means 3, 8, 14, 15, charging / discharging from the secondary battery 2 Switch for disconnecting means 12 It means 14, a switch unit 15 and heated start signal 16, for disconnecting the charging and discharging means 12 from the secondary battery 7.

二次電池2は、スイッチ手段3およびDC/DCコンバータ4を介して直流母線1と接続される。通常の電池利用においては、スイッチ手段3をオンし、DC/DCコンバータ4が二次電池2の充電および放電を制御する。同様に、二次電池7においても、二次電池7はスイッチ手段8およびDC/DCコンバータ9を介して直流母線1と接続される。こちらも通常の電池利用においては、スイッチ手段8をオンし、DC/DCコンバータ9が二次電池7の充電および放電を制御する。   Secondary battery 2 is connected to DC bus 1 via switch means 3 and DC / DC converter 4. In normal battery use, the switch means 3 is turned on, and the DC / DC converter 4 controls charging and discharging of the secondary battery 2. Similarly, in the secondary battery 7, the secondary battery 7 is connected to the DC bus 1 through the switch means 8 and the DC / DC converter 9. Also in normal battery use, the switch means 8 is turned on, and the DC / DC converter 9 controls the charging and discharging of the secondary battery 7.

充放電手段12は、一方でスイッチ手段14を介して二次電池2と接続し、もう一方でスイッチ手段15を介して二次電池7と接続する。充放電手段12を制御する充放電制御手段13は、二次電池2の電圧検出手段5が検出した電圧情報と電池温度検出手段6が検出した電池温度情報とを取り込み、また二次電池7の電圧検出手段10が検出した電圧情報と電池温度検出手段11が検出した電池温度情報とを取り込む。   The charging / discharging unit 12 is connected to the secondary battery 2 through the switch unit 14 on the one hand and to the secondary battery 7 through the switch unit 15 on the other side. The charge / discharge control means 13 for controlling the charge / discharge means 12 takes in the voltage information detected by the voltage detection means 5 of the secondary battery 2 and the battery temperature information detected by the battery temperature detection means 6, and The voltage information detected by the voltage detection means 10 and the battery temperature information detected by the battery temperature detection means 11 are captured.

充放電制御手段13に昇温開始信号16が入力されると、充放電制御手段13は電池温度検出手段6が検出した電池温度情報および電池温度検出手段11が検出した電池温度情報を予め設定した低温の閾値温度と比較する。電池温度情報が低温の閾値温度よりも低い場合には、充放電制御手段13は、スイッチ手段3とスイッチ手段8をオフし、スイッチ手段14とスイッチ手段15をオンして、二次電池2および二次電池7を直流母線1から切り離して充放電手段12と接続する。   When the temperature rise start signal 16 is input to the charge / discharge control means 13, the charge / discharge control means 13 presets the battery temperature information detected by the battery temperature detection means 6 and the battery temperature information detected by the battery temperature detection means 11. Compare with lower threshold temperature. When the battery temperature information is lower than the low threshold temperature, the charge / discharge control means 13 turns off the switch means 3 and the switch means 8, turns on the switch means 14 and the switch means 15, and turns on the secondary battery 2 and Secondary battery 7 is disconnected from DC bus 1 and connected to charging / discharging means 12.

図2に充放電手段12の回路構成の一例を示す。充放電手段12は、リアクトル17、コンデンサ18,19、半導体素子20,21を有する。図2において、図1と同一部分には同一符号を付し、詳しい説明を省略する。   FIG. 2 shows an example of the circuit configuration of the charging / discharging unit 12. The charging / discharging unit 12 includes a reactor 17, capacitors 18 and 19, and semiconductor elements 20 and 21. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

充放電手段12は、二次電池2から見て、二次電池2を充電するための半導体素子20と、二次電池2を放電するための半導体素子21を備え、リアクトル17は充放電に伴うエネルギー蓄積の役割を担う。また、充放電手段12の二次電池2側にはコンデンサ18を接続し、二次電池7側にはコンデンサ19を接続することで、二次電池2および二次電池7に生じる電流リプルの低減を図っている。なお、コンデンサ18およびコンデンサ19を導入すると、スイッチ手段14またはスイッチ手段15の投入時に二次電池からコンデンサへと突入電流が流れることがある。この突入電流が過大だとスイッチ手段等を損傷するおそれがあるため、スイッチ手段14およびスイッチ手段15と並列にスイッチ手段と抵抗器を直列に接続して構成する突入電流防止回路をさらに備え、スイッチ手段14およびスイッチ手段15の投入前に突入電流防止回路をオンしてコンデンサ18,19をプリチャージしてからスイッチ手段14およびスイッチ手段15をオンする機構を備えることもある。   The charging / discharging unit 12 includes a semiconductor element 20 for charging the secondary battery 2 and a semiconductor element 21 for discharging the secondary battery 2 when viewed from the secondary battery 2, and the reactor 17 is associated with charging / discharging. Play a role in energy storage. Further, the capacitor 18 is connected to the secondary battery 2 side of the charging / discharging means 12 and the capacitor 19 is connected to the secondary battery 7 side, thereby reducing current ripple generated in the secondary battery 2 and the secondary battery 7. I am trying. When the capacitor 18 and the capacitor 19 are introduced, an inrush current may flow from the secondary battery to the capacitor when the switch means 14 or the switch means 15 is turned on. If this inrush current is excessive, the switch means or the like may be damaged. Therefore, the inrush current prevention circuit further comprising a switch means and a resistor connected in series with the switch means 14 and the switch means 15 is further provided. There may be provided a mechanism for turning on the switch means 14 and the switch means 15 after the capacitors 18 and 19 are precharged by turning on the inrush current prevention circuit before the means 14 and the switch means 15 are turned on.

