JP2016072538A - 記憶装置及びその製造方法 - Google Patents

記憶装置及びその製造方法 Download PDF

Info

Publication number
JP2016072538A
JP2016072538A JP2014202639A JP2014202639A JP2016072538A JP 2016072538 A JP2016072538 A JP 2016072538A JP 2014202639 A JP2014202639 A JP 2014202639A JP 2014202639 A JP2014202639 A JP 2014202639A JP 2016072538 A JP2016072538 A JP 2016072538A
Authority
JP
Japan
Prior art keywords
via contact
word line
cell transistor
wiring layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014202639A
Other languages
English (en)
Inventor
浅尾 吉昭
Yoshiaki Asao
吉昭 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014202639A priority Critical patent/JP2016072538A/ja
Priority to US14/636,538 priority patent/US9263501B1/en
Publication of JP2016072538A publication Critical patent/JP2016072538A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • H10N70/235Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect between different crystalline phases, e.g. cubic and hexagonal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】抵抗変化層上端と上層配線層を接続可能な記憶装置及びその製造方法を提供する。
【解決手段】基板150と、第一のセルトランジスタCTと、第二のセルトランジスタCTと、基板150に形成された第一拡散領域AAと、第二拡散領域AAと、第三拡散領域AAと、第一のビアコンタクトV0と、第一のビアコンタクトV0を含み、第一の方向に複数のビアコンタクトが所定の間隔で設けられた第一ビアコンタクト群と、第二のビアコンタクトV0と、第二のビアコンタクトV0を含み、第一の方向に複数の他のビアコンタクトV0が所定の間隔で設けられた第二ビアコンタクト群と、第一のビアコンタクトV0及び第二のビアコンタクトV0に電気的に接続する、抵抗変化素子RWと、抵抗変化素子RWの上端部と電気的に接続し、抵抗変化素子RWの上方を交差するように形成された第一配線層M1と、を有する。
【選択図】図4

Description

本実施形態は、記憶装置及びその製造方法に関する。
抵抗変化型メモリとして、超格子型相変化メモリ、相変化メモリやイオンメモリ等、多様なメモリが提案・開発されている。それぞれのメモリ動作の原理は超格子の相変化、結晶状態の変化やイオン電導によるフィラメント形成を用いるもの等、異なる。しかし、何れのメモリも電圧又は電流の印加によりそのメモリ素子の抵抗が高抵抗状態と低抵抗状態を遷移するという点で共通である。これらのメモリデバイスにおいては、製造コストの低減も要求される。
米国特許出願公開2012/0127778号明細書 米国特許出願公開2012/0286339号明細書 米国特許出願公開2013/0021834号明細書 米国特許出願公開2012/0243296号明細書
本実施形態の課題は、抵抗変化層上端と上層配線層を接続可能な記憶装置及びその製造方法を提供することである。
本実施形態に係る記憶装置は、基板と、第一のセルトランジスタと、第二のセルトランジスタと、前記基板に形成され、前記第一のセルトランジスタのソースまたはドレインとして機能する第一拡散領域と、前記基板に形成され、前記第一のセルトランジスタのソースまたはドレインおよび前記第二のセルトランジスタのソースまたはドレインとして機能する第二拡散領域と、前記基板に形成され、前記第二のセルトランジスタのソースまたはドレインとして機能する第三拡散領域と、前記第一のセルトランジスタの前記第一拡散層領域に電気的に接続する第一のビアコンタクトと、前記第一のビアコンタクトを含み、第一の方向に複数のビアコンタクトが所定の間隔で設けられた第一ビアコンタクト群と、前記第二のセルトランジスタの前記第三拡散層領域に電気的に接続する第二のビアコンタクトと、前記第二のビアコンタクトを含み、前記第一ビアコンタクト群に対して前記第一の方向と直交する第二の方向へ間隔を隔てて設けられ、前記第一の方向に複数の他のビアコンタクトが所定の間隔で設けられた第二ビアコンタクト群と、前記第一のビアコンタクト及び前記第二のビアコンタクトに電気的に接続する、抵抗状態の変化によってデータを記憶し、電流によってデータを書換え可能な抵抗変化素子と、前記抵抗変化素子の上端部と電気的に接続し、前記抵抗変化素子の上方を交差するように形成された第一配線層と、を有する。
第1の実施形態に従った抵抗変化型メモリの構成を示すブロック図。 第1の実施形態によるメモリセルMCの構造と動作を説明するための図。 第1の実施形態による抵抗変化型メモリの模式的な平面レイアウト図。 (a)図3のA−A線に沿った断面を示す模式的な断面図、(b)図3のB−B線に沿った断面を示す模式的な断面図。 第1の実施形態の製造工程を示す模式的な断面図(その1)。 第1の実施形態の製造工程を示す模式的な断面図(その2)。 第1の実施形態の製造工程を示す模式的な断面図(その3)。 第1の実施形態の製造工程を示す模式的な断面図(その4)。 第1の実施形態の製造工程を示す模式的な断面図(その5)。 第1の実施形態の製造工程を示す模式的な断面図(その6)。 第1の実施形態の製造工程を示す模式的な断面図(その7)。 第1の実施形態の製造工程を示す模式的な断面図(その8)。 第1の実施形態の製造工程を示す模式的な断面図(その9)。 (a)第一の実施形態の製造工程における抵抗変化膜の平面レイアウトを示す模式的な平面レイアウト図(その1)、(b)第一の実施形態の製造工程における抵抗変化膜の平面レイアウトを示す模式的な平面レイアウト図(その2)。 第1の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その1)。 第1の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その2)。 第1の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その3)。 第1の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その4)。 第1の実施形態の製造工程を示す模式的な断面図(その10)。 第1の実施形態の製造工程を示す模式的な断面図(その11)。 第1の実施形態の製造工程を示す模式的な断面図(その12)。 第2の実施形態による抵抗変化型メモリの模式的な平面レイアウト図。 第3の実施形態による抵抗変化型メモリの模式的な平面レイアウト図。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その1)。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その2)。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その3)。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その4)。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その1)。 第4の実施形態の製造工程における抵抗変化膜の加工方法を示す模式的な断面図(その2)。 第5の実施形態によるメモリセルMCの動作を示す説明図。 第5の実施形態の製造工程を示す模式的な断面図。 第5の実施形態の製造工程を示す模式的な断面図。 第5の実施形態の製造工程を示す模式的な断面図。 第6の実施形態によるメモリセルMCの動作を示す説明図。
