JP2009033936A - Parallel-connected energy storage system - Google Patents

Parallel-connected energy storage system Download PDF

Info

Publication number
JP2009033936A
JP2009033936A JP2007197884A JP2007197884A JP2009033936A JP 2009033936 A JP2009033936 A JP 2009033936A JP 2007197884 A JP2007197884 A JP 2007197884A JP 2007197884 A JP2007197884 A JP 2007197884A JP 2009033936 A JP2009033936 A JP 2009033936A
Authority
JP
Japan
Prior art keywords
storage element
power storage
parallel
energy storage
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007197884A
Other languages
Japanese (ja)
Other versions
JP5017009B2 (en
Inventor
Yosuke Nakazawa
洋介 中沢
Shinichi Toda
伸一 戸田
Yukio Kadota
行生 門田
Kazuhide Ashida
和英 芦田
Fumitaka Mori
文隆 毛利
Takashi Domoto
貴史 堂元
Asami Mizutani
麻美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007197884A priority Critical patent/JP5017009B2/en
Publication of JP2009033936A publication Critical patent/JP2009033936A/en
Application granted granted Critical
Publication of JP5017009B2 publication Critical patent/JP5017009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel-connected energy storage system that prevents an overcurrent and abnormal heat generation due to a large cross current when power is supplied in parallel. <P>SOLUTION: The parallel-connected energy storage system, in which one or a plurality of rechargeable and dischargeable energy storage elements are connected in series to form an energy storage element array and a plurality of the energy storage element arrays Bat1 to Bat3 are connected in parallel, comprises switches SWbat1 to SWbat3, which connects and disconnects each energy storage element array to and from the system respectively, a voltage monitoring means, which detects a voltage difference between a plurality of the energy storage element arrays, and a control means CNT, which turns on only the corresponding energy storage element arrays, when there are one or a plurality of the energy storage element arrays in which the voltage difference detected by the voltage monitoring means is within a predetermined value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の蓄電素子列を並列接続する並列接続蓄電システムに関する。   The present invention relates to a parallel connection power storage system in which a plurality of power storage element arrays are connected in parallel.

近年、車両の省エネルギー化などを目的として大容量の蓄電装置の適用が進められている。蓄電装置の大容量化のために複数の蓄電池を並列に接続して並列接続蓄電システムを構成する場合、運転冗長性を持たせ、並列アンバランスに伴って発生する横流を防止する観点から、各蓄電池を1並列ごとにシステムから切り離すための切り離しスイッチを設けることが考えられる。   In recent years, application of large-capacity power storage devices has been promoted for the purpose of energy saving of vehicles. When configuring a parallel-connected power storage system by connecting a plurality of storage batteries in parallel for increasing the capacity of the power storage device, from the viewpoint of providing operational redundancy and preventing cross currents generated due to parallel imbalance, It is conceivable to provide a disconnect switch for disconnecting the storage battery from the system for each parallel.

このような並列接続蓄電システムにおいて、長時間運転しない状態においては、蓄電池の電圧が印加されている部位をできるだけ最小限にするために、切り離しスイッチによってシステムから各蓄電池を切り離しておくことが通常行われる。しかしながら複数の蓄電池ごとの自己放電特性の違いに起因して、長時間放置後に再投入する時に複数の蓄電池それぞれの電圧が異なる場合がある。そのような複数の蓄電池ごとに放電深度が異なっている状態でスイッチを投入して並列接続すると、蓄電池ごとの電圧差によって大きな横流電流が発生し、過電流や異常発熱などの不適合が発生することが懸念される。   In such a parallel-connected power storage system, when the battery is not operated for a long time, in order to minimize the portion to which the voltage of the storage battery is applied, it is normal practice to disconnect each storage battery from the system with a disconnect switch. Is called. However, due to the difference in self-discharge characteristics for each of the plurality of storage batteries, the voltage of each of the plurality of storage batteries may differ when the battery is turned on again after being left for a long time. When a switch is turned on and connected in parallel with different discharge depths for each of these multiple storage batteries, a large cross current will be generated due to the voltage difference of each storage battery, resulting in incompatibilities such as overcurrent and abnormal heat generation. Is concerned.

これに対し、図6に示すように、リチウムイオン電池のような蓄電素子11a,11b,11cを適数個直列接続して構成した蓄電素子列Bat1〜Bat3を並列接続し、例えばDC/DCコンバータD−CONVのような充放電制御装置を複数の蓄電素子列Bat1〜Bat3それぞれに対して設け、これらDC/DCコンバータD−CONV間の電流アンバランスを個別に管理する並列接続蓄電システムが提案されている。   On the other hand, as shown in FIG. 6, power storage element rows Bat1 to Bat3 configured by connecting a suitable number of power storage elements 11a, 11b, and 11c such as lithium ion batteries in series are connected in parallel, for example, a DC / DC converter. A parallel connection power storage system is proposed in which a charge / discharge control device such as D-CONV is provided for each of a plurality of power storage element arrays Bat1 to Bat3, and current imbalance between these DC / DC converters D-CONV is individually managed. ing.

ところが、この提案されている並列接続蓄電システムのように、DC/DCコンバータを蓄電素子列の並列分だけ個別に複数設置することは、システムのコスト上昇および装置の大型化を招くことになり、簡単なスイッチのみで成立するシステムの構築が求められていた。
鉄道サイバネ2006年論文番号606
However, as in the proposed parallel-connected power storage system, installing a plurality of DC / DC converters separately for the parallel storage element array leads to an increase in system cost and an increase in the size of the device. There was a demand for the construction of a system that could be realized only with simple switches.
Railway cybernet 2006 paper number 606

本発明は、以上の従来の技術的課題を解決するためになされたもので、従来のような並列投入時の大きな横流電流に起因した過電流や異常発熱などの不適合の発生を防ぐことができる並列接続蓄電システムを提供することを目的とする。   The present invention has been made to solve the above-described conventional technical problems, and can prevent occurrence of incompatibility such as overcurrent and abnormal heat generation caused by a large cross current at the time of parallel input as in the prior art. It aims at providing a parallel connection electrical storage system.

本発明は、充放電が可能な蓄電素子を1又は複数個直列に接続して蓄電素子列とし、複数の蓄電素子列を並列に接続した並列接続蓄電システムにおいて、前記蓄電素子列ごとに当該システムに接続と切離しを行うスイッチと、前記複数の蓄電素子列間の電圧差を検出する電圧監視手段と、前記電圧監視手段が検出した電圧差が所定値以内の蓄電素子列が1又は複数存在する時に当該蓄電素子列に対する前記スイッチのみを投入する制御手段とを備えた並列接続蓄電システムを特徴とする。   The present invention relates to a parallel connection power storage system in which one or a plurality of chargeable / dischargeable power storage elements are connected in series to form a power storage element array, and the plurality of power storage element arrays are connected in parallel. There are one or a plurality of switches for connecting and disconnecting to the power supply, voltage monitoring means for detecting a voltage difference between the plurality of power storage element arrays, and one or a plurality of power storage element arrays having a voltage difference detected by the voltage monitoring means within a predetermined value. Sometimes, it is characterized by a parallel-connected power storage system provided with control means for turning on only the switch for the power storage element array.

また、本発明は、充放電が可能な蓄電素子を1又は複数個直列に接続して蓄電素子列とし、複数の蓄電素子列を並列に接続した並列接続蓄電システムにおいて、前記蓄電素子列ごとに当該システムに接続と切離しを行うスイッチと、前記複数の蓄電素子列それぞれの蓄電残量を監視する蓄電残量監視手段を備え、前記複数の蓄電素子列のうち、前記蓄電残量監視手段が監視する蓄電残量が他の蓄電素子列の蓄電残量よりも所定値以上に不均衡となっている蓄電素子列が存在する時に当該蓄電素子列に対する前記スイッチを切り離す制御手段とを備えた並列接続蓄電システムを特徴とする。   Further, the present invention provides a parallel connection power storage system in which one or a plurality of chargeable / dischargeable power storage elements are connected in series to form a power storage element array, and the plurality of power storage element arrays are connected in parallel. A switch for connecting to and disconnecting from the system; and a remaining power storage monitoring means for monitoring a remaining power storage capacity of each of the plurality of power storage element arrays, wherein the remaining power storage monitoring means monitors among the plurality of power storage element arrays. Parallel connection provided with a control means for disconnecting the switch for the storage element row when there is a storage element row in which the remaining storage amount is unbalanced to a predetermined value or more than the remaining storage amount of the other storage element row It features a power storage system.