充放電制御手段13は、昇温開始信号16と電池温度検出手段6および電池温度検出手段11が検出した電池温度情報とに基づいて充放電制御信号を生成し、充放電手段12へ充放電制御信号を出力する。充放電手段12は、充放電制御手段13からの充放電信号に従って半導体素子20をオン・オフして二次電池2を充電かつ二次電池7を放電して電力のやり取りを行う。また半導体素子21をオン・オフして二次電池2を放電かつ二次電池7を充電して電力のやり取りを行う。二次電池2からみて一方的に充電または放電が継続すると二次電池の電力はいずれ二次電池の上限電圧または下限電圧に到達し、それ以上に充電もしくは放電が出来なくなる。そこで、充放電制御手段13は電圧検出手段5が検出した電圧情報と電圧検出手段10が検出した電圧情報とを入力し、これら電圧情報が二次電池2または二次電池7の上限電圧に到達したら充電を停止して放電もしくは休止に移行し、これら電圧情報が二次電池2または二次電池7の下限電圧に到達したら放電を停止して充電もしくは休止に移行する。   The charge / discharge control means 13 generates a charge / discharge control signal based on the temperature rise start signal 16 and the battery temperature information detected by the battery temperature detection means 6 and the battery temperature detection means 11, and performs charge / discharge control to the charge / discharge means 12. Output a signal. The charging / discharging means 12 exchanges power by turning on / off the semiconductor element 20 according to the charge / discharge signal from the charge / discharge control means 13 to charge the secondary battery 2 and discharge the secondary battery 7. The semiconductor element 21 is turned on / off to discharge the secondary battery 2 and charge the secondary battery 7 to exchange power. When charging or discharging continues unilaterally as viewed from the secondary battery 2, the power of the secondary battery eventually reaches the upper limit voltage or lower limit voltage of the secondary battery, and cannot be charged or discharged any further. Therefore, the charge / discharge control means 13 inputs the voltage information detected by the voltage detection means 5 and the voltage information detected by the voltage detection means 10, and these voltage information reaches the upper limit voltage of the secondary battery 2 or the secondary battery 7. Then, the charging is stopped and the process proceeds to discharging or resting. When the voltage information reaches the lower limit voltage of the secondary battery 2 or the secondary battery 7, the discharging is stopped and the process proceeds to charging or resting.

図3に、充放電制御手段13の昇温動作パターンの一例を示す。充放電制御手段13は、昇温開始信号を受けると、二次電池2および二次電池7の温度T0が低温の閾値温度より低い場合に昇温動作を開始する。例えば、先ず、二次電池2の充電および二次電池7の放電を開始し、電圧検出手段5が検出した電圧情報が上限電圧に到達または電圧検出手段10が検出した電圧情報が下限電圧に到達すると、二次電池2の放電および二次電池7の充電に切り替える。電圧検出手段5が検出した電圧情報が下限電圧に到達または電圧検出手段10が検出した電圧情報が上限電圧に到達すると、二次電池2の充電および二次電池7の放電に切り替える。充放電制御手段13は、二次電池2または二次電池7が目的温度T1に到達したら昇温動作を停止する。   FIG. 3 shows an example of the temperature rising operation pattern of the charge / discharge control means 13. When receiving the temperature increase start signal, the charge / discharge control means 13 starts the temperature increase operation when the temperature T0 of the secondary battery 2 and the secondary battery 7 is lower than the low threshold temperature. For example, first, charging of the secondary battery 2 and discharging of the secondary battery 7 are started, and the voltage information detected by the voltage detection means 5 reaches the upper limit voltage or the voltage information detected by the voltage detection means 10 reaches the lower limit voltage. Then, switching to discharging of the secondary battery 2 and charging of the secondary battery 7 is performed. When the voltage information detected by the voltage detection means 5 reaches the lower limit voltage or when the voltage information detected by the voltage detection means 10 reaches the upper limit voltage, the secondary battery 2 is charged and the secondary battery 7 is discharged. The charge / discharge control means 13 stops the temperature raising operation when the secondary battery 2 or the secondary battery 7 reaches the target temperature T1.

このように第1実施形態によれば、二次電池が低温環境下でインピーダンスが上昇した場合に、他の二次電池との間で大電流を充放電することで、電力ロス無く電池を短時間で昇温することができ、二次電池のインピーダンスを低減して出力電力およびエネルギー量を改善することができる。   As described above, according to the first embodiment, when the impedance of the secondary battery increases in a low temperature environment, the battery is shortened without power loss by charging and discharging a large current with another secondary battery. The temperature can be increased over time, and the output power and energy amount can be improved by reducing the impedance of the secondary battery.

(第2実施形態)
図4は、第2実施形態に係る二次電池の制御装置を示す構成図である。第2実施形態は、上記図1の構成に、電力供給手段22と、DC/DCコンバータ4を制御する制御手段23と、DC/DCコンバータ9を制御する制御手段24とをさらに追加するものである。なお、電力供給手段22は商用電源や分散電源でも構成できるし、発電機であっても良い。図4において、上記図1と同一部分には同一符号を付し、詳しい説明を省略する。
(Second Embodiment)
FIG. 4 is a configuration diagram illustrating a control apparatus for a secondary battery according to the second embodiment. In the second embodiment, power supply means 22, control means 23 for controlling the DC / DC converter 4, and control means 24 for controlling the DC / DC converter 9 are further added to the configuration shown in FIG. is there. The power supply means 22 can be a commercial power source or a distributed power source, or a generator. 4, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

電力供給手段22は、DC/DCコンバータ4を介して二次電池2と接続され、制御手段23の制御のもとでDC/DCコンバータ4を駆動して電力供給手段22が発生する電力を二次電池2に移動して二次電池2を充電することができる。同様に、電力供給手段22はDC/DCコンバータ9を介して二次電池7と接続され、制御手段24の制御のもとでDC/DCコンバータ9を駆動して電力供給手段22が発生する電力を二次電池7に移動して二次電池7を充電することができる。   The power supply means 22 is connected to the secondary battery 2 via the DC / DC converter 4, and drives the DC / DC converter 4 under the control of the control means 23 to generate power generated by the power supply means 22. The secondary battery 2 can be charged by moving to the secondary battery 2. Similarly, the power supply means 22 is connected to the secondary battery 7 via the DC / DC converter 9, and the power generated by the power supply means 22 by driving the DC / DC converter 9 under the control of the control means 24. Can be moved to the secondary battery 7 to charge the secondary battery 7.

