JP2007166715A - Battery pack and charging method thereof - Google Patents

Battery pack and charging method thereof Download PDF

Info

Publication number
JP2007166715A
JP2007166715A JP2005356699A JP2005356699A JP2007166715A JP 2007166715 A JP2007166715 A JP 2007166715A JP 2005356699 A JP2005356699 A JP 2005356699A JP 2005356699 A JP2005356699 A JP 2005356699A JP 2007166715 A JP2007166715 A JP 2007166715A
Authority
JP
Japan
Prior art keywords
series
terminal
field effect
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005356699A
Other languages
Japanese (ja)
Other versions
JP4812419B2 (en
Inventor
Tsukasa Takahashi
司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005356699A priority Critical patent/JP4812419B2/en
Publication of JP2007166715A publication Critical patent/JP2007166715A/en
Application granted granted Critical
Publication of JP4812419B2 publication Critical patent/JP4812419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve power loss during charging, eliminate damage due to an inrush current by a potential difference between a plurality of serial-connection battery blocks, and to further extend discharging time. <P>SOLUTION: A positive terminal of a first battery block in which a plurality of secondary batteries are connected in series is connected to first and second field effect transistors in series. The second field effect transistor is connected to a charge/discharge positive terminal. A negative terminal of the first series-connected battery block is connected to a charge/discharge negative terminal. The positive terminal of the second battery block in which the plurality of secondary batteries are connected in series is connected to third and fourth field effect transistors in series. The fourth field effect transistor is connected to the charge/discharge positive terminal. The negative terminal of the second series-connected battery block is connected to the charge/discharge terminal. The voltage of the first and second series-connected battery blocks is read. A control microcomputer for controlling the first, second, third, and fourth field effect transistors is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、比較的大容量の電池パック及び電池パックの充電方法に関する。   The present invention relates to a battery pack having a relatively large capacity and a method for charging the battery pack.

一般に、比較的大容量の電池パックを得るのに、複数の2次電池が直列接続された直列接続電池ブロックを複数個並列接続する構成が取られている。この複数の2次電池が直列接続された直列接続電池ブロックを複数個並列接続する場合、この複数個の直列接続電池ブロック間に電位差があるときには、電位の高い直列接続電池ブロックから電位の低い直列接続電池ブロックに突入電流が流れ込む。   Generally, in order to obtain a battery pack having a relatively large capacity, a configuration is adopted in which a plurality of series-connected battery blocks in which a plurality of secondary batteries are connected in series are connected in parallel. When a plurality of series-connected battery blocks in which a plurality of secondary batteries are connected in series are connected in parallel, and there is a potential difference between the plurality of series-connected battery blocks, the series connection battery block having a high potential is connected in series with a low potential. Inrush current flows into the connected battery block.

この突入電流が流れ込んだときは、この電流は直列接続電池ブロックの内部インピーダンスに制限されるのみで、電位の低い直列接続電池ブロックは、この突入電流によりダメージを与えられる。   When this inrush current flows, this current is limited only to the internal impedance of the series connection battery block, and the series connection battery block having a low potential is damaged by this inrush current.

そこで、従来の電池パックは図4に示す如き構成を取っていた。図4において、1、2及び3は夫々複数個例えば4個の2次電池が直列接続された直列接続電池ブロックを示し、この直列接続電池ブロック1、2及び3の夫々の正極端子を逆流防止用のダイオード4a、5a及び6aの夫々のカソードに接続し、この逆流防止用のダイオード4a、5a及び6aの夫々のアノードを充電時に正の直流電圧が供給される充電正極端子7に接続する。   Therefore, the conventional battery pack has a configuration as shown in FIG. In FIG. 4, 1, 2, and 3 indicate a series connection battery block in which a plurality of, for example, 4 secondary batteries are connected in series, and the positive terminal of each of the series connection battery blocks 1, 2, and 3 is prevented from backflow. The diodes 4a, 5a and 6a are connected to the cathodes, and the anodes of the backflow preventing diodes 4a, 5a and 6a are connected to the charging positive terminal 7 to which a positive DC voltage is supplied during charging.

また、この直列接続電池ブロック1、2及び3の夫々の正極端子を逆流防止用のダイオード4b、5b及び6bの夫々のアノードに接続し、この逆流防止用のダイオード4b、5b及び6bの夫々のカソードを放電時に正の直流電圧を放電する放電正極端子8に接続する。   Further, the positive terminals of the series-connected battery blocks 1, 2, and 3 are connected to the anodes of the backflow prevention diodes 4b, 5b, and 6b, respectively, and the backflow prevention diodes 4b, 5b, and 6b are respectively connected. The cathode is connected to a discharge positive terminal 8 that discharges a positive DC voltage when discharging.

この直列接続電池ブロック1、2及び3の夫々の負極端子を充電時及び放電時に負極端子となる充放電負極端子9に夫々接続する。   The negative terminal of each of the series-connected battery blocks 1, 2, and 3 is connected to a charge / discharge negative terminal 9 that becomes a negative terminal during charging and discharging, respectively.