本発明の並列接続蓄電システムによれば、スイッチ投入前に並列間の電圧差を検出し、電圧差が一定値以下のもののみスイッチ投入することで、並列投入時の大きな横流電流に起因した、過電流や異常発熱などの不適合の発生を防ぐことができる。   According to the parallel-connected power storage system of the present invention, the voltage difference between the parallels is detected before the switch is turned on, and the voltage difference is switched on only for a certain value or less, resulting in a large cross current at the time of turning on the parallel, The occurrence of nonconformities such as overcurrent and abnormal heat generation can be prevented.

また、本発明の並列接続蓄電システムによれば、複数の蓄電素子列のうち蓄電残量が他の蓄電素子列の蓄電残量よりも所定値以上に不均衡となっている蓄電素子列が存在する時に当該蓄電素子列を切り離すことで、並列接続運転中に蓄電残量に大きなアンバランスが発生したとしても、大きな電圧差による横流電流に起因した過電流や異常発熱などの不適合の発生を防ぐことができる。   Further, according to the parallel-connected power storage system of the present invention, there is a power storage element array in which the remaining power storage amount is more than a predetermined value than the remaining power storage capacity of the other power storage element arrays. By disconnecting the power storage element array during operation, even if a large imbalance occurs in the remaining power during parallel connection operation, it prevents the occurrence of nonconformities such as overcurrent and abnormal heat generation due to cross current due to a large voltage difference. be able to.

以下、本発明の実施の形態を図に基づいて詳説する。図1は、本発明の1つの実施の形態の並列接続蓄電システムを示している。本実施の形態の並列接続蓄電システムでは、複数個(本実施の形態では3個)の蓄電素子11a,11b,11cが直列接続されて構成される蓄電素子列1が第1〜第3まで3列並列に配置され、これら第1〜第3の蓄電素子列Bat1〜Bat3それぞれに直列に第1〜第3のスイッチSWbat1〜SWbat3が接続され、第1〜第3の蓄電素子列Bat1〜Bat3の開放端と第1〜第3のスイッチSWbat1〜SWbat3の開放端とがDC/DCコンバータD−CONVの一側端に並列に接続されている。DC/DCコンバータD−CONVの他側端は負荷LDに接続されている。第1〜第3の蓄電素子列Bat1〜Bat3それぞれの両端には各電圧を検出する第1〜第3の電圧検出器DT1〜DT3が接続されており、それらの電圧検出信号は制御装置CNTに入力する。この制御装置CNTは、これら第1〜第3の電圧検出器DT1〜DT3の検出電圧を入力し、所定の比較演算処理に基づいて第1〜第3のスイッチSWbat1〜SWbat3それぞれをオン/オフ制御する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a parallel-connected power storage system according to one embodiment of the present invention. In the parallel-connected power storage system according to the present embodiment, a plurality of (three in the present embodiment) power storage elements 11a, 11b, and 11c are connected in series to the first to third power storage element arrays 1. The first to third switches SWbat1 to SWbat3 are connected in series to each of the first to third storage element arrays Bat1 to Bat3, and the first to third storage element arrays Bat1 to Bat3 are connected in series. The open end and the open ends of the first to third switches SWbat1 to SWbat3 are connected in parallel to one side end of the DC / DC converter D-CONV. The other end of the DC / DC converter D-CONV is connected to the load LD. First to third voltage detectors DT1 to DT3 for detecting each voltage are connected to both ends of each of the first to third power storage element arrays Bat1 to Bat3, and these voltage detection signals are transmitted to the control device CNT. input. The control device CNT inputs the detection voltages of the first to third voltage detectors DT1 to DT3, and controls on / off of the first to third switches SWbat1 to SWbat3 based on a predetermined comparison calculation process. To do.

第1〜第3の蓄電素子列Bat1〜Bat3それぞれを構成する蓄電素子11a,11b,11cとしては、例えばリチウムイオン電池のような二次電池が用いられる。また、蓄電素子の直列接続数は、システムの規模に応じて適切な接続数に決定される。   As the power storage elements 11a, 11b, and 11c constituting each of the first to third power storage element arrays Bat1 to Bat3, for example, a secondary battery such as a lithium ion battery is used. Further, the number of power storage elements connected in series is determined as an appropriate number of connections according to the scale of the system.

次に、上記構成の並列接続蓄電システムにおける負荷接続、切り離し制御について、図2のタイムチャート、図3のフローチャートを用いて説明する。図2において、第1〜第3蓄電素子列Bat1〜Bat3それぞれの電圧をVbat1,Vbat2,Vbat3で表している。タイミングT0の運転開始時、Vbat1>Vbat2>Vbat3の状態であったとする。この場合、演算処理上の便宜のため第1、第2、第3の蓄電素子列Bat1,Bat2,Bat3それぞれに電圧の高いものから順に仮想的なバッテリ番号としてBatv1,Batv2,Batv3と識別番号を付け替える。そしてそれぞれの電圧は、Vbatv1,Vbatv2,Vbatv3とし、電圧差はそれぞれΔVv12,ΔVv23,ΔVv31とする(ステップST1,ST2)。   Next, load connection and disconnection control in the parallel connection power storage system having the above configuration will be described with reference to the time chart of FIG. 2 and the flowchart of FIG. In FIG. 2, the voltages of the first to third power storage element arrays Bat1 to Bat3 are represented by Vbat1, Vbat2, and Vbat3. Assume that Vbat1> Vbat2> Vbat3 at the start of operation at timing T0. In this case, for convenience of calculation processing, Batv1, Batv2, Batv3 and identification numbers are assigned as virtual battery numbers in order from the one with the highest voltage to each of the first, second, and third storage element arrays Bat1, Bat2, and Bat3. Replace. The respective voltages are Vbatv1, Vbatv2, and Vbatv3, and the voltage differences are ΔVv12, ΔVv23, and ΔVv31, respectively (steps ST1 and ST2).

制御装置CNTは、Vbatv2に対するVbatv1,Vbatv3の電圧差ΔVv12,ΔVv23のどちらかが所定値ΔVrefより大きいことを検出すれば、スイッチSWbat1〜SWbat3を同時投入することなく個別に投入すると判断する(ステップST3,ST4)。そして、制御装置CNTは、中間電圧値を示す蓄電素子列Batv2を用いて運転を開始すべく、スイッチSWbatv2に投入信号を送り、蓄電素子列Batv2(図2ではBat2)に対するスイッチSWbatv2(図2ではSWbat2)を投入させる。これにて外部のDC/DCコンバータD−CONVは負荷LDに対して放電動作を開始する(タイミングT1;ステップST5)。   If the control device CNT detects that one of the voltage differences ΔVv12 and ΔVv23 between Vbatv1 and Vbatv3 with respect to Vbatv2 is greater than a predetermined value ΔVref, it determines that the switches SWbat1 to SWbat3 are individually turned on without simultaneously turning them on (step ST3). , ST4). Then, the control device CNT sends an input signal to the switch SWbatv2 to start operation using the storage element array Batv2 indicating the intermediate voltage value, and the switch SWbatv2 (in FIG. 2, Bat2) to the storage element array Batv2 (in FIG. 2). SWbat2) is turned on. As a result, the external DC / DC converter D-CONV starts discharging operation with respect to the load LD (timing T1; step ST5).