二次電池2の充電状態を判定する充電状態判定手段は、DC/DCコンバータ4を制御する制御手段23に備えられ、二次電池2の電圧検出手段5により検出された電圧情報と電池温度検出手段6により検出された電池温度情報から電池のエネルギー残量(SOC)を推定し充電状態情報を生成する。制御手段23で生成された充電状態情報は、充放電制御手段13に送信される。充放電制御手段13は、その充電状態情報が予め設定した閾値よりも低い場合は、制御手段23によりDC/DCコンバータ4を駆動して電力供給手段22が発生する電力を二次電池2に移動して二次電池7を充電する。   The charge state determination means for determining the charge state of the secondary battery 2 is provided in the control means 23 for controlling the DC / DC converter 4, and voltage information and battery temperature detection detected by the voltage detection means 5 of the secondary battery 2. The remaining battery energy (SOC) is estimated from the battery temperature information detected by the means 6, and the state of charge information is generated. The charge state information generated by the control unit 23 is transmitted to the charge / discharge control unit 13. When the charge state information is lower than a preset threshold value, the charge / discharge control means 13 drives the DC / DC converter 4 by the control means 23 and moves the power generated by the power supply means 22 to the secondary battery 2. Then, the secondary battery 7 is charged.

二次電池7の充電状態を判定する充電状態判定手段は、DC/DCコンバータ9を制御する制御手段24に備えられ、二次電池7の電圧検出手段10により検出された電圧情報と電池温度検出手段11により検出された電池温度情報から電池のエネルギー残量(SOC:State of Charge)を推定し充電状態情報を生成する。充放電制御手段13は、制御手段23から送られてくる充電状態情報が予め設定した閾値よりも低い場合は、DC/DCコンバータ9を駆動して電力供給手段22が発生する電力を二次電池7に移動して二次電池7を充電する。   The charge state determination means for determining the charge state of the secondary battery 7 is provided in the control means 24 for controlling the DC / DC converter 9, and the voltage information detected by the voltage detection means 10 of the secondary battery 7 and the battery temperature detection. The state of charge (SOC) of the battery is estimated from the battery temperature information detected by the means 11 to generate charge state information. The charge / discharge control unit 13 drives the DC / DC converter 9 to generate the power generated by the power supply unit 22 when the charge state information sent from the control unit 23 is lower than a preset threshold value. 7 to charge the secondary battery 7.

このように第2実施形態によれば、二次電池2と二次電池7の間で充放電手段12を用いて充放電して二次電池を昇温する際に、二次電池2と二次電池7のエネルギーが少ない場合は、予め二次電池を充電して放電動作に対して十分なエネルギーを蓄積することができる。   Thus, according to 2nd Embodiment, when charging / discharging between the secondary battery 2 and the secondary battery 7 using the charging / discharging means 12 and heating up a secondary battery, secondary battery 2 and secondary battery 2 are used. When the energy of the secondary battery 7 is low, the secondary battery can be charged in advance and sufficient energy can be accumulated for the discharging operation.

(第3実施形態)
図5は、第3実施形態に係る二次電池の制御装置を示す構成図である。第3実施形態は、上記図4の構成に、スイッチ手段25、および電力消費手段26を追加するものである。電力消費手段26は抵抗やモータ等の負荷装置でも構成できる。図5において、上記図4と同一部分には同一符号を付し、詳しい説明を省略する。
(Third embodiment)
FIG. 5 is a configuration diagram illustrating a control apparatus for a secondary battery according to the third embodiment. In the third embodiment, switch means 25 and power consumption means 26 are added to the configuration of FIG. The power consuming means 26 can also be configured by a load device such as a resistor or a motor. 5, the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

電力消費手段26は、スイッチ手段25を介して直流母線1と接続される。二次電池2の充電状態を判定する充電状態判定手段は、DC/DCコンバータ4を制御する制御手段23に備えられ、二次電池2の電圧検出手段5により検出された電圧情報と電池温度検出手段6により検出された電池温度情報から二次電池2のエネルギー残量(SOC)を推定し充電状態情報を生成する。充放電制御手段13は、制御手段23から送られてくる充電状態情報が予め設定した閾値よりも高い場合は、スイッチ手段25をオンして電力消費手段26を直流母線1と接続して電力消費先を確保し、制御手段23によりDC/DCコンバータ4を駆動して二次電池2の電力を電力消費手段26で消費するよう放電を行う。   The power consuming means 26 is connected to the DC bus 1 via the switch means 25. The charge state determination means for determining the charge state of the secondary battery 2 is provided in the control means 23 for controlling the DC / DC converter 4, and voltage information and battery temperature detection detected by the voltage detection means 5 of the secondary battery 2. The state of charge (SOC) of the secondary battery 2 is estimated from the battery temperature information detected by the means 6 to generate charge state information. When the charging state information sent from the control means 23 is higher than a preset threshold value, the charge / discharge control means 13 turns on the switch means 25 and connects the power consumption means 26 to the DC bus 1 to consume power. The control unit 23 drives the DC / DC converter 4 to discharge the power of the secondary battery 2 by the power consuming unit 26.