この図4の従来例においては、充電時は、充電正極端子7よりの充電電流によりダイオード4a、5a及び6aを介して直列接続電池ブロック1、2及び3が充電され、放電時は、直列接続電池ブロック1、2及び3からの夫々の放電電流は、ダイオード4b、5b及び6bを介し、放電正極端子8を介して負荷に放電される。   In the conventional example of FIG. 4, when connected, the series connection battery blocks 1, 2 and 3 are charged via the diodes 4a, 5a and 6a by the charging current from the charging positive terminal 7, and when discharging, the series connection battery blocks 1, 2 and 3 are connected in series. The respective discharge currents from the battery blocks 1, 2 and 3 are discharged to the load via the discharge positive terminal 8 via the diodes 4b, 5b and 6b.

この図4例では、直列接続電池ブロック1、2及び3間に電位差があっても、逆流防止用のダイオード4a、5a、6a及び4b、5b、6bがあるので、直列接続電池ブロック1、2及び3間に電流が流れることがなく、突入電流が流れることがなく、各直列接続電池ブロック1、2、3にダメージを与えることがない。   In the example of FIG. 4, even if there is a potential difference between the series-connected battery blocks 1, 2, and 3, there are diodes 4 a, 5 a, 6 a and 4 b, 5 b, 6 b for preventing backflow. And no current flows between 3 and 3, no inrush current flows, and no damage is caused to each of the series-connected battery blocks 1, 2, and 3.

また、特許文献1には、直並列に接続された複数個の2次電池に対して、個々に電池電圧を検出する手段と、2次電池の直列回路によって構成される並列回路毎の充電電流を検知する手段を設け、これら検出された電池電圧あるいは充電電圧に基づいて、個々の電池毎に充電電流を制御する手段と並列回路毎に充電出力を制御する手段を設けており、定電流定電圧充電したときは、2次電池毎の電池電圧の変化を検出し、2次電池毎の充電電流を制御し、並列回路毎の充電電流の変化を検出し、並列回路毎の充電出力を制御するようにしたものが開示されている。   Further, Patent Document 1 discloses a charging current for each parallel circuit configured by means for individually detecting a battery voltage and a series circuit of secondary batteries for a plurality of secondary batteries connected in series and parallel. And a means for controlling the charging current for each battery and a means for controlling the charging output for each parallel circuit based on the detected battery voltage or charging voltage. When voltage charging is performed, changes in battery voltage for each secondary battery are detected, charging current for each secondary battery is controlled, changes in charging current for each parallel circuit are detected, and charging output for each parallel circuit is controlled What has been made to be disclosed is disclosed.

この特許文献1に開示されたものは、過充電、過放電を防止するようにしたもので、複数個の直列接続電池ブロック間に電位差があり、この電位の低い直列接続電池ブロックへの突入電流を阻止するようにしたものではない。
特開平10−304586号公報
The one disclosed in Patent Document 1 is designed to prevent overcharge and overdischarge, and there is a potential difference between a plurality of series-connected battery blocks, and an inrush current to the series-connected battery block having a low potential. It is not intended to prevent.
JP-A-10-304586

然しながら、図4従来例においては、放電時の放電電流により逆流防止用のダイオード4b、5b及び6bにおいて、電力損失を生じる。即ち、逆流防止用のダイオード4b、5b及び6bの放電電流をIとし、このダイオード4b、5b及び6bのスレッシュホールド電圧をVfとしたとき、I×Vfの電力損失が発生する。   However, in the conventional example shown in FIG. 4, power loss occurs in the backflow prevention diodes 4b, 5b and 6b due to the discharge current during discharge. That is, assuming that the discharge current of the diodes 4b, 5b and 6b for backflow prevention is I and the threshold voltage of the diodes 4b, 5b and 6b is Vf, a power loss of I × Vf occurs.

この電力損失は、このダイオード4b、5b及び6bのスレッシュホールド電圧Vfが例えば0.6Vと比較的大きく、放電電流Iが大きくなれば成る程大きくなり、大容量の電池パックでは無視できない程大きくなる不都合があった。   This power loss increases as the threshold voltage Vf of the diodes 4b, 5b, and 6b is relatively large, for example, 0.6V, and the discharge current I increases, and becomes so large that it cannot be ignored in a large-capacity battery pack. There was an inconvenience.

また、直列接続電池ブロック1、2及び3はダイオード4a、5a、6a及び4b、5b、6bで分離されているため接続時の容量バランスのバラツキは改善されることがなく、この直列接続電池ブロック1、2及び3の容量バランスが崩れた状態で充放電が行われることは、放電時に過放電防止回路があるときには、容量の低い直列接続電池ブロックに放電時間が左右されることにのり、放電時間が短くなる等の不都合があった。   Further, since the series connection battery blocks 1, 2 and 3 are separated by the diodes 4a, 5a, 6a and 4b, 5b, 6b, the variation in capacity balance at the time of connection is not improved. Charging / discharging in the state where the capacity balance of 1, 2 and 3 is lost means that when there is an overdischarge prevention circuit at the time of discharge, the discharge time depends on the low-capacity series-connected battery block. There were inconveniences such as shortening the time.

本発明は、斯かる点に鑑み、放電時の電力損失を改善すると共に複数個の直列接続電池ブロック間の電位差による突入電流によりダメージを受けないようにし、更に放電時間を延長できるようにすることを目的とする。   In view of the above, the present invention improves power loss during discharging, prevents damage from inrush current due to a potential difference between a plurality of series-connected battery blocks, and further extends the discharge time. With the goal.

