WO2017183395A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2017183395A1
WO2017183395A1 PCT/JP2017/012332 JP2017012332W WO2017183395A1 WO 2017183395 A1 WO2017183395 A1 WO 2017183395A1 JP 2017012332 W JP2017012332 W JP 2017012332W WO 2017183395 A1 WO2017183395 A1 WO 2017183395A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
voltage
normal
returned
Prior art date
Application number
PCT/JP2017/012332
Other languages
French (fr)
Japanese (ja)
Inventor
真一 会沢
隆広 都竹
順一 波多野
隆介 長谷
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2018513085A priority Critical patent/JP6485595B2/en
Publication of WO2017183395A1 publication Critical patent/WO2017183395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack.
  • a plurality of battery modules connected in parallel to each other are provided, and when one battery module of the plurality of battery modules becomes abnormal, the abnormal battery module is electrically connected to other battery modules. In some cases, the power supply to the load is continued using only other battery modules.
  • the reflux current flowing between the battery modules also increases as the voltage difference increases. Therefore, when a battery module that has become abnormal returns to normal and the battery module that has returned to normal is reconnected to another battery module, it supports the voltage difference between the battery module that has returned to normal and the other battery module. If the reflux current to be generated is larger than the rated current of each component such as a battery, a switch, and an electric wire constituting the battery module, the components may be deteriorated or break down due to the reflux current.
  • the voltage of the battery that the battery module has returned to normal and the voltage of the battery that the other battery module has are reconnected to other battery modules when the voltages become substantially the same.
  • the battery voltage of the other battery module is lowered by discharging the battery of the other battery module to reduce the voltage of the battery of the other battery module, and the battery voltage of the other battery module and the voltage of the battery of the other battery module are returned. It is conceivable that the voltages are substantially the same.
  • Patent Document 1 is a related technique.
  • the battery pack When the battery is being charged, the battery of the other battery module cannot be discharged, so the battery voltage of the battery module that has returned to normal and the voltage of the battery of the other battery module are set to substantially the same voltage.
  • the battery module that has returned to normal while suppressing the reflux current cannot be reconnected to another battery module.
  • an object according to one aspect of the present invention is to increase the chances of reconnecting a battery module that has returned to normal while suppressing a reflux current in a battery pack including a plurality of battery modules connected in parallel to each other. It is to plan.
  • a battery pack according to one embodiment of the present invention includes a plurality of battery modules and a control unit.
  • the plurality of battery modules each have a battery and a switch connected in series, and are connected in parallel to each other.
  • the control unit disconnects the abnormal battery module from the other battery modules by turning off the switch of the abnormal battery module among the plurality of battery modules.
  • control unit returns the battery module that has returned to normal to the normal state, reconnects the battery module that has returned to normal to another battery module, and the battery voltage of the battery module that has returned to normal is
  • the voltage of the battery included in the other battery module becomes a predetermined voltage by charging the battery included in the other battery module.
  • the battery voltage of the battery module that has returned to normal and the other battery modules are charged by turning on the switch of the battery module that has returned to normal and then charging the battery that the battery module that has returned to normal returns.
  • Other battery modules have a voltage difference from the battery voltage of Switch turns on the in to connect the battery module and another battery module has returned to normal.
  • a battery pack including a plurality of battery modules connected in parallel to each other, it is possible to increase the chances of reconnecting a battery module that has returned to normal while suppressing the reflux current to another battery module.
  • FIG. 1 is a diagram illustrating an example of the battery pack according to the embodiment.
  • the battery pack 1 shown in FIG. 1 includes a plurality of battery modules 2 and a control unit 3 that are connected in parallel to each other.
  • the control unit 3 is configured by, for example, a CPU (Central Processing Unit) or a programmable device.
  • the battery pack 1 is mounted on a vehicle such as an electric forklift or a hybrid car, for example, and supplies power to the load Lo when a load Lo such as an inverter that drives a traveling motor is connected.
  • the battery pack 1 is supplied with power from the load Lo or the charger Ch when the load Lo or the charger Ch is connected.
  • Each battery module 2 includes a battery B, a switch SW, a current detection unit 21, a temperature detection unit 22, and a monitoring unit 23, respectively.
  • Battery B is composed of a plurality of batteries connected in series (for example, a lithium ion battery, a nickel metal hydride battery, or an electric double layer capacitor). Note that the battery B may be configured by one battery.
  • the switch SW is composed of a semiconductor relay or an electromagnetic relay such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), and is connected to the battery B in series.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • the current detector 21 is constituted by, for example, a Hall element or a shunt resistor, and detects a current flowing through the battery B or the switch SW.
  • the temperature detection part 22 is comprised by the thermistor, for example, and detects the ambient temperature of the battery B.
  • the monitoring unit 23 is configured by, for example, a CPU or a programmable device, and detects the voltage of the battery B. In addition, the monitoring unit 23 controls on / off of the switch SW according to an instruction sent from the control unit 3. In addition, the monitoring unit 23 sends battery state information indicating the voltage of the battery B, the current detected by the current detection unit 21, and the temperature detected by the temperature detection unit 22 to the control unit 3.
  • the control unit 3 determines that the battery module 2 that is the source of the battery state information is abnormal when at least one of the voltage, current, and temperature indicated in the battery state information is greater than or equal to the threshold value. In addition, when the voltage, current, and temperature indicated in the battery state information are all smaller than the threshold value, the control unit 3 determines that the battery module 2 that is the source of the battery state information is normal. The control unit 3 electrically disconnects the battery module 2 from the other battery modules 2 by turning off the switch SW of the battery module 2 that has become abnormal.
  • the control unit 3 charges the battery B by performing constant current constant voltage charge control. That is, as shown in FIG. 2A and FIG. 2B, the control unit 3 includes the current detection unit 21 from the start of charging until the voltage V detected by the monitoring unit 23 rises to the predetermined voltage Vf.
  • the battery B is charged by performing constant current charging control that sends a current command value to the charger Ch so that the current I detected by the monitoring unit 23 is maintained at a predetermined current, and the voltage V detected by the monitoring unit 23 is predetermined.
  • the voltage V detected by the monitoring unit 23 is a predetermined voltage until the current I detected by the current detection unit 21 decreases to the end current If corresponding to the target charge amount of the battery B after rising to the voltage Vf.
  • the battery B is charged by performing constant voltage charging control for sending a current command value to the charger Ch so as to be kept at Vf.
  • Vf the predetermined voltage
  • the end current If may be widened in consideration of variations in the full charge capacity of the battery B and the like.
  • the control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state.
  • the voltage Vo of the battery B of the other battery module 2 is charged by charging the battery B of the other battery module 2.
  • the switch SW of the battery module 2 that has returned to normal is turned on, and the battery module 2 that has returned to normal and the other battery module 2 Connect.
  • the voltage Vo is an average voltage of the voltages of the batteries B included in the battery modules 2 when there are a plurality of other battery modules 2.
  • control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state.
  • the voltage Vo of the battery B included in the other battery module 2 is charged by charging the battery B included in the other battery module 2.
  • the switch SW of the other battery module 2 is turned off, the switch SW of the battery module 2 that has returned to normal is turned on, and then the battery that the battery module 2 that has returned to normal has.
  • the voltage Vr of the battery B of the battery module 2 returned to normal by charging B becomes the predetermined voltage Vf
  • another battery Joule 2 turns on the switch SW is connected to the battery module 2 and the other battery module 2 back to normal with.
  • control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state.
  • the voltage Vr of the battery B that the battery module 2 has is the same as the voltage Vo of the battery B that the other battery module 2 has
  • the switch SW of the battery module 2 that has returned to normal is turned on, The battery B included and the battery B included in the other battery module 2 are charged.
  • FIG. 3 is a flowchart showing an example of the operation of the control unit 3. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf.
  • the control unit 3 maintains the current state, and at least one battery module 2 among all the battery modules 2 is If it is determined that an abnormality has occurred (S301: Yes), the battery module 2 that has become abnormal by turning off the switch SW of the battery module 2 that has become abnormal is electrically disconnected from the other battery modules 2 (S302). .
  • the controller 3 determines that the abnormal battery module 2 has not yet returned to normal (S303: No)
  • the current state is maintained, and the abnormal battery module 2 is
  • the voltage Vr of the battery B included in the battery module 2 returned to normal is determined to be greater than the voltage Vo of the battery B included in the other battery modules 2 (S304: Yes).
  • the voltage Vo is increased by charging the battery B of the other battery module 2 by performing constant current charging control.
  • the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant current charge control, so the voltage Vr does not increase.
  • the control unit 3 maintains the current state and determines that the voltage Vo has increased to the voltage Vr (S306). : Yes), the switch SW of the battery module 2 that has returned to normal is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S307). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2.
  • the control unit 3 determines that the voltages Vr and Vo have not increased to the predetermined voltage Vf (S308: No)
  • the current state is maintained, and the voltages Vr and Vo increase to the predetermined voltage Vf.
  • the battery B of the battery module 2 and the battery B of the other battery module 2 are charged. (S309).
  • the predetermined voltage Vf is the same as the constant voltage in the constant voltage charge control, but it does not have to be exactly the same.
  • control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S303: Yes) and determines that the voltage Vr is smaller than the voltage Vo (S304: No, S310: Yes)
  • the constant current By performing the charge control, the voltage Vo is increased by charging the battery B of the other battery module 2 (S311).
  • the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant current charge control, so the voltage Vr does not increase.
  • the control unit 3 maintains the current state and determines that the voltage Vo has increased to the predetermined voltage Vf. (S312: Yes), the switch SW of the other battery module 2 is turned off, and the switch SW of the battery module 2 returned to normal is turned on (S313). Then, the battery B included in the battery module 2 that has returned to normal by the constant current charge control is charged, and the voltage Vr increases. At this time, the switch SW included in the other battery module 2 is off, and the battery B included in the other battery module 2 is not charged, so the voltage Vo does not increase.
  • the control unit 3 maintains the current state and determines that the voltage Vr has increased to the predetermined voltage Vf. (S314: Yes), the constant current charging control is terminated, and the switch SW included in the other battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S315).
  • the voltage Vr is the predetermined voltage Vf
  • the voltage Vo is the predetermined voltage Vf
  • the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the return current is replaced with another battery.
  • the module 2 can be reconnected.
  • control unit 3 reconnects the battery module 2 that has returned to normal in S315 to the other battery module 2, and then performs the constant voltage charging control so that the battery B included in the battery module 2 that has returned to normal and The battery B included in the other battery module 2 is charged (S309).
  • the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S303: Yes), and determines that the voltage Vr is the same as the voltage Vo (S304: No, S310: No).
  • the switch SW of the battery module 2 that has returned to is turned on (S316). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2.
  • control part 3 charges the battery B which the battery module 2 which returned to normal by performing constant current constant voltage charge control, and the battery B which the other battery module 2 has (S317).
  • FIG. 4 is a flowchart showing another example of the operation of the control unit 3. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf. Further, S401 to 409 shown in FIG. 4 are the same as S301 to S309 shown in FIG.
