JP2007043808A - Power supply for electronic device - Google Patents

Power supply for electronic device Download PDF

Info

Publication number
JP2007043808A
JP2007043808A JP2005224226A JP2005224226A JP2007043808A JP 2007043808 A JP2007043808 A JP 2007043808A JP 2005224226 A JP2005224226 A JP 2005224226A JP 2005224226 A JP2005224226 A JP 2005224226A JP 2007043808 A JP2007043808 A JP 2007043808A
Authority
JP
Japan
Prior art keywords
battery
batteries
voltage value
turned
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224226A
Other languages
Japanese (ja)
Inventor
Hiroshi Yonezawa
博 米澤
Maiko Chiwata
妹子 千綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005224226A priority Critical patent/JP2007043808A/en
Publication of JP2007043808A publication Critical patent/JP2007043808A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate wastful power consumption, and improve the usage efficiency of a battery. <P>SOLUTION: A power supply has a first switch 3 provided between the first battery 1 and a device load 5 of a device, a second switch 4 provided between the second battery 2 and the device load 5, a voltage detecting means 9 for detecting voltage values of the first and second batteries 1, 2, a voltage comparing means 9 for comparing the voltage values of the first and second batteries 1, 2, a control means 9 for controlling so as to turn on/off the first and second switches 3, 4, and a storage means 9. The voltage values V1, V2 are detected and stored when the first and second batteries 1, 2 are connected to the device load 5. The switch on the high voltage side is turned on. The switch on the low voltage side is turned off. When the voltage value of the battery on the high voltage side decreases and the voltage values V1, V2 of the first and second batteries become equal, the first and second switches 3, 4 are concurrently turned on, and the first and second batteries 1, 2 are connected in parallel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、MDプレーヤ、CDプレーヤ等の電子機器の電源装置として適用して好適な電子機器用電源装置に関する。   The present invention relates to a power supply device for an electronic device that can be suitably applied as a power supply device for an electronic device such as an MD player or a CD player.

従来、MDプレーヤ、CDプレーヤ等の電子機器においては、リチウムイオン電池、ニッケル水素充電池等の2次電池の他にアルカリ電池、マンガン電池等の1次電池を並列接続して駆動し、使用時間を延ばすようにした電子機器用電源装置が知られている(特許文献1)。   Conventionally, in electronic devices such as MD players and CD players, primary batteries such as alkaline batteries and manganese batteries are driven in parallel in addition to secondary batteries such as lithium ion batteries and nickel metal hydride rechargeable batteries. There is known a power supply device for electronic equipment that extends the length (Patent Document 1).

更に、電池を並列接続したときには、電池を夫々単独で使用するよりも並列接続して使用した方が電池の見かけ上のインピーダンスを下げることができ、電池の使用効率を高めることができる。電子機器の消費電力が大きい程この効果は顕著である。
特開平5−191930号公報
Further, when the batteries are connected in parallel, the apparent impedance of the battery can be lowered by using the batteries connected in parallel rather than using each battery alone, and the use efficiency of the battery can be increased. This effect becomes more conspicuous as the power consumption of the electronic device increases.
JP-A-5-191930

然しながら、従来の電池を併用するようにした電子機器用電源装置においては、単純に電池を並列接続するようにしているので、この並列接続する電池に電圧差があるときには、電圧値の高い電池から電圧値の低い電池への充電電流が流れ無効電力となり、機器負荷により消費される電力以外にこの電池を消費することになり、無駄な電力消費を生じていた。   However, in the power supply device for electronic equipment that uses the conventional battery together, the batteries are simply connected in parallel. When there is a voltage difference between the batteries connected in parallel, the battery with the higher voltage value is used. A charging current to a battery having a low voltage value flows to become reactive power, and this battery is consumed in addition to the power consumed by the equipment load, resulting in useless power consumption.

本発明は、斯かる点に鑑み、無駄な電力消費を無くし、電池の使用効率を向上することを目的とする。   In view of such a point, the present invention aims to eliminate useless power consumption and improve battery use efficiency.