以下、本発明の実施形態について図面を参照しながら説明する。
なお、以下の説明においては、便宜的に基板側を下側と表現して記載する。また、本明細書上、交差は2つの線が互いに横切る意味で用いる。
(第1の実施形態)
図1は、第一の実施形態に従った抵抗変化型メモリの構成を示すブロック図である。メモリセルアレイ10内には、複数のメモリセルMCがマトリクス状に配置されている。各メモリセルMCは、図2に示されるように抵抗変化素子RW及びセルトランジスタCTを含む。抵抗変化素子RWは、抵抗状態の変化によってデータを記憶し、電流によってデータを書き換え可能な素子である。セルトランジスタCTは、抵抗変化素子RWに対応して設けられている。セルトランジスタCTを導通状態とした際、対応する抵抗変化素子RWに電流が流れる。
メモリセルアレイ10内には、複数のワード線WLがロウ方向(第二の方向)に、複数のビット線BLがカラム方向(第一の方向)にそれぞれ互いに交差するように配線されている。隣接する2つのビット線BLは対をなしている。メモリセルMCは、ワード線WLとビット線対(第一ビット線BL1及び第二ビット線BL2の対)との交点に対応して設けられている。各メモリセルMCの抵抗変化素子RWとセルトランジスタCTとは、直列に接続されている。抵抗変化素子RWはビット線対(例えば、BL1とBL2)の一方のビット線と接続され、セルトランジスタCTはビット線対の他方のビット線と接続されている。また、セルトランジスタCTのゲート電極はワード線WLに接続されている。
メモリセルアレイ10のビット線方向の両側には、センスアンプ15及びライトドライバ17が配置されている。センスアンプ15は、ビット線BLに接続されており、選択ワード線WLに接続されたメモリセルMCに流れる電流を検知することによって、メモリセルMCに格納されたデータを読み出す。ライトドライバ17は、ビット線BLに接続されており、選択ワード線WLに接続されたメモリセルMCに電流を流すことによってデータを書込む。
メモリセルアレイ10のワード線方向の両側には、ロウデコーダ20及びワード線ドライバ55がそれぞれ配置されている。ワード線ドライバ55は、ワード線WLに接続されており、データ読み出しまたはデータ書込みの際に選択ワード線WLに電圧を印加する。
センスアンプ15またはライトドライバ17と外部入出力端子I/Oとの間のデータ授受は、データバス25及びI/Oバッファ30を介して行われる。
コントローラ35には、各種の外部制御信号、例えば、チップイネーブル信号/CE、アドレスラッチイネーブル信号ALE、コマンドラッチイネーブル信号CLE、書込みイネーブル信号/WE、及び読出しイネーブル信号/RE等が入力される。コントローラ35は、これらの制御信号に基づいて、入出力端子I/Oから供給されるアドレス信号Add、コマンド信号Comを識別する。そして、コントローラ35は、アドレス信号Addを、アドレスレジスタ40を介してロウデコーダ20及びカラムデコーダ45に転送する。また、コントローラ35は、コマンド信号Comをデコードする。センスアンプ15は、カラムデコーダ45よってデコードされたカラムアドレスに従って、ビット線BLに電圧を印加する。ワード線ドライバ55は、ロウデコーダ20によってデコードされたロウアドレスに従って、ワード線WLに電圧を印加する。
コントローラ35は、アドレス信号Add、コマンド信号Comに従って、データ読み出し、データ書込み及び消去の各シーケンス制御をおこなう。内部電圧発生回路50は、各動作に必要な内部電圧(例えば、抵抗変化型メモリの外部から供給された電源電圧を昇圧した電圧)を生成する。この内部電圧発生回路50も、コントローラ35により制御され、昇圧動作を行い必要な電圧を生成する。
図2は、本実施形態におけるメモリセルMCの構造と動作を説明するための図である。本実施形態において、メモリセルMCの抵抗変化素子RWは第一ビット線BL1側とセルトランジスタCTに接続され、セルトランジスタCTは抵抗変化素子RWと第二ビット線BL2に接続される。
抵抗変化素子RWの例として、図2では、超格子型相変化メモリ素子を示す。
超格子型相変化メモリ素子は、電気的エネルギーを印加することにより、超格子の結晶構造が変化し、低抵抗状態と高抵抗状態を取りうる。ここで、低抵抗状態をデータ“1”と定義し、高抵抗状態をデータ“0”と定義すれば、超格子型相変化メモリ素子に1ビットデータを記憶することができる。もちろん、低抵抗状態を“0”と定義し、高抵抗状態を“1”と定義しても構わない。
超格子型相変化メモリ素子は、例えば、図2に示す通り、例えば配向層105及び第一結晶層と第二結晶層を用いた超格子層110を含む。また、必要に応じ、超格子型相変化メモリ素子は、図示しない電極層を含む。
配向層105は、超格子層110の配向を良くすることで特性を高める。例えば、六方晶の結晶構造を有する材料を用い、具体的にはアンチモン及びテルルを主成分とするカルコゲン化合物や、ビスマス及びテルルを主成分とするカルコゲン化合物を用いる。
超格子層110は、第一結晶層と第二結晶層とが交互に繰り返し積層されている。
第一結晶層は電気的パルスを印加することによって、構成原子の位置が可逆的に遷移し、例えばゲルマニウム及びテルルを主成分とするカルコゲン化合物を用いる。
第二結晶層は、第一結晶層の原子遷移を補助する層であり、必ずしも第二結晶層の結晶構造が遷移する必要はないが、遷移しても構わない。第二結晶層には、例えば、アンチモンを主成分とするカルコゲン化合物や、ビスマス及びテルルを主成分とするカルコゲン化合物等を用いる。
超格子型相変化メモリ素子は、例えば電気的エネルギーを加えることで、書込み動作(データ“0”から“1”への遷移)及び消去動作(データ“1”から”0“への遷移)を行う。ここで、電気的エネルギーとは、電力の時間に関する積分を意味する。
超格子相変化メモリ素子では、書込み動作よりも消去動作のほうが、高い電気的エネルギーを必要とする。よって、消去時の印加電圧を書込み時の印加電圧より高くする方法や、消去時の電圧を印加する時間を書込み時の電圧を印加する時間よりも長くする方法が挙げられる。
また、超格子相変化メモリ素子では、電流が流れる一定の局所的な領域において、上記の遷移が起きれば良い。一定の局所的な領域に遷移が起き、低抵抗化すると、その領域で電流が流れる。つまり、他の部分には電圧がかからなくなり、遷移が抑制される。
図3は、第一の実施形態による抵抗変化型メモリの平面レイアウト図である。図4(a)は、図3のA−A線に沿った断面図である。図4(b)は、図3のB−B線に沿った断面図である。
図4(a)を用いて、本実施形態の断面図を説明する。図4(a)に示すように、半導体基板150にアクティブエリアAAおよび素子分離領域STI(Shallow Trench Isolation)を形成する。アクティブエリアAAには、セルトランジスタCTが形成される。セルトランジスタCTは、半導体基板150に埋め込まれたゲート電極GC及びゲート絶縁膜180を含み、ゲート電極GCの両側にN+型のソース領域S及びドレイン領域Dを備える。なお、ソース領域S及びドレイン領域Dを区別しないとき、拡散層領域と呼ぶ。また、ゲート電極GCは、素子分離領域STI中にも形成される。この素子分離領域STI中のゲート電極はトランジスタとしてのゲート電極としては機能しない。
同一のアクティブエリアAAには2つのセルトランジスタCTが形成されており、当該2つのセルトランジスタCTは、ソース領域Sを共有する。このソース領域Sを共有する2つのセルトランジスタCTの組が繰り返しパターンとして、ロウ方向、カラム方向にわたって、チップ内に配列される。
セルトランジスタCTのソース領域Sは、ビット線コンタクトCBを介して第一配線層M1に電気的に接続される。第一配線層M1は、第二ビット線BL2を形成する。
