JP2005142304A - Transistor evaluation method - Google Patents

Transistor evaluation method Download PDF

Info

Publication number
JP2005142304A
JP2005142304A JP2003376124A JP2003376124A JP2005142304A JP 2005142304 A JP2005142304 A JP 2005142304A JP 2003376124 A JP2003376124 A JP 2003376124A JP 2003376124 A JP2003376124 A JP 2003376124A JP 2005142304 A JP2005142304 A JP 2005142304A
Authority
JP
Japan
Prior art keywords
transistor
capacitance
semiconductor layer
insulating film
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003376124A
Other languages
Japanese (ja)
Inventor
Daisuke Abe
大介 安部
Mutsumi Kimura
睦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003376124A priority Critical patent/JP2005142304A/en
Publication of JP2005142304A publication Critical patent/JP2005142304A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a method for extracting an interface fault of a transistor with a simplified method. <P>SOLUTION: The method for evaluating transistor (10) comprises a semiconductor layer (12) formed on an insulator (11), a gate insulating film (15) formed on the semiconductor layer (12), a gate insulating electrode (16) formed on the gate insulating film (15), and a source region (13) and a drain region (14) existing in both sides of the semiconductor layer (12). The interface fault (18) of the semiconductor layer (12) and the gate insulating film (15) can be extracted by measuring the capacitance-voltage characteristic between the electrodes connected to the source region (13) and drain region (14). Since the interface fault can be extracted only by measuring the capacitance-voltage characteristic of the transistor (10), the measuring means can be simplified more than that of the interface fault extracting method of the relate art. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はトランジスタの評価方法に関し、特に、半導体層とゲート絶縁膜の界面欠陥を抽出するための技術に関する。   The present invention relates to a transistor evaluation method, and more particularly to a technique for extracting an interface defect between a semiconductor layer and a gate insulating film.

500℃以下の低温プロセスで形成した多結晶ポリシリコンは半導体層とゲート絶縁膜の界面欠陥が多いことが知られている。この界面欠陥はゲート絶縁膜の成膜プロセスに依存しており、トランジスタの性能を評価する上での基準となる。半導体層とゲート絶縁膜の界面欠陥を抽出する手法として、例えば、M.Kimura,Jpn.J.Appl.Phys.40,112(2001)、M.Kimura,Jpn.J.Appl.Phys.40,5227(2001)、M.Kimura,J.Appl.Phys.91,3855(2002)に開示された手法が知られている。また、トランジスタのC−V特性(容量−電圧特性)から界面欠陥を抽出する手法として、例えば、特開2001−196434号公報に開示された手法が知られている。
M.Kimura,Jpn.J.Appl.Phys.40,112(2001) M.Kimura,Jpn.J.Appl.Phys.40,5227(2001) M.Kimura,J.Appl.Phys.91,3855(2002) 特開2001−196434号公報
It is known that polycrystalline polysilicon formed by a low temperature process of 500 ° C. or less has many interface defects between the semiconductor layer and the gate insulating film. This interface defect depends on the film formation process of the gate insulating film, and becomes a standard for evaluating the performance of the transistor. As a method for extracting the interface defect between the semiconductor layer and the gate insulating film, for example, M. Kimura, Jpn. J. Appl. Phys. 40, 112 (2001), M. Kimura, Jpn. J. Appl. Phys. 40, 5227 ( 2001), M. Kimura, J. Appl. Phys. 91, 3855 (2002) is known. As a technique for extracting interface defects from the CV characteristics (capacitance-voltage characteristics) of a transistor, for example, a technique disclosed in Japanese Patent Application Laid-Open No. 2001-196434 is known.
M. Kimura, Jpn. J. Appl. Phys. 40, 112 (2001) M. Kimura, Jpn. J. Appl. Phys. 40, 5227 (2001) M. Kimura, J. Appl. Phys. 91, 3855 (2002) JP 2001-196434 A