本発明電池パックは、複数の2次電池が直列接続された第1の直列接続電池ブロックの正極端子を第1の電界効果トランジスタのドレイン端子に接続し、この第1の電界効果トランジスタのソース端子を第2の電界効果トランジスタのソース端子に接続し、この第2の電界効果トランジスタのドレイン端子を充放電正極端子に接続し、この第1の直列接続電池ブロックの負極端子を充放電負極端子に接続し、複数の2次電池が直列接続された第2の直列接続電池ブロックの正極端子を第3の電界効果トランジスタのドレイン端子に接続し、この第3の電界効果トランジスタのソース端子を第4の電界効果トランジスタのソース端子に接続し、この第4の電界効果トランジスタのドレイン端子をこの充放電正極端子に接続し、この第2の直列接続電池ブロックの負極端子をこの充放電負極端子に接続し、この第1及び第2の直列接続電池ブロックの電圧を読み取ると共にこの第1、第2、第3及び第4の電界効果トランジスタを制御する制御マイクロコンピュータを設けたものである。   The battery pack of the present invention connects the positive terminal of a first series-connected battery block in which a plurality of secondary batteries are connected in series to the drain terminal of the first field effect transistor, and the source terminal of the first field effect transistor Is connected to the source terminal of the second field effect transistor, the drain terminal of the second field effect transistor is connected to the charge / discharge positive terminal, and the negative terminal of the first series-connected battery block is connected to the charge / discharge negative terminal. The positive terminal of the second series-connected battery block in which a plurality of secondary batteries are connected in series is connected to the drain terminal of the third field effect transistor, and the source terminal of the third field effect transistor is connected to the fourth terminal. And the drain terminal of the fourth field effect transistor is connected to the charge / discharge positive terminal, and the second series connection is connected to the source terminal of the field effect transistor. The negative terminal of the battery block is connected to the charge / discharge negative terminal, the voltages of the first and second series-connected battery blocks are read, and the first, second, third and fourth field effect transistors are controlled. A control microcomputer is provided.

また、本発明電池パックの充電方法は、複数の2次電池が直列接続された第1の直列接続電池ブロックの正極端子を第1の電界効果トランジスタのドレイン端子に接続し、この第1の電界効果トランジスタのソース端子を第2の電界効果トランジスタのソース端子に接続し、この第2の電界効果トランジスタのドレイン端子を充放電正極端子に接続し、この第1の直列接続電池ブロックの負極端子を充放電負極端子に接続し、複数の2次電池が直列接続された第2の直列接続電池ブロックの正極端子を第3の電界効果トランジスタのドレイン端子に接続し、この第3の電界効果トランジスタのソース端子を第4の電界効果トランジスタのソース端子に接続し、この第4の電界効果トランジスタのドレイン端子をこの充放電正極端子に接続し、この第2の直列接続電池ブロックの負極端子をこの充放電負極端子に接続し、この第1及び第2の直列接続電池ブロックの電圧を読み取ると共にこの第1、第2、第3及び第4の電界効果トランジスタを制御する制御マイクロコンピュータを設けた電池パックの充電方法であって、この第1及び第2の直列接続電池ブロックの電圧を比較し、電圧の低い方を先に充電し、電圧が等しくなったときに同時に充電するようにしたものである。   In the battery pack charging method of the present invention, the positive terminal of the first series-connected battery block in which a plurality of secondary batteries are connected in series is connected to the drain terminal of the first field effect transistor, and the first electric field is supplied. The source terminal of the effect transistor is connected to the source terminal of the second field effect transistor, the drain terminal of the second field effect transistor is connected to the charge / discharge positive terminal, and the negative terminal of the first series-connected battery block is connected Connected to the charge / discharge negative electrode terminal, the positive terminal of the second series-connected battery block in which a plurality of secondary batteries are connected in series is connected to the drain terminal of the third field effect transistor. Connecting the source terminal to the source terminal of the fourth field effect transistor, connecting the drain terminal of the fourth field effect transistor to the charge / discharge positive electrode terminal; The negative terminal of the second series-connected battery block is connected to the charge / discharge negative terminal, the voltages of the first and second series-connected battery blocks are read, and the first, second, third and fourth A battery pack charging method provided with a control microcomputer for controlling a field effect transistor, comparing the voltages of the first and second series-connected battery blocks, charging the lower one first, When they are equal, they are charged at the same time.

本発明によれば、放電時は、第1、第2、第3及び第4の電界効果トランジスタをオンとして行うので、この第1、第2、第3及び第4の電界効果トランジスタはオン時の電圧降下が極めて小さく、この第1、第2、第3及び第4の電界効果トランジスタによる電力損失は極めて小さいと共に充電時は、第1及び第2の直列接続電池ブロックの電圧を比較し、電圧の低い方を先に充電し、電圧が等しくなったときに同時に充電するようにしたので、この第1及び第2の直列接続電池ブロックが互いに並列に接続されるときはこの第1及び第2の直列接続電池ブロック間の電位差は0Vであり、この第1及び第2の直列接続電池ブロック間には電流は流れず突入電流によりダメージを受けない安全性の高い大容量の電池パックを得ることができる。   According to the present invention, when discharging, the first, second, third and fourth field effect transistors are turned on, so that the first, second, third and fourth field effect transistors are turned on. The voltage drop of the first, second, third, and fourth field effect transistors is extremely small, and the power loss due to the first, second, third, and fourth field effect transistors is extremely small. Since the one with the lower voltage is charged first and charged at the same time when the voltages become equal, when the first and second series-connected battery blocks are connected in parallel to each other, the first and second The potential difference between the two series-connected battery blocks is 0 V, and no current flows between the first and second series-connected battery blocks, and a high-safety large-capacity battery pack that is not damaged by the inrush current is obtained. be able to.