また、二次電池7の充電状態を判定する充電状態判定手段は、DC/DCコンバータ9を制御する制御手段24に備えられ、二次電池7の電圧検出手段10により検出された電圧情報と電池温度検出手段11により検出された電池温度情報から二次電池7のエネルギー残量(SOC)を推定し充電状態情報を生成する。充放電制御手段13は、制御手段23から送られてくる充電状態情報が予め設定した閾値よりも高い場合は、スイッチ手段25をオンして電力消費手段26を直流母線1と接続して電力消費先を確保し、制御手段23によりDC/DCコンバータ4を駆動して二次電池2の電力を電力消費手段26で消費するよう放電を行う。   The charging state determination means for determining the charging state of the secondary battery 7 is provided in the control means 24 for controlling the DC / DC converter 9 and the voltage information detected by the voltage detection means 10 of the secondary battery 7 and the battery. From the battery temperature information detected by the temperature detection means 11, the remaining energy (SOC) of the secondary battery 7 is estimated to generate charge state information. When the charging state information sent from the control means 23 is higher than a preset threshold value, the charge / discharge control means 13 turns on the switch means 25 and connects the power consumption means 26 to the DC bus 1 to consume power. The control unit 23 drives the DC / DC converter 4 to discharge the power of the secondary battery 2 by the power consuming unit 26.

このように第3実施形態によれば、二次電池2と二次電池7の間で充放電手段12を用いて充放電して二次電池を昇温する際に、二次電池2と二次電池7のエネルギーが多い場合は、予め二次電池を放電して充電動作に対してエネルギーを蓄積できる余力を電池に与えることができる。   As described above, according to the third embodiment, when the secondary battery 2 and the secondary battery 7 are charged and discharged using the charging / discharging means 12 to raise the temperature of the secondary battery, the secondary battery 2 and the secondary battery 7 are charged. When the secondary battery 7 has a large amount of energy, the secondary battery can be discharged in advance to give the battery sufficient energy for the charging operation.

(第4実施形態)
図6は、第4実施形態に係る二次電池の制御装置を示す構成図である。第4実施形態は、上記図2の構成に、二次電池2の充放電電流を計測する電流検出手段27と、二次電池7の充放電電流を計測する電流検出手段28を追加するものである。図7は、図6の構成における充放電制御手段13の制御の一例を示したものである。図7に示すように、充放電制御手段13は、二次電池2の充放電電流を制御するための電流指令値29、二次電池7の充放電電流を制御するための電流指令値30、加算器31,32、制御する対象の電流情報を切り替える切替え手段33、制御ゲイン34、および、半導体素子20と半導体素子21とをオン・オフするゲート信号を発生するゲート信号発生手段35を含む。なお、第4実施形態では、電流指令値29及び電流指令値30は予め設定されているものとする。
(Fourth embodiment)
FIG. 6 is a configuration diagram illustrating a secondary battery control device according to a fourth embodiment. In the fourth embodiment, a current detection unit 27 for measuring the charge / discharge current of the secondary battery 2 and a current detection unit 28 for measuring the charge / discharge current of the secondary battery 7 are added to the configuration of FIG. is there. FIG. 7 shows an example of the control of the charge / discharge control means 13 in the configuration of FIG. As shown in FIG. 7, the charge / discharge control means 13 includes a current command value 29 for controlling the charge / discharge current of the secondary battery 2, a current command value 30 for controlling the charge / discharge current of the secondary battery 7, Adders 31 and 32, switching means 33 for switching current information to be controlled, control gain 34, and gate signal generating means 35 for generating a gate signal for turning on / off semiconductor element 20 and semiconductor element 21 are included. In the fourth embodiment, it is assumed that the current command value 29 and the current command value 30 are set in advance.

第4実施形態の動作について、図6および図7を参照して説明する。電流検出手段27は二次電池2の充放電電流を計測し、その電流情報は加算器31へ出力される。加算器31は、二次電池2の充放電電流を制御するための電流指令値29と電流検出手段27が検出した電流情報を入力して、両者から偏差を求める。また電流検出手段28は二次電池7の充放電電流を計測し、その電流情報は加算器32へと出力される。加算器32では、二次電池7の充放電電流を制御するための電流指令値30と電流検出手段28が検出した電流情報を入力して、両者から偏差を求める。   The operation of the fourth embodiment will be described with reference to FIGS. The current detection unit 27 measures the charge / discharge current of the secondary battery 2, and the current information is output to the adder 31. The adder 31 inputs the current command value 29 for controlling the charging / discharging current of the secondary battery 2 and the current information detected by the current detection means 27, and obtains a deviation from both. The current detection means 28 measures the charge / discharge current of the secondary battery 7, and the current information is output to the adder 32. In the adder 32, the current command value 30 for controlling the charge / discharge current of the secondary battery 7 and the current information detected by the current detection means 28 are input, and a deviation is obtained from both.

切替え手段33は充放電手段12が制御すべき二次電池によって切替えを行い、制御すべき二次電池の電流情報と電流指令値とから求めた電流偏差情報を制御ゲイン34に出力する。電流偏差情報は制御ゲイン34にてゲインをかけられ、ゲート信号発生手段35へと送られて半導体素子20および半導体素子21を駆動するための信号を生成し、半導体素子20および半導体素子21へ出力される。   The switching unit 33 performs switching according to the secondary battery to be controlled by the charging / discharging unit 12 and outputs current deviation information obtained from the current information and current command value of the secondary battery to be controlled to the control gain 34. The current deviation information is gained by the control gain 34 and is sent to the gate signal generating means 35 to generate a signal for driving the semiconductor element 20 and the semiconductor element 21 and output to the semiconductor element 20 and the semiconductor element 21. Is done.

すなわち第4実施形態では、電流検出手段27が検出した電流情報と予め設定された電流指令値との偏差を求め、この偏差に基づいて充放電電流が電流指令値に一致するよう充放電を行うように制御するものである。このように第4実施形態によれば、二次電池の充放電電流を制御して昇温のための充電もしくは放電を行うことができ、二次電池への過電流の発生を回避して、大電流での充放電が可能となる。   That is, in the fourth embodiment, a deviation between the current information detected by the current detection means 27 and a preset current command value is obtained, and charging / discharging is performed based on this deviation so that the charge / discharge current matches the current command value. Is to control. As described above, according to the fourth embodiment, the charging / discharging current of the secondary battery can be controlled to perform charging or discharging for temperature rise, avoiding the occurrence of overcurrent to the secondary battery, Charging / discharging with a large current is possible.