  • the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S403: Yes), and the voltage Vr of the battery B of the battery module 2 that has returned to normal is that of the battery B of the other battery module 2. If it is determined that the voltage is smaller than the voltage Vo (S404: No, S410: Yes), the voltage Vo is reduced to the predetermined voltage Vf by charging the battery B included in the other battery module 2 by performing constant current constant voltage charging control. After the increase, the current Io flowing through the battery B of the other battery module 2 is decreased (S411). At this time, the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant-current / constant-voltage charge control, so the voltage Vr does not increase.
  • the control unit 3 maintains the current state and determines that the current Io has decreased to the end current If. (S412: Yes), the switch SW of the other battery module 2 is turned off, and the switch SW of the battery module 2 returned to normal is turned on (S413).
  • the control unit 3 increases the voltage Ir to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal by performing constant current / constant voltage charging control, and then the current Ir. Decrease (S414).
  • the switch SW included in the other battery module 2 is off, and the battery B included in the other battery module 2 is not charged by the constant current / constant voltage charging control, so the voltage Vo does not increase.
  • the control unit 3 maintains the current state and determines that the current Ir has decreased to the end current If. (S415: Yes)
  • the battery module 2 that has returned to normal and the other battery module 2 are connected (S416).
  • the voltage Vr is the predetermined voltage Vf
  • the voltage Vo is the predetermined voltage Vf
  • the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the return current is replaced with another battery.
  • the module 2 can be reconnected.
  • the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S403: Yes), and determines that the voltage Vr is the same as the voltage Vo (S404: No, S410: No).
  • the switch SW of the battery module 2 that has returned to is turned on (S417). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2.
  • control part 3 charges the battery B which the battery module 2 which returned to normal by performing constant current constant voltage charge control, and the battery B which the other battery module 2 has (S418).
  • control unit 3 that performs the operation shown in FIG. 3 is configured to reconnect the battery module 2 that has returned to normal to the other battery module 2, and the voltage Vr of the battery B included in the battery module 2 that has returned to normal. Is lower than the voltage Vo of the battery B of the other battery module 2, when charging the battery B of the other battery module 2, the battery module 2 has returned to normal by performing constant current charge control.
  • constant current charging control is performed, and after the battery module 2 that has returned to normal is reconnected to another battery module 2, the battery B and the other battery module 2 that the battery module 2 that has returned to normal returns When charging the battery B included in the battery, constant voltage charging control is performed.
  • control unit 3 that performs the operation shown in FIG. 4 is configured to reconnect the battery module 2 that has returned to normal to the other battery module 2, and the voltage Vr of the battery B included in the battery module 2 that has returned to normal. Is smaller than the voltage Vo of the battery B included in the other battery module 2, when charging the battery B included in the other battery module 2, the battery module 2 that has returned to normal is controlled by performing constant current / constant voltage charging control. When the battery B is charged, constant current constant voltage charge control is performed.
  • the other battery module 2 when the battery module 2 that has returned to normal is reconnected to the other battery module 2 and when the voltage Vr is smaller than the voltage Vo, the other battery module 2
  • the voltage Vo is set to the predetermined voltage Vf by charging the battery B
  • the voltage Vr is set to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal.
  • the voltages Vr and Vo can be obtained even when the battery pack 1 is being charged.
  • Can be set to the predetermined voltage Vf, and the voltage Vr and the voltage Vo can be set to substantially the same voltage.
  • the battery module 2 that has returned to normal can be reconnected to another battery module 2 while suppressing the reflux current. That is, according to the battery pack 1 of the embodiment, it is possible to increase the chances of reconnecting the battery module 2 that has returned to normal while suppressing the reflux current to another battery module 2.
  • the battery module 2 that has returned to normal when the battery module 2 that has returned to normal is reconnected to another battery module 2 and when the voltage Vr is smaller than the voltage Vo, the battery module 2 that has returned to normal. It is also conceivable to increase the voltage Vo to the predetermined voltage Vf by charging the battery B included in another battery module 2 after the voltage Vr is increased to the predetermined voltage Vf by charging the battery B included in the In the case of such a configuration, and when the number of battery modules 2 that have returned to normal is smaller than the number of other battery modules 2, if the charging of the battery pack 1 is terminated halfway, the entire battery pack 1 is charged. Since the charging of the battery pack 1 is completed while the amount does not increase so much, the increase in the amount of charging of the battery pack 1 is not accompanied by the charging time. There is a risk that sensitive user will remember.
  • the battery pack 1 of the embodiment when the battery module 2 that has returned to normal is reconnected to the other battery module 2 and when the voltage Vr is smaller than the voltage Vo, the battery that the other battery module 2 has After charging the voltage Vo to the predetermined voltage Vf by charging B, the voltage Vr is set to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal.
  • the charge amount of the battery pack 1 can be increased sufficiently even if the charge of the battery pack 1 is terminated halfway. It is possible to prevent the user from feeling a sense of discomfort, such as the amount of increase not accompanying the charging time.
  • 5 and 6 are flowcharts showing a modification of the operation of the control unit 3 shown in FIG. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf. Further, S501 to 509 shown in FIG. 5 are the same as S301 to S309 shown in FIG. Further, S517 to S518 shown in FIG. 5 are the same as S316 to S317 shown in FIG.
  • the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S503: Yes), and the voltage Vr of the battery B included in the battery module 2 that has returned to normal is the other battery.
  • the threshold value Vth is, for example, the voltage of the battery B immediately before overdischarge.
  • the switch SW included in the other battery module 2 is turned off and returned to normal.
  • the switch SW included in the battery module 2 is turned on (S519), and the voltage Vr is increased by charging the battery B included in the battery module 2 that has returned to normal by performing constant current charge control (S520).
  • the switch SW included in the other battery module 2 is turned off, and the battery B included in the other battery module 2 is not charged by the constant current charging control. Therefore, the voltage Vo does not increase.
  • the control unit 3 determines that the voltage Vr is not the same or substantially the same as the voltage Vo (S521: No), the current state is maintained, and the voltage Vr is the same or substantially the same as the voltage Vo. If it is determined that they are the same (S521: Yes), the switch SW of the other battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S522). At this time, since the voltage Vr and the voltage Vo are the same or substantially the same, the battery module 2 that has returned to normal while suppressing the return current can be reconnected to another battery module 2.
  • the control unit 3 charges the battery B of the battery module 2 that has returned to normal by performing constant voltage charging control and the battery B of the other battery module 2 (S509). .
  • the control unit 3 that performs the operations shown in FIGS. 5 and 6 returns the normal battery module 2 to the normal state, and reconnects the normal battery module 2 to the other battery module 2.
  • the voltage Vr of the battery B included in the battery module 2 that has returned to normal is smaller than the voltage Vo of the battery B included in the other battery module 2
  • the voltage Vr is equal to or less than the threshold value Vth
  • another battery Battery module 2 returned to normal by turning off switch SW included in module 2 and turning on switch SW included in battery module 2 returned to normal to charge battery B included in battery module 2 returned to normal
  • the voltage Vr of the battery B included in the battery B is the same as or substantially the same as the voltage Vo of the battery B included in the other battery module 2
  • the other battery module To connect the battery module 2 and the other battery module 2 back to normal by turning on the switch SW included in the.
  • the battery B included in the battery module 2 returned to normal when the voltage Vr of the battery B included in the battery module 2 returned to normal is equal to or lower than the threshold Vth, the battery B included in the battery module 2 returned to normal earlier than the battery B included in the other battery module 2 is present. Since the battery B of the battery module 2 that has returned to normal is in an over-discharged state, the battery B 1 that has been over-discharged remains uncharged even if the charging of the battery pack 1 is terminated halfway. It can suppress that it is left and it becomes an overdischarge.
  • the control unit 3 that performs the operation shown in FIG. 7 returns the normal battery module 2 to the normal state and reconnects the normal battery module 2 to the other battery module 2 and is normal.
  • the voltage Vr of the battery B included in the battery module 2 that has returned to is smaller than the voltage Vo of the battery B included in the other battery module 2
  • the other battery module 2 is charged by charging the battery B included in the other battery module 2.
  • the switch SW included in the other battery module 2 is turned off, the switch SW included in the battery module 2 returned to normal is turned on, and then returned to normal.
  • control unit 3 that performs the operation shown in FIG. 7 charges the battery B included in the other battery module 2
  • the control unit 3 performs constant current charging control and charges the battery B included in the battery module 2 that has returned to normal. After performing the constant current charging control and reconnecting the battery module 2 that has returned to normal to the other battery module 2, the battery B that the battery module 2 that has returned to normal and the battery B that the other battery module 2 has have When charging, constant voltage charge control is performed after performing constant current charge control.
  • the predetermined value ⁇ Vth may be zero, or may be a value other than zero in consideration of variations in voltage detection accuracy of the monitoring unit 23.
  • the battery module 2 that has returned to normal is turned on by turning on the switch SW of the other battery module 2.
  • the operation of the control unit 3 “connects the battery module 2 to another battery module 2 (S516)” is determined as “the voltage difference ⁇ V between the voltage Vr and the voltage Vo is equal to or less than a predetermined value ⁇ Vth, as shown in FIG. (S515 ′: Yes)
  • the switch SW of the other battery module 2 by turning on the switch SW of the other battery module 2, the battery module 2 returned to normal and the other battery module 2 are connected (S516) ”. It is also possible to replace it.
  • the control unit 3 that performs the operation shown in FIG. 8 returns the normal battery module 2 to a normal state and reconnects the normal battery module 2 to another battery module 2 and is normal.
  • the voltage Vr of the battery B included in the battery module 2 that has returned to is smaller than the voltage Vo of the battery B included in the other battery module 2
  • the voltage Vr of the battery B included in the battery module 2 that has returned to normal is the threshold value.
  • the battery B of the other battery module 2 is charged to charge the voltage Vo of the battery B of the other battery module 2 to the predetermined voltage Vf, and then the switch SW of the other battery module 2 has.
  • the switch SW of the battery module 2 that has returned to normal is turned on, and then the battery module 2 that has returned to normal has the power After the voltage difference ⁇ V between the voltage Vr of the battery B included in the battery module 2 returned to normal by charging B and the voltage Vo of the battery B included in the other battery module 2 becomes equal to or lower than the predetermined value ⁇ Vth, The switch SW of the battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)

Abstract

When a battery module 2 that has returned to normal is to be reconnected to another battery module 2, and the voltage Vr of a battery B in the battery module 2 that has returned to normal is smaller than the voltage Vo of a battery B of the other battery module 2, the battery module 2 that has returned to normal is reconnected to the other battery module 2 once the voltage Vo of the battery B of the other battery module 2 has reached a predetermined voltage Vf and the voltage difference ΔV between the voltage Vr of the battery B of the battery module 2 that has returned to normal and the voltage of the battery B of the other battery module 2 has reached or fallen below a predetermined value ΔVth.

Description

電池パックBattery pack
 本発明は、電池パックに関する。 The present invention relates to a battery pack.
