JP2016066760A - Evaluation method of soi substrate - Google Patents

Evaluation method of soi substrate Download PDF

Info

Publication number
JP2016066760A
JP2016066760A JP2014195965A JP2014195965A JP2016066760A JP 2016066760 A JP2016066760 A JP 2016066760A JP 2014195965 A JP2014195965 A JP 2014195965A JP 2014195965 A JP2014195965 A JP 2014195965A JP 2016066760 A JP2016066760 A JP 2016066760A
Authority
JP
Japan
Prior art keywords
soi substrate
drain current
soi
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014195965A
Other languages
Japanese (ja)
Other versions
JP6172102B2 (en
Inventor
大槻 剛
Takeshi Otsuki
剛 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014195965A priority Critical patent/JP6172102B2/en
Publication of JP2016066760A publication Critical patent/JP2016066760A/en
Application granted granted Critical
Publication of JP6172102B2 publication Critical patent/JP6172102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide evaluation method by which a stable result of measurement of an interface state density can be obtained even when an SOI layer is an ultra-thin SOI substrate.SOLUTION: A method for evaluating an SOI substrate by Pseudo-MOSFET method concerning the interface property of an SOI layer and a BOX layer of the SOI substrate after execution of HF processing on the SOI substrate comprises the steps of: forming a source electrode and a drain electrode on a surface of the SOI substrate, and a gate electrode on the backside of the SOI substrate; and measuring a drain current with voltages applied across the source and drain electrodes, and to the gate electrode respectively. In the drain current measuring step, in a subthreshold region where the drain current changes largely, the gate voltage applied to the gate electrode is raised at predetermined intervals, and the interface state density of the SOI substrate is measured in a length of time after HF processing in each interval, during which a quantity of change in drain current value never becomes negative.SELECTED DRAWING: Figure 6

Description

本発明は、SOI構造をもつ半導体基板のSOI層およびBOX層間の特性の評価方法に関する。   The present invention relates to a method for evaluating characteristics between an SOI layer and a BOX layer of a semiconductor substrate having an SOI structure.

SOI構造をもつ半導体シリコンウェーハの評価法として、Pseudo−MOSFET評価法が報告されている。この評価法は図8に示すように、SOI層11、BOX層12、ベースウェーハ13からなるSOI基板において、SOI層11の表面にFETとして評価するための電極として、直接ニードルを接触させる(非特許文献1)か、または、水銀電極を接触させ、これらをSource(ソース)およびDrain(ドレイン)とする。そして、ゲート電極として、ウェーハ裏面を導電体14に真空吸着するか、あるいはニードルを接触させる。この中でも水銀電極を用いたPseudo−MOSFET評価法においては、H.J.Hovelにより詳細な報告がなされており(非特許文献2)、電子移動度および界面準位密度はゲート電圧を正側に印加して測定することで得られ、水銀電極をシリコンウェーハに接触させる直前に、ウェーハをHF処理(前処理)を行う。   As an evaluation method for a semiconductor silicon wafer having an SOI structure, a Pseudo-MOSFET evaluation method has been reported. In this evaluation method, as shown in FIG. 8, in an SOI substrate composed of an SOI layer 11, a BOX layer 12, and a base wafer 13, a needle is directly brought into contact with the surface of the SOI layer 11 as an electrode for evaluating as an FET (non-non-conductive). Patent Document 1) or a mercury electrode is brought into contact, and these are referred to as Source (source) and Drain (drain). Then, as the gate electrode, the back surface of the wafer is vacuum-adsorbed to the conductor 14 or a needle is brought into contact therewith. Among these, in the Pseudo-MOSFET evaluation method using a mercury electrode, H. J. et al. A detailed report has been made by Hovel (Non-Patent Document 2). Electron mobility and interface state density are obtained by measuring the gate voltage applied to the positive side, immediately before the mercury electrode is brought into contact with the silicon wafer. Next, the wafer is subjected to HF treatment (pretreatment).

このHF処理については、例えば、特許文献1において検討された結果が開示されている。それによると、HF処理してから、自然酸化膜が形成されないような環境、具体的には測定装置にNを導入し、非酸化雰囲気を維持することで測定が安定するとされている。 As for the HF processing, for example, a result studied in Patent Document 1 is disclosed. According to this, it is said that the measurement can be stabilized by introducing N 2 into an environment in which a natural oxide film is not formed after HF treatment, specifically, by introducing N 2 into a measuring apparatus and maintaining a non-oxidizing atmosphere.