スイッチSWbatv2が投入された蓄電素子列Batv2(図2ではBat2)は放電され、放電に従い電圧Vbatv2(図2ではVbat2)が低下していく(タイミングT2)。この蓄電素子列Batv2の電圧低下に従いその電圧Vbatv2が最低の電圧を示している蓄電素子列Batv3の電圧Vbatv3の値に近づき、その差が所定値ΔVref以下となった時、スイッチSWbatv3(図2ではスイッチSWbat3)を並列投入する(タイミングT3;ステップST7にてNOに分岐し、ステップST9に移行)。この時の蓄電素子列Batv2と蓄電素子列Batv3との電圧Vbatv2,Vbatv3はほぼ同一となっているので並列投入に起因した過大な横流電流が両蓄電素子列Batv2,Batv3間に発生しない。その後、蓄電素子列Batv2と充放電蓄電素子Batv3との放電動作が並列に行われる(タイミングT4;ステップST9)。   The storage element array Batv2 (Bat2 in FIG. 2) in which the switch SWbatv2 is turned on is discharged, and the voltage Vbatv2 (Vbat2 in FIG. 2) is decreased according to the discharge (timing T2). When the voltage Vbatv2 approaches the value of the voltage Vbatv3 of the storage element row Batv3 indicating the lowest voltage in accordance with the voltage drop of the storage element row Batv2, when the difference becomes equal to or less than the predetermined value ΔVref, the switch SWbatv3 (in FIG. 2) The switch SWbat3) is turned on in parallel (timing T3; branching to NO in step ST7, and shifting to step ST9). At this time, the voltages Vbatv2 and Vbatv3 of the storage element array Batv2 and the storage element array Batv3 are substantially the same, so that an excessive cross current caused by parallel input does not occur between the storage element arrays Batv2 and Batv3. Thereafter, the discharging operation of the storage element array Batv2 and the charge / discharge storage element Batv3 is performed in parallel (timing T4; step ST9).

次に、タイミングT5にて、外部のDC/DCコンバータD−CONVは、負荷LDの運転パターンに従って負荷LDからの充電動作を開始したとする。この充電に従い並列運転中の蓄電素子列Batv2,Batv3の電圧Vbatv2,Vbatv3(図2では第2の蓄電素子列Bat2の電圧Vbatv、第3の蓄電素子列Bat3の電圧Vbat3)は同時に上昇していく。この電圧上昇に従い蓄電素子列Batv2,Batv3の電圧Vbatv2,Vbatv3は蓄電素子列Batv1の電圧Vbatv1の値に近づき、その差が所定値Δref以下となったタイミングT6において、制御装置CNTは蓄電素子列Batv1に対するスイッチSWbatv1(図2では第1の蓄電素子列Bat1に対するスイッチSWbat1)を並列投入する(ステップST11でNOに分岐し、ステップST12に移行)。このとき電圧はほぼ同一であるので並列投入に起因した過大な横流電流は発生しない。   Next, it is assumed that the external DC / DC converter D-CONV starts the charging operation from the load LD according to the operation pattern of the load LD at the timing T5. According to this charging, the voltages Vbatv2 and Vbatv3 of the storage element rows Batv2 and Batv3 (in FIG. 2, the voltage Vbatv of the second storage element row Bat2 and the voltage Vbat3 of the third storage element row Bat3) increase simultaneously. . As the voltage rises, the voltages Vbatv2 and Vbatv3 of the storage element rows Batv2 and Batv3 approach the value of the voltage Vbatv1 of the storage element row Batv1, and at the timing T6 when the difference becomes equal to or less than the predetermined value Δref, the control device CNT operates at the storage element row Batv1. Switch SWbatv1 (switch SWbat1 for the first storage element array Bat1 in FIG. 2) is turned on in parallel (branch to NO in step ST11 and shift to step ST12). At this time, since the voltages are substantially the same, an excessive cross current caused by parallel input is not generated.

こうして、第1〜第3の蓄電素子列Bat1〜Bat3がすべて並列接続された運転状態に移行する。この後は、これらの並列接続された3列の蓄電素子列Bat1〜Bat3に対して同時に充放電動作が行われる(タイミングT7,T8;ステップST12)。   In this way, the operation state shifts to a state where all of the first to third power storage element rows Bat1 to Bat3 are connected in parallel. Thereafter, the charge / discharge operation is simultaneously performed on the three storage element rows Bat1 to Bat3 connected in parallel (timing T7, T8; step ST12).

尚、起動時、再起動時に蓄電素子列Bat1〜Bat3各々の電圧を検出し、それらの電圧差がいずれもΔVref以下である場合にはステップST4にてステップST12に直接に分岐し、スイッチSWbat1〜SWbat3を全投入して3列並列接続運転に移行する。   It should be noted that the voltage of each of the storage element arrays Bat1 to Bat3 is detected at the time of start-up and restart, and if any of these voltage differences is equal to or less than ΔVref, the process directly branches to step ST12 in step ST4, and switches SWbat1 to SWbat1 All the SWbat3 is turned on to shift to the three-row parallel connection operation.

また、起動時、再起動時に蓄電素子列Bat1〜Bat3各々の電圧を検出し、最低電圧を示す蓄電素子列Batv3の電圧Vbatv3と中間電圧を示す蓄電素子列Batv2の電圧Vbatv2との電圧差ΔVv23だけが所定値ΔVref以下である場合にはステップST4にてステップST9に分岐し、起動時にスイッチSWbatv2,SWbatv3を同時に投入して蓄電素子列Batv2,Batv3の2列並列運転を開始する。そしてその後、最高電圧を示す蓄電素子列Batv1の電圧Vbatv1と中間電圧を示した蓄電素子列Batv2の電圧Vbatv2との電圧差ΔVv12が所定値ΔVref以下になれば、ステップST11にてNOに分岐し、スイッチSWbatv1も投入して3列並列接続運転に入る(ステップST12)。   In addition, the voltage of each of the storage element rows Bat1 to Bat3 is detected at the time of starting and restarting, and only a voltage difference ΔVv23 between the voltage Vbatv3 of the storage element row Batv3 indicating the lowest voltage and the voltage Vbatv2 of the storage element row Batv2 indicating the intermediate voltage. Is equal to or less than the predetermined value ΔVref, the process branches to step ST9 in step ST4, and switches SWbatv2 and SWbatv3 are simultaneously turned on at the time of activation to start the two-column parallel operation of the storage element columns Batv2 and Batv3. After that, if the voltage difference ΔVv12 between the voltage Vbatv1 of the storage element array Batv1 indicating the highest voltage and the voltage Vbatv2 of the storage element array Batv2 indicating the intermediate voltage is equal to or less than the predetermined value ΔVref, the process branches to NO in step ST11. The switch SWbatv1 is also turned on to start a three-row parallel connection operation (step ST12).

一方、起動時、再起動時に蓄電素子列Bat1〜Bat3各々の電圧を検出し、最高電圧を示す蓄電素子列Batv1の電圧Vbatv1と中間電圧を示す蓄電素子列Batv2の電圧Vbatv2との電圧差ΔVv12だけが所定値ΔVref以下である場合にはステップST4にてステップST13に分岐し、起動時にスイッチSWbatv1,SWbatv2を同時に投入して蓄電素子列Batv1,Batv2の2列並列運転を開始する。そしてその後、最低電圧を示した蓄電素子列Batv3の電圧Vbatv3と中間電圧を示した蓄電素子列Batv2の電圧Vbatv2との電圧差ΔVv23が所定値ΔVref以下になれば、ステップST15にてNOに分岐し、スイッチSWbatv3も投入して3列並列接続運転に入る(ステップST12)。   On the other hand, the voltage of each of the storage element rows Bat1 to Bat3 is detected at the time of starting and restarting, and only a voltage difference ΔVv12 between the voltage Vbatv1 of the storage element row Batv1 indicating the highest voltage and the voltage Vbatv2 of the storage element row Batv2 indicating the intermediate voltage. Is equal to or less than the predetermined value ΔVref, the process branches to step ST13 in step ST4, and switches SWbatv1 and SWbatv2 are simultaneously turned on at the start to start the two-column parallel operation of the storage element columns Batv1 and Batv2. After that, if the voltage difference ΔVv23 between the voltage Vbatv3 of the storage element row Batv3 indicating the lowest voltage and the voltage Vbatv2 of the storage element row Batv2 indicating the intermediate voltage becomes equal to or less than the predetermined value ΔVref, the process branches to NO in step ST15. The switch SWbatv3 is also turned on to start the three-row parallel connection operation (step ST12).