同一のアクティブエリアAAに形成された2つのセルトランジスタCTのドレイン領域Dは、ビアコンタクトV0を介して同一の抵抗変化素子RWの下端である配向層105に電気的に接続される。
抵抗変化素子RWの上端側にある超格子層110は、第二配線層M2に接続されている。第二配線層M2は、第一ビット線BL1を形成する。
言い換えれば、単一の抵抗変化素子RWは、その下側は2つのビアコンタクトV0に接続され、その上側は1つの第二配線層M2に接続される。
抵抗変化素子RWは、ビアコンタクトV0と第二配線層M2の1つの組み合わせにつき、1ビットのデータを記憶する。したがって、一つの抵抗変化素子RWは2つのビアコンタクトV0及び1つの第二配線層M2に接続するため、2ビットのデータを記憶する。なお、前述したように、抵抗変化素子RWは局所的な領域で遷移が起きて、データを記憶する。すなわち、この2ビット相互の干渉は抑制される。
図3を用いて、本実施形態の平面レイアウトを説明する。以下説明において、第一配線層M1及び第二配線層M2の延伸方向をカラム方向(第一の方向)とする。また、第一の方向と略直行する、ゲート電極GCの延伸方向をロウ方向(第二の方向)とする。
まず、アクティブエリアAAは、半導体基板150に、カラム方向及びロウ方向の何れに対しても角度を持って形成される。また、アクティブエリアAAには、2つのゲート電極GCが形成される。例えば、アクティブエリアAAは、ロウ方向に対して約(90−atan(1/3))の角度で形成される。即ち、アクティブエリアAAは、ロウ方向に対して約71.565度の角度で傾斜する。あるいは、アクティブエリアAAは、カラム方向に対して約18.453度の角度で傾斜する。
また、アクティブエリアAAとゲート電極GCは、ロウ方向におけるアクティブエリアAAのピッチとゲート電極GC(ワード線WL)のピッチが2:3となるよう形成される。ここで、ピッチとは周期的に繰り返されるパターンにおける最小の繰り返し長さである。
ゲート電極GCとアクティブエリアAAの交点には、セルトランジスタCTが形成される。1つのアクティブエリアAAに対して2つのセルトランジスタCTが形成される。当該2つのセルトランジスタCTは1つのソース領域Sと2つのドレイン領域Dを有する。
アクティブエリアAAは、ビット線コンタクトCBを介して、第一配線層M1と電気的に接続する。第一配線層M1は略カラム方向に延伸する。
1つのアクティブエリアAAには、2つのビアコンタクトV0が接続する。当該2つのビアコンタクトV0は、共通する抵抗変化素子RWに接続する。
ビアコンタクトV0は、格子状に形成される。カラム方向に略一直線上に所定間隔で形成される複数のビアコンタクトV0を第一ビアコンタクト群SV1と呼ぶ。また、第一ビアコンタクト群SV1とロウ方向に隣接し、カラム方向に略一直線上に所定間隔で形成される複数のビアコンタクトV0を第二ビアコンタクト群SV2と呼ぶ。
一つのアクティブエリアAAに接続するビアコンタクトV0が第一ビアコンタクト群SV1に属している場合、当該アクティブエリアAAに接続する他方のビアコンタクトV0は、第二ビアコンタクト群SV2に属する。これは、先述の通りアクティブエリアAAがカラム方向及びロウ方向の何れに対しても角度をもって形成されているためである。
各抵抗変化素子RWは、前述のとおり2つのビアコンタクトV0上に設けられる。また、抵抗変化素子RWはその上側において、第二配線層M2と電気的に接続される。
第二配線層M2は、抵抗変化素子RWの略中央部分の上方を交差して(横切って)設けられる。また、第二配線層M2は、カラム方向に延伸して形成される。
前述のとおり、ビアコンタクトV0と第二配線層M2の1つの組み合わせにつき、1ビットデータを記憶する。一つの抵抗変化素子RWは2つのビアコンタクトV0及び1つの第二配線層M2に接続するため、2ビットデータを記憶する。
ここで、ビアコンタクトV0は、カラム方向及びロウ方向にほぼ等間隔(等ピッチ)で配置される。これは、次の理由による。
図3に示すように、ロウ方向におけるビアコンタクトV0のピッチは、ロウ方向におけるアクティブエリアのピッチの3/2倍で配置される。また、カラム方向におけるビアコンタクトV0のピッチは、ゲート電極GC(ワード線WL)のピッチで配置される。
前述のとおり、アクティブエリアAAとゲート電極GCは、ロウ方向におけるアクティブエリアAAのピッチがゲート電極GCのピッチの比率の2/3倍となるように形成される。
したがって、ロウ方向におけるビアコンタクトV0のピッチは、ゲート電極GCのピッチと等しくなる。すなわち、ロウ方向におけるビアコンタクトV0のピッチと、カラム方向におけるビアコンタクトのピッチは、等しくなる。
次に、第一ビット線BL1及び第二ビット線BL2のピッチと、ゲート電極GCのピッチとの比率がおよそ等しくなるように配置される。これは次の理由による。
図3に示すように、また、第一ビット線BL1又は第二ビット線BL2のピッチは、ロウ方向におけるアクティブエリアAAのピッチの約3/2倍で配置される。
また、前述のとおり、アクティブエリアAAとゲート電極GCは、ロウ方向におけるアクティブエリアAAのピッチがゲート電極GCのピッチの比率の2/3倍となるように形成される。
したがって、第一ビット線BL1及び第二ビット線BL2のピッチとゲート電極GCのピッチの比率はおよそ等しくなる。
さらに、特に第二ビット線BL2は、ビアコンタクトV0と干渉することなく配置する必要がある。これは、アクティブエリアAAが、ゲート電極GCに対して約(90−atan(1/3))の角度で交差する方向に延伸して形成されることで実現される。これは次の理由による。
上述の説明によれば、ビアコンタクトV0と、第二ビット線BL2は、ロウ方向において、何れもゲート電極GCのピッチに配置される。両者の干渉を減らすためには、ロウ方向に、ビアコンタクトV0と第二ビット線BL2をゲート電極GCのピッチの半分に交互に配置するのが望ましい。
そして、上記のとおり交互に配置すること、及び隣接メモリセルMCの誤動作を防ぐためには、一つのアクティブエリアAAは、図3に示すようにその略両端でビアコンタクトV0に接続し、略中央部でビット線コンタクトCBを介して第二ビット線BL2と接続することになる。
そして、アクティブエリアAA間の幅をおよそ等しく形成するためには、図3に示すように、アクティブエリアAAの傾きを形成する必要がある。すなわち、アクティブエリアAAは、カラム方向にゲート電極の2倍のピッチを進む間に、ロウ方向にアクティブエリアAAのピッチ、つまりゲート電極の2/3倍のピッチ進む必要がある。これは、アクティブエリアAAが、ゲート電極GCに対して約(90−atan(1/3))の角度で交差する方向に延伸して形成されることで実現される。
なお、具体的には、アクティブエリアAAは、ロウ方向に対して約71.565度の角度で傾斜する。あるいは、アクティブエリアAAは、カラム方向に対して約18.453度の角度で傾斜する。
以上に説明したとおり、ロウ方向におけるアクティブエリアAAのピッチとゲート電極GCピッチの比率の2/3倍となるように形成し、アクティブエリアAAをロウ方向から約(90―atan(1/3))の角度で傾斜させることで、ビアコンタクトV0はカラム方向及びロウ方向にほぼ等間隔で配置できる。
なお、本実施形態による抵抗変化素子RWのメモリセルMCのサイズは、6F2(3F×2F)と非常に小さい。ここで、Fは、リソグラフィー技術及びエッチング技術を用いた最小加工寸法である。
選択メモリセルMCへのデータ書込み又は読出し動作は次のように行う。なお、選択メモリセルMCに含まれるセルトランジスタCTのゲート電極GCに接続するワード線WLを選択ワード線WLと呼ぶ。また、選択メモリセルに接続するビット線対BL1、BL2を選択ビット線対と呼ぶ。
まず、選択ビット線対BL1、BL2に電圧差を与える。そして、選択ワード線WLに電圧を印加する。選択ワード線WLへの電圧の印加により、選択メモリセルMCに係るセルトランジスタCTが駆動する。セルトランジスタCTが駆動することにより、選択ビット線対BL1、BL2間の電圧差がセルトランジスタCTを介して選択メモリセルMCに係る抵抗変化素子RWに印加される。これにより、電圧差に応じた電流が抵抗変化素子RWを流れ、抵抗変化素子RWの書込み又は読出しを行うことができる。