このようにPseudo−MOSFET評価法は、SOI層とBOX層の界面を評価する方法ではあるが、SOI層表面の影響も強く受ける。このことは、前述の非特許文献1、2においても議論されており、さらに詳細な検討が、下記の非特許文献3において実施されている。すなわち、SOI層表面の界面準位密度がIV特性に影響し、IVカーブを変化させてしまう。   As described above, the Pseudo-MOSFET evaluation method is a method for evaluating the interface between the SOI layer and the BOX layer, but is also strongly influenced by the surface of the SOI layer. This is also discussed in the above-mentioned Non-Patent Documents 1 and 2, and further detailed examination is carried out in Non-Patent Document 3 below. That is, the interface state density on the surface of the SOI layer affects the IV characteristics and changes the IV curve.

非特許文献3で扱われているSOI基板は、SOI層の厚さが190nmで、BOX層の厚さが390nmというものであるが、近年、SOI層を完全空乏化した状態でデバイスを作製する試みが実施されており(FDSOI(Fully Depleted Silicon−On−Insulator))、SOI層の薄膜化の傾向が続いている。このPseudo−MOSFET評価法は、前述の通りSOI層表面の影響を非常に強く受けるため、SOI層が薄膜化することで、さらに強く表面の影響を受けることが懸念される。   The SOI substrate treated in Non-Patent Document 3 has an SOI layer thickness of 190 nm and a BOX layer thickness of 390 nm. In recent years, a device is manufactured with the SOI layer fully depleted. Attempts have been made (FDSOI (Fully Depleted Silicon-On-Insulator)), and the trend toward thinner SOI layers continues. Since this Pseudo-MOSFET evaluation method is very strongly affected by the surface of the SOI layer as described above, there is a concern that the surface of the SOI layer is more strongly affected by the thinning of the SOI layer.

特開2007−42942号公報JP 2007-42942 A

S. Cristoloveanu, et. al., 「A Review of the Pseudo−MOS Transistor in SOI Wafers: Operation, Parameter Extraction, and Applications」 IEEE Trans. Electron Dev, 47, 1018 (2000).S. Cristoloveanu, et. al. "A Review of the Pseudo-MOS Transistor in SOI Wafers: Operation, Parameter Extraction, and Applications" IEEE Trans. Electron Dev, 47, 1018 (2000). H. J. Hovel, 「Si film electrical characterization in SOI substrates by HgFET technique」, Solid−State Electronics, 47, 1311 (2003).H. J. et al. Hovel, “Si film electrical charac- terization in SOI substrates by HgFET technologies”, Solid-State Electronics, 47, 1311 (2003). J. Y. Choi and D. K. Schroder, 「Mercury Pseudo−MOSFET(HgFET) drain current dependence on surface treatment」 Electrochemical Society Proceedings Volume 2005−03, 301 (2005).J. et al. Y. Choi and D.C. K. Schroder, “Mercury Pseudo-MOSFET (HgFET) drain current dependency on surface treatment”, Electrochemical Society Proceedings Volume 2005-03, 301 (2005).

本発明は、上記問題点に鑑みてなされたものであって、前処理をした後からドレイン電流の測定を開始するまでの条件が適切であるかどうかを判断するための指標を導入し、この指標に沿った前処理後の条件でドレイン電流を測定することで、SOI層が極薄のSOI基板であっても、安定した界面準位密度の測定結果が得られる評価方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and introduced an index for determining whether or not the conditions from the pretreatment to the start of the drain current measurement are appropriate. To provide an evaluation method by which a measurement result of a stable interface state density can be obtained even if the SOI layer is an ultra-thin SOI substrate by measuring the drain current under conditions after pretreatment along the index. Objective.

上記目的を達成するために、本発明は、SOI基板のSOI層とBOX層の界面特性を前記SOI基板のHF処理を行った後にPseudo−MOSFET法により評価する方法であって、前記SOI基板の表面にソース電極及びドレイン電極を、前記SOI基板の裏面にゲート電極を形成し、前記ソース電極と前記ドレイン電極間、及び前記ゲート電極に電圧を印加してドレイン電流を測定する際、前記ドレイン電流が大きく変化するサブスレッショルド領域において、前記ゲート電極への印加ゲート電圧を所定の間隔ごとに上昇させて、該上昇させた各間隔におけるドレイン電流値の変化量が負となることがない前記HF処理後の時間内に、前記SOI基板の界面準位密度を測定することを特徴とするSOI基板の評価方法を提供する。   In order to achieve the above object, the present invention is a method for evaluating interface characteristics between an SOI layer and a BOX layer of an SOI substrate by a Pseudo-MOSFET method after performing HF processing on the SOI substrate, A source electrode and a drain electrode are formed on the front surface, a gate electrode is formed on the back surface of the SOI substrate, and the drain current is measured when a voltage is applied between the source electrode and the drain electrode and between the gate electrode and the gate electrode. In the sub-threshold region in which the change of the drain current value is increased at every predetermined interval in the subthreshold region where the change of the drain current value at each increased interval does not become negative. A method for evaluating an SOI substrate, comprising measuring an interface state density of the SOI substrate within a later time.