以上の構成の並列接続蓄電システムにより、第1〜第3の全蓄電素子列Bat1〜Bat3を最終的に並列運転できるようにし、DC/DCコンバータD−CONVを共通の1台だけ使用することでシステムコストアップや装置大型化を招くことなく、並列投入時の大きな横流電流に起因した過電流や異常発熱などの不適合の発生を防ぐことが可能になる。   By the parallel-connected power storage system having the above configuration, the first to third power storage element arrays Bat1 to Bat3 can finally be operated in parallel, and only one common DC / DC converter D-CONV is used. Without incurring an increase in system cost or an increase in the size of the apparatus, it becomes possible to prevent the occurrence of nonconformities such as overcurrent and abnormal heat generation due to a large cross current at the time of parallel charging.

次に、第1〜第3の全蓄電素子列Bat1〜Bat3の並列運転状態において、いずれかの蓄電素子列の蓄電残量が所定値ΔVrefを超えて変化した場合の切り離し、再接続制御について、図4のフローチャートを用いて説明する。尚、蓄電残量は電圧と一定の関係を持つものなので、本実施の形態では蓄電素子列ごとの電圧の高低を蓄電残量の大小と見なし、蓄電素子列の電圧の高低により並列運転中の切り離し、再接続制御をする。   Next, in the parallel operation state of all the first to third power storage element arrays Bat1 to Bat3, regarding the disconnection and reconnection control when the remaining power storage capacity of any one of the power storage element arrays has changed beyond a predetermined value ΔVref, This will be described with reference to the flowchart of FIG. In addition, since the remaining amount of power storage has a certain relationship with the voltage, in this embodiment, the voltage level of each power storage element array is regarded as the level of the remaining power storage level, and the parallel operation is performed depending on the voltage level of the power storage element array. Disconnect and control reconnection.

3列の蓄電素子列Bat1〜Bat3の並列運転状態でそれぞれの蓄電素子列の電圧を検出し、最高電圧、中間電圧、最低電圧を示す蓄電素子列をそれぞれBatv1,Batv2,Batv3とし、それぞれの電圧をVbatv1,Vbatv2,Vbatv3とする(ステップST21〜ST23)。そして、中間電圧を示す蓄電素子列Batv2の電圧Vbatv2との電圧差ΔVv12,ΔVv23を求め、所定値ΔVrefと大小を比較する(ステップST24,ST27)。   The voltages of the respective storage element arrays are detected in the parallel operation state of the three storage element arrays Bat1 to Bat3, and the storage element arrays indicating the highest voltage, the intermediate voltage, and the lowest voltage are designated as Batv1, Batv2, and Batv3, respectively. Are Vbatv1, Vbatv2, and Vbatv3 (steps ST21 to ST23). Then, voltage differences ΔVv12 and ΔVv23 with respect to the voltage Vbatv2 of the storage element array Batv2 indicating the intermediate voltage are obtained, and the predetermined value ΔVref is compared with the magnitude (steps ST24 and ST27).

いま、中間電圧を示す蓄電素子列Batv2に対して最高電圧を示す蓄電素子列Batv1の電圧差ΔVv12が所定値ΔVrefよりも大きくなれば、当該蓄電素子列Batv1を並列接続から切り離す(ステップST25,ST26)。これにより、残りの2つの蓄電素子列Batv2,Batv3の並列運転に移行する。   Now, if the voltage difference ΔVv12 of the storage element array Batv1 indicating the highest voltage with respect to the storage element array Batv2 indicating the intermediate voltage becomes larger than the predetermined value ΔVref, the storage element array Batv1 is disconnected from the parallel connection (steps ST25 and ST26). ). As a result, the remaining two storage element rows Batv2 and Batv3 are shifted to parallel operation.

一方、中間電圧を示す蓄電素子列Batv2に対して最低電圧を示す蓄電素子列Batv3の電圧差ΔVv23が所定値ΔVrefよりも大きくなれば、当該蓄電素子列Batv3を並列接続から切り離す(ステップST27,ST28)。これにより、残りの2つの蓄電素子列Batv1,Batv2の並列運転に移行する。   On the other hand, when the voltage difference ΔVv23 of the storage element array Batv3 indicating the lowest voltage with respect to the storage element array Batv2 indicating the intermediate voltage becomes larger than the predetermined value ΔVref, the storage element array Batv3 is disconnected from the parallel connection (steps ST27 and ST28). ). As a result, the remaining two storage element rows Batv1, Batv2 are shifted to parallel operation.

尚、中間電圧を示す蓄電素子列Batv2に対して最高電圧を示す蓄電素子列Batv1の電圧差ΔVv12が所定値ΔVrefよりも大きくなり、同時に、最低電圧を示す蓄電素子列Batv3の電圧差ΔVv23も所定値ΔVrefよりも大きくなれば、蓄電素子列Batv1,Batv3を共に並列接続から切り離し、蓄電素子列Batv2だけの単列運転に移行する(ステップST25でYES、かつ、ステップST27でもYESの場合)。   Note that the voltage difference ΔVv12 of the storage element array Batv1 indicating the maximum voltage is larger than the predetermined value ΔVref with respect to the storage element array Batv2 indicating the intermediate voltage, and at the same time, the voltage difference ΔVv23 of the storage element array Batv3 indicating the minimum voltage is also predetermined. If larger than value ΔVref, both storage element rows Batv1 and Batv3 are disconnected from the parallel connection and shifted to a single-row operation with only storage element row Batv2 (YES in step ST25 and YES in step ST27).

1列、又は2列の蓄電素子列を中間電圧を示す蓄電素子列Batv2から切り離した後にも3列の蓄電素子列Batv1〜Batv3の電圧の監視を継続し、蓄電素子列Batv1と蓄電素子列Batv2との電圧差ΔVv12、あるいは蓄電素子列Batv3と蓄電素子列Batv2との電圧差ΔVv23が所定値ΔVref以下に小さくなれば再度、該当する蓄電素子列Batv1あるいはBatv3を蓄電素子列Batv2に並列接続する(ステップST30,ST31)。   Even after the one or two storage element arrays are disconnected from the storage element array Batv2 indicating the intermediate voltage, the monitoring of the voltages of the three storage element arrays Batv1 to Batv3 is continued, and the storage element array Batv1 and the storage element array Batv2 Or the voltage difference ΔVv23 between the storage element row Batv3 and the storage element row Batv2 becomes smaller than a predetermined value ΔVref, the corresponding storage element row Batv1 or Batv3 is again connected in parallel to the storage element row Batv2 ( Steps ST30 and ST31).

このようにして、3列の全蓄電素子列Bat1〜Bat3の並列接続運転状態でいずれかの蓄電素子列の電圧が大幅に低下したり上昇したりした時にはいったん該当蓄電素子列を切り離すことで、並列投入時の大きな横流電流に起因した過電流や異常発熱などの不適合の発生を防ぐことが可能になる。   In this way, when the voltage of any one of the storage element rows greatly decreases or rises in the parallel connection operation state of all the three storage element rows Bat1 to Bat3, once the corresponding storage element row is disconnected, It is possible to prevent the occurrence of nonconformities such as overcurrent and abnormal heat generation due to a large cross current when the parallel is turned on.

尚、本実施の形態にあって、制御装置CNTは全蓄電素子列Bat1〜Bat3の電圧値を監視しており、長期放置状態に移行する場合、各蓄電素子列に対して蓄電残量に換算して50%以下となる電圧を示すようになるまで放電させてから運転を停止し、スイッチSWbat1〜SWbat3それぞれを切り離す制御をすることが望ましい。   In the present embodiment, the control device CNT monitors the voltage values of all the power storage element rows Bat1 to Bat3. When the control device CNT shifts to the long-term neglected state, it is converted into the remaining power storage amount for each power storage element row. Then, it is desirable to perform control to stop the operation after discharging until the voltage reaches 50% or less, and to disconnect each of the switches SWbat1 to SWbat3.

