JPH11154696A - Method of measuring mosfet capacitance - Google Patents

Method of measuring mosfet capacitance

Info

Publication number
JPH11154696A
JPH11154696A JP9319756A JP31975697A JPH11154696A JP H11154696 A JPH11154696 A JP H11154696A JP 9319756 A JP9319756 A JP 9319756A JP 31975697 A JP31975697 A JP 31975697A JP H11154696 A JPH11154696 A JP H11154696A
Authority
JP
Japan
Prior art keywords
capacitance
characteristic
gate
fringe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9319756A
Other languages
Japanese (ja)
Inventor
Yukio Tamegaya
幸夫 為ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9319756A priority Critical patent/JPH11154696A/en
Publication of JPH11154696A publication Critical patent/JPH11154696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately obtain a fringe capacitance and overlap capacitance, by finding and separating both capacitances from measured values. SOLUTION: A method comprises steps of applying a gate voltage Vg to a gate electrode 103 of an MOSFET 101 with a DC current 106 fed to the electrode 103, connecting a DC current 108 to the drain electrode 104 through a DC ammeter 107 for measuring the drain current Id, applying a drain voltage Vd to measure an Id-Vg characteristic of each gate length L, finding a threshold voltage Vt and mutual inductance gm from the Id-Vg characteristic to compute a transistor gain factor β, measuring a gate capacitance Cg every length L to make a Cg-L characteristic curve, obtaining a fringe capacitance from the intersect of the Cg axis at L=0 on the Cg-L curve, and subtracting the fringe capacitance from the intersect of the Cg axis at β=0 on a Cg-β curve to find an overlap capacitance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MOSFETの回
路パラメータ測定に関し、特にゲートと拡散層間のオー
バーラップ容量とフリンジ容量の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring circuit parameters of a MOSFET, and more particularly to a method for measuring an overlap capacitance and a fringe capacitance between a gate and a diffusion layer.

【0002】[0002]

【従来の技術】従来、ゲートと拡散層間のオーバーラッ
プ容量とフリンジ容量の測定は、論文Solid−St
ate Electronics Vol.33,N
o.12,P.1650−1652,1990に示す様
に、拡散層と基板間に逆バイアスを加えてゲートと拡散
層間の容量を測定し、フリンジ容量を計算で求めた後、
測定値からフリンジ容量を減じてオーバーラップ容量を
求めていた。
2. Description of the Related Art Conventionally, the measurement of the overlap capacitance and the fringe capacitance between a gate and a diffusion layer has been reported in Solid-St.
ate Electronics Vol. 33, N
o. 12, p. As shown in 1650-1652 and 1990, a reverse bias is applied between the diffusion layer and the substrate, the capacitance between the gate and the diffusion layer is measured, and the fringe capacitance is calculated.
The overlap volume was determined by subtracting the fringe volume from the measured value.

【0003】次に、図4を用いて詳細に説明する。図4
(a)は、ゲートと拡散層間容量の測定回路である。容
量測定器206は、HP4275Aを用いている。MO
SFET201において、ゲート電極203は容量測定
器206の低電位端子208に接続し、ソース電極20
2及びドレイン電極204は容量測定器206の高電位
端子207に接続し、基板電極205は接地電位に接続
する。容量測定器の内部直流電圧Vdを変化させなが
ら、ゲートと拡散層間の容量Cgsdを測定する。図4
(b)に示す様に、Vdを上げていくとCgsdが一定
になるので、その値を読みとる。次にフリンジ容量Cf
を計算で求める(BSIM3v3 Manual,19
95,p4−17,UC Berkeley)。
Next, a detailed description will be given with reference to FIG. FIG.
(A) is a circuit for measuring a gate and a capacitance between diffusion layers. The capacity measuring device 206 uses HP4275A. MO
In the SFET 201, the gate electrode 203 is connected to the low potential terminal 208 of the capacitance measuring device 206, and the source electrode 20
2 and the drain electrode 204 are connected to the high potential terminal 207 of the capacitance measuring device 206, and the substrate electrode 205 is connected to the ground potential. The capacitance Cgsd between the gate and the diffusion layer is measured while changing the internal DC voltage Vd of the capacitance measuring device. FIG.
As shown in (b), when Vd is increased, Cgsd becomes constant, and the value is read. Next, the fringe capacity Cf
(BSIM3v3 Manual, 19
95, p4-17, UC Berkeley).