本発明電子機器用電源装置は、機器負荷を第1の電池及び第2の電池を用いて並列接続駆動できるように成された電子機器用電源装置であって、この第1の電池とこの機器負荷との間に設けた第1のスイッチと、この第2の電池とこの機器負荷との間に設けた第2のスイッチと、この第1及び第2の電池の電圧値を検出する電圧検出手段と、この第1及び第2の電池の電圧値を比較する電圧比較手段と、この第1及び第2のスイッチをオン・オフ制御する制御手段と、記憶手段とを有し、この機器負荷の動作開始毎にこの第1及び第2のスイッチを交互にオンして、この第1及び第2の電池のこの機器負荷に接続時の電圧値を検出して記憶し、その後この電圧値の高い方のスイッチをオンとし、この電圧値の低い方のスイッチをオフとし、その後この電圧値の高い方の電池の電圧値が消耗により下がって、この第1及び第2の電池の電圧値が等しくなったときにこの第1及び第2のスイッチを共にオンしこの第1及び第2の電池を並列接続するようにしたものである。   The power supply device for an electronic device according to the present invention is a power supply device for an electronic device configured to be able to drive the device load in parallel connection using the first battery and the second battery. A first switch provided between the load, a second switch provided between the second battery and the equipment load, and a voltage detection for detecting a voltage value of the first and second batteries Means for comparing the voltage values of the first and second batteries, control means for controlling on / off of the first and second switches, and storage means. The first and second switches are alternately turned on at the start of each operation, and the voltage value at the time of connection to the equipment load of the first and second batteries is detected and stored. Turn on the higher switch and turn off the lower switch. Thereafter, when the voltage value of the battery having the higher voltage value decreases due to exhaustion and the voltage values of the first and second batteries become equal, both the first and second switches are turned on. And the second battery is connected in parallel.

本発明によれば、機器負荷の動作時の第1及び第2の電池の夫々電圧値を検出し、電圧値の高い方の電池を使用し、この電圧値の高い方の電池の電圧値が消耗により、この第1及び第2の電池の電圧値が等しくなったときに、この第1及び第2の電池を並列接続するようにしたので、無駄な電力消費を無くし、電池の使用効率を向上することができる。   According to the present invention, the voltage values of the first and second batteries at the time of operation of the equipment load are detected, the battery having the higher voltage value is used, and the voltage value of the battery having the higher voltage value is determined. Since the first and second batteries are connected in parallel when the voltage values of the first and second batteries become equal due to exhaustion, wasteful power consumption is eliminated and the use efficiency of the battery is reduced. Can be improved.

以下、図1〜図4を参照して、本発明電子機器用電源装置を実施するための最良の形態の例につき説明する。図1は本例を示す構成図、図2は図1例の動作説明に供するフローチャート、図3及び図4は図1例の動作説明に供するタイムチャートである。   Hereinafter, an example of the best mode for carrying out the power supply device for electronic equipment according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing the present example, FIG. 2 is a flowchart for explaining the operation of the example of FIG. 1, and FIGS. 3 and 4 are time charts for explaining the operation of the example of FIG.

図1において、1及び2は夫々電池を示す。この電池1及び2はリチウムイオン電池、ニッケル水素充電池等の2次電池、アルカリ電池、マンガン電池等の1次電池のいずれの電池であっても良い。   In FIG. 1, reference numerals 1 and 2 denote batteries. The batteries 1 and 2 may be any of secondary batteries such as lithium ion batteries and nickel hydride rechargeable batteries, and primary batteries such as alkaline batteries and manganese batteries.

この電池1及び2の夫々の正極を夫々スイッチを構成するn形の電界効果トランジスタ3及び4の夫々のソースに接続し、この電界効果トランジスタ3及び4の夫々のドレインを互いに接続し、この電界効果トランジスタ3及び4の接続点をMDプレーヤ、CDプレーヤ等の電子機器の機器負荷5を介して接地する。   The positive electrodes of the batteries 1 and 2 are connected to the sources of the n-type field effect transistors 3 and 4 constituting the switches, and the drains of the field effect transistors 3 and 4 are connected to each other. A connection point between the effect transistors 3 and 4 is grounded via a device load 5 of an electronic device such as an MD player or a CD player.

この電池1及び2の夫々の正極を夫々逆流防止用のダイオード6及び7の夫々のアノードに接続し、このダイオード6及び7の夫々のカソードを電界効果トランジスタ3及び4の夫々のドレインの接続点に接続し、この電池1及び2の夫々の負極を接地する。   The positive electrodes of the batteries 1 and 2 are connected to the anodes of the backflow preventing diodes 6 and 7, respectively, and the cathodes of the diodes 6 and 7 are connected to the drains of the field effect transistors 3 and 4, respectively. And the negative electrodes of the batteries 1 and 2 are grounded.