 既存の電池パックとして、互いに並列接続される複数の電池モジュールを備え、複数の電池モジュールのうちのある電池モジュールが異常になった場合に、その異常になった電池モジュールを他の電池モジュールから電気的に切り離して、他の電池モジュールのみで負荷への電力供給を継続するものがある。 As an existing battery pack, a plurality of battery modules connected in parallel to each other are provided, and when one battery module of the plurality of battery modules becomes abnormal, the abnormal battery module is electrically connected to other battery modules. In some cases, the power supply to the load is continued using only other battery modules.
 このように構成される電池パックでは、電池モジュール間の電圧差が増加すると、その電圧差の増加に伴って、電池モジュール間に流れる還流電流も増加する。そのため、異常になった電池モジュールが正常に戻り、その正常に戻った電池モジュールを他の電池モジュールに再接続するとき、正常に戻った電池モジュールと他の電池モジュールとの間の電圧差に対応する還流電流が電池モジュールを構成する電池やスイッチや電線などの各部品の定格電流よりも大きいと、それら部品が還流電流によって劣化したり故障したりするおそれがある。 In the battery pack configured as described above, when the voltage difference between the battery modules increases, the reflux current flowing between the battery modules also increases as the voltage difference increases. Therefore, when a battery module that has become abnormal returns to normal and the battery module that has returned to normal is reconnected to another battery module, it supports the voltage difference between the battery module that has returned to normal and the other battery module. If the reflux current to be generated is larger than the rated current of each component such as a battery, a switch, and an electric wire constituting the battery module, the components may be deteriorated or break down due to the reflux current.
 そこで、正常に戻った電池モジュールと他の電池モジュールとの間の電圧差に対応する還流電流を抑えるために、正常に戻った電池モジュールが有する電池の電圧と他の電池モジュールが有する電池の電圧とが略同じ電圧になったときに、正常に戻った電池モジュールを他の電池モジュールに再接続することが考えられる。 Therefore, in order to suppress the return current corresponding to the voltage difference between the battery module that has returned to normal and the other battery module, the voltage of the battery that the battery module has returned to normal and the voltage of the battery that the other battery module has. It can be considered that the battery modules that have returned to normal are reconnected to other battery modules when the voltages become substantially the same.
 例えば、正常に戻った電池モジュールを他の電池モジュールに再接続するときで、かつ、正常に戻った電池モジュールが有する電池の電圧が他の電池モジュールが有する電池の電圧よりも大きいときでは、他の電池モジュールが有する電池を充電させることにより他の電池モジュールが有する電池の電圧を上昇させて、正常に戻った電池モジュールが有する電池の電圧と他の電池モジュールが有する電池の電圧とを略同じ電圧にさせることが考えられる。 For example, when reconnecting a battery module that has returned to normal to another battery module, and when the voltage of the battery that the battery module that has returned to normal is greater than the voltage of the battery that the other battery module has, By charging the battery of the battery module, the voltage of the battery of the other battery module is raised, and the voltage of the battery of the battery module that has returned to normal is substantially the same as the voltage of the battery of the other battery module. It is possible to make it a voltage.
 また、例えば、正常に戻った電池モジュールを他の電池モジュールに再接続するときで、かつ、正常に戻った電池モジュールが有する電池の電圧が他の電池モジュールが有する電池の電圧よりも小さいときでは、他の電池モジュールが有する電池を放電することにより他の電池モジュールが有する電池の電圧を低下させて、正常に戻った電池モジュールが有する電池の電圧と他の電池モジュールが有する電池の電圧とを略同じ電圧にさせることが考えられる。 Also, for example, when a battery module that has returned to normal is reconnected to another battery module, and when the voltage of the battery that the battery module that has returned to normal is lower than the voltage of the battery that the other battery module has The battery voltage of the other battery module is lowered by discharging the battery of the other battery module to reduce the voltage of the battery of the other battery module, and the battery voltage of the other battery module and the voltage of the battery of the other battery module are returned. It is conceivable that the voltages are substantially the same.
 関連する技術として、例えば、特許文献1がある。 For example, Patent Document 1 is a related technique.
特開2008-220104号公報JP 2008-220104 A
 しかしながら、正常に戻った電池モジュールを他の電池モジュールに再接続するときで、かつ、正常に戻った電池モジュールが有する電池の電圧が他の電池モジュールが有する電池の電圧よりも小さいとき、電池パックが充電中であると、他の電池モジュールが有する電池を放電させることができないため、正常に戻った電池モジュールが有する電池の電圧と他の電池モジュールが有する電池の電圧とを略同じ電圧にさせることができず、還流電流を抑えながら正常に戻った電池モジュールを他の電池モジュールに再接続することができない。 However, when the battery module that has returned to normal is reconnected to another battery module, and the battery voltage of the battery module that has returned to normal is smaller than the voltage of the battery that the other battery module has, the battery pack When the battery is being charged, the battery of the other battery module cannot be discharged, so the battery voltage of the battery module that has returned to normal and the voltage of the battery of the other battery module are set to substantially the same voltage. The battery module that has returned to normal while suppressing the reflux current cannot be reconnected to another battery module.
 そこで、本発明の一側面に係る目的は、互いに並列接続される複数の電池モジュールを備える電池パックにおいて、還流電流を抑えながら正常に戻った電池モジュールを他の電池モジュールに再接続する機会の増加を図ることである。 Accordingly, an object according to one aspect of the present invention is to increase the chances of reconnecting a battery module that has returned to normal while suppressing a reflux current in a battery pack including a plurality of battery modules connected in parallel to each other. It is to plan.
 本発明に係る一つの形態である電池パックは、複数の電池モジュールと、制御部とを備える。 A battery pack according to one embodiment of the present invention includes a plurality of battery modules and a control unit.
 複数の電池モジュールは、それぞれ、直列接続される電池及びスイッチを有し、互いに並列接続される。 The plurality of battery modules each have a battery and a switch connected in series, and are connected in parallel to each other.
 制御部は、複数の電池モジュールのうち、異常になった電池モジュールが有するスイッチをオフさせることにより、異常になった電池モジュールを他の電池モジュールから切り離す。 The control unit disconnects the abnormal battery module from the other battery modules by turning off the switch of the abnormal battery module among the plurality of battery modules.
 また、制御部は、異常になった電池モジュールが正常に戻り、その正常に戻った電池モジュールを他の電池モジュールに再接続させるときで、かつ、正常に戻った電池モジュールが有する電池の電圧が他の電池モジュールが有する電池の電圧よりも小さいとき、他の電池モジュールが有する電池を充電させることにより他の電池モジュールが有する電池の電圧が所定電圧になった後、他の電池モジュールが有するスイッチをオフさせるとともに、正常に戻った電池モジュールが有するスイッチをオンさせ、その後、正常に戻った電池モジュールが有する電池を充電させることにより正常に戻った電池モジュールが有する電池の電圧と他の電池モジュールが有する電池の電圧との電圧差が所定値以下になった後、他の電池モジュールが有するスイッチをオンさせて正常に戻った電池モジュールと他の電池モジュールとを接続させる。 In addition, the control unit returns the battery module that has returned to normal to the normal state, reconnects the battery module that has returned to normal to another battery module, and the battery voltage of the battery module that has returned to normal is When the voltage of the battery included in the other battery module is smaller than the voltage of the battery included in the other battery module, the voltage of the battery included in the other battery module becomes a predetermined voltage by charging the battery included in the other battery module. The battery voltage of the battery module that has returned to normal and the other battery modules are charged by turning on the switch of the battery module that has returned to normal and then charging the battery that the battery module that has returned to normal returns. Other battery modules have a voltage difference from the battery voltage of Switch turns on the in to connect the battery module and another battery module has returned to normal.
 本発明によれば、互いに並列接続される複数の電池モジュールを備える電池パックにおいて、還流電流を抑えながら正常に戻った電池モジュールを他の電池モジュールに再接続する機会の増加を図ることができる。 According to the present invention, in a battery pack including a plurality of battery modules connected in parallel to each other, it is possible to increase the chances of reconnecting a battery module that has returned to normal while suppressing the reflux current to another battery module.
実施形態の電池パックの一例を示す図である。It is a figure which shows an example of the battery pack of embodiment. 定電流定電圧充電制御を説明するための図である。It is a figure for demonstrating constant current constant voltage charge control. 制御部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of a control part. 制御部の動作の他の例を示すフローチャートである。It is a flowchart which shows the other example of operation | movement of a control part. 図3に示す制御部の動作の変形例を示すフローチャートである。It is a flowchart which shows the modification of operation | movement of the control part shown in FIG. 図3に示す制御部の動作の変形例を示すフローチャートである。It is a flowchart which shows the modification of operation | movement of the control part shown in FIG. 図3に示す制御部の動作の変形例を示すフローチャートである。It is a flowchart which shows the modification of operation | movement of the control part shown in FIG. 図5に示す制御部の動作の変形例を示すフローチャートである。It is a flowchart which shows the modification of operation | movement of the control part shown in FIG.
 以下図面に基づいて実施形態について詳細を説明する。 Hereinafter, the embodiment will be described in detail based on the drawings.
 図1は、実施形態の電池パックの一例を示す図である。 FIG. 1 is a diagram illustrating an example of the battery pack according to the embodiment.
 図1に示す電池パック1は、互いに並列接続される複数の電池モジュール2と、制御部3とを備えている。なお、制御部3は、例えば、CPU(Central Processing Unit)やプログラマブルディバイスにより構成される。また、電池パック1は、例えば、電動フォークリフトやハイブリッドカーなどの車両に搭載され、走行モータを駆動するインバータなどの負荷Loが接続されているとき、その負荷Loへ電力を供給する。また、電池パック1は、負荷Loまたは充電器Chが接続されているとき、負荷Loまたは充電器Chから電力が供給される。 The battery pack 1 shown in FIG. 1 includes a plurality of battery modules 2 and a control unit 3 that are connected in parallel to each other. The control unit 3 is configured by, for example, a CPU (Central Processing Unit) or a programmable device. The battery pack 1 is mounted on a vehicle such as an electric forklift or a hybrid car, for example, and supplies power to the load Lo when a load Lo such as an inverter that drives a traveling motor is connected. The battery pack 1 is supplied with power from the load Lo or the charger Ch when the load Lo or the charger Ch is connected.
 各電池モジュール2は、それぞれ、電池Bと、スイッチSWと、電流検出部21と、温度検出部22と、監視部23とを備えている。 Each battery module 2 includes a battery B, a switch SW, a current detection unit 21, a temperature detection unit 22, and a monitoring unit 23, respectively.
 電池Bは、直列接続される複数の電池(例えば、リチウムイオン電池、ニッケル水素電池、または電気二重層コンデンサ)により構成される。なお、電池Bは、1つの電池により構成されてもよい。 Battery B is composed of a plurality of batteries connected in series (for example, a lithium ion battery, a nickel metal hydride battery, or an electric double layer capacitor). Note that the battery B may be configured by one battery.