【0004】 Cf=2εox/π・ln(1+tpoly/tox) ここに、εoxは酸化膜の誘電率、tpolyはゲート
ポリシリ膜厚、toxはゲート酸化膜厚である。従っ
て、オーバーラップ容量Coは、次の様に求まる。
Cf = 2εox / π · ln (1 + tpoly / tox) Here, εox is the dielectric constant of the oxide film, tpoly is the gate polysilicon film thickness, and tox is the gate oxide film thickness. Therefore, the overlap capacity Co is determined as follows.

【0005】Co=Cgsd−Cf[0005] Co = Cgsd-Cf

【0006】[0006]

【発明が解決しようとする課題】第1の問題点は、ゲー
ト断面形状が矩形の場合にのみフリンジ容量の計算式が
適用され、ゲート形状が矩形でない場合やゲート酸化膜
が均一でない場合は誤差を生ずるという欠点がある。
The first problem is that the formula for calculating the fringe capacitance is applied only when the gate cross-section is rectangular. If the gate shape is not rectangular or the gate oxide film is not uniform, an error may occur. Has the disadvantage of causing

【0007】その理由は、理想的なゲート形状を仮定し
て、フリンジ容量を計算で求めているからである。
The reason is that the fringe capacitance is calculated by assuming an ideal gate shape.

【0008】[発明の目的]本発明の目的は、ゲート形
状が矩形でない場合やゲート酸化膜が均一でない場合に
おいても、フリンジ容量とオーバーラップ容量を正確に
測定する方法を提供することにある。
[0008] It is an object of the present invention to provide a method for accurately measuring the fringe capacitance and the overlap capacitance even when the gate shape is not rectangular or the gate oxide film is not uniform.

【0009】[0009]

【課題を解決するための手段】本発明のMOSFET容
量測定方法は、同一ウェハー上に形成されたゲート長L
の異なる複数のMOSFETを用いて、各々Id−Vd
特性を測定し閾値電圧Vtと相互インダクタンスgmか
らトランジスタ利得係数βを求め、前記MOSFETの
ゲート容量Cgを測定しCg−L特性のL=0のCg軸
切片からフリンジ容量を求め、Cg−β特性のβ=0の
Cg軸切片から前記フリンジ容量を減じて、オーバーラ
ップ容量を求める。
According to the method for measuring MOSFET capacitance of the present invention, the gate length L formed on the same wafer is determined.
Using a plurality of MOSFETs having different Id-Vd
The characteristics are measured, the transistor gain coefficient β is determined from the threshold voltage Vt and the mutual inductance gm, the gate capacitance Cg of the MOSFET is measured, and the fringe capacitance is determined from the Cg-axis intercept of L = 0 of the Cg-L characteristic to obtain the Cg-β characteristic. The fringe volume is subtracted from the Cg axis intercept at β = 0 to determine the overlap volume.

【0010】また、先に求めたβとLの関係をプロット
し、β=0のL軸切片からオーバーラップ長ΔLを求
め、Cg−L特性のL=ΔLでの容量値から、先に求め
たフリンジ容量を減じて、オーバーラップ容量を求める
こともできる。
Further, the relationship between β and L obtained above is plotted, the overlap length ΔL is obtained from the L-axis intercept of β = 0, and the overlap length is obtained from the capacitance value at L = ΔL of the Cg-L characteristic. The overlap volume can also be determined by reducing the fringe volume.

【0011】[作用]本発明のMOSFET容量測定方
法によれば、Cg−L特性の切片からフリンジ容量を求
めることにより、ゲート形状が矩形でない場合やゲート
酸化膜が均一でない場合でも正確に求めることができ
る。
[Operation] According to the MOSFET capacitance measuring method of the present invention, the fringe capacitance is obtained from the intercept of the Cg-L characteristic, so that it can be accurately obtained even when the gate shape is not rectangular or the gate oxide film is not uniform. Can be.