この場合、スイッチを構成する電界効果トランジスタ3及び4がオフのときは、ダイオード6及び7により電流が阻止され電池1及び2間には電流は流れない。   In this case, when the field effect transistors 3 and 4 constituting the switch are off, the current is blocked by the diodes 6 and 7, and no current flows between the batteries 1 and 2.

本例においては、電池1及び2の夫々の正極を夫々アナログ信号をデジタル信号に変換するAーDコンバータ8a及び8bを介して図2のフローチャートに示す如き動作をする制御マイコン9の電池電圧入力端子10a及び10bに夫々接続する。   In this example, the battery voltage input of the control microcomputer 9 which operates as shown in the flowchart of FIG. 2 through the AD converters 8a and 8b for converting the positive electrodes of the batteries 1 and 2 into analog signals and digital signals, respectively. Connect to the terminals 10a and 10b, respectively.

このスイッチを構成する電界効果トランジスタ3及び4夫々のゲートを制御マイコン9制御信号出力端子11a及び11bに夫々接続する。また、電界効果トランジスタ3及び4の夫々のドレインの接続点を制御マイコン9の電源入力端子12に接続する。   The gates of the field effect transistors 3 and 4 constituting this switch are connected to the control microcomputer 9 control signal output terminals 11a and 11b, respectively. Further, the connection point of each drain of the field effect transistors 3 and 4 is connected to the power input terminal 12 of the control microcomputer 9.

この制御マイコン9は、電池1及び2の電圧値を検出する電圧検出手段と、この電池1及び2の電圧値を比較する電圧比較手段と、スイッチを構成する電界効果トランジスタ3及び4をオン・オフ制御する制御手段と、記憶手段とを構成し、図2に示す如きフローチャートに従った制御を行う。   The control microcomputer 9 turns on the voltage detecting means for detecting the voltage values of the batteries 1 and 2, the voltage comparing means for comparing the voltage values of the batteries 1 and 2, and the field effect transistors 3 and 4 constituting the switches. The control means for performing the off control and the storage means are configured, and control according to the flowchart shown in FIG. 2 is performed.

次に、本例の電子機器用電源装置の動作を図2のフローチャート、図3、図4のタイムチャートを参照して説明するに、電子機器に電池を接続したとき(ステップS1)には制御マイコン9の電源入力端子12に電源が供給され、この制御マイコン9が動作状態と成る(ステップS2)。このとき制御マイコン9は電池電圧入力端子10a及び10bに供給される電圧があるかどうかで電池1及び2が接続されているかを判断する(ステップS3)。この場合、図3、図4に示す如く、電子機器の機器負荷5が動作する前のタイミングの例えば図3Aに示す如きタイミングT1で電池1の電圧値を検出し、これを記憶手段に記憶する。   Next, the operation of the power supply device for an electronic device according to the present embodiment will be described with reference to the flowchart of FIG. 2 and the time charts of FIGS. 3 and 4. When a battery is connected to the electronic device (step S1), control is performed. Power is supplied to the power input terminal 12 of the microcomputer 9, and the control microcomputer 9 enters an operating state (step S2). At this time, the control microcomputer 9 determines whether or not the batteries 1 and 2 are connected depending on whether there is a voltage supplied to the battery voltage input terminals 10a and 10b (step S3). In this case, as shown in FIGS. 3 and 4, the voltage value of the battery 1 is detected at the timing T1 as shown in FIG. 3A, for example, before the device load 5 of the electronic device operates, and this is stored in the storage means. .

このステップS3で電池1及び2の一方のみが接続されているときは接続されている側の電界効果トランジスタ3又は4をオンして(ステップS4)、制御を終了する。   When only one of the batteries 1 and 2 is connected in step S3, the field effect transistor 3 or 4 on the connected side is turned on (step S4), and the control is terminated.

このステップS3で電池1及び2が接続されているとはんだんしたときには、電池1及び2の夫々の電圧値を比較する(ステップS5)。この図3、図4例では、この機器負荷5が動作する前の電圧値は、電池1>電池2であるとする。   When the batteries 1 and 2 are soldered in step S3, the voltage values of the batteries 1 and 2 are compared (step S5). 3 and 4, it is assumed that the voltage value before the device load 5 operates is battery 1> battery 2.