しかし、上述の非特許文献1〜3に開示された技術ではC−V特性とI−V特性(電流−電圧特性)を組み合わせる必要があるため、界面欠陥を求めるために多くの手間を要していた。また、上述の特許文献1に開示された手法ではポアソン方程式、キャリア密度方程式などの複雑な方程式を解く必要があるため、界面欠陥を求めるためのアルゴリズムが複雑になる。また、ポアソン方程式、キャリア密度方程式などを解くには、半導体層の膜厚、誘電率、エネルギーバンドギャップ、準位密度、温度などの構造的、材料的、実験的な各種のパラメータを把握する必要があった。   However, since the techniques disclosed in Non-Patent Documents 1 to 3 described above require a combination of CV characteristics and IV characteristics (current-voltage characteristics), much effort is required to obtain interface defects. It was. Further, in the method disclosed in Patent Document 1 described above, it is necessary to solve complicated equations such as the Poisson equation and the carrier density equation, so that an algorithm for obtaining an interface defect becomes complicated. To solve Poisson's equation, carrier density equation, etc., it is necessary to understand various structural, material, and experimental parameters such as semiconductor layer thickness, dielectric constant, energy band gap, level density, temperature, etc. was there.

そこで、本発明は簡易な手法でトランジスタの界面欠陥を抽出する方法を提案することを課題とする。   Accordingly, an object of the present invention is to propose a method for extracting interface defects of a transistor by a simple method.

上記の課題を解決するため、本発明のトランジスタの評価方法は、絶縁物上に形成された半導体層と、半導体層上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、半導体層の両側に存在するソース領域及びドレイン領域を備えたトランジスタの評価方法であって、ゲート電極と、ソース領域及びドレイン領域を接続した電極との間の容量−電圧特性を測定することで半導体層とゲート絶縁膜の界面欠陥を抽出する。トランジスタの容量−電圧特性を測定するだけで半導体層とゲート絶縁膜の界面準位を求めることができるため、測定手法を簡易化できる。また、半導体層の膜厚、誘電率、エネルギーバンドギャップ、準位密度、温度などの構造的、材料的、実験的な各種のパラメータを知らなくても界面準位密度を求めることができるため、利便性に優れている。   In order to solve the above problems, a transistor evaluation method of the present invention includes a semiconductor layer formed over an insulator, a gate insulating film formed over the semiconductor layer, and a gate electrode formed over the gate insulating film. And a method for evaluating a transistor having a source region and a drain region present on both sides of a semiconductor layer, and measuring capacitance-voltage characteristics between a gate electrode and an electrode connecting the source region and the drain region Then, the interface defect between the semiconductor layer and the gate insulating film is extracted. Since the interface state between the semiconductor layer and the gate insulating film can be obtained only by measuring the capacitance-voltage characteristics of the transistor, the measurement method can be simplified. In addition, since the interface state density can be obtained without knowing various structural, material, and experimental parameters such as semiconductor layer thickness, dielectric constant, energy band gap, level density, and temperature, Excellent convenience.

本発明のトランジスタの評価方法において、容量−電圧特性の測定は、ゲート電極と、ソース領域及びドレイン領域を接続した電極との間に高周波電圧と低周波電圧を印加することにより行うのが望ましい。高周波等価容量と低周波等価容量から界面準位密度を求めることができる。   In the transistor evaluation method of the present invention, the capacitance-voltage characteristics are preferably measured by applying a high-frequency voltage and a low-frequency voltage between the gate electrode and the electrode connecting the source region and the drain region. The interface state density can be obtained from the high frequency equivalent capacitance and the low frequency equivalent capacitance.

本発明のトランジスタの評価方法において、高周波電圧の周波数は500Hz以上であり、低周波電圧の周波数は50Hz以下が好ましい。この周波数域で良好な測定結果を得ることができる。   In the transistor evaluation method of the present invention, the frequency of the high frequency voltage is preferably 500 Hz or more, and the frequency of the low frequency voltage is preferably 50 Hz or less. Good measurement results can be obtained in this frequency range.

本発明のトランジスタの評価方法において、トランジスタに高周波電圧を印加したときに測定される単位面積あたりの容量をCHF、トランジスタに低周波電圧を印加したときに測定される単位面積あたりの容量をCLF、単位面積あたりのゲート絶縁膜容量をCox、電子の電荷量をq、界面準位密度をDitとした場合に、Dit=[(CLF -1−Cox -1-1−(CHF -1−Cox -1-1]/qとして界面準位密度を算出するのが望ましい。CHとCLを測定すれば、容易に界面準位密度Ditを求めることができる。 In the transistor evaluation method of the present invention, C HF represents the capacitance per unit area measured when a high frequency voltage is applied to the transistor, and C C represents the capacitance per unit area measured when a low frequency voltage is applied to the transistor. When LF is the gate insulating film capacitance per unit area C ox , the charge amount of electrons is q, and the interface state density is D it , D it = [(C LF −1 −C ox −1 ) −1 It is desirable to calculate the interface state density as − (C HF −1 −C ox −1 ) −1 ] / q. If C H and C L are measured, the interface state density D it can be easily obtained.