以下に、第1の実施形態の製造方法を図5乃至図21を用いて説明する。
なお、以下の製造方法の説明において、特に断りなく参照図面に図面が1つしかない場合は、図3のA−A線に沿った断面図相当を示す(図15乃至18を除く)。また、参照図面に(a)(b)の2つが存在する場合は、それぞれ図3のA−A線に沿った断面図及び図3のB−B線に沿った断面図相当を示す(図14を除く)。
まず、図5に示すように、半導体基板150上にエッチングにより、素子分離領域STI形成用のトレンチ155を形成する。
次に、図6に示すように、トレンチ155を埋め込むように素子分離絶縁膜160を埋め込む。RIE(Reactive Ion Etching)法やCMP(Chemical Mechanical Polishing)法により素子分離絶縁膜160を平坦化する。平坦化により、素子分離領域STIが形成される。素子分離絶縁膜160は、例えばシリコン酸化膜である。素子分離領域STI以外の領域をアクティブエリアAAと呼ぶ。
次に、図7に示すように、素子分離絶縁膜160上に、第一層間絶縁膜165を形成し、エッチング加工により、ゲート電極形成用のトレンチ170を形成する。
続いて、図8に示すように、ゲート電極GC及び埋込み型のセルトランジスタCTを形成する。トレンチ170を形成後に、ゲート絶縁膜180及びゲート電極層190を成膜する。その後、エッチバックにより所定の高さまで、ゲート絶縁膜180及びゲート電極層190を除去する。続いて、CMPストッパ膜195を成膜し、平坦化を行う。そして、例えばリンや砒素等をインプランテーション注入することにより、N+型のソース領域S及びドレイン領域Dを形成する。その後、第二層間絶縁膜196を成膜する。
ゲート絶縁膜180は、例えば、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜等を用い、熱酸化法等により成膜する。ゲート電極層190は、例えば、多結晶シリコン、タングステン、銅、金属シリサイド等を用いる。CMPストッパ膜195は、例えばシリコン窒化膜を用いる。第二層間絶縁膜196は、例えば、シリコン酸化膜を用いる。
続いて、図9に示すように、ビット線コンタクトCBを形成する。第二層間絶縁膜196上に、リソグラフィー法により所望のマスクパターンを形成する。そのマスクパターンをマスクとし、第二層間絶縁膜196、ゲート絶縁膜180、第一層間絶縁膜165及び素子分離絶縁膜160をRIE法によりエッチング加工し、ソース領域Sに到達するビット線コンタクトホールを形成する。ビット線コンタクト材料200を成膜した後、ビット線コンタクトホール以外の部分の材料をCMP法により除去する。これにより、ビット線コンタクトCBが形成される。
ビット線コンタクト材料200は、例えば、バリアメタル層と金属層を含む。バリアメタル層は、チタン、窒化チタン、タングステン等の導電材料を用いる。
続いて、図10の(a)及び(b)に示すように、第一配線層M1を形成する。第一配線層材料210及び、ハードマスク220を成膜する。リソグラフィー法により、ハードマスク220上に所望のマスクパターンを形成する。そのマスクパターンをマスクとし、ハードマスク220及び、第一配線層材料210をRIE法によりエッチング加工する。
第一配線層材料210は、例えばバリアメタル層と金属層を含む。バリアメタル層は、例えばチタン、タンタル、ニオブ、窒化チタン、窒化タンタル、窒化ニオブ又はこれらの積層を用いる。金属層は、タングステン、銅、アルミ等を用いる。ハードマスク220は、例えば、シリコン酸化膜、シリコン窒化膜、多結晶シリコン、カーボン又はこれらの積層を用い、プラズマCVD法等により成膜する。
次に、図11の(a)及び(b)に示すように、第一配線層M1及びハードマスク220及び下地を被覆するように、第三層間絶縁膜240を成膜する。成膜後は、必要に応じて、CMP法により平坦化を行う。第三層間絶縁膜240は、例えば、シリコン酸化膜を用いる。
続いて、図12の(a)及び(b)に示すように、ビアコンタクトV0を形成する。第三層間絶縁膜240上に、リソグラフィー法により所望のパターンを形成する。そのパターンをマスクとし、RIE法によりドレイン領域Dに到達するように、ビアコンタクトホールを加工する。ビアコンタクト材料250を成膜し、CMP法により、ビアコンタクトホール以外の部分のビアコンタクト材料250を除去する。
ビアコンタクト材料250は、チタン、窒化チタン、タングステン等の導電材料を用いる。
続いて、図13に示すように、配向層105及び超格子層110を形成する。また、必要に応じて電極層を形成しても良い。
配向層105は、例えば、アンチモン及びテルルを主成分とするカルコゲン化合物や、ビスマス及びテルルを主成分とするカルコゲン化合部を用いる。
超格子層110は、第一結晶層と第二結晶層とが交互に繰り返し積層される。第一結晶層は、例えばゲルマニウム及びテルルを主成分とするカルコゲン化合物を用いる。第二結晶層は、例えば、アンチモンを主成分とするカルコゲン化合物や、ビスマス及びテルルを主成分とするカルコゲン化合物等を用いる。上部電極層は、例えばタングステンなどの金属層を用いる。
図14〜図18を用いて、配向層105及び超格子層110の加工について説明する。配向層105及び超格子層110は2段階に分けて加工を行う。即ち、第一段階として、アクティブエリアAAパターンの長軸側に平行方向にライン上に分離する加工を行う。その後に、第二段階として、ライン状のAAパターンを分離する加工を行う。
図14(a)に、第一段階の加工後の配向層105及び超格子層110の平面レイアウトを示し、図14(b)に、第二段階の加工後の配向層105及び超格子層110の平面レイアウトを示す。
以下、具体的に上記の配向層105及び超格子層110の加工における側壁転写加工について説明する。なお、図15乃至図18は,図14(a)のC−C線に沿った断面図であって第三層間絶縁膜240の上部より上方を模式的に示している。但し、第三層間絶縁膜240中の構造については図示を省略する。
図15に示すように、超格子層110上に犠牲芯材270を形成する。さらに、犠牲芯材270上にリソグラフィー法等により、マスクパターン280を形成する。犠牲芯材270には、例えばシリコン酸化膜、シリコン窒化膜やシリコン膜を用いる。
次に、マスクパターン280をマスク材として、犠牲芯材270をRIE法により図示しないエッチング加工を行う。その後、マスクパターン280をアッシャー法等により除去する。なお、エッチング加工後に、フッ酸水溶液やアンモニアとフッ酸の混合水溶液等により、犠牲芯材270をエッチングし、寸法を細くしても構わない。
続いて、図16に示すように、加工した犠牲芯材270を覆うように、ハードマスク材290を形成する。ハードマスク材290は、犠牲芯材270と異なる材料であって、例えばシリコン酸化膜、シリコン窒化膜やシリコン膜を用いる。成膜方法は、例えば、ALD(Atomic Layer Deposition)法、低圧CVD法等を用いる。
続いて、図17に示すように、犠牲芯材270が露出するまで、RIE法によるエッチバックにより、ハードマスク材290をエッチング加工する。その後、リン酸やコリン水溶液(トリメチル-2-ヒドロキシエチルアンモニウムハイドロオキサイド水溶液)やフッ酸等を含む薬液等により、犠牲芯材270をエッチング除去する。エッチング除去により、所望のスペース幅を有したハードマスク材290による側壁マスクパターンが形成される。
続いて、図18に示すように、ハードマスク材290による側壁マスクパターンをマスクとして、配向層105及び超格子層110をRIE法によりエッチング加工する。エッチング加工後にハードマスク材290が残っている場合は、例えば、リン酸やコリン水溶液(トリメチル-2-ヒドロキシエチルアンモニウムハイドロオキサイド水溶液)やフッ酸等の薬液により、ハードマスク材290を除去する。なお、配向層105及び超格子層110のレイアウトは、図14(a)に示した通りである。
なお、図17及び図18に示した通り、配向層105及び超格子層110のスペース部において、第三層間絶縁膜240の掘込み量の深さが一つ置きの周期を持つ場合がある。これは、例えば、図17に示すハードマスク材290加工時の超格子層110の掘り込みがそのまま転写されるためである。