ステップS5で電池1の電圧値が高いので、初め図3B、図4Bに示す如く、この高い方に対応するスイッチを構成する電界効果トランジスタ3をオンとし、電圧値の低い方に対応するスイッチを構成する電界効果トランジスタ4をこのとき図3D、図4Dに示す如くオフとする(ステップS6)。   Since the voltage value of the battery 1 is high in step S5, first, as shown in FIGS. 3B and 4B, the field effect transistor 3 constituting the switch corresponding to the higher one is turned on, and the switch corresponding to the lower voltage value is turned on. At this time, the field effect transistor 4 is turned off as shown in FIGS. 3D and 4D (step S6).

次に、電子機器の機器負荷5の動作を開始する(ステップS7)。この機器負荷5の動作を開始したとき図3A、図4Aに示す如きタイミングT3で、この電池1の電圧値を検出する(ステップS8)。このときの電池1の電圧値をV1とする。この電圧値V1は、機器負荷5の不動作時に比較して下がっている。この電池1の電圧値V1を記憶手段に記憶しておく。   Next, the operation of the device load 5 of the electronic device is started (step S7). When the operation of the device load 5 is started, the voltage value of the battery 1 is detected at a timing T3 as shown in FIGS. 3A and 4A (step S8). The voltage value of the battery 1 at this time is set to V1. This voltage value V1 is lower than when the device load 5 is not operating. The voltage value V1 of the battery 1 is stored in the storage means.

次に、タイミングT3の経過後、図3B、図4B及び図3D、図4Dに示す如く、電界効果トランジスタ3をオフし、電界効果トランジスタ4をオンとし、電子機器の機器負荷5の動作開始後の図3C、図4Cに示す如きタイミングT4で、この電池2の電圧値を検出する(ステップS9)。このときの電池2の電圧値をV2とする。この電圧値V2は機器負荷5の不動作時に比較し下がっている。この電池2の電圧値V2を記憶手段に記憶しておく。   Next, after the timing T3, as shown in FIGS. 3B, 4B, 3D, and 4D, the field effect transistor 3 is turned off, the field effect transistor 4 is turned on, and the operation of the device load 5 of the electronic device is started. The voltage value of the battery 2 is detected at the timing T4 as shown in FIGS. 3C and 4C (step S9). The voltage value of the battery 2 at this time is V2. This voltage value V2 is lower than when the device load 5 is not operating. The voltage value V2 of the battery 2 is stored in the storage means.

次に、このときの電池1及び2の夫々の機器負荷5の動作時の夫々の電圧値V1及びV2を比較する(ステップS10)。図3A、Cに示す如く電池1の電圧値V1の方が高いときは、ステップS11に移行し、電池1を使用する如く電界効果トランジスタ3をオンとし、電界効果トランジスタ4をオフとする。   Next, the respective voltage values V1 and V2 at the time of operation of the respective device loads 5 of the batteries 1 and 2 at this time are compared (step S10). When the voltage value V1 of the battery 1 is higher as shown in FIGS. 3A and 3C, the process proceeds to step S11, where the field effect transistor 3 is turned on and the field effect transistor 4 is turned off so that the battery 1 is used.

その後、電池1の電圧値V1が電池1の消耗により電池2の電圧値V2と等しくなるまで、この電池1を使用する(ステップS12)。   Thereafter, the battery 1 is used until the voltage value V1 of the battery 1 becomes equal to the voltage value V2 of the battery 2 due to consumption of the battery 1 (step S12).

その後、電池1の電圧値V1が電池1の消耗により下がって電池2の電圧値V2と等しくなったときには、電池2に対応するスイッチを構成する電界効果トランジスタ4をオンとし(ステップS13)、電池1及び2を並列接続して使用を開始する(ステップS14)。この場合、電池1及び2の電圧値V1及びV2が等しいときは、充電電流は流れず無駄な電力消費をすることがない。   Thereafter, when the voltage value V1 of the battery 1 decreases due to the consumption of the battery 1 and becomes equal to the voltage value V2 of the battery 2, the field effect transistor 4 constituting the switch corresponding to the battery 2 is turned on (step S13). 1 and 2 are connected in parallel to start use (step S14). In this case, when the voltage values V1 and V2 of the batteries 1 and 2 are equal, the charging current does not flow and the useless power consumption is not caused.

この電池1及び2を並列接続して使用したときには、電池1及び2を夫々単独で使用する場合に比較し、見かけ上のインピーダンスを下げることができ、電池1及び2の使用効率を高めることができる。電子機器の機器負荷5の消費電力が大きい程この効果は顕著である。   When the batteries 1 and 2 are used in parallel connection, the apparent impedance can be lowered and the usage efficiency of the batteries 1 and 2 can be increased as compared with the case where the batteries 1 and 2 are used individually. it can. This effect is more remarkable as the power consumption of the device load 5 of the electronic device is larger.