【0012】[0012]

【発明の実施の形態】図1に本発明の測定方法のフロー
図を示す。まず初めに、ゲート長Lの異なる複数のMO
SFETについてId−Vg特性を測定する。次に、I
d−Vg特性からVtとgmを求めβを計算する。次
に、各L毎にゲート容量を測定し、Cg−L特性を作成
する。ここで、Cg−L特性のL=0のCg軸切片から
フリンジ容量を求める。次に、Cg−β特性のβ=0の
Cg軸切片からフリンジ容量を差し引いて、オーバーラ
ップ容量を求める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart of a measuring method according to the present invention. First, a plurality of MOs having different gate lengths L
The Id-Vg characteristics of the SFET are measured. Next, I
Vt and gm are obtained from the d-Vg characteristic, and β is calculated. Next, the gate capacitance is measured for each L and Cg-L characteristics are created. Here, the fringe capacity is obtained from the Cg axis intercept of L = 0 of the Cg-L characteristic. Next, the overlap capacity is obtained by subtracting the fringe capacity from the Cg axis intercept of β = 0 in the Cg-β characteristic.

【0013】[0013]

【実施例】[第1の実施例]図2に本発明の第1の実施
例を示す。図2(a)は、Id−Vg特性の測定回路で
ある。MOSFET101のゲート電極103に直流電
流106を接続しゲート電圧Vgを加え、ドレイン電極
104にドレイン電流Id測定用の直流電流計107を
通して直流電源108を接続しドレイン電圧Vdを加
え、ソース電極102と基板電極105を低電位に接続
している。ここで、Vgを連続的に変化させてIdを測
定し、図2(b)に示す様なId−Vg特性を測定す
る。このId−Vg特性の線形領域に接線を引きX軸の
交点から閾値電圧Vtを求め、接線の傾きから相互コン
ダクタンスgmを求める。これらの値を用いて、論文P
roceedings of the 1996 IE
EE International Conferen
ce on Microelectronic Tes
t Structures, vol.9,P139−
144March 1996に示された次式(1)の方
法により、トランジスタ利得係数βを求める。
[First Embodiment] FIG. 2 shows a first embodiment of the present invention. FIG. 2A shows a circuit for measuring the Id-Vg characteristic. A DC current 106 is connected to the gate electrode 103 of the MOSFET 101 and the gate voltage Vg is applied. A DC power supply 108 is connected to the drain electrode 104 through a DC ammeter 107 for measuring the drain current Id and the drain voltage Vd is applied. The electrode 105 is connected to a low potential. Here, Id is measured while Vg is continuously changed, and an Id-Vg characteristic as shown in FIG. 2B is measured. A tangent is drawn in the linear region of the Id-Vg characteristic, the threshold voltage Vt is obtained from the intersection of the X axis, and the transconductance gm is obtained from the inclination of the tangent. Using these values, the paper P
rosedings of the 1996 IE
EE International Conference
ce on Microelectronic Tes
t Structures, vol. 9, P139-
The transistor gain coefficient β is obtained by the method of the following equation (1) shown in 144 March 1996.

【0014】 β=Id2 /{gm・Vd・(Vg−Vt)2 } (1) これらの測定及び計算を、各ゲート長Lに対して行な
う。
Β = Id 2 / {gm · Vd · (Vg−Vt) 2 } (1) These measurements and calculations are performed for each gate length L.

【0015】次に、ゲート容量の測定を行なう。図2
(c)は、Cg−L特性の測定回路である。容量測定器
110は、HP4275Aを用いている。MOSFET
101のゲート電極103に容量測定器110の高電位
端子111を接続し、MOSFET101のソース電極
102、ドレイン電極104、基板電極105に容量測
定器110の低電位端子112を接続している。容量測
定は、MOSFET101が十分にONして飽和状態に
なる様に、容量測定器110の直流バイアスをMOSF
ETの使用電源電圧くらいに設定し、ゲート長を変えて
測定し、図2(d)に示す様なCg−L特性を測定す
る。このCg−L特性のL=0のCg軸切片からフリン
ジ容量Cf1 を抽出する。
Next, the gate capacitance is measured. FIG.
(C) is a circuit for measuring the Cg-L characteristic. The capacity measuring device 110 uses HP4275A. MOSFET
The high potential terminal 111 of the capacitance measuring device 110 is connected to the gate electrode 103 of 101, and the low potential terminal 112 of the capacitance measuring device 110 is connected to the source electrode 102, the drain electrode 104 and the substrate electrode 105 of the MOSFET 101. In the capacitance measurement, the DC bias of the capacitance measuring device 110 is set to the MOSF so that the MOSFET 101 is sufficiently turned on and becomes saturated.
The power supply voltage is set to about the used power supply voltage of the ET, the gate length is changed, and the measurement is performed, and the Cg-L characteristic as shown in FIG. 2D is measured. From Cg-intercept of L = 0 in this Cg-L characteristic extracting the fringe capacitance Cf 1.