本発明のトランジスタの評価方法は、絶縁物上に形成された薄膜トランジスタに適用すると、効果絶大である。絶縁物上に形成されたトランジスタで容量を測定場合には、半導体基板上に形成された単純なMOS構造の場合とは異なり、半導体膜裏面の欠陥に起因した容量やその他の接合に起因した寄生容量も測定されるCHF、CLFに含まれてしまうが、本発明によれば、この寄生容量を無視しても従来と同程度の精度で界面準位密度を測定できる。 The method for evaluating a transistor of the present invention is extremely effective when applied to a thin film transistor formed on an insulator. When measuring capacitance with a transistor formed on an insulator, unlike the case of a simple MOS structure formed on a semiconductor substrate, capacitance due to defects on the backside of the semiconductor film and other parasitics due to other junctions are measured. Although the capacitance is also included in C HF and C LF that are measured, according to the present invention, even if this parasitic capacitance is ignored, the interface state density can be measured with the same degree of accuracy as in the prior art.

本発明のトランジスタの評価方法において、半導体層とゲート電極間で測定されるCHF及びCLFはゲート絶縁膜容量、基板容量、界面欠陥の等価容量以外の寄生容量を含んでいるトランジスタに適用すると、効果が大きい。本発明によれば、この寄生容量を無視しても従来と同程度の精度で界面準位密度を測定できる。 In the evaluation method of a transistor of the present invention, C HF and C LF measured between the semiconductor layer and the gate electrode is a gate insulating film capacitance, substrate capacitance, when applied to a transistor that includes a parasitic capacitance other than the equivalent capacitance of the interface defects The effect is great. According to the present invention, even if this parasitic capacitance is ignored, the interface state density can be measured with the same degree of accuracy as in the prior art.

本発明によれば、トランジスタの容量−電圧特性を測定するだけで半導体層とゲート絶縁膜の界面準位を求めることが可能であるため、測定手法を簡易化できる。また、半導体層の膜厚、誘電率、エネルギーバンドギャップ、準位密度、温度などの構造的、材料的、実験的な各種のパラメータを知らなくても界面準位密度を求めることができるため、利便性に優れている。   According to the present invention, since the interface state between the semiconductor layer and the gate insulating film can be obtained only by measuring the capacitance-voltage characteristics of the transistor, the measurement method can be simplified. In addition, since the interface state density can be determined without knowing various structural, material, and experimental parameters such as semiconductor layer thickness, dielectric constant, energy band gap, level density, and temperature, Excellent convenience.

以下、各図を参照して本発明の好適な実施形態について説明する。
図2(A)に一般的なMOS(Metal Oxide Semiconductor)構造の断面図を示す。同図に示すように、MOS構造20はシリコン基板21上にシリコン酸化膜22と金属電極23を積層した構造を備えている。シリコン酸化膜22とシリコン基板21の界面24には界面欠陥が存在する。MOS構造20に所定の交流電圧を印加してC−V特性を測定すると、同図(B)に示す低周波等価回路と、同図(C)に示す高周波等価回路で記述される容量が測定されることが知られている。ここで、単位面積あたりの低周波等価容量をCLF、高周波等価容量をCHFとすれば、これらの等価回路図から次式が得られる。
LF -1=Cox -1+(Cs+Cit-1 …(1)
HF -1=Cox -1+Cs -1 …(2)
ここで、Coxは単位面積あたりのシリコン酸化膜容量、Csは基板容量、Citは界面欠陥の等価容量を示している。
上式よりCsを消去すれば、界面24における界面準位密度Dit=Cit/qは次式のように記述できる。
it=[(CLF -1−Cox -1-1−(CHF -1−Cox -1-1]/q …(3)
ここで、qは電子の電荷量を示している。
このように、MOS構造においてはCLFとCHFを測定することで、半導体層の膜厚、誘電率、エネルギーバンドギャップ、準位密度、温度などの構造的、材料的、実験的な各種のパラメータを必要とせずに界面準位密度Ditを求めることができる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 2A shows a cross-sectional view of a general MOS (Metal Oxide Semiconductor) structure. As shown in the figure, the MOS structure 20 has a structure in which a silicon oxide film 22 and a metal electrode 23 are stacked on a silicon substrate 21. Interface defects exist at the interface 24 between the silicon oxide film 22 and the silicon substrate 21. When a predetermined AC voltage is applied to the MOS structure 20 and the CV characteristic is measured, the capacitance described by the low-frequency equivalent circuit shown in FIG. 5B and the high-frequency equivalent circuit shown in FIG. It is known that Here, if the low frequency equivalent capacitance per unit area is C LF and the high frequency equivalent capacitance is C HF , the following equation is obtained from these equivalent circuit diagrams.
C LF −1 = C ox −1 + (C s + C it ) −1 (1)
C HF −1 = C ox −1 + C s −1 (2)
Here, C ox represents the silicon oxide film capacity per unit area, C s represents the substrate capacity, and C it represents the equivalent capacity of the interface defect.
If C s is eliminated from the above equation, the interface state density D it = C it / q at the interface 24 can be expressed as the following equation.
D it = [(C LF -1 -C ox -1 ) -1- (C HF -1 -C ox -1 ) -1 ] / q (3)
Here, q represents the charge amount of electrons.
Thus, by measuring CLF and CHF in the MOS structure, various structural, material, and experimental characteristics such as the thickness, dielectric constant, energy band gap, level density, and temperature of the semiconductor layer are measured. The interface state density Dit can be obtained without requiring a parameter.