このように、ゲート電極への印加ゲート電圧を所定の間隔ごとに上昇させて、該上昇させた各間隔におけるドレイン電流値の変化量が負となることがない前記HF処理後の時間内に、SOI基板の界面準位密度を測定することで、測定されるドレイン電流のノイズを極めて少なくし、SOI層が極薄のSOI基板であっても、正確で安定した界面準位密度の測定結果を得ることができる。   As described above, the gate voltage applied to the gate electrode is increased at every predetermined interval, and the amount of change in the drain current value at each increased interval does not become negative within the time after the HF treatment, By measuring the interface state density of the SOI substrate, the noise of the measured drain current is extremely reduced, and even if the SOI layer is an ultra-thin SOI substrate, accurate and stable interface state density measurement results can be obtained. Can be obtained.

このとき、前記SOI層の厚さが、20nm以下であり、前記HF処理から前記ドレイン電流の測定までの時間が30秒以内であることが好ましい。
このような前処理後の条件とすることにより、SOI層の厚さが20nm以下という極めて薄いSOI基板においても、正確で安定した界面準位密度の測定結果を得ることができる。
At this time, the thickness of the SOI layer is preferably 20 nm or less, and the time from the HF treatment to the measurement of the drain current is preferably within 30 seconds.
By setting the conditions after such pretreatment, an accurate and stable measurement result of the interface state density can be obtained even on an extremely thin SOI substrate having an SOI layer thickness of 20 nm or less.

このとき、前記印加ゲート電圧を上昇させる間隔は、1[V]あたり2つ以上の間隔とすることが好ましい。
このような印加ゲート電圧を上昇させる間隔とすることにより、正確な界面準位密度の測定結果を得ることができる。
At this time, the interval at which the applied gate voltage is increased is preferably at least two intervals per [V].
By setting such an interval for increasing the applied gate voltage, an accurate measurement result of the interface state density can be obtained.

ここで、サブスレッショルド領域とは、印加ゲート電圧に対して、ドレイン電流が指数関数的に大きく変化している領域のことであり、実際のデバイスにおいてはVthを決める重要な範囲である。   Here, the subthreshold region is a region where the drain current changes exponentially with respect to the applied gate voltage, and is an important range for determining Vth in an actual device.

なお、以下においては、サブスレッショルド領域において、ゲート電極への印加ゲート電圧を所定の間隔ごとに上昇させた場合の、該上昇させた各間隔におけるドレイン電流値の変化量のことを、αという指標で表す。   In the following, when the gate voltage applied to the gate electrode is increased at predetermined intervals in the subthreshold region, the amount of change in the drain current value at each increased interval is referred to as an index α. Represented by

以上のように、本発明によれば、SOI層が極薄のSOI基板においても、Pseudo−MOSFET法による正確で安定した、信頼性の高い界面準位密度の測定が可能になる。   As described above, according to the present invention, an accurate, stable, and reliable interface state density can be measured by the Pseudo-MOSFET method even in an SOI substrate with an extremely thin SOI layer.