(第5実施形態)
第5実施形態は、上記第4実施形態の図6と同一構成で、充放電制御手段13の制御が異なるものである。図8は、第5実施形態に係る充放電制御手段13の制御の一例を示したものである。図8に示すように、充放電制御手段13は、加算器31、制御ゲイン34、半導体素子20と半導体素子21とをオン・オフするゲート信号を発生するゲート信号発生手段35、充電状態判定手段36、レベル判定手段37、上限レベル値38、下限レベル値39、タイマー40、タイマー40をオン・オフするスイッチ手段41、放電用電流指令値42、充電用電流指令値43、および切替え手段44を含む。
(Fifth embodiment)
5th Embodiment is the same structure as FIG. 6 of the said 4th Embodiment, and the control of the charging / discharging control means 13 differs. FIG. 8 shows an example of the control of the charge / discharge control means 13 according to the fifth embodiment. As shown in FIG. 8, the charge / discharge control means 13 includes an adder 31, a control gain 34, a gate signal generation means 35 for generating a gate signal for turning on / off the semiconductor element 20 and the semiconductor element 21, and a charge state determination means. 36, a level determination means 37, an upper limit level value 38, a lower limit level value 39, a timer 40, a switch means 41 for turning on / off the timer 40, a discharge current command value 42, a charging current command value 43, and a switching means 44. Including.

図8において、昇温を行う電池として二次電池2を選択した場合、充電状態判定手段36は、電圧検出手段5から電圧情報と、電池温度検出手段6から検出された電池温度情報と、電流検出手段27から検出された電流情報とを入力し、二次電池2の充電状態を判定し、充電状態情報をレベル判定手段37に入力する。レベル判定手段37は、充電状態情報と予め設定した上限レベル値38および下限レベル値39との比較を行い、充電状態情報が上限レベル値38よりも小さくかつ下限レベル値39よりも大きい場合にはスイッチ手段41をオンしてタイマー40の出力をオンにする。一方、レベル判定手段37は、充電状態情報が上限レベル値38よりも大きい場合または下限レベル値39よりも小さい場合はスイッチ手段41をオフしてタイマー40の出力をオフする。   In FIG. 8, when the secondary battery 2 is selected as the battery to be heated, the charging state determination unit 36 includes voltage information from the voltage detection unit 5, battery temperature information detected from the battery temperature detection unit 6, current The current information detected from the detection unit 27 is input, the charge state of the secondary battery 2 is determined, and the charge state information is input to the level determination unit 37. The level determination means 37 compares the charge state information with preset upper limit level value 38 and lower limit level value 39, and when the charge state information is smaller than the upper limit level value 38 and larger than the lower limit level value 39. The switch means 41 is turned on to turn on the output of the timer 40. On the other hand, when the state of charge information is larger than the upper limit level value 38 or smaller than the lower limit level value 39, the level determination means 37 turns off the switch means 41 and turns off the output of the timer 40.

切替え手段44は、放電用電流指令値42と充電用電流指令値43を入力し、タイマー40からの信号がスイッチ手段41でオンとなっているときには、タイマー出力に従ってある一定時間毎に放電用電流指令値42と充電用電流指令値43とが交互に出力されるよう信号の切替えを行う。この電流検出手段27が検出した電流情報と電流指令値から加算器31で偏差を求め電流偏差情報として出力し、電流偏差情報は制御ゲイン34にてゲインをかけられ、ゲート信号発生手段35へと送られて半導体素子20および半導体素子21を駆動するための信号を生成し、半導体素子20および半導体素子21へと出力される。   The switching means 44 inputs the discharge current command value 42 and the charge current command value 43, and when the signal from the timer 40 is turned on by the switch means 41, the discharge current command is output at regular intervals according to the timer output. The signal is switched so that the command value 42 and the charging current command value 43 are alternately output. The adder 31 obtains a deviation from the current information detected by the current detection means 27 and the current command value and outputs it as current deviation information. The current deviation information is gained by the control gain 34 and is supplied to the gate signal generation means 35. A signal for driving the semiconductor element 20 and the semiconductor element 21 is generated and output to the semiconductor element 20 and the semiconductor element 21.

このように第5実施形態によれば、例えば昇温を行う二次電池の充電状態(SOC)が40%で、SOCの上限レベル値80%と下限レベル値20%の間にあるとき、放電用電流指令値42(例えば10A)と充電用電流指令値43(例えば10A)を例えば10秒間ごとに切替えながら出力して二次電池を充放電することで、特に複雑な充放電制御を必要とせず、簡単に二次電池を充放電して昇温することが可能となる。   Thus, according to the fifth embodiment, for example, when the state of charge (SOC) of the secondary battery that raises the temperature is 40% and is between the upper limit level value 80% and the lower limit level value 20% of the SOC, For example, complicated charging / discharging control is required by charging and discharging the secondary battery by outputting the current command value 42 (for example, 10 A) and the charging current command value 43 (for example, 10 A) while switching, for example, every 10 seconds. Therefore, it is possible to easily charge and discharge the secondary battery and raise the temperature.

(第6実施形態)
図9は、第6実施形態に係る充放電制御手段13の制御の一例を示したものである。図9に示すように、第6実施形態は、上記第5実施形態において、充電状態判定手段36が判定した充電状態情報を放電用電流指令値42と充電用電流指令値43で受けて、充電状態情報に応じて放電用電流指令値42や充電用電流指令値43の変更を行うようにするものである。
(Sixth embodiment)
FIG. 9 shows an example of control by the charge / discharge control means 13 according to the sixth embodiment. As shown in FIG. 9, in the sixth embodiment, the charging state information determined by the charging state determination unit 36 in the fifth embodiment is received by the discharging current command value 42 and the charging current command value 43, and charging is performed. The discharging current command value 42 and the charging current command value 43 are changed according to the state information.