【0016】次に、Cg−L特性のLをβに置き換え
て、図2(e)に示す様なCg−β特性を作成し、β=
0のCg軸切片の容量値Cof1 を読みとる。Cof1
は、β=0の時のゲート容量となるので、オーバーラッ
プ容量Co1 とフリンジ容量Cf1 の合計となる。従っ
て、オーバーラップ容量Co1 は次式(2)で求めるこ
とができる。
Next, by replacing L in the Cg-L characteristic with β, a Cg-β characteristic as shown in FIG.
The capacitance value Cof 1 of the Cg axis intercept of 0 is read. Cof 1
Is the gate capacitance when β = 0, and is the sum of the overlap capacitance Co 1 and the fringe capacitance Cf 1 . Therefore, the overlap capacity Co 1 can be obtained by the following equation (2).

【0017】 Co1 =Cof1 −Cf1 (2) また、ここで求めたCof1 を用いて、図2(d)より
オーバーラップ長ΔL1も求めることができる。
Co 1 = Cof 1 −Cf 1 (2) Further, by using Cof 1 obtained here, the overlap length ΔL 1 can also be obtained from FIG. 2D.

【0018】[第2の実施例]図3に、本発明の第2の
実施例を示す。β−L特性のβ=0のL軸切片からΔL
2 を求め、Cg−L特性のL=0のCg軸切片からフリ
ンジ容量Cf2 を求め、L=ΔL2 の値Cof2 を用い
てオーバーラップ容量Co2 を計算する。
[Second Embodiment] FIG. 3 shows a second embodiment of the present invention. ΔL from β-L characteristic L-axis intercept of β-L characteristic
2 is obtained, the fringe capacitance Cf 2 is determined from the Cg axis intercept of L = 0 of the Cg-L characteristic, and the overlap capacitance Co 2 is calculated using the value Cof 2 of L = ΔL 2 .

【0019】第1の実施例と同様に、Id−Vg特性の
測定を行ない、βを計算する。図3(a)に示す様に、
β−L特性のβ=0のL軸切片からオーバーラップ長Δ
2を求める。次に、第1の実施例と同様にCg−L特
性を測定し、図3(b)に示す様に、L=0のCg軸切
片からフリンジ容量Cf2 を求め、またL=ΔL2 での
値Cof2 を求める。このCof2 は、オーバーラップ
容量Co2 とフリンジ容量Cf2 の和になっているの
で、オーバーラップ容量Co2 は、次式(3)で計算す
ることができる。
As in the first embodiment, the Id-Vg characteristic is measured, and β is calculated. As shown in FIG.
From L-axis intercept of β = 0 of β-L characteristic, overlap length Δ
Determine the L 2. Next, the Cg-L characteristics were measured in the same manner as in the first embodiment, and as shown in FIG. 3B, the fringe capacitance Cf 2 was obtained from the Cg axis intercept at L = 0, and L = ΔL 2 determination of the value Cof 2. Since this Cof 2 is the sum of the overlap capacitance Co 2 and the fringe capacitance Cf 2 , the overlap capacitance Co 2 can be calculated by the following equation (3).

【0020】 Co2 =Cof2 −Cf2 (3)Co 2 = Cof 2 -Cf 2 (3)

【0021】[0021]

【発明の効果】本発明の効果は、フリンジ容量とオーバ
ーラップ容量を、実測値から求め分離することにより、
任意のゲート形状においても正確に求めることができ
る。その理由は、フリンジ容量を計算式からではなく、
実測値から求めているからである。
The effect of the present invention is as follows. The fringe capacity and the overlap capacity are obtained from the measured values and separated.
It can be obtained accurately even for an arbitrary gate shape. The reason is that the fringe volume is not calculated from the formula,
This is because it is determined from the actually measured value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定フロー図である。FIG. 1 is a measurement flowchart of the present invention.