 スイッチSWは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体リレーや電磁式リレーにより構成され、電池Bに直列接続されている。スイッチSWがオンすると、そのスイッチSWを有する電池モジュール2はスイッチSWがオンしている他の電池モジュール2と電気的に接続される。負荷Loから電池パック1へ回生電力が供給されているとき、または、充電器Chから電池パック1へ電力が供給されているとき、スイッチSWがオンしている電池モジュール2が有する電池Bが充電され、その電池Bの電圧が上昇する。また、スイッチSWがオフすると、そのスイッチSWを有する電池モジュール2はスイッチSWがオンしている他の電池モジュール2から電気的に切り離される。なお、図1に示す例では、スイッチSWが電池Bのマイナス端子側に接続されているが、スイッチSWが電池Bのプラス端子側に接続されてもよい。 The switch SW is composed of a semiconductor relay or an electromagnetic relay such as a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), and is connected to the battery B in series. When the switch SW is turned on, the battery module 2 having the switch SW is electrically connected to another battery module 2 in which the switch SW is turned on. When regenerative power is supplied from the load Lo to the battery pack 1 or when power is supplied from the charger Ch to the battery pack 1, the battery B of the battery module 2 with the switch SW turned on is charged. As a result, the voltage of the battery B rises. When the switch SW is turned off, the battery module 2 having the switch SW is electrically disconnected from other battery modules 2 in which the switch SW is turned on. In the example shown in FIG. 1, the switch SW is connected to the negative terminal side of the battery B, but the switch SW may be connected to the positive terminal side of the battery B.
 電流検出部21は、例えば、ホール素子やシャント抵抗により構成され、電池BやスイッチSWに流れる電流を検出する。 The current detector 21 is constituted by, for example, a Hall element or a shunt resistor, and detects a current flowing through the battery B or the switch SW.
 温度検出部22は、例えば、サーミスタにより構成され、電池Bの周辺温度を検出する。 The temperature detection part 22 is comprised by the thermistor, for example, and detects the ambient temperature of the battery B.
 監視部23は、例えば、CPUやプログラマブルディバイスにより構成され、電池Bの電圧を検出する。また、監視部23は、制御部3から送られてくる指示により、スイッチSWのオン、オフを制御する。また、監視部23は、電池Bの電圧、電流検出部21により検出される電流、及び温度検出部22により検出される温度を示す電池状態情報を制御部3に送る。 The monitoring unit 23 is configured by, for example, a CPU or a programmable device, and detects the voltage of the battery B. In addition, the monitoring unit 23 controls on / off of the switch SW according to an instruction sent from the control unit 3. In addition, the monitoring unit 23 sends battery state information indicating the voltage of the battery B, the current detected by the current detection unit 21, and the temperature detected by the temperature detection unit 22 to the control unit 3.
 制御部3は、電池状態情報に示される電圧、電流、及び温度のうちの少なくとも1つが閾値以上であると、その電池状態情報の送り元の電池モジュール2が異常であると判断する。また、制御部3は、電池状態情報に示される電圧、電流、及び温度がいずれも閾値よりも小さいと、その電池状態情報の送り元の電池モジュール2が正常であると判断する。また、制御部3は、異常になった電池モジュール2が有するスイッチSWをオフさせることで、その電池モジュール2を他の電池モジュール2から電気的に切り離す。 The control unit 3 determines that the battery module 2 that is the source of the battery state information is abnormal when at least one of the voltage, current, and temperature indicated in the battery state information is greater than or equal to the threshold value. In addition, when the voltage, current, and temperature indicated in the battery state information are all smaller than the threshold value, the control unit 3 determines that the battery module 2 that is the source of the battery state information is normal. The control unit 3 electrically disconnects the battery module 2 from the other battery modules 2 by turning off the switch SW of the battery module 2 that has become abnormal.
 また、制御部3は、定電流定電圧充電制御を行うことにより電池Bを充電させる。すなわち、制御部3は、図2(a)及び図2(b)に示すように、充電開始から監視部23により検出される電圧Vが所定電圧Vfに上昇するまでの間、電流検出部21により検出される電流Iが所定電流に保たれるように、電流指令値を充電器Chへ送る定電流充電制御を行うことにより電池Bを充電させ、監視部23により検出される電圧Vが所定電圧Vfまで上昇してから電流検出部21により検出される電流Iが電池Bの目標の充電量に対応する終了電流Ifに減少するまでの間、監視部23により検出される電圧Vが所定電圧Vfに保たれるように、電流指令値を充電器Chへ送る定電圧充電制御を行うことにより電池Bを充電させる。なお、所定電圧Vfや終了電流Ifは、電池Bの満充電容量のばらつきなどを考慮して幅をもたせてもよい。 Further, the control unit 3 charges the battery B by performing constant current constant voltage charge control. That is, as shown in FIG. 2A and FIG. 2B, the control unit 3 includes the current detection unit 21 from the start of charging until the voltage V detected by the monitoring unit 23 rises to the predetermined voltage Vf. The battery B is charged by performing constant current charging control that sends a current command value to the charger Ch so that the current I detected by the monitoring unit 23 is maintained at a predetermined current, and the voltage V detected by the monitoring unit 23 is predetermined. The voltage V detected by the monitoring unit 23 is a predetermined voltage until the current I detected by the current detection unit 21 decreases to the end current If corresponding to the target charge amount of the battery B after rising to the voltage Vf. The battery B is charged by performing constant voltage charging control for sending a current command value to the charger Ch so as to be kept at Vf. Note that the predetermined voltage Vf and the end current If may be widened in consideration of variations in the full charge capacity of the battery B and the like.
 また、制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも大きいとき、他の電池モジュール2が有する電池Bを充電させることにより他の電池モジュール2が有する電池Bの電圧Voが正常に戻った電池モジュール2が有する電池Bの電圧Vrになった後、正常に戻った電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュール2と他の電池モジュール2とを接続させる。なお、電圧Voは、他の電池モジュール2が複数存在する場合、それら電池モジュール2が有する電池Bの電圧の平均の電圧とする。 In addition, the control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state. When the voltage Vr of the battery B is larger than the voltage Vo of the battery B of the other battery module 2, the voltage Vo of the battery B of the other battery module 2 is charged by charging the battery B of the other battery module 2. After the voltage Vr of the battery B of the battery module 2 that has returned to normal is turned on, the switch SW of the battery module 2 that has returned to normal is turned on, and the battery module 2 that has returned to normal and the other battery module 2 Connect. The voltage Vo is an average voltage of the voltages of the batteries B included in the battery modules 2 when there are a plurality of other battery modules 2.
 また、制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいとき、他の電池モジュール2が有する電池Bを充電させることにより他の電池モジュール2が有する電池Bの電圧Voが所定電圧Vfになった後、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせ、その後、正常に戻った電池モジュール2が有する電池Bを充電させることにより正常に戻った電池モジュール2が有する電池Bの電圧Vrが所定電圧Vfになった後、他の電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュール2と他の電池モジュール2とを接続させる。 In addition, the control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state. When the voltage Vr of the battery B is smaller than the voltage Vo of the battery B included in the other battery module 2, the voltage Vo of the battery B included in the other battery module 2 is charged by charging the battery B included in the other battery module 2. , The switch SW of the other battery module 2 is turned off, the switch SW of the battery module 2 that has returned to normal is turned on, and then the battery that the battery module 2 that has returned to normal has. After the voltage Vr of the battery B of the battery module 2 returned to normal by charging B becomes the predetermined voltage Vf, another battery Joule 2 turns on the switch SW is connected to the battery module 2 and the other battery module 2 back to normal with.
 また、制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voと同じであるとき、正常に戻った電池モジュール2が有するスイッチSWをオンさせた後、正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる。 In addition, the control unit 3 returns the normal battery module 2 to the normal state, reconnects the normal battery module 2 to another battery module 2, and the normal battery module 2 returns to the normal state. When the voltage Vr of the battery B that the battery module 2 has is the same as the voltage Vo of the battery B that the other battery module 2 has, after the switch SW of the battery module 2 that has returned to normal is turned on, The battery B included and the battery B included in the other battery module 2 are charged.
 図3は、制御部3の動作の一例を示すフローチャートである。なお、すべての電池モジュール2が有するスイッチSWはオンしているものとする。また、すべての電池モジュール2が有する電池Bの電圧は所定電圧Vfよりも低いものとする。 FIG. 3 is a flowchart showing an example of the operation of the control unit 3. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf.
 まず、制御部3は、すべての電池モジュール2が正常であると判断しているとき(S301:No)、現在の状態を維持し、すべての電池モジュール2のうちの少なくとも1つの電池モジュール2が異常になったと判断すると(S301:Yes)、その異常になった電池モジュール2に有するスイッチSWをオフさせることにより異常になった電池モジュール2を他の電池モジュール2から電気的に切り離す(S302)。 First, when it is determined that all the battery modules 2 are normal (S301: No), the control unit 3 maintains the current state, and at least one battery module 2 among all the battery modules 2 is If it is determined that an abnormality has occurred (S301: Yes), the battery module 2 that has become abnormal by turning off the switch SW of the battery module 2 that has become abnormal is electrically disconnected from the other battery modules 2 (S302). .
 次に、制御部3は、その異常になった電池モジュール2がまだ正常に戻っていないと判断しているとき(S303:No)、現在の状態を維持し、異常になった電池モジュール2が正常に戻ったと判断し(S303:Yes)、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも大きいと判断すると(S304:Yes)、定電流充電制御を行うことで他の電池モジュール2が有する電池Bを充電させることにより電圧Voを上昇させる。このとき、正常に戻った電池モジュール2が有するスイッチSWはオフしており、正常に戻った電池モジュール2が有する電池Bは定電流充電制御により充電されないため、電圧Vrは上昇しない。 Next, when the controller 3 determines that the abnormal battery module 2 has not yet returned to normal (S303: No), the current state is maintained, and the abnormal battery module 2 is When it is determined that the battery module 2 has returned to normal (S303: Yes) and the voltage Vr of the battery B included in the battery module 2 returned to normal is determined to be greater than the voltage Vo of the battery B included in the other battery modules 2 (S304: Yes). The voltage Vo is increased by charging the battery B of the other battery module 2 by performing constant current charging control. At this time, the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant current charge control, so the voltage Vr does not increase.
 次に、制御部3は、電圧Voが電圧Vrまで上昇していないと判断しているとき(S306:No)、現在の状態を維持し、電圧Voが電圧Vrまで上昇したと判断すると(S306:Yes)、正常に戻った電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S307)。このとき、電圧Vrと電圧Voとが略同じになるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。また、S307において、正常に戻った電池モジュール2が有するスイッチSWがオンして正常に戻った電池モジュール2と他の電池モジュール2とが接続すると、正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bは定電流充電制御により充電されるため、電圧Vr、Voが上昇する。 Next, when it is determined that the voltage Vo has not increased to the voltage Vr (S306: No), the control unit 3 maintains the current state and determines that the voltage Vo has increased to the voltage Vr (S306). : Yes), the switch SW of the battery module 2 that has returned to normal is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S307). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2. In S307, when the switch SW of the battery module 2 that has returned to normal is turned on and the battery module 2 that has returned to normal and the other battery module 2 are connected, the battery B of the battery module 2 that has returned to normal and Since the battery B included in the other battery module 2 is charged by the constant current charging control, the voltages Vr and Vo increase.