このステップS10において、図4A、Cに示す如く、電池2の電圧値V2が高いときには、ステップS15に移行し、電池2を使用する如く電界効果トランジスタ4をオンとし、電界効果トランジスタ3をオフとする。   In step S10, as shown in FIGS. 4A and 4C, when the voltage value V2 of the battery 2 is high, the process proceeds to step S15, where the field effect transistor 4 is turned on and the field effect transistor 3 is turned off so as to use the battery 2. To do.

その後、電池2の電圧値V2が電池2の消耗により電池1の電圧値V1と等しくなるまで、この電池2を使用する(ステップS16)。   Thereafter, the battery 2 is used until the voltage value V2 of the battery 2 becomes equal to the voltage value V1 of the battery 1 due to the consumption of the battery 2 (step S16).

その後、電池2の電圧値V2が電池2の消耗により下がって電池1の電圧値V1と等しくなったときには、電池1に対応するスイッチを構成する電界効果トランジスタ3をオンとし(ステップS17)、電池1及び2を並列接続して使用を開始する(ステップS14)。この場合、電池1及び2の電圧値V1及びV2が等しいときは、充電電流は流れず無駄な電力消費をすることがない。   Thereafter, when the voltage value V2 of the battery 2 decreases due to the consumption of the battery 2 and becomes equal to the voltage value V1 of the battery 1, the field effect transistor 3 constituting the switch corresponding to the battery 1 is turned on (step S17). 1 and 2 are connected in parallel to start use (step S14). In this case, when the voltage values V1 and V2 of the batteries 1 and 2 are equal, the charging current does not flow and the useless power consumption is not caused.

この電池1及び2を並列接続して使用したときには、電池1及び2を夫々単独で使用する場合に比較し、見かけ上のインピーダンスを下げることができ、電池1及び2の使用効率を高めることができる。電子機器の機器負荷5の消費電力が大きい程この効果は顕著である。   When the batteries 1 and 2 are used in parallel connection, the apparent impedance can be lowered and the usage efficiency of the batteries 1 and 2 can be increased as compared with the case where the batteries 1 and 2 are used individually. it can. This effect is more remarkable as the power consumption of the device load 5 of the electronic device is larger.

また、図2のフローチャートにおいて、ステップS5で図3、図4例とは逆に、この機器負荷5が動作する前の電圧値が、電池1<電池2であったときは、電池2の電圧値が高いので、ステップS18に移行し、この高い方に対応するスイッチを構成する電界効果トランジスタ4をオンとし、電圧値の低い方に対応するスイッチを構成する電界効果トランジスタ3をオフとする。   In the flowchart of FIG. 2, when the voltage value before the operation of the device load 5 is battery 1 <battery 2 in step S5, contrary to the examples of FIGS. Since the value is high, the process proceeds to step S18, where the field effect transistor 4 constituting the switch corresponding to the higher one is turned on, and the field effect transistor 3 constituting the switch corresponding to the lower voltage value is turned off.

次に、電子機器の機器負荷5の動作を開始する(ステップS19)。この機器負荷5の動作を開始したタイミングで、この電池2の電圧値を検出する(ステップS20)。このときの電池2の電圧値をV2とする。この電圧値V2は、機器負荷5の不動作時に比較して下がっている。この電池2の電圧値V2を記憶手段に記憶しておく。   Next, the operation of the device load 5 of the electronic device is started (step S19). The voltage value of the battery 2 is detected at the timing when the operation of the device load 5 is started (step S20). The voltage value of the battery 2 at this time is V2. This voltage value V2 is lower than when the device load 5 is not operating. The voltage value V2 of the battery 2 is stored in the storage means.

次に、このタイミングの経過後、電界効果トランジスタ3をオンし、電界効果トランジスタ4をオフとし、電子機器の機器負荷5の動作開始後のタイミングで、この電池1の電圧値を検出する(ステップS21)。このときの電池1の電圧値をV1とする。この電圧値V1は機器負荷5の不動作時に比較し下がっている。この電池1の電圧値V1を記憶手段に記憶しておく。   Next, after the elapse of this timing, the field effect transistor 3 is turned on, the field effect transistor 4 is turned off, and the voltage value of the battery 1 is detected at the timing after the start of the operation of the device load 5 of the electronic device (step). S21). The voltage value of the battery 1 at this time is set to V1. This voltage value V1 is lower than when the device load 5 is not operating. The voltage value V1 of the battery 1 is stored in the storage means.