(第2の実施の形態)図5を用いて、本発明の第2の実施の形態の並列接続蓄電システムについて説明する。本実施の形態の特徴は、制御装置CNTが蓄電素子列の並列接続数に応じて充放電電流最大制限値を可変設定することを特徴とする。尚、図5において図1に示した第1の実施の形態と共通する要素については共通の符号を付して示してある。   (Second Embodiment) A parallel-connected power storage system according to a second embodiment of the present invention will be described with reference to FIG. The feature of the present embodiment is that the control device CNT variably sets the maximum charge / discharge current limit value according to the number of parallel connection of the storage element arrays. In FIG. 5, elements common to the first embodiment shown in FIG. 1 are denoted by common reference numerals.

本実施の形態の並列接続蓄電システムでは、制御装置CNTの並列接続制御、切り離し制御は第1の実施の形態と同様である。そして、制御装置CNTは、並列接続数に応じた充放電電流最大制限値をDC/DCコンバータD−CONVに対して可変設定する。接続数1の時の電流最大制限値をI1imitとし、並列接続数2の時には電流最大制限値をI2limit(=I1limit+ΔI)とし、並列接続数3の時には電流最大制限値をI3limit(=I1limit+2ΔI)とする。DC/DCコンバータD−CONVは制御装置CNTから充放電電流最大制限値Ilimitを受けて、蓄電システム側の充放電電流がこの制限値を超えないように動作する。   In the parallel connection power storage system of the present embodiment, the parallel connection control and disconnection control of the control device CNT are the same as those of the first embodiment. Then, the control device CNT variably sets the maximum charge / discharge current limit value corresponding to the number of parallel connections to the DC / DC converter D-CONV. When the number of connections is 1, the maximum current limit value is I1limit, when the number of parallel connections is 2, the current maximum limit value is I2limit (= I1limit + ΔI), and when the number of parallel connections is 3, the maximum current limit value is I3limit (= I1limit + 2ΔI). . The DC / DC converter D-CONV receives the charge / discharge current maximum limit value Ilimit from the control device CNT, and operates so that the charge / discharge current on the power storage system side does not exceed the limit value.

これにより、本実施の形態によれば、例えば単列運転中の蓄電素子列が過放電したり逆に過充電となることを防止でき、システム保護が図れる。   Thereby, according to this Embodiment, it can prevent that the electrical storage element row | line | column in single row driving | running | working, for example, is over-discharged or reversely overcharged, and can protect a system.

本発明の第1の実施の形態の並列接続蓄電システムのブロック図。The block diagram of the parallel connection electrical storage system of the 1st Embodiment of this invention. 上記実施の形態における制御装置の運転開始時のスイッチオン/オフ制御動作を示すタイムチャート。The time chart which shows the switch on / off control operation at the time of the driving | operation start of the control apparatus in the said embodiment. 上記実施の形態における制御装置の運転開始時のスイッチオン/オフ制御動作のフローチャート。The flowchart of the switch on / off control operation at the time of the operation start of the control apparatus in the said embodiment. 上記実施の形態における制御装置の並列運転時のスイッチオン/オフ制御動作のフローチャート。The flowchart of the switch on / off control operation at the time of the parallel operation of the control apparatus in the said embodiment. 本発明の第2の実施の形態の並列接続蓄電システムのブロック図。The block diagram of the parallel connection electrical storage system of the 2nd Embodiment of this invention. 従来例の並列接続蓄電システムのブロック図。The block diagram of the parallel connection electrical storage system of a prior art example.

符号の説明Explanation of symbols

11a,11b,11c 蓄電素子
CNT 制御装置
D−CONV DC/DCコンバータ
Bat1,Bat2,Bat3 蓄電素子列
LD 負荷
SWbat1〜SWbat3 スイッチ
11a, 11b, 11c Storage element CNT control device D-CONV DC / DC converter Bat1, Bat2, Bat3 Storage element array LD load SWbat1-SWbat3 switch

Claims (7)

充放電が可能な蓄電素子を1又は複数個直列に接続して蓄電素子列とし、複数の蓄電素子列を並列に接続した並列接続蓄電システムにおいて、
前記蓄電素子列ごとに当該システムに接続と切離しを行うスイッチと、
前記複数の蓄電素子列間の電圧差を検出する電圧監視手段と、
前記電圧監視手段が検出した電圧差が所定値以内の蓄電素子列が1又は複数存在する時に当該蓄電素子列に対する前記スイッチのみを投入する制御手段とを備えたことを特徴とする並列接続蓄電システム。
In a parallel connection energy storage system in which one or more chargeable / dischargeable energy storage elements are connected in series to form an energy storage element array, and a plurality of energy storage element arrays are connected in parallel.
A switch for connecting to and disconnecting from the system for each storage element row;
Voltage monitoring means for detecting a voltage difference between the plurality of power storage element arrays;
A parallel-connected power storage system comprising: control means for turning on only the switch for the power storage element array when there is one or a plurality of power storage element arrays in which the voltage difference detected by the voltage monitoring means is within a predetermined value. .
前記複数の蓄電素子列それぞれの蓄電残量を監視する蓄電残量監視手段を備え、
前記制御手段は、前記蓄電残量監視手段により前記スイッチを投入中の蓄電素子列と蓄電残量が等しくなった他の蓄電素子列に対して当該蓄電素子列に対するスイッチを順次に投入することを特徴とする請求項1に記載の並列接続蓄電システム。
A power storage remaining amount monitoring means for monitoring the power storage remaining amount of each of the plurality of power storage element rows;
The control means sequentially turns on a switch for the power storage element array with respect to another power storage element array in which the power storage remaining amount is equal to that of the power storage element array in which the switch is turned on by the remaining power storage monitoring means. The parallel-connected energy storage system according to claim 1, wherein the system is connected in parallel.
前記制御手段は、投入接続されている蓄電素子列の数に応じて充放電電流最大制限値を可変設定することを特徴とする請求項1又は2に記載の並列接続蓄電システム。   The parallel-connected power storage system according to claim 1, wherein the control unit variably sets a charge / discharge current maximum limit value in accordance with the number of power storage element arrays that are turned on and connected. 充放電が可能な蓄電素子を1又は複数個直列に接続して蓄電素子列とし、複数の蓄電素子列を並列に接続した並列接続蓄電システムにおいて、
前記蓄電素子列ごとに当該システムに接続と切離しを行うスイッチと、
前記複数の蓄電素子列それぞれの蓄電残量を監視する蓄電残量監視手段を備え、
前記複数の蓄電素子列のうち、前記蓄電残量監視手段が監視する蓄電残量が他の蓄電素子列の蓄電残量よりも所定値以上に不均衡となっている蓄電素子列が存在する時に当該蓄電素子列に対する前記スイッチを切り離す制御手段とを備えたことを特徴とする並列接続蓄電システム。
In a parallel connection energy storage system in which one or more chargeable / dischargeable energy storage elements are connected in series to form an energy storage element array, and a plurality of energy storage element arrays are connected in parallel.
A switch for connecting to and disconnecting from the system for each storage element row;
A power storage remaining amount monitoring means for monitoring the power storage remaining amount of each of the plurality of power storage element rows;
Among the plurality of power storage element arrays, when there is a power storage element array in which the remaining power storage monitored by the remaining power storage monitoring means is unbalanced to a predetermined value or more than the remaining power storage capacity of the other power storage element arrays A parallel-connected power storage system comprising control means for disconnecting the switch for the power storage element array.
前記制御手段は、前記スイッチが切り離された蓄電素子列と前記スイッチが投入されている蓄電素子列との間の蓄電残量が前記所定値以内に収まった時に、切り離された前記スイッチを投入することを特徴とする請求項4に記載の並列接続蓄電システム。   The control means turns on the disconnected switch when the remaining amount of storage between the storage element array with the switch disconnected and the storage element array with the switch turned on falls within the predetermined value. The parallel-connected power storage system according to claim 4. 前記制御手段は、投入接続されている蓄電素子列の数に応じて充放電電流最大制限値を可変設定することを特徴とする請求項4又は5に記載の並列接続蓄電システム。   6. The parallel-connected power storage system according to claim 4, wherein the control unit variably sets a charge / discharge current maximum limit value according to the number of power storage element arrays that are turned on and connected. 前記制御手段は、長期間停止指令を受けた時に、前記蓄電素子列それぞれの蓄電残量が50%以下になるまで放電させた後に前記スイッチそれぞれを切り離すことを特徴とする請求項4〜6のいずれかに記載の並列接続蓄電システム。   7. The control device according to claim 4, wherein when the control unit receives a stop command for a long period of time, the control unit disconnects each of the switches after discharging until the remaining amount of power stored in each of the power storage element arrays is 50% or less. The parallel connection electrical storage system in any one.
JP2007197884A 2007-07-30 2007-07-30 Parallel connection power storage system Active JP5017009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007197884A JP5017009B2 (en) 2007-07-30 2007-07-30 Parallel connection power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007197884A JP5017009B2 (en) 2007-07-30 2007-07-30 Parallel connection power storage system