一方、図1(A)はTFT(Thin Film Transistor)10の一般的な断面構造を示している。同図に示すように、TFT10は、絶縁物11上に形成された半導体層12と、ゲート電極16と、半導体層12とゲート電極16との間に存在するゲート絶縁膜15と、半導体層12の両側に存在するソース領域13及びドレイン領域14を備えた構造を成している。絶縁物11としては、絶縁性の薄膜又は絶縁基板などが該当し、例えば、酸化シリコン膜、ガラス基板、プラスチック基板、石英基板などである。ゲート絶縁膜15と半導体層12の界面18には界面欠陥が存在する。絶縁物11に接する半導体層12のバックインターフェース17にも欠陥が存在し、その欠陥に起因した等価容量を形成する。また、半導体層12はソース領域13又はドレイン領域14との間でジャンクションキャパシタや、フリンジキャパシタ等の各種の寄生容量を形成する。これらの寄生容量はバックインターフェースや、ソース領域、ドレイン領域の存在しないシリコン基板21上に形成された単純なMOS構造(図2参照)では生じ得ないため、(1)式〜(3)式を用いてTFT10の界面準位密度を求めることができない。   On the other hand, FIG. 1A shows a general cross-sectional structure of a TFT (Thin Film Transistor) 10. As shown in the figure, the TFT 10 includes a semiconductor layer 12 formed on the insulator 11, a gate electrode 16, a gate insulating film 15 existing between the semiconductor layer 12 and the gate electrode 16, and the semiconductor layer 12. A structure having a source region 13 and a drain region 14 existing on both sides is formed. The insulator 11 corresponds to an insulating thin film or an insulating substrate, such as a silicon oxide film, a glass substrate, a plastic substrate, or a quartz substrate. There is an interface defect at the interface 18 between the gate insulating film 15 and the semiconductor layer 12. A defect also exists in the back interface 17 of the semiconductor layer 12 in contact with the insulator 11, and an equivalent capacitance resulting from the defect is formed. The semiconductor layer 12 forms various parasitic capacitances such as a junction capacitor and a fringe capacitor between the source region 13 and the drain region 14. Since these parasitic capacitances cannot be generated in a simple MOS structure (see FIG. 2) formed on the silicon substrate 21 in which the back interface, the source region, and the drain region do not exist, the equations (1) to (3) are Therefore, the interface state density of the TFT 10 cannot be obtained.