次に、このときの電池1及び2の夫々の機器負荷5の動作時の夫々の電圧値V1及びV2を比較する(ステップS22)。このステップS22で、電池2の電圧値V2の方が高いときは、ステップS15に移行し、電池2を使用する如く電界効果トランジスタ4をオンとし、電界効果トランジスタ3をオフとする。   Next, the respective voltage values V1 and V2 at the time of operation of the respective device loads 5 of the batteries 1 and 2 at this time are compared (step S22). If the voltage value V2 of the battery 2 is higher in step S22, the process proceeds to step S15, where the field effect transistor 4 is turned on and the field effect transistor 3 is turned off so that the battery 2 is used.

その後、電池2の電圧値V2が電池2の消耗により電池1の電圧値V1と等しくなるまで、この電池2を使用する(ステップS16)。   Thereafter, the battery 2 is used until the voltage value V2 of the battery 2 becomes equal to the voltage value V1 of the battery 1 due to the consumption of the battery 2 (step S16).

その後、電池2の電圧値V2が電池2の消耗により下がって電池1の電圧値V1と等しくなったときには、電池1に対応するスイッチを構成する電界効果トランジスタ3をオンとし(ステップS17)、電池1及び2を並列接続して使用を開始する(ステップS14)。この場合、電池1及び2の電圧値V1及びV2が等しいときは、充電電流は流れず無駄な電力消費をすることがない。   Thereafter, when the voltage value V2 of the battery 2 decreases due to the consumption of the battery 2 and becomes equal to the voltage value V1 of the battery 1, the field effect transistor 3 constituting the switch corresponding to the battery 1 is turned on (step S17). 1 and 2 are connected in parallel to start use (step S14). In this case, when the voltage values V1 and V2 of the batteries 1 and 2 are equal, the charging current does not flow and the useless power consumption is not caused.

また、ステップS22において、電池1の電圧値V1が電池2の電圧値V2より高いときには、ステップS11に移行し、電池1を使用する如く電界効果トランジスタ3をオンとし、電界効果トランジスタ4をオフとする。   In step S22, when the voltage value V1 of the battery 1 is higher than the voltage value V2 of the battery 2, the process proceeds to step S11, where the field effect transistor 3 is turned on and the field effect transistor 4 is turned off so as to use the battery 1. To do.

その後、電池1の電圧値V1が電池1の消耗により電池2の電圧値V2と等しくなるまで、この電池1を使用する(ステップS12)。   Thereafter, the battery 1 is used until the voltage value V1 of the battery 1 becomes equal to the voltage value V2 of the battery 2 due to consumption of the battery 1 (step S12).

その後、電池1の電圧値V1が電池1の消耗により下がって電池2の電圧値V2と等しくなったときには、電池2に対応するスイッチを構成する電界効果トランジスタ4をオンとし(ステップS13)、電池1及び2を並列接続して使用を開始する(ステップS14)。この場合、電池1及び2の電圧値V1及びV2が等しいときは、充電電流は流れず無駄な電力消費をすることがない。   Thereafter, when the voltage value V1 of the battery 1 decreases due to the consumption of the battery 1 and becomes equal to the voltage value V2 of the battery 2, the field effect transistor 4 constituting the switch corresponding to the battery 2 is turned on (step S13). 1 and 2 are connected in parallel to start use (step S14). In this case, when the voltage values V1 and V2 of the batteries 1 and 2 are equal, the charging current does not flow and the useless power consumption is not caused.

本例によれば、機器負荷5の動作時の電池1及び2の夫々電圧値V1及びV2を検出し、電圧値の高い方の電池を使用し、この電圧値の高い方の電池の電圧値が消耗により、この電池1及び2の電圧値V1及びV2が等しくなったときに、この電池1及び2を並列接続するようにしたので、一方の電池から他方の電池に充電電流を流すことがなく無駄な電力消費を無くし、電池の使用効率を向上することができる。   According to this example, the voltage values V1 and V2 of the batteries 1 and 2 during operation of the equipment load 5 are detected, the battery with the higher voltage value is used, and the voltage value of the battery with the higher voltage value is used. When the voltage values V1 and V2 of the batteries 1 and 2 become equal to each other due to wear, the batteries 1 and 2 are connected in parallel, so that a charging current can flow from one battery to the other battery. It is possible to eliminate unnecessary power consumption and improve the use efficiency of the battery.