本発明を説明するためのSOI基板の断面の模式図である。It is a schematic diagram of the cross section of the SOI substrate for demonstrating this invention. IVカーブの典型的な例を示す図である。It is a figure which shows the typical example of IV curve. SOI層の厚さと界面準位密度の関係を示す図である。It is a figure which shows the relationship between the thickness of an SOI layer, and an interface state density. SOI層の厚さが12nmの場合のIVカーブを示す図である。It is a figure which shows IV curve in case the thickness of an SOI layer is 12 nm. SOI層の厚さが12nmの場合の、前処理からドレイン電流の測定までの時間と指標αが負となった頻度の関係を示す図である。It is a figure which shows the relationship between the time from the pretreatment to the measurement of the drain current and the frequency at which the index α becomes negative when the thickness of the SOI layer is 12 nm. HF処理からドレイン電流の測定までの時間と指標αが負となることがないSOI層の厚さとの関係を示す図である。It is a figure which shows the relationship between the time from the HF process to the measurement of drain current, and the thickness of the SOI layer where the index α is not negative. HF処理からドレイン電流の測定までの時間が60秒の場合の、SOI層の厚さと指標αが負となった頻度の関係を示す図である。It is a figure which shows the relationship between the thickness of SOI layer, and the frequency by which the parameter | index (alpha) became negative when the time from HF process to the measurement of drain current is 60 second. 従来のPseudo−MOSFET評価法を説明するためのSOI基板の断面の模式図である。It is the schematic diagram of the cross section of the SOI substrate for demonstrating the conventional Pseudo-MOSFET evaluation method.

以下、本発明の実施形態について図を参照して詳細に説明するが、本発明はこれに限定されるものではない。
図1はSOI基板の断面を示した模式図である。図1を参照して本発明によるドレイン電流及び界面準位密度の測定方法を以下に示す。BOX層2をゲート酸化膜に見立て、SOI層1の表面に水銀を接触させた電極をソース及びドレインとして形成し、ベースウェーハ3に導電体層4を真空吸着させたゲート電極に印加する電圧を変化させ、SOI/BOX界面に反転層を形成する。この反転層をソースからドレインに流れるドレイン電流の大きさから、SOI/BOX界面特性、例えば、界面準位密度を求める。この界面準位密度は、反転層の形成される領域すなわちサブスレッショルド領域と呼ばれる領域のIV特性の傾き(S)から求めることができる。図1において、Ditは界面準位密度、Ψは仕事関数、Eは電界強度を表している。
Hereinafter, although an embodiment of the present invention is described in detail with reference to figures, the present invention is not limited to this.
FIG. 1 is a schematic view showing a cross section of an SOI substrate. A method for measuring drain current and interface state density according to the present invention will be described below with reference to FIG. The voltage applied to the gate electrode in which the BOX layer 2 is regarded as a gate oxide film, the electrode in which mercury is in contact with the surface of the SOI layer 1 is formed as a source and drain, and the conductor layer 4 is vacuum-adsorbed on the base wafer 3. The inversion layer is formed at the SOI / BOX interface. From the magnitude of the drain current flowing through the inversion layer from the source to the drain, the SOI / BOX interface characteristics such as the interface state density are obtained. This interface state density can be obtained from the slope (S) of the IV characteristic of a region where an inversion layer is formed, that is, a region called a subthreshold region. In FIG. 1, Dit represents the interface state density, Ψ represents the work function, and E represents the electric field strength.

図2は典型的なIVカーブを示す図であり、横軸が印加ゲート電圧、縦軸がドレイン電流である。また、界面準位密度を求める式を以下の下記数式(1)に示す。Ditは界面準位密度である。SSL(Subthreshold Slope)は、図2に示すようなIVカーブにおいて、電流(I)が一桁増加する際の電圧(V)の変化と定義されている。COXはBOX層の容量、CSiはSOI層の容量を示す。しかしながら、界面は、図1に示すように、SOI/BOX界面(Dit)だけでなく、SOI層表面(Dit)にも存在し、非特許文献2にもその影響が含まれた式が示されている(数式(2))。CSi、CBOX、CΠ1はそれぞれ、SOI層、BOX層、SOI/BOX界面のキャパシタンスである。SOI層が十分厚い場合は、この項で十分であるが、SOI層が薄くなってくるとSOI表面の影響としてCΠ2を考慮しなければならなくなる。 FIG. 2 is a diagram showing a typical IV curve, where the horizontal axis represents the applied gate voltage and the vertical axis represents the drain current. Moreover, the following formula (1) shows the formula for obtaining the interface state density. Dit is the interface state density. SSL (Subthreshold Slope) is defined as a change in voltage (V G ) when the current (I D ) increases by an order of magnitude in the IV curve as shown in FIG. C OX represents the capacity of the BOX layer, and C Si represents the capacity of the SOI layer. However, as shown in FIG. 1, the interface exists not only at the SOI / BOX interface (Dit 1 ) but also at the SOI layer surface (Dit 2 ). (Formula (2)). C Si , C BOX , and C 1 are capacitances at the SOI layer, BOX layer, and SOI / BOX interface, respectively. This term is sufficient when the SOI layer is sufficiently thick. However, when the SOI layer becomes thinner, C 2 must be considered as an influence of the SOI surface.