そこで、本実施形態では、ゲート絶縁膜容量、基板容量、ゲート絶縁膜と半導体層の間の界面欠陥の等価容量以外の全ての寄生容量の単位面積あたりの容量をCetcとし、ソース領域13とドレイン領域14を接続する電極と、ゲート電極16との間に所定の交流電圧を印加したときの交流等価回路を考察する。図1(B)は低周波等価回路を、同図(C)は高周波等価回路を示している。ここで、測定される単位面積あたりの低周波容量をCLF、高周波容量をCHFとすれば、これらの等価回路図から次式が得られる。
LF -1=Cox -1+(Cs+Cit-1+Cetc -1 …(4)
HF -1=Cox -1+Cs -1+Cetc -1 …(5)
上式よりCsを消去すれば、界面18における界面準位密度Dit=Cin/qは次式のように記述できる。
it=[(CLF -1−Cox -1−Cetc -1-1−(CHF -1−Cox -1−Cetc -1-1]/q …(6)
ここで、絶縁体上に形成されたトランジスタではゲート電圧が十分小さい範囲ではCetcはCox、Cs、Citと比較して十分大きいと考えられるため、右辺の第1項と第2項のCetc -1は近似的にゼロと考えてよい。従って、(6)式は(3)式と近似的に等しくなる。これは、従来、MOS構造の界面欠陥抽出に用いられていた界面欠陥の抽出方法(高周波と低周波のC−V特性から界面欠陥を抽出する方法)をTFTに適用しても問題ないことを示唆している。そこで、本実施形態では、従来、MOS構造に適用していた界面欠陥の抽出方法をTFTに適用して界面欠陥の抽出を試みた。具体的な測定手順は(1)式〜(3)式に示す通りである。
Therefore, in this embodiment, the capacitance per unit area of all parasitic capacitances other than the gate insulating film capacitance, the substrate capacitance, and the equivalent capacitance of the interface defect between the gate insulating film and the semiconductor layer is C etc. Consider an AC equivalent circuit when a predetermined AC voltage is applied between the electrode connecting the drain region 14 and the gate electrode 16. FIG. 1B shows a low-frequency equivalent circuit, and FIG. 1C shows a high-frequency equivalent circuit. Here, if the low frequency capacity per unit area to be measured is C LF and the high frequency capacity is C HF , the following equation is obtained from these equivalent circuit diagrams.
C LF −1 = C ox −1 + (C s + C it ) −1 + C etc −1 (4)
C HF −1 = C ox −1 + C s −1 + C etc −1 (5)
If C s is eliminated from the above equation, the interface state density D it = C in / q at the interface 18 can be described as the following equation.
D it = [(C LF -1 -C ox -1 -C etc -1 ) -1- (C HF -1 -C ox -1 -C etc -1 ) -1 ] / q (6)
Here, in the transistor formed on the insulator, C etc is considered to be sufficiently larger than C ox , C s , and C it in a range where the gate voltage is sufficiently small. Therefore , the first and second terms on the right side C etc −1 may be considered to be approximately zero. Therefore, equation (6) is approximately equal to equation (3). This is because there is no problem even if an interface defect extraction method (a method for extracting interface defects from high-frequency and low-frequency CV characteristics), which has been used for extracting interface defects of MOS structures, is applied to TFTs. Suggests. Therefore, in the present embodiment, an interface defect extraction method that has been applied to the MOS structure is applied to the TFT to try to extract the interface defect. The specific measurement procedure is as shown in the equations (1) to (3).

図3はC−V測定装置の構成図を示している。TFT10のC−Vを測定するために、まず、シールドボックス35に囲まれたTFT10のゲート電極16を電圧源32に接続し、ソース領域13とドレイン領域14を導通した上で電流増幅器33に接続する。ロックインアンプ31から出力された交流信号を電圧源32によって直流的に昇圧し、ゲート電極16に印加する。出力電流(ドレイン電流)は電流増幅器33によって増幅され、ロックインアンプ31で印加された交流電圧と等しい周波数がサンプリングされる。コンピュータ装置34はロックインアンプ31から送られてくる信号からTFT10のC−V特性を求める。TFT10に印加する交流電圧は高周波と低周波の少なくとも二種類が必要であり、高周波としては500Hz以上が好ましく、低周波としては50Hz以下が好ましい。   FIG. 3 shows a configuration diagram of the CV measuring apparatus. In order to measure CV of the TFT 10, first, the gate electrode 16 of the TFT 10 surrounded by the shield box 35 is connected to the voltage source 32, and the source region 13 and the drain region 14 are conducted and then connected to the current amplifier 33. To do. The AC signal output from the lock-in amplifier 31 is DC boosted by the voltage source 32 and applied to the gate electrode 16. The output current (drain current) is amplified by the current amplifier 33, and a frequency equal to the AC voltage applied by the lock-in amplifier 31 is sampled. The computer device 34 obtains the CV characteristic of the TFT 10 from the signal sent from the lock-in amplifier 31. The AC voltage applied to the TFT 10 needs at least two types of high frequency and low frequency. The high frequency is preferably 500 Hz or more, and the low frequency is preferably 50 Hz or less.