又、本例によれば電池1及び2の一方に1次電池を使用し、他方に2次電池を使用するときに、この1次電池と2次電池とで電圧差があるときに、充電電流を流すことがないので有効である。   Further, according to this example, when a primary battery is used for one of the batteries 1 and 2 and a secondary battery is used for the other, charging is performed when there is a voltage difference between the primary battery and the secondary battery. This is effective because no current flows.

尚、上述例では、ダイオード6、7を設けたが制御マイコン9に他の手段で電源を供給するようにしたときは、このダイオード6、7は不要である。   In the above example, the diodes 6 and 7 are provided. However, when power is supplied to the control microcomputer 9 by other means, the diodes 6 and 7 are not necessary.

また、本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Further, the present invention is not limited to the above-described example, and various other configurations can be adopted without departing from the gist of the present invention.

本発明は、電子機器用電源装置を実施するための最良の形態の例を示す構成図である。The present invention is a configuration diagram showing an example of the best mode for carrying out a power supply device for electronic equipment. 図1の説明に供するフローチャートである。It is a flowchart with which it uses for description of FIG. 図1の説明に供するタイムチャートである。It is a time chart with which it uses for description of FIG. 図1の説明に供するタイムチャートである。It is a time chart with which it uses for description of FIG.

符号の説明Explanation of symbols

1、2…電池、3、4…電界効果トランジスタ、5…機器負荷、6、7…ダイオード、8a、8b…A−Dコンバータ、9…制御マイコン   DESCRIPTION OF SYMBOLS 1, 2 ... Battery 3, 4 ... Field effect transistor, 5 ... Equipment load, 6, 7 ... Diode, 8a, 8b ... AD converter, 9 ... Control microcomputer

Claims (3)

機器負荷を第1の電池及び第2の電池を用いて並列接続駆動できるように成された電子機器用電源装置であって、
前記第1の電池と前記機器負荷との間に設けた第1のスイッチと、
前記第2の電池と前記機器負荷との間に設けた第2のスイッチと、
前記第1及び第2の電池の電圧値を検出する電圧検出手段と、
前記第1及び第2の電池の電圧値を比較する電圧比較手段と、
前記第1及び第2のスイッチをオン・オフ制御する制御手段と、
記憶手段とを有し、
前記機器負荷の動作開始毎に前記第1及び第2のスイッチを交互にオンして、前記第1及び第2の電池の前記機器負荷に接続時の電圧値を検出して記憶し、その後前記電圧値の高い方のスイッチをオンとし、前記電圧値の低い方のスイッチをオフとし、その後前記電圧値の高い方の電池の電圧値が消耗により下がって、前記第1及び第2の電池の電圧値が等しくなったときに前記第1及び第2のスイッチを共にオンし前記第1及び第2の電池を並列接続するようにしたことを特徴とする電子機器用電源装置。
A power supply device for an electronic device configured to be able to drive the device load in parallel connection using the first battery and the second battery,
A first switch provided between the first battery and the device load;
A second switch provided between the second battery and the device load;
Voltage detection means for detecting voltage values of the first and second batteries;
Voltage comparison means for comparing voltage values of the first and second batteries;
Control means for controlling on / off of the first and second switches;
Storage means,
Each time the device load starts operation, the first and second switches are alternately turned on to detect and store a voltage value at the time of connection to the device load of the first and second batteries, and then the The switch with the higher voltage value is turned on, the switch with the lower voltage value is turned off, and then the voltage value of the battery with the higher voltage value drops due to consumption, so that the first and second batteries A power supply apparatus for electronic equipment, wherein when the voltage values become equal, both the first and second switches are turned on to connect the first and second batteries in parallel.
請求項1記載の電子機器用電源装置において、
前記機器負荷の動作開始前に前記第1及び第2の電池の電圧値を検出し、前記機器負荷の動作開始時に、電圧値の高い方のスイッチを先にオンするようにしたことを特徴とする電子機器用電源装置。
In the electronic device power supply device according to claim 1,
The voltage value of the first and second batteries is detected before the operation of the device load is started, and the switch having the higher voltage value is turned on first when the operation of the device load is started. Power supply for electronic equipment.
請求項1又は2記載の電子機器用電源装置において、
前記第1及び第2の電池の一方が1次電池で他方が2次電池であることを特徴とする電子機器用電源装置。
In the electronic device power supply device according to claim 1 or 2,
One of said 1st and 2nd batteries is a primary battery, and the other is a secondary battery, The power supply device for electronic devices characterized by the above-mentioned.
JP2005224226A 2005-08-02 2005-08-02 Power supply for electronic device Pending JP2007043808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224226A JP2007043808A (en) 2005-08-02 2005-08-02 Power supply for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224226A JP2007043808A (en) 2005-08-02 2005-08-02 Power supply for electronic device