Figure 2016066760
Figure 2016066760

Figure 2016066760
Figure 2016066760

図3はこのSOI層の厚さの影響を示したものであり、横軸はSOI層の厚さ、縦軸は界面準位密度を示している。SOI層が薄膜化するのに従い、界面準位密度が増加することが分かる。特に50nmを切った程度の極薄SOIから界面準位密度が大きくなっており、SOI層の表面の影響を強く受けていることが分かる。   FIG. 3 shows the influence of the thickness of the SOI layer. The horizontal axis indicates the thickness of the SOI layer, and the vertical axis indicates the interface state density. It can be seen that the interface state density increases as the SOI layer becomes thinner. In particular, it can be seen that the interface state density is increased from an ultrathin SOI having a thickness of less than 50 nm and is strongly influenced by the surface of the SOI layer.

このように薄膜化することで単に界面準位密度が大きくなるだけでなく、図4に示すようにIVカーブが乱れやすくなる。図4は、HF処理からドレイン電流の測定までの時間(放置時間)を30秒から60秒まで10秒ごとに変化させた場合のIVカーブを示している。SOI層の厚さは12nmである。HF処理の後で、SOI層の表面が時間とともに変化(表面終端していたイオンの離脱)し、測定中にIVカーブに影響を及ぼし、安定した測定を阻害していることが明らかである。   Such thinning not only increases the interface state density, but also tends to disturb the IV curve as shown in FIG. FIG. 4 shows an IV curve when the time from the HF treatment to the measurement of the drain current (leaving time) is changed from 30 seconds to 60 seconds every 10 seconds. The thickness of the SOI layer is 12 nm. After the HF treatment, it is apparent that the surface of the SOI layer changes with time (detachment of ions terminated at the surface), affects the IV curve during measurement, and inhibits stable measurement.

このIV特性の異常の特徴はドレイン電流が一定の割合で増えることなく、大きく変動することである。すなわち、変動が大きくなり、本来印加ゲート電圧の増加に伴い、単調増加すべきドレイン電流がマイナスになる(減少する)場合がみられる。これはノイズであり、特に極薄SOIにおいて非常に顕著であることが、理論計算や実験で示されている(非特許文献図2、3)。信頼性の高い界面準位密度の測定のためには、この乱れ(がたつき)をなくすことが必須で、そのためにはSOI層の表面状態に関係する条件が非常に重要である。図4に示した、HF処理からドレイン電流を測定するまでの時間が30秒の場合は、IVカーブの乱れはなくなり、安定した測定が可能になる。   The characteristic of the abnormality in the IV characteristic is that the drain current greatly fluctuates without increasing at a constant rate. That is, there is a case where the fluctuation becomes large and the drain current that should be monotonously increased becomes negative (decreases) as the applied gate voltage increases. This is noise, and it has been shown by theoretical calculations and experiments that it is particularly remarkable in ultrathin SOI (Non-Patent Documents 2 and 3). In order to measure the interface state density with high reliability, it is indispensable to eliminate this disturbance (rattle), and for that purpose, the conditions related to the surface state of the SOI layer are very important. When the time from the HF treatment to the drain current measurement shown in FIG. 4 is 30 seconds, the IV curve is not disturbed and stable measurement is possible.

サブスレッショルド領域とは、図4で印加ゲート電圧に対して、ドレイン電流が指数関数的に大きく変化している領域である。前述のように、サブスレッショルド領域でのIVカーブの傾きから界面準位密度を算出する。すなわち、印加ゲート電圧の変化量に対してドレイン電流の変化量が大きいほど、界面準位密度は低くなり、逆に、ドレイン電流の変化量が小さい、すなわち傾きが小さいと、界面準位密度は大きくなる。   The subthreshold region is a region where the drain current changes exponentially greatly with respect to the applied gate voltage in FIG. As described above, the interface state density is calculated from the slope of the IV curve in the subthreshold region. That is, the larger the change amount of the drain current with respect to the change amount of the applied gate voltage, the lower the interface state density. Conversely, when the change amount of the drain current is small, that is, the inclination is small, the interface state density is growing.