このように第6実施形態によれば、例えば昇温を行う二次電池の充電状態(SOC)が30%で、SOCの上限レベル値80%と下限レベル値20%の間にあるとき、放電余力は10%(=充電状態:30%−下限レベル値:20%)であることから、しばらくの期間は放電用電流指令値42(例えば5A)と充電用電流指令値43(例えば10A)を10秒間ごとに切替えながら出力して充電状態を50%に近づける。そして、二次電池の充電状態がある程度50%に近づいたら放電用電流指令値42(例えば10A)と充電用電流指令値43(例えば10A)を10秒間ごとに切替えながら出力して二次電池を充放電することで、特に複雑な充放電制御を必要とせず、簡単に二次電池を充放電して迅速に昇温することが可能となる。   As described above, according to the sixth embodiment, for example, when the state of charge (SOC) of the secondary battery to be heated is 30% and is between the upper limit level value 80% and the lower limit level value 20% of the SOC, Since the remaining power is 10% (= charging state: 30% −lower limit level value: 20%), the discharging current command value 42 (for example, 5 A) and the charging current command value 43 (for example, 10 A) are used for a while. Output while switching every 10 seconds to bring the state of charge closer to 50%. When the state of charge of the secondary battery approaches 50% to some extent, the secondary battery is output by switching the discharge current command value 42 (for example, 10 A) and the charge current command value 43 (for example, 10 A) while switching every 10 seconds. By charging and discharging, it is possible to easily charge and discharge the secondary battery and quickly increase the temperature without requiring particularly complicated charge and discharge control.

(第7実施形態)
図10は、第7実施形態に係る充放電制御手段13の制御の一例を示したものであり、図7において、データ換算手段45を追加したものである。
(Seventh embodiment)
FIG. 10 shows an example of the control of the charge / discharge control means 13 according to the seventh embodiment. In FIG. 7, the data conversion means 45 is added.

図10では、昇温のために充放電を行う電池として二次電池2を選択した場合に、電池温度検出手段6から電池温度情報を入力して、データ換算手段45で電池温度情報から電流指令値29を生成する。   In FIG. 10, when the secondary battery 2 is selected as a battery to be charged / discharged for temperature increase, battery temperature information is input from the battery temperature detection means 6, and a current command is obtained from the battery temperature information by the data conversion means 45. The value 29 is generated.

このように第7実施形態によれば、例えば二次電池が昇温してインピーダンスが低減するにしたがって充放電電流を増加させることができ、充放電電流を最適化して充放電時間の短縮を図ることができる。   Thus, according to the seventh embodiment, for example, the charge / discharge current can be increased as the secondary battery rises in temperature and the impedance decreases, and the charge / discharge current is optimized to shorten the charge / discharge time. be able to.

(第8実施形態)
図11は、第7実施形態に係る充放電制御手段13の制御の一例を示したものであり、図7において、データ換算手段45と除算器46を追加したものである。
(Eighth embodiment)
FIG. 11 shows an example of the control of the charge / discharge control means 13 according to the seventh embodiment. In FIG. 7, the data conversion means 45 and the divider 46 are added.

図11では、昇温のために充放電を行う電池として二次電池2を選択した場合に、電圧検出手段5からの電圧情報と、電流検出手段27からの電流情報とを除算器46に入力し、電圧値を電流値で割ってインピーダンス値を求める。このインピーダンス値をデータ換算手段45に入力してインピーダンス値に適した電流指令値29を生成する。   In FIG. 11, when the secondary battery 2 is selected as a battery to be charged / discharged for temperature increase, voltage information from the voltage detection means 5 and current information from the current detection means 27 are input to the divider 46. Then, the voltage value is divided by the current value to obtain the impedance value. This impedance value is input to the data conversion means 45 to generate a current command value 29 suitable for the impedance value.

このように第8実施形態によれば、電池温度の上昇に伴って減少する電池インピーダンスに適した充放電電流を電流指令値とすることができ、充放電時間の短縮を図ることができる。   Thus, according to the eighth embodiment, the charge / discharge current suitable for the battery impedance that decreases as the battery temperature increases can be used as the current command value, and the charge / discharge time can be shortened.

(第9実施形態)
図12は、第9実施形態に係る充放電制御手段13の制御の一例を示したものであり、図7において、タイマー40とデータ換算手段45を追加したものである。
(Ninth embodiment)
FIG. 12 shows an example of the control of the charge / discharge control means 13 according to the ninth embodiment. In FIG. 7, a timer 40 and a data conversion means 45 are added.

充放電動作開始からスタートするタイマー40の時間情報をデータ換算手段45に入力し、時間の経過にしたがって除々に電流指令値29を増加するように制御を行う。   Time information of the timer 40 starting from the start of the charge / discharge operation is input to the data conversion means 45, and control is performed so that the current command value 29 is gradually increased as time elapses.

このように第9実施形態によれば、電流指令値の生成において電圧・電流を検出することなく経過時間のみを電流生成の基準にすればよく、簡易な構成で電流指令値を増加することができる。   As described above, according to the ninth embodiment, only the elapsed time may be used as a reference for current generation without detecting the voltage / current in generation of the current command value, and the current command value can be increased with a simple configuration. it can.