【図2】本発明の第1の実施例の説明図である。FIG. 2 is an explanatory diagram of a first embodiment of the present invention.

【図3】本発明の第2の実施例の説明図である。FIG. 3 is an explanatory diagram of a second embodiment of the present invention.

【図4】従来例の説明図である。FIG. 4 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

101 MOSFET 102 MOSFETソース電極 103 MOSFETゲート電極 104 MOSFETドレイン電極 105 MOSFET基板電極 106 ゲート電圧(Vg) 107 ドレイン電流計(Id) 108 ドレイン電圧(Vd) 110 容器測定器(HP4275A) 111 容量測定高電位端子 112 容量測定低電位端子 201 MOSFET 202 MOSFETソース電極 203 MOSFETゲート電極 204 MOSFETドレイン電極 205 MOSFET基板電極 206 容器測定器(HP4275A) 207 容量測定高電位端子 208 容量測定低電位端子 Reference Signs List 101 MOSFET 102 MOSFET source electrode 103 MOSFET gate electrode 104 MOSFET drain electrode 105 MOSFET substrate electrode 106 Gate voltage (Vg) 107 Drain ammeter (Id) 108 Drain voltage (Vd) 110 Container measuring instrument (HP4275A) 111 Capacitance measurement high potential terminal 112 Capacitance measurement low potential terminal 201 MOSFET 202 MOSFET source electrode 203 MOSFET gate electrode 204 MOSFET drain electrode 205 MOSFET substrate electrode 206 Container measuring instrument (HP4275A) 207 Capacity measurement high potential terminal 208 Capacity measurement low potential terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 同一ウェハー上に形成されたゲート長L
の異なる複数のMOSFETを用いて、各々Id−Vd
特性を測定し、閾値電圧Vtと相互コンダクタンスgm
からトランジスタ利得係数βを求め、前記MOSFET
のゲート容量Cgを測定してCg−L特性を作成し、該
Cg−L特性のL=0のCg軸切片からフリンジ容量を
求め、Cg−β特性のβ=0のCg軸切片から前記フリ
ンジ容量を減じてオーバーラップ容量を求める、ことを
特徴とするMOSFET容量測定方法。
1. A gate length L formed on the same wafer
Using a plurality of MOSFETs having different Id-Vd
The characteristics are measured, and the threshold voltage Vt and the transconductance gm
From the transistor gain coefficient β,
The Cg-L characteristic is created by measuring the gate capacitance Cg of the Cg-L characteristic, the fringe capacitance is obtained from the Cg-axis intercept of L = 0 of the Cg-L characteristic, and the fringe is obtained from the Cg-axis intercept of β = 0 of the Cg-β characteristic. A method of measuring MOSFET capacitance, characterized in that the capacitance is reduced to obtain an overlap capacitance.
【請求項2】 前記βとLの関係をプロットし、β=0
のL軸切片からオーバーラップ長ΔLを求め、前記Cg
−L特性のL=ΔLでの容量値から、前記フリンジ容量
を減じて、オーバーラップ容量を求めることを特徴とす
る請求項1記載のMOSFET容量測定方法。
2. The relationship between β and L is plotted, and β = 0
The overlap length ΔL was determined from the L-axis intercept of
2. The MOSFET capacitance measuring method according to claim 1, wherein the fringe capacitance is subtracted from the capacitance value at L = [Delta] L of the -L characteristic to obtain an overlap capacitance.
JP9319756A 1997-11-20 1997-11-20 Method of measuring mosfet capacitance Pending JPH11154696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9319756A JPH11154696A (en) 1997-11-20 1997-11-20 Method of measuring mosfet capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9319756A JPH11154696A (en) 1997-11-20 1997-11-20 Method of measuring mosfet capacitance

Publications (1)

Publication Number Publication Date
JPH11154696A true JPH11154696A (en) 1999-06-08

Family

ID=18113833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9319756A Pending JPH11154696A (en) 1997-11-20 1997-11-20 Method of measuring mosfet capacitance

Country Status (1)