 次に、制御部3は、電圧Vr、Voが所定電圧Vfまで上昇していないと判断しているとき(S308:No)、現在の状態を維持し、電圧Vr、Voが所定電圧Vfまで上昇したと判断すると(S308:Yes)、定電流充電制御を終了し、定電圧充電制御を行うことにより正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる(S309)。なお、所定電圧Vfは、定電圧充電制御のときの一定電圧と同じだが、厳密に同じでなくてもよい。 Next, when the control unit 3 determines that the voltages Vr and Vo have not increased to the predetermined voltage Vf (S308: No), the current state is maintained, and the voltages Vr and Vo increase to the predetermined voltage Vf. If it is determined that the battery module 2 has returned to normal by performing constant voltage charge control, the battery B of the battery module 2 and the battery B of the other battery module 2 are charged. (S309). The predetermined voltage Vf is the same as the constant voltage in the constant voltage charge control, but it does not have to be exactly the same.
 また、制御部3は、異常になった電池モジュール2が正常に戻ったと判断し(S303:Yes)、電圧Vrが電圧Voよりも小さいと判断すると(S304:No、S310:Yes)、定電流充電制御を行うことで他の電池モジュール2が有する電池Bを充電させることにより電圧Voを上昇させる(S311)。このとき、正常に戻った電池モジュール2が有するスイッチSWはオフしており、正常に戻った電池モジュール2が有する電池Bは定電流充電制御により充電されないため、電圧Vrは上昇しない。 Further, when the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S303: Yes) and determines that the voltage Vr is smaller than the voltage Vo (S304: No, S310: Yes), the constant current By performing the charge control, the voltage Vo is increased by charging the battery B of the other battery module 2 (S311). At this time, the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant current charge control, so the voltage Vr does not increase.
 次に、制御部3は、電圧Voが所定電圧Vfまで上昇していないと判断しているとき(S312:No)、現在の状態を維持し、電圧Voが所定電圧Vfまで上昇したと判断すると(S312:Yes)、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせる(S313)。すると、定電流充電制御により正常に戻った電池モジュール2が有する電池Bが充電され、電圧Vrが上昇する。このとき、他の電池モジュール2が有するスイッチSWはオフしており、他の電池モジュール2が有する電池Bは充電されないため、電圧Voは上昇しない。 Next, when it is determined that the voltage Vo has not increased to the predetermined voltage Vf (S312: No), the control unit 3 maintains the current state and determines that the voltage Vo has increased to the predetermined voltage Vf. (S312: Yes), the switch SW of the other battery module 2 is turned off, and the switch SW of the battery module 2 returned to normal is turned on (S313). Then, the battery B included in the battery module 2 that has returned to normal by the constant current charge control is charged, and the voltage Vr increases. At this time, the switch SW included in the other battery module 2 is off, and the battery B included in the other battery module 2 is not charged, so the voltage Vo does not increase.
 次に、制御部3は、電圧Vrが所定電圧Vfまで上昇していないと判断しているとき(S314:No)、現状の状態を維持し、電圧Vrが所定電圧Vfまで上昇したと判断すると(S314:Yes)、定電流充電制御を終了し、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S315)。このとき、電圧Vrが所定電圧Vfであり、電圧Voが所定電圧Vfであり、電圧Vrと電圧Voとが略同じになるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。 Next, when it is determined that the voltage Vr has not increased to the predetermined voltage Vf (S314: No), the control unit 3 maintains the current state and determines that the voltage Vr has increased to the predetermined voltage Vf. (S314: Yes), the constant current charging control is terminated, and the switch SW included in the other battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S315). At this time, since the voltage Vr is the predetermined voltage Vf, the voltage Vo is the predetermined voltage Vf, and the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the return current is replaced with another battery. The module 2 can be reconnected.
 次に、制御部3は、S315において正常に戻った電池モジュール2を他の電池モジュール2に再接続させた後、定電圧充電制御を行うことにより正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる(S309)。 Next, the control unit 3 reconnects the battery module 2 that has returned to normal in S315 to the other battery module 2, and then performs the constant voltage charging control so that the battery B included in the battery module 2 that has returned to normal and The battery B included in the other battery module 2 is charged (S309).
 また、制御部3は、異常になった電池モジュール2が正常に戻ったと判断し(S303:Yes)、電圧Vrが電圧Voと同じであると判断すると(S304:No、S310:No)、正常に戻った電池モジュール2が有するスイッチSWをオンさせる(S316)。このとき、電圧Vrと電圧Voとが略同じになるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。 The control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S303: Yes), and determines that the voltage Vr is the same as the voltage Vo (S304: No, S310: No). The switch SW of the battery module 2 that has returned to is turned on (S316). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2.
 そして、制御部3は、定電流定電圧充電制御を行うことにより正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる(S317)。 And the control part 3 charges the battery B which the battery module 2 which returned to normal by performing constant current constant voltage charge control, and the battery B which the other battery module 2 has (S317).
 図4は、制御部3の動作の他の例を示すフローチャートである。なお、すべての電池モジュール2が有するスイッチSWはオンしているものとする。また、すべての電池モジュール2が有する電池Bの電圧は所定電圧Vfよりも低いものとする。また、図4に示すS401~409は、図3に示すS301~S309と同様であるため、その説明を省略する。 FIG. 4 is a flowchart showing another example of the operation of the control unit 3. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf. Further, S401 to 409 shown in FIG. 4 are the same as S301 to S309 shown in FIG.
 制御部3は、異常になった電池モジュール2が正常に戻ったと判断し(S403:Yes)、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいと判断すると(S404:No、S410:Yes)、定電流定電圧充電制御を行うことで他の電池モジュール2が有する電池Bを充電させることにより、電圧Voを所定電圧Vfまで上昇させた後、他の電池モジュール2が有する電池Bに流れる電流Ioを低下させる(S411)。このとき、正常に戻った電池モジュール2が有するスイッチSWはオフしており、正常に戻った電池モジュール2が有する電池Bは定電流定電圧充電制御により充電されないため、電圧Vrは上昇しない。 The control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S403: Yes), and the voltage Vr of the battery B of the battery module 2 that has returned to normal is that of the battery B of the other battery module 2. If it is determined that the voltage is smaller than the voltage Vo (S404: No, S410: Yes), the voltage Vo is reduced to the predetermined voltage Vf by charging the battery B included in the other battery module 2 by performing constant current constant voltage charging control. After the increase, the current Io flowing through the battery B of the other battery module 2 is decreased (S411). At this time, the switch SW of the battery module 2 that has returned to normal is off, and the battery B of the battery module 2 that has returned to normal is not charged by the constant-current / constant-voltage charge control, so the voltage Vr does not increase.
 次に、制御部3は、電流Ioが終了電流Ifまで低下していないと判断しているとき(S412:No)、現在の状態を維持し、電流Ioが終了電流Ifまで低下したと判断すると(S412:Yes)、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせる(S413)。 Next, when it is determined that the current Io has not decreased to the end current If (S412: No), the control unit 3 maintains the current state and determines that the current Io has decreased to the end current If. (S412: Yes), the switch SW of the other battery module 2 is turned off, and the switch SW of the battery module 2 returned to normal is turned on (S413).
 次に、制御部3は、定電流定電圧充電制御を行うことで正常に戻った電池モジュール2が有する電池Bを充電させることにより、電圧Vrを所定電圧Vfまで上昇させた後、電流Irを低下させる(S414)。このとき、他の電池モジュール2が有するスイッチSWはオフしており、他の電池モジュール2が有する電池Bは定電流定電圧充電制御により充電されないため、電圧Voは上昇しない。 Next, the control unit 3 increases the voltage Ir to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal by performing constant current / constant voltage charging control, and then the current Ir. Decrease (S414). At this time, the switch SW included in the other battery module 2 is off, and the battery B included in the other battery module 2 is not charged by the constant current / constant voltage charging control, so the voltage Vo does not increase.
 次に、制御部3は、電流Irが終了電流Ifまで低下していないと判断しているとき(S415:No)、現在の状態を維持し、電流Irが終了電流Ifまで低下したと判断すると(S415:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S416)。このとき、電圧Vrが所定電圧Vfであり、電圧Voが所定電圧Vfであり、電圧Vrと電圧Voとが略同じになるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。 Next, when it is determined that the current Ir has not decreased to the end current If (S415: No), the control unit 3 maintains the current state and determines that the current Ir has decreased to the end current If. (S415: Yes) By turning on the switch SW of the other battery module 2, the battery module 2 that has returned to normal and the other battery module 2 are connected (S416). At this time, since the voltage Vr is the predetermined voltage Vf, the voltage Vo is the predetermined voltage Vf, and the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the return current is replaced with another battery. The module 2 can be reconnected.
 また、制御部3は、異常になった電池モジュール2が正常に戻ったと判断し(S403:Yes)、電圧Vrが電圧Voと同じであると判断すると(S404:No、S410:No)、正常に戻った電池モジュール2が有するスイッチSWをオンさせる(S417)。このとき、電圧Vrと電圧Voとが略同じになるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。 The control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S403: Yes), and determines that the voltage Vr is the same as the voltage Vo (S404: No, S410: No). The switch SW of the battery module 2 that has returned to is turned on (S417). At this time, since the voltage Vr and the voltage Vo are substantially the same, the battery module 2 that has returned to normal while suppressing the reflux current can be reconnected to another battery module 2.
 そして、制御部3は、定電流定電圧充電制御を行うことにより正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる(S418)。 And the control part 3 charges the battery B which the battery module 2 which returned to normal by performing constant current constant voltage charge control, and the battery B which the other battery module 2 has (S418).
 すなわち、図3に示す動作を行う制御部3は、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいときにおいて、他の電池モジュール2が有する電池Bを充電させるとき、定電流充電制御を行い、正常に戻った電池モジュール2が有する電池Bを充電させるとき、定電流充電制御を行い、正常に戻った電池モジュール2を他の電池モジュール2に再接続させた後、正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させるとき、定電圧充電制御を行う。 That is, the control unit 3 that performs the operation shown in FIG. 3 is configured to reconnect the battery module 2 that has returned to normal to the other battery module 2, and the voltage Vr of the battery B included in the battery module 2 that has returned to normal. Is lower than the voltage Vo of the battery B of the other battery module 2, when charging the battery B of the other battery module 2, the battery module 2 has returned to normal by performing constant current charge control. When charging B, constant current charging control is performed, and after the battery module 2 that has returned to normal is reconnected to another battery module 2, the battery B and the other battery module 2 that the battery module 2 that has returned to normal returns When charging the battery B included in the battery, constant voltage charging control is performed.
 また、図4に示す動作を行う制御部3は、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいときにおいて、他の電池モジュール2が有する電池Bを充電させるとき、定電流定電圧充電制御を行い、正常に戻った電池モジュール2が有する電池Bを充電させるとき、定電流定電圧充電制御を行う。 Further, the control unit 3 that performs the operation shown in FIG. 4 is configured to reconnect the battery module 2 that has returned to normal to the other battery module 2, and the voltage Vr of the battery B included in the battery module 2 that has returned to normal. Is smaller than the voltage Vo of the battery B included in the other battery module 2, when charging the battery B included in the other battery module 2, the battery module 2 that has returned to normal is controlled by performing constant current / constant voltage charging control. When the battery B is charged, constant current constant voltage charge control is performed.