本実施形態のより具体的な一例としては、犠牲芯材270にシリコン窒化膜を用い、ハードマスク材290にシリコン膜を用いる。犠牲芯材270の除去はリン酸、ハードマスク材の除去はコリン水溶液を用いる。
続いて、図14(a)のライン&スペースパターンから図14(b)のパターンを形成するため以下の加工を行う。
リソグラフィー法により、図示しないマスクパターンを形成する。このマスクパターンをマスクとして、配向層105及び超格子層110をRIE法によりエッチング加工する。エッチング加工により、図14(b)に示した抵抗変化層のレイアウトが形成される。このように、配向層105及び超格子層110が分離され、抵抗変化素子RWが形成される。この状態の図3のA−A線に沿った断面図及び図3のB−B線に沿った断面図相当を図19(a)及び(b)に示す。
続いて、図20に示すように、第四層間絶縁膜260を成膜し、必要に応じて、CMP法により平坦化する。第四層間絶縁膜260は、例えば、シリコン酸化膜を用いる。
続いて、図21の(a)及び(b)に示すように、第二配線層M2を形成する。第四層間絶縁膜260上にリソグラフィー法により所望のマスクパターンを形成する。このマスクパターンをマスク材として、抵抗変化素子RWに到達するように、第四層間絶縁膜260をRIE法によりエッチング加工する。エッチング加工により、第二配線トレンチが形成される。この第二配線トレンチに第二配線層材料310を成膜し、CMP法により第二配線トレンチ以外の部分の第二配線層材料310を除去する。これにより、第二配線層M2が形成される。
第二配線層材料310は、例えばバリアメタル層と金属層を用いる。バリアメタル層は、例えばチタン、タンタル、ニオブ、窒化チタン、窒化タンタル、窒化ニオブ又はこれらの積層を用いる。金属層は、タングステン、銅、アルミ等を用いる。実施例の具体例としては、バリアメタルにチタンと窒化チタンの積層を用い、金属層にタングステンを用いる。
続いて、一般的な製造方法を用いて、各種配線層や回路素子を形成する。このようにして、本実施形態の抵抗変化型メモリが製造される。
以上に説明した実施例によれば、抵抗変化素子RW上と第二配線層M2は、抵抗変化素子RW上に抵抗変化素子RWと別の新たな独立の金属層を形成することなく、抵抗変化素子RW上側と第二配線層M2は電気的に接続できる。この独立の金属層が省略可能なことにより、金属層の成膜工程、リソグラフィー工程、及びエッチング加工工程等の削減ができる。工程の削減は、歩留り向上やコスト削減を可能とし、安価なメモリを供給することが可能となる。
また、配向層105及び超格子層110のエッチング加工を2段階に分けて行うことは、微細化の点で有利である。第一段階のリソグラフィー法によるマスクパターン形成は、同一方向に同一周期でパターン形成を行う。すなわち、リソグラフィー法による露光条件の最適化が容易である。したがって、より微細なマスクパターン形成が可能となる。
また、第二段階のエッチング加工は、エッチング加工領域が限られているため、リソグラフィー法によるマスクパターン形成及びRIE法によるエッチング加工が容易である。
さらに、ビアコンタクトV0は、第一の方向及び第二の方向に等間隔(等ピッチ)で配置されているため、リソグラフィー法によるマスクパターンの形成、及びRIE法によるエッチング加工が容易である。
なお、上記の説明においては、1つのアクティブエリアAAに係るセルトランジスタCTは共通のソース領域Sと異なるドレイン領域Dを有するとして説明を行ったが、共通のドレイン領域Dと異なるソース領域Sを有するとしても構わない。
また、第一配線層M1を第二ビット線BL2、第二配線層M2を第一ビット線BL1としたが、逆に、第一配線層M1を第一ビット線BL1、第二配線層M2を第二ビット線BL2としても構わない。
さらに、超格子層110上に犠牲芯材270を形成する際、超格子層110及び犠牲芯材270の間にシリコン酸化膜等の絶縁膜などを成膜してもよく、この場合は配向層105及び超格子層110のエッチング加工時に、当該絶縁膜を配向層105及び超格子層110と一体としてエッチング加工をすればよい。この場合は、RIE法によるエッチング加工時に超格子層110がプラズマにさらされず、抵抗変化素子RWの信頼性を向上できる。
(第2の実施形態)
図22は、本発明の第2の実施の形態に係る平面レイアウトを表したものである。本実施形態は、第1の実施形態より隣に位置するビアコンタクトV0同士の間隔を第二の方向に約25%増やした構造である。
このように、隣接ビアコンタクトV0間の間隔を大きくしたとしても、第1の実施形態と同様に、抵抗変化素子RW上側部に抵抗変化素子RWと別の独立の金属層を形成すること無く、第二配線層M2と接続が可能である。
また、本実施形態によれば、第1の実施形態よりアクティブエリアAAの幅または互いに隣接するアクティブエリアAA間の間隔が約16%増える。アクティブエリアAA間の間隔を増やすことは、アクティブエリアAA上に形成されたセルトランジスタCTのチャネル幅を増やすことになる。そして、セルトランジスタCTを流れる電流は、およそチャネル幅におおよそ比例する。したがって、第1の実施形態と同じ電圧をセルトランジスタCTに印加した場合、セルトランジスタCTを流れる電流は約16%増えることになる。すなわち、抵抗変化素子RWに約16%多く電流を流すことができ、抵抗変化素子RWの読書き動作の高速化が可能である。抵抗変化素子RWの動作の高速化により、高速動作可能なメモリを得ることができる。
(第3の実施形態)
図23は、本発明の第3の実施の形態に係る平面レイアウトを表したものである。本実施形態は、第1の実施形態より、隣接ビアコンタクトV0間の間隔を第一の方向に約75%増やした構造である。本実施形態においても、抵抗変化素子RWの上側に抵抗変化素子RWと別の独立の金属層を形成すること無く、第二配線層M2と接続が可能である。
第1の実施形態、第2の実施形態及び第3の実施形態に示したように、第一の方向及び第二の方向のパターン及びスペースを任意に拡大縮小したとしても第1の実施形態と同様に、抵抗変化素子RWの上側に抵抗変化素子RWと別の金属層を形成すること無く、第二配線層M2と接続が可能である。
(第4の実施形態)
図24乃至図29に本発明の第4の実施の形態を示す。
本実施の形態は、第1の実施形態の図15乃至図18における配向層105及び超格子層110のエッチング加工方法を、以下に記述するエッチング加工とするものである。したがって、エッチング加工部分以外は同様の方法によればよいため、説明を省略する。
図24乃至図29は,図14(a)のC−C線に沿った本実施の形態の断面図であって第三層間絶縁膜240の上部より上方を模式的に示している。但し、第三層間絶縁膜240中の構造については図示を省略する。
まず、図24に示すように、超格子層110上に第一芯材320を形成する。さらに、第一芯材320上にリソグラフィー法によりマスクパターン330を形成する。第一芯材320には、例えばシリコン酸化膜、シリコン窒化膜やシリコン膜を用いる。
次に、マスクパターン330をマスク材として、第一芯材320をRIE法により図示しないエッチング加工を行う。その後、マスクパターン330をアッシャー法等により除去する。さらに、必要に応じて、フッ酸水溶液やアンモニアとフッ酸の混合水溶液等により、第一芯材320をエッチングにより細らせても構わない。
続いて、図25に示すように、第一芯材320を覆うように、第二芯材340を形成する。ここで、第二芯材340は、第一芯材320と異なる材料であって、例えばシリコン酸化膜、シリコン窒化膜又はシリコン膜を用い、低圧CVD法やALD法等により成膜する。
その後、第一芯材320が露出するまで、第二芯材340に対しRIE法による図示しないエッチバック加工を行う。
続いて、図26に示すように、ハードマスク材350を成膜する。ハードマスク材350は、第二芯材340と異なる材料であるが、第一芯材とは必ずしも異ならなくても良く、例えば、シリコン酸化膜、シリコン窒化膜やシリコン膜を用い、低圧CVD法やALD法等により成膜する。
続いて、図27に示すように、第二芯材340が露出するまで、ハードマスク材350に対しエッチバック加工を行う。