図4はロックインアンプの周波数を低周波(5Hz)と高周波(5kHz)の二種類に分けてTFT10のC−V特性の測定を行った結果を示している。このC−V特性の測定結果から(3)式を用いて界面準位密度Ditを計算すると、図5の結果が得られた。ここではp型トランジスタのエネルギーギャップの下半分(ミッドギャップ〜価電子帯)を測定した結果を示している。ここで、E=0[eV]はミッドギャップ、E=−0.5[eV]はエネルギーギャップ中の価電子帯近くを示している。従来技術との比較のため、特許文献1に開示されている従来の手法による測定結果も併せて図示する。本実施形態の測定手法は、従来技術の手法と比較してミッドギャップ近傍では同程度の精度で界面準位密度を測定できることが確認できた。 FIG. 4 shows the result of measuring the CV characteristics of the TFT 10 by dividing the frequency of the lock-in amplifier into two types, low frequency (5 Hz) and high frequency (5 kHz). When the interface state density Dit was calculated from the measurement result of the CV characteristic using the equation (3), the result of FIG. 5 was obtained. Here, the result of measuring the lower half (mid gap to valence band) of the energy gap of the p-type transistor is shown. Here, E = 0 [eV] indicates the mid gap, and E = −0.5 [eV] indicates the vicinity of the valence band in the energy gap. For comparison with the prior art, the measurement results obtained by the conventional method disclosed in Patent Document 1 are also shown. It was confirmed that the measurement method of the present embodiment can measure the interface state density with the same degree of accuracy in the vicinity of the mid gap as compared with the method of the prior art.

このように、本実施形態の界面欠陥抽出方法によれば、トランジスタのC−V特性を測定するだけで界面欠陥を抽出できるため、従来の界面欠陥抽出方法よりも測定手法が格段に簡単である。さらに、半導体層の膜厚、誘電率、エネルギーバンドギャップ、準位密度、温度などの構造的、材料的、実験的な各種のパラメータを不要とするため、比較的な簡単な測定及び計算で従来と同等の精度で界面欠陥を抽出できる。   As described above, according to the interface defect extraction method of the present embodiment, the interface defect can be extracted only by measuring the CV characteristics of the transistor. Therefore, the measurement method is much simpler than the conventional interface defect extraction method. . In addition, it eliminates the need for various structural, material, and experimental parameters such as semiconductor layer thickness, dielectric constant, energy band gap, level density, and temperature. Interface defects can be extracted with the same accuracy.

TFTの断面図と等価回路図である。It is sectional drawing and an equivalent circuit schematic of TFT. MOS構造の断面図と等価回路図である。It is sectional drawing of MOS structure, and an equivalent circuit schematic. C−V測定装置の構成図である。It is a block diagram of a CV measuring apparatus. トランジスタのC−V特性の測定結果である。It is a measurement result of the CV characteristic of a transistor. トランジスタの界面準位密度の測定結果である。It is a measurement result of the interface state density of a transistor.

符号の説明Explanation of symbols

10…TFT 11…絶縁物 12…半導体層 13…ソース領域 14…ドレイン領域 15…ゲート絶縁膜 16…ゲート電極 17…バックインターフェース 18…界面
DESCRIPTION OF SYMBOLS 10 ... TFT 11 ... Insulator 12 ... Semiconductor layer 13 ... Source region 14 ... Drain region 15 ... Gate insulating film 16 ... Gate electrode 17 ... Back interface 18 ... Interface

Claims (6)