 このように、実施形態の電池パック1では、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、電圧Vrが電圧Voよりも小さいとき、他の電池モジュール2が有する電池Bを充電させることにより電圧Voを所定電圧Vfにした後、正常に戻った電池モジュール2が有する電池Bを充電させることにより電圧Vrを所定電圧Vfにしている。これにより、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、電圧Vrが電圧Voよりも小さいとき、電池パック1が充電中であっても、電圧Vr、Voをそれぞれ所定電圧Vfにして、電圧Vrと電圧Voとを略同じ電圧にすることができるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続することができる。すなわち、実施形態の電池パック1によれば、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続する機会を増加させることができる。 Thus, in the battery pack 1 of the embodiment, when the battery module 2 that has returned to normal is reconnected to the other battery module 2 and when the voltage Vr is smaller than the voltage Vo, the other battery module 2 The voltage Vo is set to the predetermined voltage Vf by charging the battery B, and then the voltage Vr is set to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal. As a result, when the battery module 2 that has returned to normal is reconnected to another battery module 2 and the voltage Vr is smaller than the voltage Vo, the voltages Vr and Vo can be obtained even when the battery pack 1 is being charged. Can be set to the predetermined voltage Vf, and the voltage Vr and the voltage Vo can be set to substantially the same voltage. Therefore, the battery module 2 that has returned to normal can be reconnected to another battery module 2 while suppressing the reflux current. . That is, according to the battery pack 1 of the embodiment, it is possible to increase the chances of reconnecting the battery module 2 that has returned to normal while suppressing the reflux current to another battery module 2.
 ところで、実施形態の電池パック1と異なり、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、電圧Vrが電圧Voよりも小さいとき、正常に戻った電池モジュール2が有する電池Bを充電させることにより電圧Vrを所定電圧Vfまで上昇させた後、他の電池モジュール2が有する電池Bを充電させることにより電圧Voを所定電圧Vfまで上昇させる構成も考えられるが、このように構成する場合で、かつ、正常に戻った電池モジュール2の数が他の電池モジュール2の数よりも少ない場合において、電池パック1の充電が途中で終了すると、電池パック1全体の充電量があまり増えないまま電池パック1の充電が終了するため、電池パック1の充電量の増加量が充電時間と伴っていないなどの違和感をユーザが覚えてしまうおそれがある。 By the way, unlike the battery pack 1 of the embodiment, when the battery module 2 that has returned to normal is reconnected to another battery module 2 and when the voltage Vr is smaller than the voltage Vo, the battery module 2 that has returned to normal. It is also conceivable to increase the voltage Vo to the predetermined voltage Vf by charging the battery B included in another battery module 2 after the voltage Vr is increased to the predetermined voltage Vf by charging the battery B included in the In the case of such a configuration, and when the number of battery modules 2 that have returned to normal is smaller than the number of other battery modules 2, if the charging of the battery pack 1 is terminated halfway, the entire battery pack 1 is charged. Since the charging of the battery pack 1 is completed while the amount does not increase so much, the increase in the amount of charging of the battery pack 1 is not accompanied by the charging time. There is a risk that sensitive user will remember.
 一方、実施形態の電池パック1では、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるときで、かつ、電圧Vrが電圧Voよりも小さいとき、他の電池モジュール2が有する電池Bを充電させることにより電圧Voを所定電圧Vfにした後、正常に戻った電池モジュール2が有する電池Bを充電させることにより電圧Vrを所定電圧Vfにしているため、正常に戻った電池モジュール2の数が他の電池モジュール2の数よりも少ない場合において、電池パック1の充電が途中で終了しても、電池パック1全体の充電量を十分に増やすことができ、電池パック1の充電量の増加量が充電時間と伴っていないなどの違和感をユーザに覚えさせないようにすることができる。 On the other hand, in the battery pack 1 of the embodiment, when the battery module 2 that has returned to normal is reconnected to the other battery module 2 and when the voltage Vr is smaller than the voltage Vo, the battery that the other battery module 2 has After charging the voltage Vo to the predetermined voltage Vf by charging B, the voltage Vr is set to the predetermined voltage Vf by charging the battery B included in the battery module 2 that has returned to normal. When the number of the battery packs 2 is smaller than the number of the other battery modules 2, the charge amount of the battery pack 1 can be increased sufficiently even if the charge of the battery pack 1 is terminated halfway. It is possible to prevent the user from feeling a sense of discomfort, such as the amount of increase not accompanying the charging time.
 また、本発明は、上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 Further, the present invention is not limited to the above embodiment, and various improvements and changes can be made without departing from the gist of the present invention.
 図5及び図6は、図3に示す制御部3の動作の変形例を示すフローチャートである。なお、すべての電池モジュール2が有するスイッチSWはオンしているものとする。また、すべての電池モジュール2が有する電池Bの電圧は所定電圧Vfよりも低いものとする。また、図5に示すS501~509は、図3に示すS301~S309と同様であるため、その説明を省略する。また、図5に示すS517~S518は、図3に示すS316~S317と同様であるため、その説明を省略する。 5 and 6 are flowcharts showing a modification of the operation of the control unit 3 shown in FIG. It is assumed that the switches SW included in all the battery modules 2 are turned on. Moreover, the voltage of the battery B which all the battery modules 2 have shall be lower than the predetermined voltage Vf. Further, S501 to 509 shown in FIG. 5 are the same as S301 to S309 shown in FIG. Further, S517 to S518 shown in FIG. 5 are the same as S316 to S317 shown in FIG.
 図5に示すように、制御部3は、異常になった電池モジュール2が正常に戻ったと判断し(S503:Yes)、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいと判断すると(S504:No、S510:Yes)、電圧Vrが閾値Vth以下であるか否かを判断する(S511)。なお、閾値Vthは、例えば、過放電になる直前の電池Bの電圧とする。 As shown in FIG. 5, the control unit 3 determines that the battery module 2 that has become abnormal has returned to normal (S503: Yes), and the voltage Vr of the battery B included in the battery module 2 that has returned to normal is the other battery. When it is determined that the voltage is lower than the voltage Vo of the battery B included in the module 2 (S504: No, S510: Yes), it is determined whether or not the voltage Vr is equal to or lower than the threshold value Vth (S511). Note that the threshold value Vth is, for example, the voltage of the battery B immediately before overdischarge.
 次に、制御部3は、電圧Vrが閾値Vthよりも大きいと判断すると(S511:No)、S512の処理に移行する。S512以降の処理は、図3のS311以降の処理と同様であるため、その説明を省略する。 Next, when the control unit 3 determines that the voltage Vr is larger than the threshold value Vth (S511: No), the process proceeds to S512. Since the processing after S512 is the same as the processing after S311 in FIG. 3, the description thereof is omitted.
 次に、制御部3は、電圧Vrが閾値Vth以下であると判断すると(S511:Yes)、図6に示すように、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせ(S519)、定電流充電制御を行うことで正常に戻った電池モジュール2が有する電池Bを充電させることにより電圧Vrを上昇させる(S520)。このとき、他の電池モジュール2が有するスイッチSWはオフしており、他の電池モジュール2が有する電池Bは定電流充電制御により充電されないため、電圧Voは上昇しない。 Next, when the control unit 3 determines that the voltage Vr is equal to or lower than the threshold value Vth (S511: Yes), as shown in FIG. 6, the switch SW included in the other battery module 2 is turned off and returned to normal. The switch SW included in the battery module 2 is turned on (S519), and the voltage Vr is increased by charging the battery B included in the battery module 2 that has returned to normal by performing constant current charge control (S520). At this time, the switch SW included in the other battery module 2 is turned off, and the battery B included in the other battery module 2 is not charged by the constant current charging control. Therefore, the voltage Vo does not increase.
 次に、制御部3は、電圧Vrが電圧Voと同じまたは略同じになっていないと判断しているとき(S521:No)、現在の状態を維持し、電圧Vrが電圧Voと同じまたは略同じになったと判断すると(S521:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S522)。このとき、電圧Vrと電圧Voとが同じまたは略同じであるため、還流電流を抑えながら正常に戻った電池モジュール2を他の電池モジュール2に再接続させることができる。 Next, when the control unit 3 determines that the voltage Vr is not the same or substantially the same as the voltage Vo (S521: No), the current state is maintained, and the voltage Vr is the same or substantially the same as the voltage Vo. If it is determined that they are the same (S521: Yes), the switch SW of the other battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2 (S522). At this time, since the voltage Vr and the voltage Vo are the same or substantially the same, the battery module 2 that has returned to normal while suppressing the return current can be reconnected to another battery module 2.
 次に、制御部3は、図5に示すように、定電圧充電制御を行うことにより正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させる(S509)。 Next, as shown in FIG. 5, the control unit 3 charges the battery B of the battery module 2 that has returned to normal by performing constant voltage charging control and the battery B of the other battery module 2 (S509). .
 すなわち、図5及び図6に示す動作を行う制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続するときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいときで、かつ、電圧Vrが閾値Vth以下であるとき、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせ、正常に戻った電池モジュール2が有する電池Bを充電させることにより、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voと同じまたは略同じになると、他の電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュール2と他の電池モジュール2とを接続させる。 That is, the control unit 3 that performs the operations shown in FIGS. 5 and 6 returns the normal battery module 2 to the normal state, and reconnects the normal battery module 2 to the other battery module 2. In addition, when the voltage Vr of the battery B included in the battery module 2 that has returned to normal is smaller than the voltage Vo of the battery B included in the other battery module 2, and when the voltage Vr is equal to or less than the threshold value Vth, another battery Battery module 2 returned to normal by turning off switch SW included in module 2 and turning on switch SW included in battery module 2 returned to normal to charge battery B included in battery module 2 returned to normal When the voltage Vr of the battery B included in the battery B is the same as or substantially the same as the voltage Vo of the battery B included in the other battery module 2, the other battery module To connect the battery module 2 and the other battery module 2 back to normal by turning on the switch SW included in the.
 これにより、正常に戻った電池モジュール2が有する電池Bの電圧Vrが閾値Vth以下である場合、他の電池モジュール2が有する電池Bよりも先に正常に戻った電池モジュール2が有する電池Bが充電されるため、正常に戻った電池モジュール2が有する電池Bが過放電気味であるときに電池パック1の充電が途中で終了してしまっても、その過放電気味の電池Bが充電されないまま放置されて過放電になってしまうことを抑えることができる。 Thereby, when the voltage Vr of the battery B included in the battery module 2 returned to normal is equal to or lower than the threshold Vth, the battery B included in the battery module 2 returned to normal earlier than the battery B included in the other battery module 2 is present. Since the battery B of the battery module 2 that has returned to normal is in an over-discharged state, the battery B 1 that has been over-discharged remains uncharged even if the charging of the battery pack 1 is terminated halfway. It can suppress that it is left and it becomes an overdischarge.