Country Link
JP (1) JPH11154696A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338986A (en) * 2000-05-26 2001-12-07 Nec Corp Method and device for overlapping length extraction of misfet, and record medium storing extraction program
WO2004059333A1 (en) * 2002-12-25 2004-07-15 Nec Corporation Evaluation device and circuit design method used for the same
WO2007108102A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and semiconductor element selecting method
JP2015177554A (en) * 2014-03-12 2015-10-05 トヨタ自動車株式会社 Semiconductor device and method for controlling the same
CN109188236A (en) * 2018-10-31 2019-01-11 上海华力微电子有限公司 A kind of threshold voltage detection method of metal-oxide-semiconductor
WO2019039257A1 (en) * 2017-08-24 2019-02-28 住友化学株式会社 Method for evaluating electrical defect density of semiconductor layer, and semiconductor element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338986A (en) * 2000-05-26 2001-12-07 Nec Corp Method and device for overlapping length extraction of misfet, and record medium storing extraction program
WO2004059333A1 (en) * 2002-12-25 2004-07-15 Nec Corporation Evaluation device and circuit design method used for the same
US7404157B2 (en) 2002-12-25 2008-07-22 Nec Corporation Evaluation device and circuit design method used for the same
WO2007108102A1 (en) * 2006-03-20 2007-09-27 Fujitsu Limited Semiconductor device and semiconductor element selecting method
JP2015177554A (en) * 2014-03-12 2015-10-05 トヨタ自動車株式会社 Semiconductor device and method for controlling the same
TWI574018B (en) * 2014-03-12 2017-03-11 豐田自動車股份有限公司 Semiconductor device and control method of the same
WO2019039257A1 (en) * 2017-08-24 2019-02-28 住友化学株式会社 Method for evaluating electrical defect density of semiconductor layer, and semiconductor element
JP2019040988A (en) * 2017-08-24 2019-03-14 住友化学株式会社 Evaluating method of electrical defect concentration of semiconductor layer and semiconductor element
CN111033711A (en) * 2017-08-24 2020-04-17 住友化学株式会社 Method for evaluating concentration of electrical defect of semiconductor layer and semiconductor device
US11513149B2 (en) 2017-08-24 2022-11-29 Sumitomo Chemical Company, Limited Method for evaluating electrical defect density of semiconductor layer, and semiconductor element
CN109188236A (en) * 2018-10-31 2019-01-11 上海华力微电子有限公司 A kind of threshold voltage detection method of metal-oxide-semiconductor

Similar Documents

Publication Publication Date Title
Manchanda et al. Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits
Nara et al. Applicability limits of the two-frequency capacitance measurement technique for the thickness extraction of ultrathin gate oxide
Hovel Si film electrical characterization in SOI substrates by the HgFET technique
JP3269459B2 (en) MISFET overlap length measuring method, measuring device, and recording medium recording extraction program
US6514778B2 (en) Method for measuring effective gate channel length during C-V method
US7514940B1 (en) System and method for determining effective channel dimensions of metal oxide semiconductor devices
US7405090B2 (en) Method of measuring an effective channel length and an overlap length in a metal-oxide semiconductor field effect transistor
US5773317A (en) Test structure and method for determining metal-oxide-silicon field effect transistor fringing capacitance
JPH11154696A (en) Method of measuring mosfet capacitance
US6166558A (en) Method for measuring gate length and drain/source gate overlap
US6066952A (en) Method for polysilicon crystalline line width measurement post etch in undoped-poly process
US6486692B1 (en) Method of positive mobile iron contamination (PMIC) detection and apparatus of performing the same
US20070148795A1 (en) Insulator film characteristic measuring method and insulator film characteristic measuring apparatus
KR100853791B1 (en) Method for Measuring Thickness of Semiconductor Device
JP3080043B2 (en) MOSFET overlap length measurement method
JP4748552B2 (en) MISFET overlap length extraction method, extraction apparatus, and recording medium storing extraction program
US7898269B2 (en) Semiconductor device and method for measuring analog channel resistance thereof
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
JP4316533B2 (en) Semiconductor device evaluation method
Nara et al. Limitations of the two-frequency capacitance measurement technique applied to ultra-thin SiO/sub 2/gate oxides
JPH08298274A (en) Evaluation method of interface level density of semiconductor element in lateral distribution
JPH07174800A (en) Surface measuring instrument
JP3092546B2 (en) Field effect transistor and method for evaluating transistor characteristics
Ng et al. Extraction of the inversion and accumulation layer mobilities in n-channel trench DMOSFETs
JP3247396B2 (en) Evaluation method of semiconductor device