サブスレッショルド領域において、ゲート電極への印加ゲート電圧を所定の間隔ごとに上昇させた場合の、該上昇させた各間隔におけるドレイン電流値の変化量のことを、αという指標で表した。このαが負となるということは、印加ゲート電圧の上昇に対して、ドレイン電流値が減少していることを示す。この原因は、測定系のノイズやSOI表面の界面の影響などのいわゆるノイズであり、本来は起こらないものである。界面準位密度はこのIVカーブの傾きから求めるため、このようなドレイン電流の減少傾向が見られると、界面準位密度の算出に悪影響を及ぼす。図4の例では、HF処理からドレイン電流の測定までの時間が30秒であれば、IVカーブはサブスレッショルド領域においてきれいなスロープであり、測定されたドレイン電流値の変化量が負となることがない。これに対し、HF処理後の時間が長くなるとIVカーブが乱れ、負の変化量の数も増える。   In the subthreshold region, when the gate voltage applied to the gate electrode is increased at predetermined intervals, the amount of change in the drain current value at each increased interval is represented by an index α. The fact that α is negative indicates that the drain current value decreases as the applied gate voltage increases. The cause of this is so-called noise such as measurement system noise or the influence of the interface of the SOI surface, which does not occur originally. Since the interface state density is obtained from the slope of the IV curve, if such a decrease in drain current is observed, the calculation of the interface state density is adversely affected. In the example of FIG. 4, if the time from the HF treatment to the measurement of the drain current is 30 seconds, the IV curve has a clean slope in the subthreshold region, and the amount of change in the measured drain current value may be negative. Absent. On the other hand, when the time after the HF processing becomes longer, the IV curve is disturbed and the number of negative changes increases.

図5にSOI層の厚さが12nmのときのサブスレッショルド領域での印加ゲート電圧の各間隔におけるドレイン電流値の変化量αが負となった頻度と、HF処理からドレイン電流の測定までの放置時間の関係を示す。横軸は、HFによる前処理からドレイン電流の測定までの放置時間を表している。前処理後の放置時間が長くなるに従って、印加ゲート電圧の各間隔におけるドレイン電流の変化量αが負となる頻度が多くなっていることが分かる。   FIG. 5 shows the frequency with which the amount of change α in the drain current value at each interval of the applied gate voltage in the subthreshold region when the SOI layer thickness is 12 nm becomes negative, and the time from HF treatment to measurement of the drain current. Indicates the relationship of time. The horizontal axis represents the standing time from HF pretreatment to drain current measurement. It can be seen that the frequency with which the drain current variation α in each interval of the applied gate voltage becomes negative increases as the standing time after the pretreatment increases.

この場合、印加デート電圧を上昇させる間隔に関して、界面準位を求める際の精度を考慮し、1[V]あたり2つ以上の間隔とすることが好ましい。1[V]あたりの間隔数を多くとると、測定時間がその分多く必要になるなどの問題もあるため、1[V]あたり10間隔以下が好ましく、1[V]あたり4間隔が適当である。   In this case, with respect to the interval for increasing the applied date voltage, it is preferable to set the interval to 2 or more per 1 [V] in consideration of the accuracy in obtaining the interface state. If the number of intervals per 1 [V] is increased, there is a problem that more measurement time is required. Therefore, 10 intervals or less per 1 [V] is preferable, and 4 intervals per 1 [V] is appropriate. is there.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

(実施例)
直径300mmの複数のSOI基板を用意した。SOI層の厚さは、12、20、40、50、及び60nmとした。これらのSOI基板を、水銀プローブを用いてPseudo−MOSFET法で測定する前に、1%のHFにて1分間前処理を実施し、HF処理後の放置時間を15、30、40、50、60秒として測定した。
図6は、横軸にHF処理からドレイン電流の測定までの時間(秒)、縦軸には印加ゲート電圧の各間隔におけるドレイン電流の変化量αが負となることがないSOI層の厚さをとり、両者の関係を示した図である。HF処理からドレイン電流の測定までの時間が30秒以内であれば、SOI層の厚さが20nmと極薄であっても、印加ゲート電圧の各間隔におけるドレイン電流の変化量αが負となることがないことが分かった。そして、界面準位密度を測定するSOI基板のSOI層の厚さにおいて、αが負となることがないHF処理後の時間内でドレイン電流の測定を行うことにより、正確で安定した界面準位密度を測定することができる。
(Example)
A plurality of SOI substrates having a diameter of 300 mm were prepared. The thickness of the SOI layer was 12, 20, 40, 50, and 60 nm. Before these SOI substrates are measured by the Pseudo-MOSFET method using a mercury probe, pretreatment with 1% HF is performed for 1 minute, and the standing time after HF treatment is 15, 30, 40, 50, It was measured as 60 seconds.
In FIG. 6, the horizontal axis represents the time (seconds) from the HF treatment to the drain current measurement, and the vertical axis represents the thickness of the SOI layer in which the change amount α of the drain current at each interval of the applied gate voltage does not become negative. It is the figure which showed the relationship between both. If the time from the HF treatment to the measurement of the drain current is within 30 seconds, the amount of change α in the drain current at each interval of the applied gate voltage becomes negative even if the SOI layer is as thin as 20 nm. I found out that there was nothing. Then, in the thickness of the SOI layer of the SOI substrate for measuring the interface state density, the drain current is measured within the time after the HF treatment in which α is not negative, thereby obtaining an accurate and stable interface state. Density can be measured.