Publications (2)

Publication Number Publication Date
JP2009033936A true JP2009033936A (en) 2009-02-12
JP5017009B2 JP5017009B2 (en) 2012-09-05

Family

ID=40403818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007197884A Active JP5017009B2 (en) 2007-07-30 2007-07-30 Parallel connection power storage system

Country Status (1)

Country Link
JP (1) JP5017009B2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212020A (en) * 2008-03-06 2009-09-17 Toshiba Corp Electricity storage device
WO2011155014A1 (en) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 Power output control device for vehicle and power output control method for vehicle
JP2012065434A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Dc power supply and power storage system
WO2012050032A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power supply system
JP2012085415A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Power supply system and control method therefore
WO2012086369A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
WO2012086309A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
WO2012101771A1 (en) 2011-01-26 2012-08-02 株式会社 日立製作所 Electric vehicle battery system
JP2012185991A (en) * 2011-03-04 2012-09-27 Mitsubishi Heavy Ind Ltd Battery, battery adjustment device, and method and program for adjusting battery
WO2012132985A1 (en) 2011-03-25 2012-10-04 Necエナジーデバイス株式会社 Energy storage system and rechargeable battery control method
WO2012164630A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Electricity storage system
JP2012252907A (en) * 2011-06-03 2012-12-20 Toyota Motor Corp Electric vehicle charging system and charging control method
JP2013078241A (en) * 2011-09-30 2013-04-25 Toshiba Corp Storage battery device, control method therefor, and control program
WO2013065454A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Power supply controller
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
JP2013126343A (en) * 2011-12-16 2013-06-24 Hitachi Ltd Power storage system with storage device
DE112011102789T5 (en) 2010-08-24 2013-07-04 Suzuki Motor Corp. Electrically powered means of transportation
WO2013118271A1 (en) 2012-02-09 2013-08-15 三菱電機株式会社 Parallel accumulator system and method of control thereof
WO2013121849A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Adjusting device, battery assembly, and adjusting method
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same
CN103430353A (en) * 2011-03-21 2013-12-04 株式会社Lg化学 Method and device for controlling battery pack connection
JP2013252002A (en) * 2012-06-01 2013-12-12 Sony Corp Power supply apparatus and power supply switching method
JPWO2012049963A1 (en) * 2010-10-15 2014-02-24 三洋電機株式会社 Power supply system including storage battery
WO2014054368A1 (en) * 2012-10-01 2014-04-10 株式会社豊田自動織機 Power source device and method for switching battery module
CN103795104A (en) * 2012-10-30 2014-05-14 株式会社日立信息通信工程 Power storage system and power source system
WO2014128941A1 (en) 2013-02-25 2014-08-28 株式会社 日立製作所 Parallel-connected electricity storage system
JP2014161211A (en) * 2013-01-22 2014-09-04 Gs Yuasa Corp Connection information acquisition device for power storage units
CN104103865A (en) * 2014-07-22 2014-10-15 合肥国轩高科动力能源股份公司 Extended-range battery pack system of battery electric vehicle
JPWO2013114697A1 (en) * 2012-01-30 2015-05-11 Necエナジーデバイス株式会社 Power storage system, secondary battery pack control method, and secondary battery pack
WO2015112584A1 (en) * 2014-01-23 2015-07-30 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
KR101572612B1 (en) * 2014-06-23 2015-12-02 한빛이디에스(주) Device for controlling circulating current for batteries
US9325190B2 (en) 2010-08-02 2016-04-26 Nec Energy Devices, Ltd Power storage system having current limiting means to control multiple parallel connected battery packs
JP2016092948A (en) * 2014-11-04 2016-05-23 日産自動車株式会社 Power storage device and connection method for power storage device
US9444268B2 (en) 2010-12-24 2016-09-13 Nec Energy Devices, Ltd. Discharge controller
JP2016541227A (en) * 2013-12-18 2016-12-28 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Hybrid power supply apparatus and method for offshore plant
JP2017504299A (en) * 2014-01-10 2017-02-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical storage battery assembly
EP3176856A1 (en) * 2015-12-04 2017-06-07 Kabushiki Kaisha Toshiba Storage battery system, storage battery unit, and computer program product
JPWO2016207949A1 (en) * 2015-06-22 2017-06-29 株式会社東芝 Storage battery system, storage battery module, and storage battery system operation method
JP2017175865A (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Power supply device, transportation device, power supply control method, control device, and storage module
JP2017175864A (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Power supply device, transportation device, power supply control method, control device, and storage module
WO2017183395A1 (en) * 2016-04-21 2017-10-26 株式会社豊田自動織機 Battery pack
US9831691B2 (en) 2012-09-18 2017-11-28 Nec Energy Devices, Ltd. Power storage system and cell protection method which protects the cell by both cutting from the cell pack and the cell pack from the system
JP2017538394A (en) * 2014-12-08 2017-12-21 エルジー・ケム・リミテッド Battery rack relay control device and method
WO2017221569A1 (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
CN107615561A (en) * 2015-05-18 2018-01-19 日产自动车株式会社 Electrical storage device and connection control method
JP2018023221A (en) * 2016-08-03 2018-02-08 株式会社東芝 Electric railway vehicle
JP2018120663A (en) * 2017-01-23 2018-08-02 株式会社デンソーテン Power storage device and power storage control method
JP2018125154A (en) * 2017-01-31 2018-08-09 株式会社デンソーテン Power storage device and power storage control method
US10320204B2 (en) 2017-01-31 2019-06-11 Fujitsu Ten Limited Electric storage apparatus and electric-storage controlling method
JP2019161781A (en) * 2018-03-09 2019-09-19 株式会社デンソー Battery system
JP2019165540A (en) * 2018-03-19 2019-09-26 いすゞ自動車株式会社 Vehicular power supply system
JP2021023074A (en) * 2019-07-30 2021-02-18 東芝三菱電機産業システム株式会社 Uninterruptible power supply
WO2021132420A1 (en) * 2019-12-27 2021-07-01 本田技研工業株式会社 Power apparatus and method for controlling same
WO2021132421A1 (en) * 2019-12-27 2021-07-01 本田技研工業株式会社 Electrical power device and control method for same
US11205905B2 (en) 2018-05-03 2021-12-21 Lg Chem, Ltd. Battery management apparatus, battery management method, and energy storage system including the battery management apparatus
WO2021261360A1 (en) 2020-06-26 2021-12-30 パナソニックIpマネジメント株式会社 Management device and power supply system
WO2022070715A1 (en) 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 Management device and power supply system
WO2022070716A1 (en) 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 Management device and power supply system
JP2022091659A (en) * 2020-12-09 2022-06-21 深湾能源科技(舟山)有限公司 Quick battery changing device for portable power supply
WO2023022456A1 (en) * 2021-08-20 2023-02-23 주식회사 엘지에너지솔루션 Charge/discharge power control device, energy storage system, and operation method of energy storage system
WO2024071278A1 (en) * 2022-09-29 2024-04-04 株式会社Gsユアサ Electricity storage system and electricity storage bank insertion method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JPH07194014A (en) * 1993-12-27 1995-07-28 Yokogawa Electric Corp Automatic changing apparatus of battery power supply
JP2001023588A (en) * 1999-07-02 2001-01-26 Hitachi Maxell Ltd Battery pack
JP2004147477A (en) * 2002-10-28 2004-05-20 Komatsu Ltd Power supply device for motor
JP2004236473A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Secondary battery system
JP2007043808A (en) * 2005-08-02 2007-02-15 Sony Corp Power supply for electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283210A (en) * 1993-01-29 1994-10-07 Canon Inc Storage battery device and power system
JPH07194014A (en) * 1993-12-27 1995-07-28 Yokogawa Electric Corp Automatic changing apparatus of battery power supply
JP2001023588A (en) * 1999-07-02 2001-01-26 Hitachi Maxell Ltd Battery pack
JP2004147477A (en) * 2002-10-28 2004-05-20 Komatsu Ltd Power supply device for motor
JP2004236473A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Secondary battery system
JP2007043808A (en) * 2005-08-02 2007-02-15 Sony Corp Power supply for electronic device