続いて、図28に示すように、さらに、リン酸、コリン水溶液やフッ酸等を含む薬液により、第二芯材340をエッチング除去する。これにより、第一芯材320及びハードマスク材350による芯材マスク及び側壁マスクが形成される。
具体的な一例としては、第一芯材320にシリコン窒化膜、第二芯材340にシリコン膜、ハードマスク材350にシリコン窒化膜を用いる。第二芯材の除去は、例えばコリン水溶液を用いる。また、別の一例としては、第一芯材320にシリコン酸化膜、第二芯材340にシリコン窒化膜、ハードマスク材350にシリコン酸化膜を用いる。第二芯材の除去は、例えばリン酸を用いる。
続いて、図29に示すように、第一芯材320及びハードマスク材350をマスク材として、配向層105及び超格子層110をRIE法によりエッチング加工する。さらに、必要に応じて、リン酸、コリン水溶液やフッ酸などの薬液により、第一芯材320及びハードマスク材350を除去する。
なお、図29に示した通り、配向層105及び超格子層110のスペース部において、第三層間絶縁膜240の掘込み量の深さが二つ置きの周期を持つ場合がある。これは、例えば、図27に示すハードマスク材350加工時の超格子層110の掘り込みがそのまま転写するためである。
以降の製造方法は、第一の実施例と同様のため、説明を省略する。
本実施形態は、第一の実施例よりも、最初のマスクパターン330形成時のパターン間隔が大きいため、より容易に製造ができるメリットがある。
(第5の実施形態)
図30は、本発明の第5の実施の形態に係る記憶装置の抵抗変化素子RWの構成を表したものである。この記憶装置は、第1の実施形態と異なり、抵抗変化素子RWとして相変化メモリ素子を用いる。
相変化メモリ素子は、相変化層410及び下部電極層405を有する。また、図30に示すように上部電極層415を有しても良い。相変化層410は、例えば、ゲルマニウム、アンチモン、テルルを有するGST等を用いる。GSTは、電流を流しジュール熱を発生させることで、アモルファス状態と結晶状態との間で構造を変化させることができる。例えば、GSTにおいては、アモルファス状態において高抵抗状態であり、結晶状態において低抵抗状態である。
したがって、低抵抗状態をデータ“0”、及び高抵抗状態を“1”と定義すれば、先に述べた超格子変化型相変化メモリ素子と同様にデータを記憶することが可能となる。もちろん、低抵抗状態を“1”と定義し、高抵抗状態を“0”と定義しても構わない。
相変化メモリ素子を低抵抗状態から高抵抗状態に遷移させるには、例えば、相変化層410に高電圧及び大電流を短時間流したのち、電流を急減させることで行う。すなわち、大電流により、相変化層を構成するGSTをいったん溶融させる。その後、電流の急減による急冷により、GSTをアモルファス状態とすることができる。
一方、相変化メモリ素子を高抵抗状態から低抵抗状態に遷移させるには、例えば、相変化層410に高電圧及び大電流を短時間流したのち、電流を緩やかに減ずることで行う。すなわち、大電流による溶融ののち、結晶化温度に保持することにより、GSTを結晶状態とすることができる。
下部電極層405は、ジュール熱源として相変化層410を加熱するのに用いることができる。具体的な材料としては、窒化チタンが挙げられ、スパッタ法やCVD法により成膜する。上部電極層415は、例えばタングステンを用い、スパッタ法やCVD法により成膜する。
本実施形態の一例としては、図4の配向層105及び超格子層110に代えて、上述の下部電極層405、相変化層410及び上部電極層415を用いる。
これにより、相変化メモリ素子を抵抗変化素子RWとして用いることができる。
また、変形例を図31を用いて説明する。図31は、図3のA−A線に沿った断面図である。この変形例は、下部電極層405が、ビアコンタクトホール内のビアコンタクトV0上に形成されている点が異なる。
本変形例の製造方法は、例えば以下による。第1の実施形態と同様の方法により、ビアコンタクトV0を図12(a)及び(b)に示すように形成する。その後、ビアコンタクト材料250を、所定の高さまでRIE法によりエッチング加工する。その後、下部電極層405を成膜したのち、CMP法によりビアコンタクトホール以外の部分を除去する。
続いて、相変化層410を及び上部電極層415を成膜し、以降は第一の実施形態と同様の製造方法を用いればよい。なお、ビアコンタクト材料250をエッチングし所定の高さまで除去する際は、ビアコンタクト材料の一部である金属層部分だけをエッチングし、バリアメタル層を残しても構わない。
本変形例の場合、下部電極層405と相変化層410の接触部分が小さい。したがって、相変化層410の加熱部分が小さいため、書込み電流又は電圧、消去電流又は電圧を低減することが可能であり、低電圧定電流で駆動するメモリデバイスを得ることができる。
また、別の変形例を図32を用いて説明する。図32は、図3のA−A線に沿った断面図である。この変形例は、下部電極層405の形成方法が次のように異なる。
まず、図12(a)及び(b)に示す通りビアコンタクトV0を形成する。この後、シリコン酸化膜等の第五層間絶縁膜420を成膜する。第五層間絶縁膜420上にリソグラフィー法でビアコンタクトV0の上方に開口を有するマスクパターンを形成する。このマスクパターンをマスクとして、第五層間絶縁膜420をRIE法によりエッチング加工する。形成されたホールパターンに下部電極層405を成膜し、CMP法によりホールパターン以外の下部電極層405を除去する。その後、相変化層410を及び上部電極層415を成膜し、以降は第一の実施形態と同様の製造方法を用いればよい。
この図32の製造方法は、図31の製造方法に比べて、ビアコンタクトV0内の金属層のRIE法によるエッチングは不要であるが、図31の製造方法よりも処理工程数は増える。
さらに別の変形例として、図33に示すように第二配線層M2の下層として、相変化メモリ素子の上部電極層415を形成しても構わない。
(第6の実施形態)
図34は、本発明の第6の実施の形態に係る記憶装置の抵抗変化素子RWの構成を表したものである。第1の実施形態と異なり、抵抗変化素子RWとしてイオンメモリ素子を用いる。
イオンメモリ素子は、イオンソース電極層600、イオン拡散層610、及び対抗電極層620を有する。
対抗電極層620は、導電性材料であれば良く、例えば多結晶シリコンや金属材料を用いる。金属材料を用いる場合は、イオン拡散層610には拡散しにくい金属元素を用いることが好ましい。
典型例として、イオン拡散層610にシリコンを用いる場合は、対抗電極層620は、例えば、窒化チタン、モリブデン、又はタンタル等を用いる。
イオン拡散層610は、第二電極の金属がイオン化し拡散可能であって高抵抗であれば良い。例えばn型不純物またはp型不純物を意図的に添加されていない非晶質シリコン、酸化シリコン、窒化シリコン、遷移金属酸化物等を用いる。
イオンソース電極層600は、シリコンと反応しない元素が好ましく、例えば、銀、銅、アルミニウム、コバルト、ニッケル、チタン等を用いる。
イオンメモリ素子は、次の方法により低抵抗状態と高抵抗状態を遷移する。
イオンソース電極層600と対抗電極層620との間に順方向の電圧を印加すると、イオン拡散層610にイオンソース電極層600から金属原子(金属イオン)が伝導する。これにより、フィラメントがイオン拡散層に形成される。このフィラメントがイオンソース電極層600と対抗電極層620間の伝導パスとなって、イオン拡散層610は低抵抗化する。
一方、イオンソース電極層600と対抗電極層620との間に逆方向の比較的高い電圧を印加すると、フィラメント中の金属イオンが逆にイオンソース電極にイオン電導するため、フィラメントによる伝導パスが途切れる。これにより、イオン拡散層610は高抵抗状態となる。
したがって、低抵抗状態をデータ“0”、及び高抵抗状態を“1”と定義すれば、先に述べた超格子変化型相変化メモリ素子と同様にデータを記憶することが可能となる。もちろん、低抵抗状態を“1”と定義し、高抵抗状態を“0”と定義しても構わない。
本実施形態の一例としては、図4の配向層105及び超格子層110に代えて、上述のイオンソース電極層600、イオン拡散層610、及び対抗電極層620を用いる。この場合には、イオンソース電極層600及び対抗電極層620の何れを上部に配置しても構わない。