絶縁物上に形成された半導体層と、前記半導体層上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記半導体層の両側に存在するソース領域及びドレイン領域と、
を備えたトランジスタの評価方法であって、
前記ゲート電極と、前記ソース領域及び前記ドレイン領域を接続した電極との間の容量−電圧特性を測定することで前記半導体層と前記ゲート絶縁膜の界面欠陥を抽出する、トランジスタの評価方法。
A semiconductor layer formed on an insulator, a gate insulating film formed on the semiconductor layer, a gate electrode formed on the gate insulating film, and a source region and a drain region existing on both sides of the semiconductor layer When,
A method for evaluating a transistor comprising
A transistor evaluation method for extracting an interface defect between the semiconductor layer and the gate insulating film by measuring a capacitance-voltage characteristic between the gate electrode and an electrode connecting the source region and the drain region.
請求項1に記載のトランジスタの評価方法であって、
前記容量−電圧特性の測定は、前記ゲート電極と、前記ソース領域及び前記ドレイン領域を接続した電極との間に高周波電圧と低周波電圧を印加することにより行う、トランジスタの評価方法。
A method for evaluating a transistor according to claim 1, comprising:
The capacitance-voltage characteristic is measured by applying a high frequency voltage and a low frequency voltage between the gate electrode and an electrode connecting the source region and the drain region.
請求項2に記載のトランジスタの評価方法であって、
前記高周波電圧の周波数は500Hz以上であり、前記低周波電圧の周波数は50Hz以下である、トランジスタの評価方法。
A method for evaluating a transistor according to claim 2, comprising:
The method for evaluating a transistor, wherein the frequency of the high-frequency voltage is 500 Hz or more and the frequency of the low-frequency voltage is 50 Hz or less.
請求項2又は請求項3に記載のトランジスタの評価方法であって、
前記トランジスタに高周波電圧を印加したときに測定される単位面積あたりの容量をCHF、前記トランジスタに低周波電圧を印加したときに測定される単位面積あたりの容量をCLF、単位面積あたりのゲート絶縁膜容量をCox、電子の電荷量をq、界面準位密度をDitとした場合に、
it=[(CLF -1−Cox -1-1−(CHF -1−Cox -1-1]/q
として界面準位密度を算出する、トランジスタの評価方法。
A method for evaluating a transistor according to claim 2 or claim 3, wherein
The capacitance per unit area measured when a high frequency voltage is applied to the transistor is C HF , the capacitance per unit area measured when a low frequency voltage is applied to the transistor is C LF , and the gate per unit area. When the insulating film capacitance is C ox , the charge amount of electrons is q, and the interface state density is D it ,
D it = [(C LF -1 -C ox -1 ) -1- (C HF -1 -C ox -1 ) -1 ] / q
As an evaluation method for a transistor, the interface state density is calculated as:
請求項1乃至請求項4のうち何れか1項に記載のトランジスタの評価方法であって、
前記トランジスタは絶縁物上に形成された薄膜トランジスタである、トランジスタの評価方法。
A method for evaluating a transistor according to any one of claims 1 to 4, wherein
The transistor evaluation method, wherein the transistor is a thin film transistor formed over an insulator.
請求項5に記載のトランジスタの評価方法であって、
前記半導体層と前記ゲート電極間で測定されるCHF及びCLFはゲート絶縁膜容量、基板容量、界面欠陥の等価容量以外の寄生容量を含む、トランジスタの評価方法。
A method for evaluating a transistor according to claim 5, comprising:
C HF and C LF gate insulating film capacitance is measured between the gate electrode and the semiconductor layer, substrate capacitance, including parasitic capacitance other than the equivalent capacitance of the interface defects, evaluation method of a transistor.
JP2003376124A 2003-11-05 2003-11-05 Transistor evaluation method Pending JP2005142304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376124A JP2005142304A (en) 2003-11-05 2003-11-05 Transistor evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376124A JP2005142304A (en) 2003-11-05 2003-11-05 Transistor evaluation method

Publications (1)

Publication Number Publication Date
JP2005142304A true JP2005142304A (en) 2005-06-02

Family

ID=34687292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376124A Pending JP2005142304A (en) 2003-11-05 2003-11-05 Transistor evaluation method

Country Status (1)