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212020A (en) * 2008-03-06 2009-09-17 Toshiba Corp Electricity storage device
WO2011155014A1 (en) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 Power output control device for vehicle and power output control method for vehicle
US9325190B2 (en) 2010-08-02 2016-04-26 Nec Energy Devices, Ltd Power storage system having current limiting means to control multiple parallel connected battery packs
US9819201B2 (en) 2010-08-02 2017-11-14 Nec Energy Devices, Ltd. Secondary battery pack connection control method for controlling connection of input and output terminals in power storage system comprising plurality of secondary battery packs
US9461494B2 (en) 2010-08-24 2016-10-04 Suzuki Motor Corporation Power storage system
DE112011102788T5 (en) 2010-08-24 2013-06-13 Suzuki Motor Corporation Energy storage system
DE112011102789T5 (en) 2010-08-24 2013-07-04 Suzuki Motor Corp. Electrically powered means of transportation
US9227524B2 (en) 2010-08-24 2016-01-05 Suzuki Motor Corporation Electric-powered vehicle
JP2012065434A (en) * 2010-09-15 2012-03-29 Sumitomo Electric Ind Ltd Dc power supply and power storage system
JP2012085415A (en) * 2010-10-08 2012-04-26 Toyota Motor Corp Power supply system and control method therefore
WO2012050032A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power supply system
JPWO2012049963A1 (en) * 2010-10-15 2014-02-24 三洋電機株式会社 Power supply system including storage battery
JP5587421B2 (en) * 2010-10-15 2014-09-10 三洋電機株式会社 Power system
CN103081280A (en) * 2010-10-15 2013-05-01 三洋电机株式会社 Power supply system
US9768612B2 (en) 2010-10-15 2017-09-19 Panasonic Intellectual Property Management Co., Ltd. Power supply system
WO2012086369A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
US9444268B2 (en) 2010-12-24 2016-09-13 Nec Energy Devices, Ltd. Discharge controller
US9312718B2 (en) 2010-12-24 2016-04-12 Nec Energy Devices, Ltd. Discharge controller
WO2012086309A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
WO2012101771A1 (en) 2011-01-26 2012-08-02 株式会社 日立製作所 Electric vehicle battery system
JP2012185991A (en) * 2011-03-04 2012-09-27 Mitsubishi Heavy Ind Ltd Battery, battery adjustment device, and method and program for adjusting battery
JP2014514692A (en) * 2011-03-21 2014-06-19 エルジー・ケム・リミテッド Battery pack connection control apparatus and method
CN103430353A (en) * 2011-03-21 2013-12-04 株式会社Lg化学 Method and device for controlling battery pack connection
WO2012132985A1 (en) 2011-03-25 2012-10-04 Necエナジーデバイス株式会社 Energy storage system and rechargeable battery control method
US9368992B2 (en) 2011-03-25 2016-06-14 Nec Energy Devices, Ltd. Power storage system and secondary battery control method
EP2690743A1 (en) * 2011-03-25 2014-01-29 NEC Energy Devices, Ltd. Energy storage system and rechargeable battery control method
JP5618393B2 (en) * 2011-03-25 2014-11-05 Necエナジーデバイス株式会社 Power storage system and secondary battery control method
CN103430418A (en) * 2011-03-25 2013-12-04 Nec能源元器件株式会社 Energy storage system and rechargeable battery control method
EP2690743A4 (en) * 2011-03-25 2014-10-22 Nec Energy Devices Ltd Energy storage system and rechargeable battery control method
CN106684959B (en) * 2011-03-25 2019-05-14 Nec 能源元器件株式会社 Power storage system and secondary cell control method
CN106684959A (en) * 2011-03-25 2017-05-17 Nec 能源元器件株式会社 Power storage system and secondary battery control method
JP2012252907A (en) * 2011-06-03 2012-12-20 Toyota Motor Corp Electric vehicle charging system and charging control method
WO2012164630A1 (en) * 2011-06-03 2012-12-06 トヨタ自動車株式会社 Electricity storage system
CN103563206A (en) * 2011-06-03 2014-02-05 丰田自动车株式会社 Electricity storage system
JP2016119839A (en) * 2011-09-30 2016-06-30 株式会社東芝 Storage battery device, control method of storage battery device, and control program
JP2013078241A (en) * 2011-09-30 2013-04-25 Toshiba Corp Storage battery device, control method therefor, and control program
WO2013065454A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Power supply controller
US10074975B2 (en) 2011-11-01 2018-09-11 Nissan Motor Co., Ltd. Power supply controller
JP2013126343A (en) * 2011-12-16 2013-06-24 Hitachi Ltd Power storage system with storage device
US9461484B2 (en) 2012-01-30 2016-10-04 Nec Energy Devices, Ltd. Electricity storage system, method for controlling secondary battery packs, and secondary battery pack
JPWO2013114697A1 (en) * 2012-01-30 2015-05-11 Necエナジーデバイス株式会社 Power storage system, secondary battery pack control method, and secondary battery pack
WO2013118271A1 (en) 2012-02-09 2013-08-15 三菱電機株式会社 Parallel accumulator system and method of control thereof
KR20140127858A (en) 2012-02-09 2014-11-04 미쓰비시덴키 가부시키가이샤 Parallel accumulator system and method of control thereof
US9543767B2 (en) 2012-02-09 2017-01-10 Mitsubishi Electric Corporation Parallel electricity-storage system and control method thereof
US9570923B2 (en) 2012-02-16 2017-02-14 Nec Corporation Adjusting device, battery pack, and adjusting method
WO2013121849A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Adjusting device, battery assembly, and adjusting method
JPWO2013121849A1 (en) * 2012-02-16 2015-05-11 日本電気株式会社 Adjusting device, assembled battery device and adjusting method
JP2013179780A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Voltage equalization apparatus, method and program and power storage system provided with the same
JP2013252002A (en) * 2012-06-01 2013-12-12 Sony Corp Power supply apparatus and power supply switching method
CN103457342A (en) * 2012-06-01 2013-12-18 索尼公司 Power supply apparatus and power supply switching method
US9831691B2 (en) 2012-09-18 2017-11-28 Nec Energy Devices, Ltd. Power storage system and cell protection method which protects the cell by both cutting from the cell pack and the cell pack from the system
JP2014073051A (en) * 2012-10-01 2014-04-21 Toyota Industries Corp Power supply device and battery module switching method
WO2014054368A1 (en) * 2012-10-01 2014-04-10 株式会社豊田自動織機 Power source device and method for switching battery module
TWI594540B (en) * 2012-10-30 2017-08-01 日立信息通訊工程股份有限公司 Power storage system and power source system
CN103795104A (en) * 2012-10-30 2014-05-14 株式会社日立信息通信工程 Power storage system and power source system
JP2014161211A (en) * 2013-01-22 2014-09-04 Gs Yuasa Corp Connection information acquisition device for power storage units
US9404976B2 (en) 2013-01-22 2016-08-02 Gs Yuasa International Ltd. Energy storage unit connection information acquiring apparatus
JP5965538B2 (en) * 2013-02-25 2016-08-10 株式会社日立製作所 Parallel connection power storage system
WO2014128941A1 (en) 2013-02-25 2014-08-28 株式会社 日立製作所 Parallel-connected electricity storage system
US9627718B2 (en) 2013-02-25 2017-04-18 Hitachi, Ltd. Parallel-connected electricity storage system
US9954357B2 (en) 2013-12-18 2018-04-24 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying hybrid power of offshore plant
JP2017504294A (en) * 2013-12-18 2017-02-02 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Hybrid power supply apparatus and method for offshore plant
JP2017503460A (en) * 2013-12-18 2017-01-26 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Hybrid power supply apparatus and method for offshore plant
JP2016541227A (en) * 2013-12-18 2016-12-28 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Hybrid power supply apparatus and method for offshore plant
JP2017504299A (en) * 2014-01-10 2017-02-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical storage battery assembly
US10232728B2 (en) 2014-01-10 2019-03-19 Robert Bosch Gmbh Electrochemical composite storage system
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
WO2015112584A1 (en) * 2014-01-23 2015-07-30 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
KR101572612B1 (en) * 2014-06-23 2015-12-02 한빛이디에스(주) Device for controlling circulating current for batteries
CN104103865B (en) * 2014-07-22 2016-05-18 合肥国轩高科动力能源有限公司 The increasing journey battery pack system of pure electric automobile
CN104103865A (en) * 2014-07-22 2014-10-15 合肥国轩高科动力能源股份公司 Extended-range battery pack system of battery electric vehicle
JP2016092948A (en) * 2014-11-04 2016-05-23 日産自動車株式会社 Power storage device and connection method for power storage device
JP2017538394A (en) * 2014-12-08 2017-12-21 エルジー・ケム・リミテッド Battery rack relay control device and method
CN107615561A (en) * 2015-05-18 2018-01-19 日产自动车株式会社 Electrical storage device and connection control method
EP3300160A4 (en) * 2015-05-18 2018-03-28 Nissan Motor Co., Ltd. Electricity storage device and connection control method
AU2015399888B2 (en) * 2015-06-22 2018-05-10 Kabushiki Kaisha Toshiba Storage cell system, storage cell module, and method for operating storage cell system
US10109841B2 (en) 2015-06-22 2018-10-23 Kabushiki Kaisha Toshiba Storage cell system, storage cell module and method for operating storage cell system
JPWO2016207949A1 (en) * 2015-06-22 2017-06-29 株式会社東芝 Storage battery system, storage battery module, and storage battery system operation method
EP3176856A1 (en) * 2015-12-04 2017-06-07 Kabushiki Kaisha Toshiba Storage battery system, storage battery unit, and computer program product
JP2017175865A (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Power supply device, transportation device, power supply control method, control device, and storage module
JP2017175864A (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Power supply device, transportation device, power supply control method, control device, and storage module
CN107225980B (en) * 2016-03-25 2019-11-08 本田技研工业株式会社 Power supply device, transporting equipment, power control method, control device
CN107225980A (en) * 2016-03-25 2017-10-03 本田技研工业株式会社 Supply unit, transporting equipment, power control method, control device and power storage module
JPWO2017183395A1 (en) * 2016-04-21 2018-08-09 株式会社豊田自動織機 Battery pack
WO2017183395A1 (en) * 2016-04-21 2017-10-26 株式会社豊田自動織機 Battery pack
JP2017229152A (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
WO2017221569A1 (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
JP2018023221A (en) * 2016-08-03 2018-02-08 株式会社東芝 Electric railway vehicle
JP2018120663A (en) * 2017-01-23 2018-08-02 株式会社デンソーテン Power storage device and power storage control method
US10530164B2 (en) 2017-01-23 2020-01-07 Fujitsu Ten Limited Electric storage apparatus and electric-storage controlling method
US10320204B2 (en) 2017-01-31 2019-06-11 Fujitsu Ten Limited Electric storage apparatus and electric-storage controlling method
US10523020B2 (en) 2017-01-31 2019-12-31 Fujitsu Ten Limited Electric storage apparatus and electric-storage controlling method
JP2018125154A (en) * 2017-01-31 2018-08-09 株式会社デンソーテン Power storage device and power storage control method
JP2019161781A (en) * 2018-03-09 2019-09-19 株式会社デンソー Battery system
JP7059723B2 (en) 2018-03-19 2022-04-26 いすゞ自動車株式会社 Vehicle power system
JP2019165540A (en) * 2018-03-19 2019-09-26 いすゞ自動車株式会社 Vehicular power supply system
US11205905B2 (en) 2018-05-03 2021-12-21 Lg Chem, Ltd. Battery management apparatus, battery management method, and energy storage system including the battery management apparatus
JP2021023074A (en) * 2019-07-30 2021-02-18 東芝三菱電機産業システム株式会社 Uninterruptible power supply
JP7299095B2 (en) 2019-07-30 2023-06-27 東芝三菱電機産業システム株式会社 Uninterruptible power system
WO2021132420A1 (en) * 2019-12-27 2021-07-01 本田技研工業株式会社 Power apparatus and method for controlling same
WO2021132421A1 (en) * 2019-12-27 2021-07-01 本田技研工業株式会社 Electrical power device and control method for same
WO2021261360A1 (en) 2020-06-26 2021-12-30 パナソニックIpマネジメント株式会社 Management device and power supply system
WO2022070716A1 (en) 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 Management device and power supply system
WO2022070715A1 (en) 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 Management device and power supply system
JP2022091659A (en) * 2020-12-09 2022-06-21 深湾能源科技(舟山)有限公司 Quick battery changing device for portable power supply
JP7340557B2 (en) 2020-12-09 2023-09-07 深湾能源科技(舟山)有限公司 Battery quick change device for portable power supply
WO2023022456A1 (en) * 2021-08-20 2023-02-23 주식회사 엘지에너지솔루션 Charge/discharge power control device, energy storage system, and operation method of energy storage system
WO2024071278A1 (en) * 2022-09-29 2024-04-04 株式会社Gsユアサ Electricity storage system and electricity storage bank insertion method