(比較例)
実施例と同様なSOI基板を用意し、同様なHF処理を行い、HF処理からドレイン電流測定までの時間を60秒とした。SOI層の厚さと印加ゲート電圧の各間隔におけるドレイン電流の変化量αが負となった頻度との関係を図7に示した。SOI層の厚さが40nm未満になると印加ゲート電圧の各間隔におけるドレイン電流の変化量αが負となる頻度が増加しており、すなわちIVカーブが乱れていることが分かる。これにより、SOI層の厚さが40nm未満の場合は正確で安定した界面準位密度の測定が困難であった。
(Comparative example)
An SOI substrate similar to that of the example was prepared, the same HF treatment was performed, and the time from the HF treatment to the drain current measurement was set to 60 seconds. FIG. 7 shows the relationship between the thickness of the SOI layer and the frequency with which the drain current change amount α becomes negative at each interval of the applied gate voltage. It can be seen that when the thickness of the SOI layer is less than 40 nm, the frequency at which the drain current change amount α at each interval of the applied gate voltage becomes negative increases, that is, the IV curve is disturbed. As a result, when the thickness of the SOI layer is less than 40 nm, it is difficult to accurately and stably measure the interface state density.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…SOI層、 2…BOX層、 3…ベースウェーハ、 4…導電体層、
11…SOI層、 12…BOX層、 13…ベースウェーハ、 14…導電体層。
DESCRIPTION OF SYMBOLS 1 ... SOI layer, 2 ... BOX layer, 3 ... Base wafer, 4 ... Conductor layer,
DESCRIPTION OF SYMBOLS 11 ... SOI layer, 12 ... BOX layer, 13 ... Base wafer, 14 ... Conductor layer.

Claims (3)

SOI基板のSOI層とBOX層の界面特性を前記SOI基板のHF処理を行った後にPseudo−MOSFET法により評価する方法であって、前記SOI基板の表面にソース電極及びドレイン電極を、前記SOI基板の裏面にゲート電極を形成し、前記ソース電極と前記ドレイン電極間、及び前記ゲート電極に電圧を印加してドレイン電流を測定する際、前記ドレイン電流が大きく変化するサブスレッショルド領域において、前記ゲート電極への印加ゲート電圧を所定の間隔ごとに上昇させて、該上昇させた各間隔におけるドレイン電流値の変化量が負となることがない前記HF処理後の時間内に、前記SOI基板の界面準位密度を測定することを特徴とするSOI基板の評価方法。   A method for evaluating interface characteristics between an SOI layer and a BOX layer of an SOI substrate by a Pseudo-MOSFET method after performing an HF process on the SOI substrate, wherein a source electrode and a drain electrode are provided on a surface of the SOI substrate, and the SOI substrate In the subthreshold region where the drain current greatly changes when a drain current is measured by applying a voltage between the source electrode and the drain electrode and between the source electrode and the drain electrode and measuring the drain current. The gate voltage applied to the SOI substrate is increased at predetermined intervals, and the amount of change in the drain current value at each increased interval does not become negative. A method for evaluating an SOI substrate, comprising measuring unit density. 前記SOI層の厚さが、20nm以下であり、前記HF処理から前記ドレイン電流の測定までの時間が30秒以内であることを特徴とする請求項1に記載のSOI基板の評価方法。   2. The method for evaluating an SOI substrate according to claim 1, wherein a thickness of the SOI layer is 20 nm or less, and a time from the HF treatment to the measurement of the drain current is within 30 seconds. 前記印加ゲート電圧を上昇させる間隔は、1[V]あたり2つ以上の間隔とすることを特徴とする請求項1又は請求項2に記載のSOI基板の評価方法。   3. The method for evaluating an SOI substrate according to claim 1, wherein an interval for increasing the applied gate voltage is two or more intervals per 1 [V]. 4.
JP2014195965A 2014-09-26 2014-09-26 Method for evaluating SOI substrate Active JP6172102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195965A JP6172102B2 (en) 2014-09-26 2014-09-26 Method for evaluating SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195965A JP6172102B2 (en) 2014-09-26 2014-09-26 Method for evaluating SOI substrate