 また、図3のS313において、正常に戻った電池モジュール2が有するスイッチSWがオンすると、定電流充電制御により正常に戻った電池モジュール2が有する電池Bが充電され、電圧Vrが上昇する。また、図3のS313において、他の電池モジュール2が有するスイッチSWがオフすると、他の電池モジュール2が有する電池Bに流れていた電流とその電池Bの内部抵抗との積算値である電圧分、電圧Voが所定電圧Vfよりも降下する。また、他の電池モジュール2が有するスイッチSWがオフした後、他の電池モジュール2が有する電池Bの分極が解消されていくため、電圧Voが徐々に下がっていく。そのため、図3のS314において、電圧Vrが所定電圧Vfまで上昇したとき、電圧Vrと電圧Voとの間には電圧差が生じる。 In S313 of FIG. 3, when the switch SW of the battery module 2 that has returned to normal is turned on, the battery B of the battery module 2 that has returned to normal by the constant current charge control is charged, and the voltage Vr increases. 3, when the switch SW of the other battery module 2 is turned off, a voltage component that is an integrated value of the current flowing through the battery B of the other battery module 2 and the internal resistance of the battery B is obtained. The voltage Vo drops below the predetermined voltage Vf. In addition, after the switch SW included in the other battery module 2 is turned off, the polarization of the battery B included in the other battery module 2 is eliminated, and thus the voltage Vo gradually decreases. Therefore, in S314 of FIG. 3, when the voltage Vr rises to the predetermined voltage Vf, a voltage difference is generated between the voltage Vr and the voltage Vo.
 このことから、図3に示すように、「電圧Vrが所定電圧Vfまで上昇したと判断すると(S314:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S315)」という制御部3の動作を、図7に示すように、「電圧Vrと電圧Voとの電圧差ΔVが所定値ΔVth以下であると判断すると(S314´:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S315)」という制御部3の動作に置き換えることができる。 From this, as shown in FIG. 3, when it is determined that “the voltage Vr has increased to the predetermined voltage Vf (S314: Yes), the battery returned to normal by turning on the switch SW of the other battery module 2 is turned on. As shown in FIG. 7, the operation of the control unit 3 to connect the module 2 and another battery module 2 (S315) is as follows: “The voltage difference ΔV between the voltage Vr and the voltage Vo is equal to or less than a predetermined value ΔVth”. If it judges (S314 ': Yes), the battery module 2 and the other battery module 2 which returned to normal will be connected by turning on switch SW which the other battery module 2 has (S315). It can be replaced with an action.
 すなわち、図7に示す動作を行う制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続するときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいとき、他の電池モジュール2が有する電池Bを充電させることにより他の電池モジュール2が有する電池Bの電圧Voが所定電圧Vfになった後、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせ、その後、正常に戻った電池モジュール2が有する電池Bを充電させることにより正常に戻った電池モジュール2が有する電池Bの電圧Vrと他の電池モジュール2の電圧Voとの電圧差ΔVが所定値ΔVth以下になった後、他の電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュールと他の電池モジュール2とを接続させる。 That is, the control unit 3 that performs the operation shown in FIG. 7 returns the normal battery module 2 to the normal state and reconnects the normal battery module 2 to the other battery module 2 and is normal. When the voltage Vr of the battery B included in the battery module 2 that has returned to is smaller than the voltage Vo of the battery B included in the other battery module 2, the other battery module 2 is charged by charging the battery B included in the other battery module 2. After the voltage Vo of the battery B included in the battery module reaches the predetermined voltage Vf, the switch SW included in the other battery module 2 is turned off, the switch SW included in the battery module 2 returned to normal is turned on, and then returned to normal. When the battery B included in the battery module 2 is charged, the voltage Vr of the battery B included in the battery module 2 returned to the normal state and other battery modules are restored. After the voltage difference ΔV between the voltage Vo of Yuru 2 is equal to or less than the predetermined value [Delta] Vth, to connect the other and the battery module 2 cell module back to normal by turning on the switch SW with the other battery modules 2.
 なお、図3に示すS314を図7に示すS314´に置き換える場合、制御部3は、他の電池モジュール2が有するスイッチSWをオンさせるとき(S315)、定電流充電制御を終了しないものとする。また、図3に示すS314を図7に示すS314´に置き換える場合、制御部3は、他の電池モジュール2が有するスイッチSWをオンさせた後(S315)、S309の動作ではなく、S308の動作に移行するものとする。 When S314 shown in FIG. 3 is replaced with S314 ′ shown in FIG. 7, the control unit 3 does not end the constant current charging control when the switch SW of the other battery module 2 is turned on (S315). . In addition, when replacing S314 shown in FIG. 3 with S314 ′ shown in FIG. 7, the controller 3 turns on the switch SW of the other battery module 2 (S315), and then the operation of S308 instead of the operation of S309. Shall be transferred to.
 すなわち、図7に示す動作を行う制御部3は、他の電池モジュール2が有する電池Bを充電させるとき、定電流充電制御を行い、正常に戻った電池モジュール2が有する電池Bを充電させるとき、定電流充電制御を行い、正常に戻った電池モジュール2を他の電池モジュール2に再接続させた後、正常に戻った電池モジュール2が有する電池B及び他の電池モジュール2が有する電池Bを充電させるとき、定電流充電制御を行った後に定電圧充電制御を行う。 That is, when the control unit 3 that performs the operation shown in FIG. 7 charges the battery B included in the other battery module 2, the control unit 3 performs constant current charging control and charges the battery B included in the battery module 2 that has returned to normal. After performing the constant current charging control and reconnecting the battery module 2 that has returned to normal to the other battery module 2, the battery B that the battery module 2 that has returned to normal and the battery B that the other battery module 2 has have When charging, constant voltage charge control is performed after performing constant current charge control.
 なお、所定値ΔVthは、ゼロでもよいし、監視部23の電圧検出精度のばらつきなどを考慮したゼロ以外の値でもよい。所定値ΔVthをゼロまたは略ゼロにすることにより、正常に戻った電池モジュール2を他の電池モジュール2に再接続させるとき、電圧Vrと電圧Voとを互いに同じまたは略同じにすることができるため、還流電流を抑えることができる。 The predetermined value ΔVth may be zero, or may be a value other than zero in consideration of variations in voltage detection accuracy of the monitoring unit 23. By setting the predetermined value ΔVth to zero or substantially zero, when the battery module 2 that has returned to normal is reconnected to another battery module 2, the voltage Vr and the voltage Vo can be the same or substantially the same. , The reflux current can be suppressed.
 また、同様に、図5に示す「電圧Vrが所定電圧Vfまで上昇したと判断すると(S515:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S516)」という制御部3の動作を、図8に示すように、「電圧Vrと電圧Voとの電圧差ΔVが所定値ΔVth以下であると判断すると(S515´:Yes)、他の電池モジュール2が有するスイッチSWをオンさせることにより、正常に戻った電池モジュール2と他の電池モジュール2とを接続させる(S516)」という制御部3の動作に置き換えることも可能である。 Similarly, when it is determined that “the voltage Vr has increased to the predetermined voltage Vf” (S515: Yes), the battery module 2 that has returned to normal is turned on by turning on the switch SW of the other battery module 2. When the operation of the control unit 3 “connects the battery module 2 to another battery module 2 (S516)” is determined as “the voltage difference ΔV between the voltage Vr and the voltage Vo is equal to or less than a predetermined value ΔVth, as shown in FIG. (S515 ′: Yes), by turning on the switch SW of the other battery module 2, the battery module 2 returned to normal and the other battery module 2 are connected (S516) ”. It is also possible to replace it.
 なお、図5に示すS515を図8に示すS515´に置き換える場合、制御部3は、他の電池モジュール2が有するスイッチSWをオンさせるとき(S516)、定電流充電制御を終了しないものとする。また、図5に示すS515を図8に示すS515´に置き換える場合、制御部3は、他の電池モジュール2が有するスイッチSWをオンさせた後(S516)、S509の動作ではなく、S508の動作に移行するものとする。また、図8において、制御部3は、電圧Vrが閾値Vth以下であると判断すると(S511:Yes)、図6に示すS519に移行するものとする。 When S515 shown in FIG. 5 is replaced with S515 ′ shown in FIG. 8, the control unit 3 does not end the constant current charge control when turning on the switch SW of the other battery module 2 (S516). . Further, when replacing S515 shown in FIG. 5 with S515 ′ shown in FIG. 8, the control unit 3 turns on the switch SW of the other battery module 2 (S516), and then the operation of S508 instead of the operation of S509. Shall be transferred to. In FIG. 8, when the control unit 3 determines that the voltage Vr is equal to or lower than the threshold value Vth (S511: Yes), the control unit 3 proceeds to S519 shown in FIG.
 すなわち、図8に示す動作を行う制御部3は、異常になった電池モジュール2が正常に戻り、その正常に戻った電池モジュール2を他の電池モジュール2に再接続するときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが他の電池モジュール2が有する電池Bの電圧Voよりも小さいときで、かつ、正常に戻った電池モジュール2が有する電池Bの電圧Vrが閾値Vthよりも大きいとき、他の電池モジュール2が有する電池Bを充電させることにより他の電池モジュール2が有する電池Bの電圧Voが所定電圧Vfになった後、他の電池モジュール2が有するスイッチSWをオフさせるとともに、正常に戻った電池モジュール2が有するスイッチSWをオンさせ、その後、正常に戻った電池モジュール2が有する電池Bを充電させることにより正常に戻った電池モジュール2が有する電池Bの電圧Vrと他の電池モジュール2が有する電池Bの電圧Voとの電圧差ΔVが所定値ΔVth以下になった後、他の電池モジュール2が有するスイッチSWをオンさせて正常に戻った電池モジュール2と他の電池モジュール2とを接続させる。 That is, the control unit 3 that performs the operation shown in FIG. 8 returns the normal battery module 2 to a normal state and reconnects the normal battery module 2 to another battery module 2 and is normal. When the voltage Vr of the battery B included in the battery module 2 that has returned to is smaller than the voltage Vo of the battery B included in the other battery module 2, the voltage Vr of the battery B included in the battery module 2 that has returned to normal is the threshold value. When the voltage B is larger than Vth, the battery B of the other battery module 2 is charged to charge the voltage Vo of the battery B of the other battery module 2 to the predetermined voltage Vf, and then the switch SW of the other battery module 2 has. Is turned off, the switch SW of the battery module 2 that has returned to normal is turned on, and then the battery module 2 that has returned to normal has the power After the voltage difference ΔV between the voltage Vr of the battery B included in the battery module 2 returned to normal by charging B and the voltage Vo of the battery B included in the other battery module 2 becomes equal to or lower than the predetermined value ΔVth, The switch SW of the battery module 2 is turned on to connect the battery module 2 that has returned to normal and the other battery module 2.