Country Link
JP (1) JP2005142304A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177333A (en) * 2007-01-18 2008-07-31 Institute Of National Colleges Of Technology Japan Method of evaluating soi transistor and evaluation apparatus for soi transistor
JP2011054966A (en) * 2009-08-28 2011-03-17 Commissariat A L'energie Atomique & Aux Energies Alternatives Method and device for evaluating electric performances of fdsoi transistor
KR20120020013A (en) * 2010-08-27 2012-03-07 삼성전자주식회사 Method and apparatus for calculating the electrical characteristics of amorphous semiconductor thin-film transistor
WO2015126005A1 (en) * 2014-02-24 2015-08-27 국립대학법인 울산과학기술대학교 산학협력단 Method for evaluating performance of plasma wave transistor
KR101777929B1 (en) 2015-12-31 2017-09-13 울산과학기술원 Method for estimating performace of suspended channel plasma wave transistor
US9941179B2 (en) 2015-06-18 2018-04-10 Globalfoundries Inc. Capacitive measurements of divots in semiconductor devices
KR101850329B1 (en) * 2011-06-16 2018-04-20 삼성디스플레이 주식회사 Method for calculating parameter of thin film transistor and calculating apparatus performing the method
US10684320B2 (en) 2015-12-31 2020-06-16 Unist (Ulsan National Institute Of Science And Technology) Performance evaluation method of suspended channel plasma wave transistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177333A (en) * 2007-01-18 2008-07-31 Institute Of National Colleges Of Technology Japan Method of evaluating soi transistor and evaluation apparatus for soi transistor
JP2011054966A (en) * 2009-08-28 2011-03-17 Commissariat A L'energie Atomique & Aux Energies Alternatives Method and device for evaluating electric performances of fdsoi transistor
KR20120020013A (en) * 2010-08-27 2012-03-07 삼성전자주식회사 Method and apparatus for calculating the electrical characteristics of amorphous semiconductor thin-film transistor
KR101643759B1 (en) 2010-08-27 2016-07-29 삼성전자주식회사 Method and apparatus for calculating the electrical characteristics of amorphous semiconductor thin-film transistor
KR101850329B1 (en) * 2011-06-16 2018-04-20 삼성디스플레이 주식회사 Method for calculating parameter of thin film transistor and calculating apparatus performing the method
WO2015126005A1 (en) * 2014-02-24 2015-08-27 국립대학법인 울산과학기술대학교 산학협력단 Method for evaluating performance of plasma wave transistor
US9869711B2 (en) 2014-02-24 2018-01-16 Unist (Ulsan National Institute Of Science And Technology) Method for evaluating performance of plasma wave transistor
US9941179B2 (en) 2015-06-18 2018-04-10 Globalfoundries Inc. Capacitive measurements of divots in semiconductor devices
KR101777929B1 (en) 2015-12-31 2017-09-13 울산과학기술원 Method for estimating performace of suspended channel plasma wave transistor
US10684320B2 (en) 2015-12-31 2020-06-16 Unist (Ulsan National Institute Of Science And Technology) Performance evaluation method of suspended channel plasma wave transistor

Similar Documents

Publication Publication Date Title
Mondon et al. Electrical characterisation and reliability of HfO2 and Al2O3–HfO2 MIM capacitors
JP2009088533A (en) Double-gate transistor structure equipped with multi-branch channel
JP2004526295A5 (en)
WO2012119455A1 (en) Method for extracting charge distribution along channel in mos transistor
US10008421B2 (en) Capacitance monitoring using x-ray diffraction
JP2005142304A (en) Transistor evaluation method
CN106684012B (en) SiO2Middle charge and SiO2Separation test method for interface state of silicon/silicon (Si)
JP5881037B2 (en) Method and apparatus for evaluating insulator / semiconductor interface
Bera et al. High frequency characterization and continuum modeling of ultrathin high-k (ZrO2) gate dielectrics on strained-Si
Vom Dorp et al. Dielectric layers suitable for high voltage integrated trench capacitors
US6486692B1 (en) Method of positive mobile iron contamination (PMIC) detection and apparatus of performing the same
KR20080054040A (en) Method for measuring thickness of semiconductor device
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
JPH11154696A (en) Method of measuring mosfet capacitance
JP2008147461A (en) Method of evaluating semiconductor substrate, and element for evaluation of the semiconductor substrate
JP3080043B2 (en) MOSFET overlap length measurement method
KR102185647B1 (en) Method for evaluating soi substrate
Passmore et al. Modified three terminal charge pumping technique applied to vertical transistor structures
Hakim et al. Improved sub-threshold slope in short-channel vertical MOSFETs using FILOX oxidation
JP3871131B2 (en) Depletion layer capacitance measurement method
JP6172102B2 (en) Method for evaluating SOI substrate
Belete et al. Defects in layered vapor-phase grown MOS 2
Suliman et al. Electron and hole trapping in the bulk and interface with Si of a thermal oxide grown on the sidewalls and base of a U-shaped silicon trench
Notingher et al. On the use of thermal step method as a tool for characterizing thin layers and structures for micro and nano-electronics
Nara et al. Limitations of the two-frequency capacitance measurement technique applied to ultra-thin SiO/sub 2/gate oxides