Publications (2)

Publication Number Publication Date
JP2016066760A true JP2016066760A (en) 2016-04-28
JP6172102B2 JP6172102B2 (en) 2017-08-02

Family

ID=55805872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195965A Active JP6172102B2 (en) 2014-09-26 2014-09-26 Method for evaluating SOI substrate

Country Status (1)

Country Link
JP (1) JP6172102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151403A (en) * 2020-11-10 2020-12-29 微龛(广州)半导体有限公司 Characterization method based on junctionless transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256327A (en) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Method of evaluating semiconductor device
US20020102751A1 (en) * 2001-01-26 2002-08-01 International Business Machines Corporation Method of determining electrical properties of silicon-on-insulator wafers
JP2004273970A (en) * 2003-03-12 2004-09-30 Shin Etsu Handotai Co Ltd Method of evaluating semiconductor substrate
JP2006013099A (en) * 2004-06-25 2006-01-12 Shin Etsu Handotai Co Ltd Method for evaluating soi wafer
JP2007042942A (en) * 2005-08-04 2007-02-15 Sumco Corp Quality evaluation method and manufacturing method of silicon wafer
JP2008300468A (en) * 2007-05-30 2008-12-11 Sumco Corp Evaluating and manufacturing method of silicon wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256327A (en) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Method of evaluating semiconductor device
US20020102751A1 (en) * 2001-01-26 2002-08-01 International Business Machines Corporation Method of determining electrical properties of silicon-on-insulator wafers
JP2004273970A (en) * 2003-03-12 2004-09-30 Shin Etsu Handotai Co Ltd Method of evaluating semiconductor substrate
JP2006013099A (en) * 2004-06-25 2006-01-12 Shin Etsu Handotai Co Ltd Method for evaluating soi wafer
JP2007042942A (en) * 2005-08-04 2007-02-15 Sumco Corp Quality evaluation method and manufacturing method of silicon wafer
JP2008300468A (en) * 2007-05-30 2008-12-11 Sumco Corp Evaluating and manufacturing method of silicon wafer

Also Published As

Publication number Publication date
JP6172102B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
Hovel Si film electrical characterization in SOI substrates by the HgFET technique
WO2013161356A1 (en) Cv characteristic measurement system and method for measuring cv characteristics
JP2017076746A (en) Evaluation method for semiconductor device and evaluation device for semiconductor device
JP2008103598A (en) Semiconductor wafer evaluating method
US7633305B2 (en) Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer
JP6172102B2 (en) Method for evaluating SOI substrate
JP2014175503A (en) Oxide for semiconductor layer of thin film transistor, thin film transistor, and display apparatus
TWI550746B (en) Evaluation method of semiconductor wafers
WO2014136660A1 (en) Oxide for semiconductor layer of thin film transistor, thin film transistor, and display device
US6429145B1 (en) Method of determining electrical properties of silicon-on-insulator wafers
JP2005142304A (en) Transistor evaluation method
WO2007138828A1 (en) Method for evaluating soi wafer
JP5003288B2 (en) Silicon wafer evaluation method and silicon wafer manufacturing method
JP2007042942A (en) Quality evaluation method and manufacturing method of silicon wafer
US20080290889A1 (en) Method of destructive testing the dielectric layer of a semiconductor wafer or sample
JP5018053B2 (en) Semiconductor wafer evaluation method
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
Mori et al. Revisiting an influence of island edges on electrical characteristics of pseudo-MOSFET method
JP4640204B2 (en) Evaluation method of SOI wafer
JP6256285B2 (en) Evaluation method of silicon single crystal wafer
Lin et al. Surface nonuniformity-induced frequency dispersion in accumulation capacitance for silicon MOS (n) capacitor
CN103745941A (en) Electric performance test method for gate dielectric
JP6020359B2 (en) Semiconductor substrate evaluation method
JP2004349342A (en) Method for measuring capacitance of depletion layer
Rautiainen Quasistatic CV characterization: Overview and implementation of a complete measurement system with comparison to other CV methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250