また、変形例としては、第5の実施例における図31乃至図33と同様に、イオンソース電極層600又は対抗電極層620をビアコンタクトホール内のビアコンタクトV0上に形成しても構わないし、第二配線層M2の下層として形成しても構わない。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、そのほかの様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とのその均等の範囲に含まれる。
RW…抵抗変化素子、
AA…アクティブエリア
GC…ゲート電極
CB…ビット線コンタクト
V0…ビアコンタクト
MC…メモリセル
M1…第一配線層(第三配線層)
M2…第二配線層
BL1…第一ビット線
BL2…第二ビット線
105…配向層
110…超格子層
150…半導体基板
155…トレンチ
160…素子分離絶縁膜
165…第一層間絶縁膜
170…トレンチ
180…ゲート絶縁膜
190…ゲート電極層
195…CMPストッパ膜
196…第二層間絶縁膜
200…ビット線コンタクト材料
210…第一配線層材料
220…ハードマスク
240…第三層間絶縁膜
250…ビアコンタクト材料
260…第四層間絶縁膜
270…犠牲芯材
280…マスクパターン
290…ハードマスク材
310…第二配線層材料
320…第一芯材
330…マスクパターン
340…第二芯材
350…ハードマスク
405…下部電極層
410…相変化層
415…上部電極層
420…第五層間絶縁膜
600…イオンソース電極
610…イオン拡散層
620…対抗電極

Claims (11)

  1. 基板と、
    第一のセルトランジスタと、
    第二のセルトランジスタと、
    前記基板に形成され、前記第一のセルトランジスタのソースまたはドレインとして機能する第一拡散領域と、
    前記基板に形成され、前記第一のセルトランジスタのソースまたはドレインおよび前記第二のセルトランジスタのソースまたはドレインとして機能する第二拡散領域と、
    前記基板に形成され、前記第二のセルトランジスタのソースまたはドレインとして機能する第三拡散領域と、
    前記第一のセルトランジスタの前記第一拡散層領域に電気的に接続する第一のビアコンタクトと、
    前記第一のビアコンタクトを含み、第一の方向に複数のビアコンタクトが所定の間隔で設けられた第一ビアコンタクト群と、
    前記第二のセルトランジスタの前記第三拡散層領域に電気的に接続する第二のビアコンタクトと、
    前記第二のビアコンタクトを含み、前記第一ビアコンタクト群に対して前記第一の方向と直交する第二の方向へ間隔を隔てて設けられ、前記第一の方向に複数の他のビアコンタクトが所定の間隔で設けられた第二ビアコンタクト群と、
    前記第一のビアコンタクト及び前記第二のビアコンタクトに電気的に接続する、抵抗状態の変化によってデータを記憶し、電流によってデータを書換え可能な抵抗変化素子と、
    前記抵抗変化素子の上端部と電気的に接続し、前記抵抗変化素子の上方を交差するように形成された第一配線層と、
    を有する記憶装置。
  2. 前記第二拡散層領域と電気的に接続して設けられた第三のビアコンタクトと、
    前記第三のビアコンタクトに電気的に接続して設けられた第二配線層と
    を備える請求項1記載の記憶装置。
  3. 前記第一配線層と前記第二配線層は、前記第一の方向に伸び、
    前記基板に形成され、前記第一のビアコンタクト、前記第二のビアコンタクト、及び前記第三のビアコンタクトに電気的に接続したアクティブエリアを有し、
    前記アクティブエリアの長軸の延伸方向と前記抵抗変化素子の長軸の延伸方向が並行となる
    請求項2記載の記憶装置。
  4. 前記抵抗変化素子は、ゲルマニウム、アンチモン、テルルを有することを特徴とする請求項1〜3いずれか一項記載の記憶装置。
  5. 第一の方向と、前記第一の方向に直交した第二の方向との両方に平行な面を持つ基板と、
    前記基板に前記第二の方向に延伸して形成された第一ワード線及び第二ワード線と、
    前記第二ワード線に対して前記第一ワード線と反対側に隣接し前記第二の方向に延伸する第三ワード線と、
    前記第三ワード線に対して前記第二ワード線と反対側に隣接し前記第二の方向に延伸する第四ワード線と、
    前記第四ワード線に対して前記第三ワード線と反対側に隣接し前記第二の方向に延伸する第五ワード線と、
    少なくとも前記第二ワード線と前記第三ワード線と交差し、前記第一の方向と前記第二の方向と交差する第三の方向に延伸する第一のアクティブエリアと、
    少なくとも前記第三ワード線と前記第四ワード線と交差し、前記第三の方向に延伸する第二のアクティブエリアと、
    前記第一のアクティブエリア上であって前記第一ワード線と前記第二ワード線の間に形成された第一のビアコンタクトと、
    前記第一のアクティブエリア上であって前記第三ワード線と前記第四ワード線の間に形成された第二のビアコンタクトと、
    前記第二のアクティブエリア上であって前記第二ワード線と前記第三ワード線の間に形成された第三のビアコンタクトと、
    前記第二のアクティブエリア上であって前記第四ワード線と前記第五ワード線の間に形成された第四のビアコンタクトと、
    前記第一のビアコンタクト及び前記第二のビアコンタクトに接続して設けられた第一の抵抗変化素子と、
    前記第三のビアコンタクト及び前記第四のビアコンタクトに接続して設けられた第二の抵抗変化素子と、
    前記第一の抵抗変化素子上で交差し、前記第一の方向に延伸した第一配線層と、
    前記第二の抵抗変化素子上で交差し、前記第一配線層と隣接し前記第一の方向に延伸した第二配線層と
    を有する記憶装置。
  6. 基板に、
    第一拡散領域、第二拡散領域および第三拡散領域を形成し、
    前記第一拡散層領域をソースまたはドレインの一方とし、前記第二拡散層領域をソースまたはドレインの他方とする第一のセルトランジスタを形成し、
    前記第二拡散層領域をソースまたはドレインの一方とし、前記第三拡散層領域をソースまたはドレインの他方とする第二のセルトランジスタを形成し、
    前記第一拡散層領域に電気的に接続する第一のビアコンタクトと、前記第三拡散層領域に電気的に接続する第二のビアコンタクトとを含むビアコンタクトを複数形成し、
    前記第一のビアコンタクト及び前記第二のビアコンタクトに電気的に接続する、抵抗状態の変化によってデータを記憶し、電流によってデータを書換え可能な抵抗変化素子を形成し、
    前記抵抗変化素子と電気的に接続し、前記抵抗変化素子の上方を交差するように第一配線層を形成する、
    記憶装置の製造方法であって、
    前記ビアコンタクトは、第一ビアコンタクト群と、前記第一ビアコンタクト群に対し第一の方向と直交する第二の方向に離間した第二ビアコンタクト群を含み、
    前記第一ビアコンタクト群には、前記第一の方向に所定の間隔で前記第一のビアコンタクトを含む一部の前記ビアコンタクトが配列されており、
    前記第二ビアコンタクト群には、前記第一の方向に所定の間隔で前記第二のビアコンタクトを含む他の一部の前記ビアコンタクトが配列されている、記憶装置の製造方法。
  7. 前記第一のセルトランジスタ及び前記第二のセルトランジスタを形成後、前記第一のビアコンタクトまたは前記第二のビアコンタクトを形成前に、
    前記第二拡散層領域と、電気的に接続する第三のビアコンタクトを形成し、
    前記第一のビアコンタクトまたは前記第二のビアコンタクトを形成前に、前記第三のビアコンタクトに電気的に接続して設けられた第二配線層を形成する、
    請求項6記載の記憶装置の製造方法。
  8. 前記第一のセルトランジスタまたは前記第二のセルトランジスタを形成前に、
    前記第一のビアコンタクト、前記第二のビアコンタクト、及び前記第三のビアコンタクトが電気的に接続し、長軸の延伸方向が前記抵抗変化素子の長軸の延伸方向と並行となるようにアクティブエリアを形成し、
    前記第一配線層及び前記第二配線層の形成は、前記第一配線層及び前記第二配線層の延伸方向は何れも前記第一の方向とする、