Also Published As

Publication number Publication date
JP5017009B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5017009B2 (en) Parallel connection power storage system
US8129952B2 (en) Battery systems and operational methods
EP2186181B1 (en) Apparatus and method for balancing of battery cell&#39;s charge capacity
JP6831281B2 (en) Battery monitoring system and battery monitoring device
EP2757647B1 (en) Reconfigurable matrix-based power distribution architecture
EP2036184B1 (en) Charge equalization apparatus and method
JP5653542B2 (en) Parallel power storage system and control method thereof
JP5709601B2 (en) Power storage device and voltage equalization method for power storage device
JP2002135986A (en) Voltage equalizer device and method
JP5910889B2 (en) Power storage system
JP2019140718A (en) Power supply system
JP5210511B2 (en) Anomaly detection device
JP2015159631A (en) Power storage system, controller of power storage system, and control method
JP2010081703A (en) Power supply control system for vehicle
JP2016119788A (en) Battery system
US20170338678A1 (en) Vehicle electrical power system for jumpstarting
EP3565101B1 (en) Switching control method for isolated bidirectional dc-dc converter
JP2006230029A (en) Uninterruptible power supply unit
WO2012115148A1 (en) Power supply device, electrical power storage device, battery system, control device, and control program
EP2846387B1 (en) Apparatus and method for controlling fuel cell system using sub-power conditioning system
JP2009219336A (en) Dc power system and its charging method
JP2011160639A (en) Instantaneous voltage drop countermeasure apparatus
JP4896937B2 (en) DC power supply system and charging method thereof
JP2007295656A (en) Bank-switching capacitor power source device and charging method
JP2016220449A (en) Secondary battery system, and control method and program therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5017009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3