なお、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…直流母線、2…二次電池、3…スイッチ手段、4…DC/DCコンバータ、5…電圧検出手段、6…電池温度検出手段、7…二次電池、8…スイッチ手段、9…DC/DCコンバータ、10…電圧検出手段、11…電池温度検出手段、12…充放電手段、13…充放電制御手段、14…スイッチ手段、15…スイッチ手段、16…昇温開始信号、17…リアクトル、18…コンデンサ、19…コンデンサ、20…半導体素子、21…半導体素子、22…電力供給手段、23…制御手段(充電状態判定手段)、24…制御手段(充電状態判定手段)、25…スイッチ手段、26…電力消費手段、27…電流検出手段、28…電流検出手段、29…電流指令値、30…電流指令値、31…加算器、32…加算器、33…切替え手段、34…制御ゲイン、35…ゲート信号発生手段、36…充電状態判定手段、37…レベル判定手段、38…上限レベル値、39…下限レベル値、40…タイマー、41…スイッチ手段、42…放電用電流指令値、43…充電用電流指令値、44…切替え手段、45…データ換算手段、46…減算器。   DESCRIPTION OF SYMBOLS 1 ... DC bus line, 2 ... Secondary battery, 3 ... Switch means, 4 ... DC / DC converter, 5 ... Voltage detection means, 6 ... Battery temperature detection means, 7 ... Secondary battery, 8 ... Switch means, 9 ... DC DC converter, 10 ... voltage detection means, 11 ... battery temperature detection means, 12 ... charge / discharge means, 13 ... charge / discharge control means, 14 ... switch means, 15 ... switch means, 16 ... temperature rise start signal, 17 ... reactor , 18 ... capacitor, 19 ... capacitor, 20 ... semiconductor element, 21 ... semiconductor element, 22 ... power supply means, 23 ... control means (charge state determination means), 24 ... control means (charge state determination means), 25 ... switch Means 26: Power consumption means 27 ... Current detection means 28 ... Current detection means 29 ... Current command value 30 ... Current command value 31 ... Adder 32 ... Adder 33 ... Switching means 34 ... Control Gain 35, gate signal generation means 36 36 charge state determination means 37 37 level determination means 38 upper limit level value 39 lower limit level value 40 timer 41 switch means 42 discharge current command value 43 ... Charging current command value, 44 ... switching means, 45 ... data conversion means, 46 ... subtractor.

Claims (9)

共通の母線に接続される第1および第2の二次電池を制御する装置であって、
前記母線と前記第1の二次電池との間に設けられ、前記第1の二次電池の電力を前記母線と充放電するための第1のコンバータと、
前記母線と前記第2の二次電池との間に設けられ、前記第2の二次電池の電力を前記母線と充放電するための第2のコンバータと、
前記第1の二次電池の温度と前記第2の二次電池の温度とを検出する温度検出手段と、
前記検出された温度が予め設定した温度閾値よりも高ければ前記第1および第2の二次電池をそれぞれ前記第1および第2のコンバータを介して前記母線に接続し、前記検出された温度が前記温度閾値以下であれば、前記第1の二次電池と前記第2の二次電池とを前記母線から切り離し前記母線とは異なる経路で接続して互いに電力を充放電させる制御手段とを具備することを特徴とする二次電池の制御装置。
An apparatus for controlling first and second secondary batteries connected to a common bus ,
A first converter provided between the bus and the first secondary battery, for charging and discharging the power of the first secondary battery with the bus;
A second converter provided between the bus and the second secondary battery for charging and discharging the power of the second secondary battery with the bus;
Temperature detecting means for detecting the temperature of the first secondary battery and the temperature of the second secondary battery;
If the detected temperature is higher than a preset temperature threshold, the first and second secondary batteries are connected to the bus via the first and second converters, respectively, and the detected temperature is Control means for charging and discharging electric power to each other by separating the first secondary battery and the second secondary battery from the bus and connecting them through a path different from the bus if the temperature is equal to or lower than the temperature threshold. A control device for a secondary battery.
さらに、前記母線を介して前記第1および第2の二次電池に電力を供給する電力供給手段と、
前記第1および第2の二次電池の充電状態を判定する充電状態判定手段とを具備し、
前記制御手段は、前記充電状態判定手段により判定された充電状態情報が予め設定した充電閾値よりも低い場合に、前記電力供給手段から前記第1および第2の二次電池に電力を供給し当該第1および第2の二次電池を充電することを特徴とする請求項1に記載の二次電池の制御装置。
A power supply means for supplying power to the first and second secondary batteries via the bus ;
Charge state determination means for determining a charge state of the first and second secondary batteries,
The control means supplies power from the power supply means to the first and second secondary batteries when the charge state information determined by the charge state determination means is lower than a preset charge threshold. The secondary battery control device according to claim 1, wherein the first and second secondary batteries are charged.
さらに、前記母線を介して前記第1および第2の二次電池の電力を消費する電力消費手段と、
前記第1および第2の二次電池の充電状態を判定する充電状態判定手段とを具備し、
前記制御手段は、前記充電状態判定手段により判定された充電状態情報が予め設定した充電閾値よりも高い場合に、前記電力消費手段で前記第1および第2の二次電池の電力を消費して当該第1および第2の二次電池を放電させることを特徴とする請求項1に記載の二次電池の制御装置。
Furthermore, power consumption means for consuming the power of the first and second secondary batteries via the bus ,
Charge state determination means for determining a charge state of the first and second secondary batteries,
The control means consumes the power of the first and second secondary batteries by the power consumption means when the charge state information determined by the charge state determination means is higher than a preset charge threshold. The secondary battery control device according to claim 1, wherein the first and second secondary batteries are discharged.
さらに、前記第1および第2の二次電池の充放電電流を検出する電流検出手段を備え、
前記制御手段は、前記電流検出手段が検出した電流情報と予め設定された電流指令値との偏差に基づいて、前記充放電電流が前記電流指令値に一致するよう充放電を行うことを特徴とする請求項1に記載の二次電池の制御装置。
Furthermore, it comprises a current detection means for detecting a charge / discharge current of the first and second secondary batteries,
The control means performs charge / discharge so that the charge / discharge current matches the current command value based on a deviation between current information detected by the current detection means and a preset current command value. The secondary battery control device according to claim 1 .
さらに、前記第1および第2の二次電池の充電状態を判定する充電状態判定手段具備し
前記制御手段は、前記充電状態判定手段が判定した充電状態情報が予め設定した範囲内にあるとき、一定時間毎に前記電流指令値を切替えて前記第1および第2の二次電池の充電と放電を交互に繰り返すことを特徴とする請求項4に記載の二次電池の制御装置。
Furthermore, it comprises a charge state determination means for determining a charge state of the first and second secondary batteries ,
When the charge state information determined by the charge state determination unit is within a preset range, the control unit switches the current command value at regular intervals to charge the first and second secondary batteries. The secondary battery control device according to claim 4, wherein the discharge is alternately repeated.
さらに、前記第1および第2の二次電池の充電状態を判定する充電状態判定手段具備し
前記制御手段は、前記充電状態判定手段が判定した充電状態情報に応じて前記電流指令値の大きさを変更することを特徴とする請求項4に記載の二次電池の制御装置。
Furthermore, it comprises a charge state determination means for determining a charge state of the first and second secondary batteries ,
5. The secondary battery control device according to claim 4, wherein the control unit changes the magnitude of the current command value in accordance with the charge state information determined by the charge state determination unit.
前記制御手段は、前記温度検出手段が検出した温度に基づいて前記電流指令値を変更させることを特徴とする請求項4に記載の二次電池の制御装置。 5. The secondary battery control device according to claim 4, wherein the control means changes the current command value based on the temperature detected by the temperature detection means. さらに、前記第1および第2の二次電池の電圧を検出する電圧検出手段を具備し、
前記制御手段は、充電時または放電時に前記電圧検出手段が検出した電圧を前記電流検出手段が検出した電流で割ってインピーダンス情報を求め、前記インピーダンス情報に応じて前記電流指令値を変更することを特徴とする請求項4に記載の二次電池の制御装置。
Furthermore, it comprises voltage detection means for detecting the voltage of the first and second secondary batteries,
The control means obtains impedance information by dividing the voltage detected by the voltage detection means during charging or discharging by the current detected by the current detection means, and changes the current command value in accordance with the impedance information. The control device for a secondary battery according to claim 4, wherein the control device is a secondary battery.
前記制御手段は、充放電動作開始からの経過時間に応じて前記電流指令値を増加させることを特徴とする請求項4に記載の二次電池の制御装置。 5. The secondary battery control device according to claim 4, wherein the control unit increases the current command value in accordance with an elapsed time from the start of a charge / discharge operation.
JP2012008877A 2012-01-19 2012-01-19 Secondary battery control device Active JP5567040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008877A JP5567040B2 (en) 2012-01-19 2012-01-19 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008877A JP5567040B2 (en) 2012-01-19 2012-01-19 Secondary battery control device