また、本発明によれば、充電時に各直列接続電池ブロック間の電位差をなくすことができるので、各直列接続電池ブロック間の容量バランスを改善でき放電時間の延長を図ることができる。   In addition, according to the present invention, since the potential difference between the series-connected battery blocks can be eliminated during charging, the capacity balance between the series-connected battery blocks can be improved, and the discharge time can be extended.

以下、図1、図2及び図3を参照して本発明電池パック及び電池パックの充電方法を実施するための最良の形態の例につき説明する。図1、図2、図3につき説明するに、図1において、図4に対応する部分には同一符号を付して示す。   Hereinafter, an example of the best mode for carrying out the battery pack and the battery pack charging method of the present invention will be described with reference to FIGS. 1, 2, and 3. 1, 2, and 3, portions corresponding to those in FIG. 4 are denoted by the same reference numerals in FIG. 1.

図1例において、1、2及び3は夫々複数個例えば4個の2次電池が直列接続された直列接続電池ブロックを示し、この直列接続電池ブロック1、2及び3の夫々の正極端子を放電制御用のpチャンネルの電界効果トランジスタ10a、11a及び12aの夫々のドレイン端子に接続する。   In the example of FIG. 1, 1, 2, and 3 indicate a series connection battery block in which a plurality of, for example, four secondary batteries are connected in series, and the positive terminal of each of the series connection battery blocks 1, 2, and 3 is discharged. The p-channel field effect transistors 10a, 11a and 12a for control are connected to the respective drain terminals.

この電界効果トランジスタ10a、11a及び12aの夫々のソース端子を夫々充電制御用のpチャンネルの電界効果トランジスタ10b、11b及び12bの夫々のソース端子に接続し、この電界効果トランジスタ10b、11b及び12bの夫々のドレイン端子を充電時及び放電時に正極端子となる充放電正極端子13に夫々接続する。   The source terminals of the field effect transistors 10a, 11a and 12a are connected to the source terminals of the p-channel field effect transistors 10b, 11b and 12b for charge control, respectively, and the field effect transistors 10b, 11b and 12b are connected. Each drain terminal is connected to a charge / discharge positive electrode terminal 13 which becomes a positive electrode terminal during charging and discharging.

また、この電界効果トランジスタ10a、10b、11a、11b、12a及び12bの夫々のゲート端子を後述の如く制御する制御マイクロコンピュータ14の夫々の制御端子に夫々接続する。   Further, the gate terminals of the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b are connected to the respective control terminals of the control microcomputer 14 which is controlled as described later.

この直列接続電池ブロック1、2及び3の夫々の負極端子を充電時及び放電時に負極端子となる充放電負極端子9に夫々接続する。また、この直列接続電池ブロック1、2及び3の夫々の正極端子及び負極端子を制御マイクロコンピュータ14の夫々の電圧を読み取る読み取り端子に接続し、この制御マイクロコンピュータ14で、この夫々の直列接続電池ブロック1、2及び3の電圧を読み取る如くする。   The negative terminal of each of the series-connected battery blocks 1, 2, and 3 is connected to a charge / discharge negative terminal 9 that becomes a negative terminal during charging and discharging, respectively. Further, the positive terminal and the negative terminal of each of the series-connected battery blocks 1, 2, and 3 are connected to reading terminals for reading the respective voltages of the control microcomputer 14, and the control microcomputer 14 uses the respective series-connected batteries. Read the voltages of blocks 1, 2 and 3.

本例においては、図1に示す如く、各直列接続電池ブロック1、2及び3を接続した時点では、制御マイクロコンピュータ14は電界効果トランジスタ10a、10b、11a、11b、12a及び12bを全てオフ状態とし、充電も放電も不可能な状態とする。   In this example, as shown in FIG. 1, the control microcomputer 14 turns off all the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b when the series-connected battery blocks 1, 2 and 3 are connected. And charging and discharging are impossible.

充電時においては、充放電正極端子13及び充放電負極端子9間に充電電圧が供給され、このとき制御マイクロコンピュータ14は夫々の直列接続電池ブロック1、2及び3の夫々の電圧を読み取る。この場合直列接続電池ブロック1、2及び3の夫々の電圧をV1、V2及びV3としたとき、充電開始時に、この電圧が、図3に示す如く例えばV1<V2<V3であつたとする。   At the time of charging, a charging voltage is supplied between the charging / discharging positive electrode terminal 13 and the charging / discharging negative electrode terminal 9, and at this time, the control microcomputer 14 reads the respective voltages of the respective series-connected battery blocks 1, 2, and 3. In this case, assuming that the voltages of the series-connected battery blocks 1, 2, and 3 are V1, V2, and V3, at the start of charging, this voltage is, for example, V1 <V2 <V3 as shown in FIG.

このときは、制御マイクロコンピュータ14は、図2A及び図2Bに示す如く、電界効果トランジスタ10a及び10bを周期的にオン、オフし、この周期的なオン時に、この直列接続電池ブロック1を充電し、この周期的なオフ時に、この直列接続電池ブロック1の開放電圧V1を読み取り、この開放電圧V1と直列接続電池ブロック2の電圧V2とを比較する。   At this time, as shown in FIGS. 2A and 2B, the control microcomputer 14 periodically turns on and off the field effect transistors 10a and 10b, and charges the series-connected battery block 1 at the time of the periodic on. At this periodic OFF, the open circuit voltage V1 of the series connection battery block 1 is read, and the open circuit voltage V1 and the voltage V2 of the series connection battery block 2 are compared.