    請求項7記載の記憶装置の製造方法。
  9. 前記抵抗変化素子は、ゲルマニウム、アンチモン、テルルを有することを特徴とする請求項6〜8のいずれか一項記載の記憶装置の製造方法。
  10. 前記抵抗変化素子の形成は、
    前記抵抗変化素子の上方に第一芯材パターンを形成し、
    前記第一芯材パターンの側面に第二芯材側壁マスクを形成し、
    前記第一芯材パターンを除去し、
    前記第二芯材側壁マスクをマスク材とした加工をする、
    請求項6〜9いずれか一項記載の記憶装置の製造方法。
  11. 前記抵抗変化素子の形成は、
    前記抵抗変化素子層の上方に第一芯材パターンを形成し、
    前記第一芯材パターンの側面に第二芯材側壁マスクを形成し、
    前記第二芯材側壁マスクの側面に第三芯材側壁マスクを形成し、
    前記第二芯材側壁マスクを除去し、
    前記第一芯材パターン及び前記第三芯材側壁マスクをマスク材とした加工する、
    請求項6〜9いずれか一項記載の記憶装置の製造方法。
JP2014202639A 2014-09-30 2014-09-30 記憶装置及びその製造方法 Pending JP2016072538A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014202639A JP2016072538A (ja) 2014-09-30 2014-09-30 記憶装置及びその製造方法
US14/636,538 US9263501B1 (en) 2014-09-30 2015-03-03 Memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202639A JP2016072538A (ja) 2014-09-30 2014-09-30 記憶装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2016072538A true JP2016072538A (ja) 2016-05-09

Family

ID=55275505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202639A Pending JP2016072538A (ja) 2014-09-30 2014-09-30 記憶装置及びその製造方法

Country Status (2)

Country Link
US (1) US9263501B1 (ja)
JP (1) JP2016072538A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361158B2 (en) * 2017-08-29 2019-07-23 Micron Technology, Inc. Integrated assemblies having structures along a first pitch coupled with structures along a second pitch different from the first pitch
JP2021150493A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 半導体記憶装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200529414A (en) * 2004-02-06 2005-09-01 Renesas Tech Corp Storage
US7411208B2 (en) * 2004-05-27 2008-08-12 Samsung Electronics Co., Ltd. Phase-change memory device having a barrier layer and manufacturing method
KR100735525B1 (ko) * 2006-01-04 2007-07-04 삼성전자주식회사 상변화 메모리 장치
US7817454B2 (en) * 2007-04-03 2010-10-19 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors
JP5113845B2 (ja) * 2007-08-10 2013-01-09 ルネサスエレクトロニクス株式会社 半導体装置
JP2010123664A (ja) * 2008-11-18 2010-06-03 Elpida Memory Inc 不揮発性メモリ装置
JP5348108B2 (ja) 2010-10-18 2013-11-20 ソニー株式会社 記憶素子
JP5621541B2 (ja) 2010-11-19 2014-11-12 ソニー株式会社 記憶装置
JP2012204399A (ja) 2011-03-23 2012-10-22 Toshiba Corp 抵抗変化メモリ
JP5677187B2 (ja) 2011-05-09 2015-02-25 株式会社東芝 半導体記憶装置
JP5831687B2 (ja) 2011-07-22 2015-12-09 ソニー株式会社 記憶装置およびその製造方法
KR20150102330A (ko) * 2014-02-28 2015-09-07 에스케이하이닉스 주식회사 전자장치

Also Published As

Publication number Publication date
US9263501B1 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US8427865B2 (en) Semiconductor storage device
JP5512700B2 (ja) 半導体記憶装置およびその製造方法
US9036402B2 (en) Arrays of vertically stacked tiers of non-volatile cross point memory cells
US8760910B2 (en) Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
JP5481565B2 (ja) 不揮発性記憶装置およびその製造方法
JP5765430B2 (ja) 半導体記憶装置及びその製造方法
JP5582416B2 (ja) ヒューズアレイと共に抵抗ランダムアクセスメモリを形成
JP2009267219A (ja) 半導体記憶装置およびその製造方法
JP2014049745A (ja) 半導体記憶装置、及びその製造方法
JP2014039007A (ja) 半導体記憶装置及びその製造方法
JP2008160004A (ja) 半導体記憶装置及びその製造方法
JP2011233831A (ja) 半導体記憶装置
TWI550621B (zh) 單次可編程記憶體、電子系統、操作單次可編程記憶體方法及編程單次可編程記憶體方法
JP5634002B2 (ja) 相変化型不揮発性メモリ及び半導体装置
JP2007019559A (ja) 半導体記憶装置及びその製造方法
JP2012074542A (ja) 不揮発性記憶装置およびその製造方法
JP2016076561A (ja) 記憶装置
US8455329B2 (en) Phase change memory device capable of increasing sensing margin and method for manufacturing the same
JP2016072538A (ja) 記憶装置及びその製造方法
US9368553B2 (en) Memory device
JP2012174818A (ja) 半導体記憶装置およびその製造方法
JP2006332671A (ja) 相変化記憶素子及びその製造方法
WO2016157334A1 (ja) 半導体記憶装置及びその製造方法
US20230301119A1 (en) Memory device
KR20060118178A (ko) 상변환 기억 소자 및 그의 제조방법

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170821