Publications (1)

Publication Number Publication Date
JP2007043808A true JP2007043808A (en) 2007-02-15

Family

ID=37801275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224226A Pending JP2007043808A (en) 2005-08-02 2005-08-02 Power supply for electronic device

Country Status (1)

Country Link
JP (1) JP2007043808A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033936A (en) * 2007-07-30 2009-02-12 Toshiba Corp Parallel-connected energy storage system
WO2012168963A1 (en) * 2011-06-07 2012-12-13 トヨタ自動車株式会社 Battery system, and method for controlling battery system
JP2013038831A (en) * 2011-08-03 2013-02-21 Denso Corp Battery control apparatus
JP2013215045A (en) * 2012-04-02 2013-10-17 Sekisui Chem Co Ltd Power storage system, cartridge
KR20210044028A (en) 2019-10-14 2021-04-22 주식회사 엘지화학 Energy Charging Method in Parallel Battery Packs using Energy Difference between Multi-Packs Comprising the Same and the Control System Thereof
KR20210044027A (en) 2019-10-14 2021-04-22 주식회사 엘지화학 Energy Discharging Method in Parallel Battery Packs using Energy Difference between Multi-Packs Comprising the Same and the Control System Thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033936A (en) * 2007-07-30 2009-02-12 Toshiba Corp Parallel-connected energy storage system
WO2012168963A1 (en) * 2011-06-07 2012-12-13 トヨタ自動車株式会社 Battery system, and method for controlling battery system
CN102934316A (en) * 2011-06-07 2013-02-13 丰田自动车株式会社 Battery system and method for controlling battery system
JPWO2012168963A1 (en) * 2011-06-07 2015-02-23 トヨタ自動車株式会社 Battery system and battery system control method
US9211800B2 (en) 2011-06-07 2015-12-15 Toyota Jidosha Kabushiki Kaisha Battery system and control method of battery system
JP2013038831A (en) * 2011-08-03 2013-02-21 Denso Corp Battery control apparatus
JP2013215045A (en) * 2012-04-02 2013-10-17 Sekisui Chem Co Ltd Power storage system, cartridge
KR20210044028A (en) 2019-10-14 2021-04-22 주식회사 엘지화학 Energy Charging Method in Parallel Battery Packs using Energy Difference between Multi-Packs Comprising the Same and the Control System Thereof
KR20210044027A (en) 2019-10-14 2021-04-22 주식회사 엘지화학 Energy Discharging Method in Parallel Battery Packs using Energy Difference between Multi-Packs Comprising the Same and the Control System Thereof

Similar Documents

Publication Publication Date Title
JP5567684B2 (en) Battery balancing circuit and method for balancing energy stored in a plurality of cells of a battery having a first terminal and a second terminal
JP4836036B2 (en) Power converter
KR100500108B1 (en) Power source circuit, electronic device being equipped with same power source circuit and control method of power source circuit
WO2010074055A1 (en) Power supply device
JP5121345B2 (en) Voltage equalization controller
JP2007043808A (en) Power supply for electronic device
JP2007166715A (en) Battery pack and charging method thereof
WO2010082263A1 (en) Charge control circuit
JP2007135375A (en) Controller for dc-dc converter
US7336053B2 (en) Battery-powered electronic equipment with charge control circuit
JP3954081B1 (en) Power storage device
JP2003235178A (en) Battery output controller
JP2008131675A (en) Power supply apparatus and leakage detecting method
JP2002142375A (en) Power storage system and control method therefor
JP2007330003A (en) Charging method of serially-connected secondary battery
JP2009165203A (en) Uninterruptible power supply unit
JP2008220021A (en) Charging device
JP2006042523A (en) Power supply
JP5177805B2 (en) Power supply
JP2006074839A (en) Voltage equalizer of storage element
JPH09322430A (en) Backup circuit
JP3490889B2 (en) Power control circuit
JPH1169641A (en) Power circuit
JP2006114849A (en) Electrical equipment
JP2007244129A (en) Power supply