この開放電圧V1と直列接続電池ブロック2の電圧V2とがV1<V2のときは上述を繰り返し、この開放電圧V1と直列接続電池ブロック2の電圧V2とが等しく,V1=V2となったときに、図2C及び図2Dに示す如く、電界効果トランジスタ11a及び11bも電界効果トランジスタ10a及び10bと同様に周期的にオン、オフし、この周期的なオン時に、この直列接続電池ブロック1及び2を図3の充電カーブに示す如く同時に充電し、この周期的なオフ時に、この直列接続電池ブロック1及び2の開放電圧V1=V2を読み取り、この開放電圧V1=V2と直列接続電池ブロック3の電圧V3とを比較する。   When the open circuit voltage V1 and the voltage V2 of the series connection battery block 2 are V1 <V2, the above is repeated. When the open circuit voltage V1 and the voltage V2 of the series connection battery block 2 are equal, and V1 = V2 As shown in FIGS. 2C and 2D, the field effect transistors 11a and 11b are periodically turned on and off in the same manner as the field effect transistors 10a and 10b. As shown in the charging curve of FIG. 3, when the battery is simultaneously turned off, the open-circuit voltage V1 = V2 of the series-connected battery blocks 1 and 2 is read, and the open-circuit voltage V1 = V2 and the voltage of the series-connected battery block 3 are read. Compare with V3.

この開放電圧V1=V2と直列接続電池ブロック3の電圧V3とがV1=V2<V3のときは上述を繰り返し、この開放電圧V1=V2と直列接続電池ブロック3の電圧V3とが等しく,V1=V2=V3となったときは、図2A、B、C、D、E及びFに示す如く、電界効果トランジスタ10a、10b、11a、11b、12a及び12bを全てオンとし、直列接続電池ブロック1、2及び3を図3の充電カーブに示す如く同時に充電終了まで充電する。図2E及びFは電界効果トランジスタ12a及び12bのオン、オフを示す。   When the open voltage V1 = V2 and the voltage V3 of the series-connected battery block 3 are V1 = V2 <V3, the above is repeated, and the open voltage V1 = V2 is equal to the voltage V3 of the series-connected battery block 3, and V1 = When V2 = V3, as shown in FIGS. 2A, B, C, D, E and F, the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b are all turned on, and the series-connected battery block 1, 2 and 3 are charged simultaneously until the end of charging as shown in the charging curve of FIG. 2E and F show the field effect transistors 12a and 12b on and off.

また、放電時は、制御マイクロコンピュータ14は、電界効果トランジスタ10a、10b、11a、11b、12a及び12bを全てオン状態とし、直列接続電池ブロック1、2及び3よりの直流電圧を充放電正極端子13及び充放電負極端子9を介して負荷に供給する。この場合、直列接続電池ブロック1、2及び3の電圧は等しいので、直列接続電池ブロック1、2及び3間に突入電流はながれない。   At the time of discharging, the control microcomputer 14 turns on all the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b, and supplies the DC voltage from the series-connected battery blocks 1, 2, and 3 to the charge / discharge positive terminal. 13 and the charge / discharge negative terminal 9 are supplied to the load. In this case, since the voltages of the series-connected battery blocks 1, 2, and 3 are equal, no inrush current flows between the series-connected battery blocks 1, 2, and 3.

本例によれば、放電時は、電界効果トランジスタ10a、10b、11a、11b、12a及び12bを全てオン状態として行うので、この電界効果トランジスタ10a、10b、11a、11b、12a及び12bはオン時の電圧降下が極めて小さく、この電界効果トランジスタ10a、10b、11a、11b、12a及び12bによる電力損失は極めて小さいと共に充電時は、直列接続電池ブロック1,2及び3の電圧を比較し、電圧の低い直列接続電池ブロックから順番に充電し、直列接続電池ブロック1,2及び3の電圧が等しくV1=V2、またV1=V2=V3となったときに同時に充電するようにしたので、この直列接続電池ブロック1、2及び3が互いに並列に接続されるときはこの直列接続電池ブロック1、2、3間の電位差は0Vであり、この直列接続電池ブロック1、2、3間には電流は流れず突入電流によりダメージを受けない安全性の高い大容量の電池パックを得ることができる。   According to this example, since the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b are all turned on during discharging, the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b are turned on. The voltage drop of the field effect transistors 10a, 10b, 11a, 11b, 12a and 12b is extremely small, and at the time of charging, the voltages of the series-connected battery blocks 1, 2 and 3 are compared, The battery is charged in order from the lower series-connected battery block, and when the voltages of the series-connected battery blocks 1, 2 and 3 are equal to V1 = V2 and V1 = V2 = V3, they are charged simultaneously. When battery blocks 1, 2 and 3 are connected in parallel to each other, the power supply between the series connected battery blocks The difference is 0V, this is between the series connected battery blocks 1, 2 and 3 can be obtained a battery pack of high mass safety not damaged by inrush current does not flow current.