1 電池パック
2 電池モジュール
3 制御部
21 電流検出部
22 温度検出部
23 監視部
Lo 負荷
Ch 充電器
B 電池
SW スイッチ
DESCRIPTION OF SYMBOLS 1 Battery pack 2 Battery module 3 Control part 21 Current detection part 22 Temperature detection part 23 Monitoring part Lo Load Ch Battery charger B Battery SW switch

Claims (6)

  1.  それぞれ、直列接続される電池及びスイッチを有し、互いに並列接続される複数の電池モジュールと、
     前記複数の電池モジュールのうち、異常になった電池モジュールが有するスイッチをオフさせることにより、前記異常になった電池モジュールを他の電池モジュールから切り離す制御部と、
     を備え、
     前記制御部は、前記異常になった電池モジュールが正常に戻り、その正常に戻った電池モジュールを前記他の電池モジュールに再接続するときで、かつ、前記正常に戻った電池モジュールが有する電池の電圧が前記他の電池モジュールが有する電池の電圧よりも小さいとき、前記他の電池モジュールが有する電池を充電させることにより前記他の電池モジュールが有する電池の電圧が所定電圧になった後、前記他の電池モジュールが有するスイッチをオフさせるとともに、前記正常に戻った電池モジュールが有するスイッチをオンさせ、その後、前記正常に戻った電池モジュールが有する電池を充電させることにより前記正常に戻った電池モジュールが有する電池の電圧と前記他の電池モジュールが有する電池の電圧との電圧差が所定値以下になった後、前記他の電池モジュールが有するスイッチをオンさせて前記正常に戻った電池モジュールと前記他の電池モジュールとを接続させる
     ことを特徴とする電池パック。
    A plurality of battery modules each having a battery and a switch connected in series, and connected in parallel to each other;
    Of the plurality of battery modules, by turning off the switch of the battery module that has become abnormal, a control unit that disconnects the battery module that has become abnormal from other battery modules,
    With
    The control unit returns the battery module that has returned to normal to a normal state, reconnects the battery module that has returned to normal to the other battery module, and the battery module that the battery module that has returned to normal returns. When the voltage is lower than the voltage of the battery included in the other battery module, the battery voltage included in the other battery module is changed to the predetermined voltage by charging the battery included in the other battery module. The battery module returned to normal is turned off by turning off the switch of the battery module and turning on the switch of the battery module returned to normal, and then charging the battery of the battery module returned to normal. The voltage difference between the voltage of the battery having and the voltage of the battery of the other battery module is a predetermined value or less After becoming the battery pack, characterized in that to connect the other battery modules returned to the normal by turning on a switch included in the battery module and the other battery modules.
  2.  請求項1に記載の電池パックであって、
     前記制御部は、前記他の電池モジュールが有する電池を充電させるとき、定電流充電制御を行い、前記正常に戻った電池モジュールが有する電池を充電させるとき、定電流充電制御を行い、前記正常に戻った電池モジュールを前記他の電池モジュールに再接続させた後、前記正常に戻った電池モジュールが有する電池及び前記他の電池モジュールが有する電池を充電させるとき、定電流充電制御を行った後に定電圧充電制御を行う
     ことを特徴とする電池パック。
    The battery pack according to claim 1,
    The control unit performs constant current charge control when charging a battery included in the other battery module, and performs constant current charge control when charging a battery included in the battery module that has returned to normal. After recharging the returned battery module to the other battery module, when charging the battery included in the battery module returned to normal and the battery included in the other battery module, the constant current charge control is performed and then the battery module is charged. A battery pack characterized by performing voltage charging control.
  3.  請求項1に記載の電池パックであって、
     前記制御部は、前記異常になった電池モジュールが正常に戻り、その正常に戻った電池モジュールを前記他の電池モジュールに再接続するときで、かつ、前記正常に戻った電池モジュールが有する電池の電圧が前記他の電池モジュールが有する電池の電圧よりも小さいとき、前記他の電池モジュールが有する電池を充電させることにより前記他の電池モジュールが有する電池の電圧が所定電圧になった後、前記他の電池モジュールが有するスイッチをオフさせるとともに、前記正常に戻った電池モジュールが有するスイッチをオンさせ、その後、前記正常に戻った電池モジュールが有する電池を充電させることにより前記正常に戻った電池モジュールが有する電池の電圧が前記所定電圧になった後、前記他の電池モジュールが有するスイッチをオンさせて前記正常に戻った電池モジュールと前記他の電池モジュールとを接続させる
     ことを特徴とする電池パック。
    The battery pack according to claim 1,
    The control unit returns the battery module that has returned to normal to a normal state, reconnects the battery module that has returned to normal to the other battery module, and the battery module that the battery module that has returned to normal returns. When the voltage is lower than the voltage of the battery included in the other battery module, the battery voltage included in the other battery module is changed to the predetermined voltage by charging the battery included in the other battery module. The battery module returned to normal is turned off by turning off the switch of the battery module and turning on the switch of the battery module returned to normal, and then charging the battery of the battery module returned to normal. The switch that the other battery module has after the voltage of the battery it has becomes the predetermined voltage Battery pack, characterized in that to connect the turned on so the battery modules returned to the normally and the other battery modules.
  4.  請求項3に記載の電池パックであって、
     前記制御部は、前記他の電池モジュールが有する電池を充電させるとき、定電流充電制御を行い、前記正常に戻った電池モジュールが有する電池を充電させるとき、定電流充電制御を行い、前記正常に戻った電池モジュールを前記他の電池モジュールに再接続させた後、前記正常に戻った電池モジュールが有する電池及び前記他の電池モジュールが有する電池を充電させるとき、定電圧充電制御を行う
     ことを特徴とする電池パック。
    The battery pack according to claim 3,
    The control unit performs constant current charge control when charging a battery included in the other battery module, and performs constant current charge control when charging a battery included in the battery module that has returned to normal. After reconnecting the returned battery module to the other battery module, when charging the battery included in the battery module returned to normal and the battery included in the other battery module, constant voltage charging control is performed. Battery pack.
  5.  請求項3に記載の電池パックであって、
     前記制御部は、前記他の電池モジュールが有する電池を充電させるとき、定電流定電圧充電制御を行い、前記正常に戻った電池モジュールが有する電池を充電させるとき、定電流定電圧充電制御を行う
     ことを特徴とする電池パック。
    The battery pack according to claim 3,
    The control unit performs constant current / constant voltage charging control when charging a battery included in the other battery module, and performs constant current / constant voltage charging control when charging a battery included in the battery module that has returned to normal. A battery pack characterized by that.
  6.  請求項1または請求項3に記載の電池パックであって、
     前記制御部は、前記異常になった電池モジュールが正常に戻り、その正常に戻った電池モジュールを前記他の電池モジュールに再接続するときで、かつ、前記正常に戻った電池モジュールが有する電池の電圧が前記他の電池モジュールが有する電池の電圧よりも小さいときで、かつ、前記正常に戻った電池モジュールが有する電池の電圧が閾値以下であるとき、前記他の電池モジュールが有するスイッチをオフさせるとともに、前記正常に戻った電池モジュールが有するスイッチをオンさせ、前記正常に戻った電池モジュールが有する電池を充電させることにより、前記正常に戻った電池モジュールが有する電池の電圧が、前記他の電池モジュールが有する電池の電圧と同じまたは略同じになると、前記他の電池モジュールが有するスイッチをオンさせて前記正常に戻った電池モジュールと前記他の電池モジュールとを接続させる
     ことを特徴とする電池パック。
    The battery pack according to claim 1 or 3, wherein
    The control unit returns the battery module that has returned to normal to a normal state, reconnects the battery module that has returned to normal to the other battery module, and the battery module that the battery module that has returned to normal returns. When the voltage is lower than the voltage of the battery included in the other battery module and the voltage of the battery included in the battery module returned to normal is equal to or lower than the threshold, the switch included in the other battery module is turned off. In addition, by turning on the switch of the battery module that has returned to normal and charging the battery of the battery module that has returned to normal, the voltage of the battery that the battery module that has returned to normal returns to the other battery When the voltage of the battery of the module is the same or substantially the same, the switch of the other battery module Battery pack, characterized in that to connect the turned on so the battery modules returned to the normally and the other battery modules.
PCT/JP2017/012332 2016-04-21 2017-03-27 Battery pack WO2017183395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513085A JP6485595B2 (en) 2016-04-21 2017-03-27 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085032 2016-04-21
JP2016-085032 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017183395A1 true WO2017183395A1 (en) 2017-10-26

Family

ID=60116050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012332 WO2017183395A1 (en) 2016-04-21 2017-03-27 Battery pack

Country Status (2)

Country Link
JP (1) JP6485595B2 (en)
WO (1) WO2017183395A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215214A (en) * 1996-01-31 1997-08-15 Toshiba Corp Portable electronic apparatus and charging control method
JP2009033936A (en) * 2007-07-30 2009-02-12 Toshiba Corp Parallel-connected energy storage system
WO2010103816A1 (en) * 2009-03-13 2010-09-16 パナソニック株式会社 Charging/discharging control circuit, power source device and method for controlling a power source device
JP2016073021A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Power storage system and precharge method for power storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215214A (en) * 1996-01-31 1997-08-15 Toshiba Corp Portable electronic apparatus and charging control method
JP2009033936A (en) * 2007-07-30 2009-02-12 Toshiba Corp Parallel-connected energy storage system
WO2010103816A1 (en) * 2009-03-13 2010-09-16 パナソニック株式会社 Charging/discharging control circuit, power source device and method for controlling a power source device
JP2016073021A (en) * 2014-09-26 2016-05-09 株式会社日立情報通信エンジニアリング Power storage system and precharge method for power storage system

Also Published As

Publication number Publication date
JPWO2017183395A1 (en) 2018-08-09
JP6485595B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
US10756548B2 (en) Quick charging device with switching unit for individual battery module discharging
JP4966998B2 (en) Charge control circuit, battery pack, and charging system
US8680814B2 (en) Battery charger and battery charging method
US9653761B2 (en) Secondary battery pack and authentication method
EP3076516B1 (en) Battery cell balancing system and method using lc resonance
JP5488877B2 (en) Electric tool
TW201218576A (en) Dc power supply device
KR102443667B1 (en) balancing apparatus, and battery management system and battery pack including the same
EP2685589B1 (en) Battery pack, method of charging the same, and vehicle including the same
CN101572326A (en) Battery pack and control method
JP2008117743A (en) Hybrid battery and its charging method
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
JP5169477B2 (en) Capacitor control device
JP4812419B2 (en) Battery pack and battery pack charging / discharging method
US9413037B2 (en) Cell capacity adjusting device
JP2009225632A (en) Charging control circuit, battery pack, and charging system
KR20150107032A (en) Battery pack
JP2008193757A (en) Power supply apparatus for vehicle
WO2017221569A1 (en) Battery pack
JP2016073021A (en) Power storage system and precharge method for power storage system
JP2014171323A (en) Cell balance device
JP2014039400A (en) Battery pack, charger, charging system, and charging method
JP6485595B2 (en) Battery pack
JP2016040999A (en) Charged state equalization method of storage battery device
JP2017198455A (en) Charge rate estimating device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785737

Country of ref document: EP

Kind code of ref document: A1