Publications (2)

Publication Number Publication Date
JP2013149471A JP2013149471A (en) 2013-08-01
JP5567040B2 true JP5567040B2 (en) 2014-08-06

Family

ID=48428314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008877A Active JP5567040B2 (en) 2012-01-19 2012-01-19 Secondary battery control device

Country Status (1)

Country Link
JP (1) JP5567040B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125880A (en) 2013-12-26 2015-07-06 川崎重工業株式会社 Temperature control unit and method for power storage device, and power storage system
JP6248799B2 (en) * 2014-05-16 2017-12-20 株式会社オートネットワーク技術研究所 Power storage device
FR3025664B1 (en) 2014-09-10 2016-09-16 Continental Automotive France METHOD FOR STARTING THE STARTING OF A THERMAL MOTOR OF A MOTOR VEHICLE
JP6516525B2 (en) * 2015-03-23 2019-05-22 三菱電機株式会社 Power storage system
JP2017118741A (en) * 2015-12-25 2017-06-29 株式会社デンソー Control device
CN108501746B (en) * 2018-03-29 2020-07-07 吉利汽车研究院(宁波)有限公司 Battery pack heating method, device and system
WO2019230158A1 (en) * 2018-05-31 2019-12-05 住友電気工業株式会社 Temperature raising device for secondary battery, computer program, and method for raising temperature of secondary battery
JP7352133B2 (en) * 2019-04-19 2023-09-28 トヨタ紡織株式会社 How to raise the temperature of a secondary battery
CN111162351B (en) * 2019-12-30 2021-06-22 浙江吉智新能源汽车科技有限公司 Power battery self-heating method and system and automobile
CN111211381B (en) * 2020-01-06 2021-08-10 漳州科华电气技术有限公司 Method and device for controlling discharge of lithium battery at low temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762505B2 (en) * 2004-05-21 2011-08-31 富士重工業株式会社 Battery warm-up control device
JP4535039B2 (en) * 2006-07-25 2010-09-01 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, power storage device temperature rise control method, and computer-readable recording medium storing a program for causing a computer to execute power storage device temperature rise control
JP4656042B2 (en) * 2006-10-24 2011-03-23 トヨタ自動車株式会社 POWER SUPPLY SYSTEM AND VEHICLE HAVING THE SAME, POWER SUPPLY SYSTEM CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE POWER SUPPLY SYSTEM CONTROL METHOD
JP5288170B2 (en) * 2008-10-03 2013-09-11 株式会社デンソー Battery temperature rise control device

Also Published As

Publication number Publication date
JP2013149471A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5567040B2 (en) Secondary battery control device
US9209637B2 (en) Battery control apparatus
RU2662864C2 (en) Battery system
JP6088840B2 (en) Charge / discharge system
JP2014090595A (en) Power storage system and power supply system
JP5614085B2 (en) Power supply
WO2013129231A1 (en) Power supply apparatus
JP5835136B2 (en) In-vehicle charging controller
JP2021106496A (en) Power source device for electric vehicle
JP6639686B2 (en) Cell balancing system and control method
JP2012214060A (en) Power source supply system for preheat
US20160297309A1 (en) Vehicle power management device
JPWO2017033411A1 (en) Power supply device and electric vehicle equipped with this power supply device
JP2014054143A (en) Power supply device, charging method, and program
JP2014236525A (en) Battery charge/discharge device, charge/discharge method, and program
JP6081320B2 (en) Power supply apparatus, battery pack control method and control program
JP2011188706A (en) Uninterruptible power supply apparatus
JP2015220956A (en) Charger
JP2010041826A (en) Ac-dc converter and electronic apparatus using the same
US10112493B2 (en) Charge-discharge control device
JP2013070547A (en) Power conversion device
JP2013233002A (en) Power storage system and method of controlling charge/discharge thereof
EP2782206B1 (en) Battery control device
JP5556422B2 (en) Battery system
JP2016021845A (en) Charger and charge control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R151 Written notification of patent or utility model registration

Ref document number: 5567040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151