また、本例によれば、充電時に各直列接続電池ブロック1、2、3間の電位差をなくすことができるので、各直列接続電池ブロック1、2、3間の容量バランスを改善でき放電時間の延長を図ることができる。   In addition, according to this example, since the potential difference between the series-connected battery blocks 1, 2, and 3 can be eliminated during charging, the capacity balance between the series-connected battery blocks 1, 2, and 3 can be improved, and the discharge time can be reduced. Can be extended.

尚、上述例では、直列接続電池ブロックを3個並列に接続した例につき述べたが、この並列接続する直列接続電池ブロックの個数を必要に応じ2個又は4個以上としても良いことは勿論である。このときは、上述同様にして構成できることは、容易に理解できよう。   In the above example, an example in which three series-connected battery blocks are connected in parallel has been described. However, the number of series-connected battery blocks to be connected in parallel may be two or four or more as needed. is there. At this time, it can be easily understood that it can be configured in the same manner as described above.

また、本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Further, the present invention is not limited to the above-described example, and various other configurations can be adopted without departing from the gist of the present invention.

本発明電池パックを実施するための最良の形態の例を示す構成図である。It is a block diagram which shows the example of the best form for implementing this invention battery pack. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 本発明の説明に供する線図である。It is a diagram with which it uses for description of this invention. 従来の電池パックの例を示す構成図である。It is a block diagram which shows the example of the conventional battery pack.

符号の説明Explanation of symbols

1、2、3…直列接続電池ブロック、9…充放電負極端子、10a、10b、11a、11b、12a、12b…電界効果トランジスタ、13…充放電正極端子、14…制御マイクロコンピュータ   1, 2, 3... Series connection battery block, 9... Charge / discharge negative electrode terminal, 10 a, 10 b, 11 a, 11 b, 12 a, 12 b ... field effect transistor, 13 ... charge / discharge positive electrode terminal, 14.

Claims (3)

複数の2次電池が直列接続された第1の直列接続電池ブロックの正極端子を第1の充放電制御スイチング素子を介して充放電正極端子に接続し、前記第1の直列接続電池ブロックの負極端子を充放電負極端子に接続し、複数の2次電池が直列接続された第2の直列接続電池ブロックの正極端子を第2の充放電制御スイチング素子を介して前記充放電正極端子に接続し、前記第2の直列接続電池ブロックの負極端子を前記充放電負極端子に接続し、前記第1及び第2の直列接続電池ブロックの電圧を読み取ると共に前記第1及び第2の直列接続電池ブロックの電圧を比較し、電圧の低い方を先に充電し、電圧が等しくなったときに同時に充電するように前記第1及び第2の充放電制御スイチング素子を制御する制御マイクロコンピュータを設けたことを特徴とする電池パック。   A positive terminal of a first series-connected battery block in which a plurality of secondary batteries are connected in series is connected to a charge / discharge positive terminal via a first charge / discharge control switching element, and a negative electrode of the first series-connected battery block. A terminal is connected to the charge / discharge negative electrode terminal, and a positive electrode terminal of a second series-connected battery block in which a plurality of secondary batteries are connected in series is connected to the charge / discharge positive electrode terminal via a second charge / discharge control switching element. The negative terminal of the second series-connected battery block is connected to the charge / discharge negative terminal, the voltage of the first and second series-connected battery blocks is read, and the first and second series-connected battery blocks A control microcomputer is provided for comparing the voltages, charging the lower one first, and controlling the first and second charge / discharge control switching elements so as to charge simultaneously when the voltages become equal. Battery pack, characterized in that. 複数の2次電池が直列接続された第1の直列接続電池ブロックの正極端子を第1の電界効果トランジスタのドレイン端子に接続し、該第1の電界効果トランジスタのソース端子を第2の電界効果トランジスタのソース端子に接続し、該第2の電界効果トランジスタのドレイン端子を充放電正極端子に接続し、前記第1の直列接続電池ブロックの負極端子を充放電負極端子に接続し、複数の2次電池が直列接続された第2の直列接続電池ブロックの正極端子を第3の電界効果トランジスタのドレイン端子に接続し、該第3の電界効果トランジスタのソース端子を第4の電界効果トランジスタのソース端子に接続し、該第4の電界効果トランジスタのドレイン端子を前記充放電正極端子に接続し、前記第2の直列接続電池ブロックの負極端子を前記充放電負極端子に接続し、前記第1及び第2の直列接続電池ブロックの電圧を読み取ると共に前記第1、第2、第3及び第4の電界効果トランジスタを制御する制御マイクロコンピュータを設けたことを特徴とする電池パック。   A positive terminal of a first series-connected battery block in which a plurality of secondary batteries are connected in series is connected to a drain terminal of the first field effect transistor, and a source terminal of the first field effect transistor is connected to a second field effect. Connecting to the source terminal of the transistor, connecting the drain terminal of the second field effect transistor to the charge / discharge positive terminal, connecting the negative terminal of the first series-connected battery block to the charge / discharge negative terminal; The positive terminal of the second series-connected battery block in which the secondary batteries are connected in series is connected to the drain terminal of the third field effect transistor, and the source terminal of the third field effect transistor is the source of the fourth field effect transistor. A drain terminal of the fourth field-effect transistor is connected to the charge / discharge positive terminal, and a negative terminal of the second series-connected battery block is connected to the front terminal. Provided with a control microcomputer connected to the charge / discharge negative electrode terminal for reading the voltage of the first and second series-connected battery blocks and controlling the first, second, third and fourth field effect transistors A battery pack characterized by 複数の2次電池が直列接続された第1の直列接続電池ブロックの正極端子を第1の電界効果トランジスタのドレイン端子に接続し、該第1の電界効果トランジスタのソース端子を第2の電界効果トランジスタのソース端子に接続し、該第2の電界効果トランジスタのドレイン端子を充放電正極端子に接続し、前記第1の直列接続電池ブロックの負極端子を充放電負極端子に接続し、複数の2次電池が直列接続された第2の直列接続電池ブロックの正極端子を第3の電界効果トランジスタのドレイン端子に接続し、該第3の電界効果トランジスタのソース端子を第4の電界効果トランジスタのソース端子に接続し、該第4の電界効果トランジスタのドレイン端子を前記充放電正極端子に接続し、前記第2の直列接続電池ブロックの負極端子を前記充放電負極端子に接続し、前記第1及び第2の直列接続電池ブロックの電圧を読み取ると共に前記第1、第2、第3及び第4の電界効果トランジスタを制御する制御マイクロコンピュータを設けた電池パックの充電方法であって、
前記第1及び第2の直列接続電池ブロックの電圧を比較し、電圧の低い方を先に充電し、電圧が等しくなったときに同時に充電するようにしたことを特徴とする電池パックの充電方法。
A positive terminal of a first series-connected battery block in which a plurality of secondary batteries are connected in series is connected to a drain terminal of the first field effect transistor, and a source terminal of the first field effect transistor is connected to a second field effect. Connecting to the source terminal of the transistor, connecting the drain terminal of the second field effect transistor to the charge / discharge positive electrode terminal, connecting the negative electrode terminal of the first series-connected battery block to the charge / discharge negative electrode terminal; The positive terminal of the second series-connected battery block in which the secondary batteries are connected in series is connected to the drain terminal of the third field effect transistor, and the source terminal of the third field effect transistor is the source of the fourth field effect transistor. A drain terminal of the fourth field-effect transistor is connected to the charge / discharge positive terminal, and a negative terminal of the second series-connected battery block is connected to the front terminal. A battery provided with a control microcomputer that is connected to a charge / discharge negative electrode terminal, reads the voltages of the first and second series-connected battery blocks, and controls the first, second, third, and fourth field effect transistors A charging method for the pack,
The battery pack charging method, wherein the voltages of the first and second series-connected battery blocks are compared, the one with the lower voltage is charged first, and charged simultaneously when the voltages are equal. .
JP2005356699A 2005-12-09 2005-12-09 Battery pack and battery pack charging / discharging method Expired - Fee Related JP4812419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356699A JP4812419B2 (en) 2005-12-09 2005-12-09 Battery pack and battery pack charging / discharging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356699A JP4812419B2 (en) 2005-12-09 2005-12-09 Battery pack and battery pack charging / discharging method

Publications (2)

Publication Number Publication Date
JP2007166715A true JP2007166715A (en) 2007-06-28
JP4812419B2 JP4812419B2 (en) 2011-11-09

Family

ID=38248990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356699A Expired - Fee Related JP4812419B2 (en) 2005-12-09 2005-12-09 Battery pack and battery pack charging / discharging method

Country Status (1)

Country Link
JP (1) JP4812419B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207253A (en) * 2008-02-27 2009-09-10 Autech Japan Inc Battery-charging system and battery-charging method
JP2010029015A (en) * 2008-07-23 2010-02-04 Mitsubishi Heavy Ind Ltd Battery pack system
WO2013042165A1 (en) * 2011-09-21 2013-03-28 トヨタ自動車株式会社 Vehicle battery control device and vehicle battery control method
WO2013076877A1 (en) * 2011-11-25 2013-05-30 株式会社日立製作所 Storage battery system
WO2013121849A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Adjusting device, battery assembly, and adjusting method
WO2013179454A1 (en) * 2012-05-31 2013-12-05 パイオニア株式会社 Charging/discharging control device
WO2014132321A1 (en) 2013-02-26 2014-09-04 株式会社 日立製作所 Power source device
CN104106175A (en) * 2012-02-28 2014-10-15 智晖有限公司 Method for charge balancing and load control in parallel battery packs
CN106716771A (en) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 Control method, control system, and storage medium of battery pack, and unmanned aerial vehicle
JP2017152388A (en) * 2009-04-16 2017-08-31 ヴァレンス テクノロジー インコーポレーテッドValence Technology,Inc. Battery system
EP3739738B1 (en) * 2019-05-13 2021-12-08 NXP USA, Inc. System for synchronously discharging multiple capacitive loads
WO2022163476A1 (en) 2021-01-27 2022-08-04 三洋電機株式会社 Power supply device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130743A (en) * 1991-10-31 1993-05-25 Kyocera Corp Power supply apparatus
JPH07322519A (en) * 1994-05-23 1995-12-08 Brother Ind Ltd Pulse-type charging apparatus
JPH09140065A (en) * 1995-11-10 1997-05-27 Sony Corp Secondary battery for parallel use
JPH10174305A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Battery charger
JP2000324710A (en) * 1999-05-17 2000-11-24 Okamura Kenkyusho:Kk Series/parallel switching type capacitor apparatus
JP2005168103A (en) * 2003-11-28 2005-06-23 Internatl Business Mach Corp <Ibm> Battery pack, electrical apparatus, computer device, battery control method, power supply method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130743A (en) * 1991-10-31 1993-05-25 Kyocera Corp Power supply apparatus
JPH07322519A (en) * 1994-05-23 1995-12-08 Brother Ind Ltd Pulse-type charging apparatus
JPH09140065A (en) * 1995-11-10 1997-05-27 Sony Corp Secondary battery for parallel use
JPH10174305A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Battery charger
JP2000324710A (en) * 1999-05-17 2000-11-24 Okamura Kenkyusho:Kk Series/parallel switching type capacitor apparatus
JP2005168103A (en) * 2003-11-28 2005-06-23 Internatl Business Mach Corp <Ibm> Battery pack, electrical apparatus, computer device, battery control method, power supply method, and program

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207253A (en) * 2008-02-27 2009-09-10 Autech Japan Inc Battery-charging system and battery-charging method
JP2010029015A (en) * 2008-07-23 2010-02-04 Mitsubishi Heavy Ind Ltd Battery pack system
US10230246B2 (en) 2009-04-16 2019-03-12 Lithium Werks Technology Bv Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JP2017152388A (en) * 2009-04-16 2017-08-31 ヴァレンス テクノロジー インコーポレーテッドValence Technology,Inc. Battery system
US11289918B2 (en) 2009-04-16 2022-03-29 Lithion Battery Inc. Batteries, battery systems, battery submodules, battery operational methods, battery system operational methods, battery charging methods, and battery system charging methods
JPWO2013042165A1 (en) * 2011-09-21 2015-03-26 トヨタ自動車株式会社 VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
CN103828178A (en) * 2011-09-21 2014-05-28 丰田自动车株式会社 Vehicle battery control device and vehicle battery control method
WO2013042165A1 (en) * 2011-09-21 2013-03-28 トヨタ自動車株式会社 Vehicle battery control device and vehicle battery control method
WO2013076877A1 (en) * 2011-11-25 2013-05-30 株式会社日立製作所 Storage battery system
WO2013121849A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Adjusting device, battery assembly, and adjusting method
JPWO2013121849A1 (en) * 2012-02-16 2015-05-11 日本電気株式会社 Adjusting device, assembled battery device and adjusting method
US9570923B2 (en) 2012-02-16 2017-02-14 Nec Corporation Adjusting device, battery pack, and adjusting method
CN104106175A (en) * 2012-02-28 2014-10-15 智晖有限公司 Method for charge balancing and load control in parallel battery packs
WO2013179454A1 (en) * 2012-05-31 2013-12-05 パイオニア株式会社 Charging/discharging control device
JPWO2013179454A1 (en) * 2012-05-31 2016-01-14 パイオニア株式会社 Charge / discharge control device
WO2014132321A1 (en) 2013-02-26 2014-09-04 株式会社 日立製作所 Power source device
CN106716771A (en) * 2016-09-22 2017-05-24 深圳市大疆创新科技有限公司 Control method, control system, and storage medium of battery pack, and unmanned aerial vehicle
WO2018053741A1 (en) * 2016-09-22 2018-03-29 深圳市大疆创新科技有限公司 Control method of battery pack, control system, storage medium, and unmanned aerial vehicle
CN106716771B (en) * 2016-09-22 2018-11-13 深圳市大疆创新科技有限公司 Control method, control system, storage medium and the unmanned vehicle of battery pack
CN109103960A (en) * 2016-09-22 2018-12-28 深圳市大疆创新科技有限公司 Control method, control system, storage medium and the unmanned vehicle of battery pack
EP3739738B1 (en) * 2019-05-13 2021-12-08 NXP USA, Inc. System for synchronously discharging multiple capacitive loads
WO2022163476A1 (en) 2021-01-27 2022-08-04 三洋電機株式会社 Power supply device

Also Published As

Publication number Publication date
JP4812419B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4812419B2 (en) Battery pack and battery pack charging / discharging method
JP5007493B2 (en) Power supply
CN107689665B (en) Power storage device for starting engine, control method thereof and vehicle
US10404095B2 (en) Uninterruptible power supply unit
JP6614388B1 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method of secondary battery protection circuit
US20130300344A1 (en) Power Management Circuit For Rechargeable Battery Stack
US9768627B2 (en) Overcharge protection apparatus with minimized power consumption
CN102457086A (en) Power topology with battery charging and discharge current protection capabilities
JP4407641B2 (en) Secondary battery device
TW201218576A (en) Dc power supply device
JP4845756B2 (en) Power supply for vehicle
JP2006246595A (en) Secondary battery pack
JP4828511B2 (en) Backup power supply and control method thereof
US11139662B2 (en) Balance circuits for battery cells
JP2016040999A (en) Charged state equalization method of storage battery device
JP2018117438A (en) Power source module with lithium ion capacitor
JP2016154423A (en) Voltage balance device
JP2000152510A (en) Charge and discharge control circuit and charge system of power unit
EP3893353B1 (en) Battery polarity determination circuit, charger, and electronic device
JP2011097767A (en) Packed cell
JP2009171724A (en) Bidirectional converter
JP6959046B2 (en) Charge / discharge control circuit and battery device
US20240079885A1 (en) Electronic circuit for battery pack configuration management
JP2006320078A (en) Apparatus and method for battery protection and electronic equipment equipped with battery protection apparatus
CN108258751B (en) Charge/discharge control circuit and battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100909

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees