JP2016062924A - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP2016062924A
JP2016062924A JP2014187111A JP2014187111A JP2016062924A JP 2016062924 A JP2016062924 A JP 2016062924A JP 2014187111 A JP2014187111 A JP 2014187111A JP 2014187111 A JP2014187111 A JP 2014187111A JP 2016062924 A JP2016062924 A JP 2016062924A
Authority
JP
Japan
Prior art keywords
conductive layer
semiconductor
layer
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014187111A
Other languages
English (en)
Inventor
三木 聡
Satoshi Miki
聡 三木
俊秀 伊藤
Toshihide Ito
俊秀 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014187111A priority Critical patent/JP2016062924A/ja
Priority to TW104106714A priority patent/TW201611337A/zh
Priority to CN201510097400.3A priority patent/CN105990488A/zh
Priority to US14/642,477 priority patent/US9299903B1/en
Publication of JP2016062924A publication Critical patent/JP2016062924A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

【課題】高光取り出し効率の半導体発光素子を提供する。【解決手段】実施形態によれば、半導体発光素子は、半導体層と、第1導電層と、前記半導体層と前記第1導電層との間に設けられた第2導電層と、を備える。前記第2導電層の光透過率は、前記第1導電層の光透過率よりも高い。前記第2導電層の消衰係数は、0.005以下である。【選択図】図1

Description

本発明の実施形態は、半導体発光素子に関する。
半導体発光素子(例えば、発光ダイオード)において、光取り出し効率の向上が求められている。
特開2013−162025号公報
本発明の実施形態は、高光取り出し効率の半導体発光素子を提供する。
本発明の実施形態によれば、半導体発光素子は、半導体層と、第1導電層と、前記半導体層と前記第1導電層との間に設けられた第2導電層と、を備える。前記第2導電層の光透過率は、前記第1導電層の光透過率よりも高い。前記第2導電層の消衰係数は、0.005以下である。
第1の実施形態に係る半導体発光素子を例示する模式的断面図である。 導電層の特性を例示するグラフ図である。 半導体発光素子の特性を例示するグラフ図である。 図4(a)及び図4(b)は、半導体発光素子の特性を例示するグラフ図である。 半導体発光素子の特性を例示する模式図である。 半導体発光素子の特性を例示するグラフ図である。 図7(a)及び図7(b)は、半導体発光素子の特性を例示するグラフ図である。 第1の実施形態に係る半導体発光素子の一部を例示する模式的断面図である。 第2の実施形態に係る半導体発光素子を例示する模式的断面図である。 第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。 第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。 図12(a)及び図12(b)は、第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る半導体発光素子を例示する模式的断面図である。
図1に示すように、実施形態に係る半導体発光素子110は、半導体層25と、第1導電層50と、第2導電層60と、を含む。
半導体層25は、光を放出する。例えば、半導体層25は、第1導電形の半導体膜を含む第1半導体膜10と、第2導電形の半導体膜を含む第2半導体膜20と、第3半導体膜15と、を含む。第3半導体膜15は、第1半導体膜10と第2半導体膜20との間に設けられる。第3半導体膜15は、例えば、活性膜であり、例えば、発光膜である。
第1導電形は、例えばn形であり、第2導電形は、例えば、p形である。実施形態において、第1導電形がp形で、第2導電形がn形でも良い。以下では、第1導電形がn形で第2導電形がp形の例として説明する。
半導体層25は、例えば、窒化物半導体を含む。例えば、第1半導体膜10、第2半導体膜20及び第3半導体膜15は、窒化物半導体を含む。第1半導体膜10は、例えば、n形のGaNを含む。第2半導体膜20は、例えば、p形のGaNを含む。第3半導体膜15は、InGaNを含む井戸層を含む。半導体膜の例については、後述する。
第1半導体膜10、第2半導体膜20及び第3半導体膜15のそれぞれの屈折率は、例えば、2.0以上3.6以下である。半導体層25としてGaNを用いた場合は、屈折率は、約2.34である。
半導体層25と第1導電層50との間に、第2導電層60が設けられる。
第1導電層50から半導体層25に向かう方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向とX軸方向とに対して垂直な方向をY軸方向とする。
第1導電層50は、X−Y平面に沿って広がる。第2導電層60も、X−Y平面に沿って広がる。
第1導電層50は、反射性である。第2導電層60は、光透過性である。第2導電層60の光透過率は、第1導電層50の光透過率よりも高い。第1導電層50の光反射率は、第2導電層60の光反射率よりも高い。
例えば、第1導電層50には、反射性の金属が用いられる。第1導電層50には、例えば、銀、または、銀を主成分とした合金が用いられる。第1導電層50として、例えば、アルミニウムまたはアルミニウムを含む合金(例えばSi含有Al等)を用いても良い。半導体発光素子110が、例えば、赤色光LEDまたは赤外線LEDの場合、第1導電層50として、例えば、AuやCu、またはこれらを含む合金を用いてもよい。
第2導電層60として、例えば、光透過性の酸化物が用いられる。第2導電層60には、例えば、In、Ga、Sn、Al、Zn、Ge、Sr、Mg、Ni及びSiからなる群から選択された少なくとも1つの元素を含む酸化物が用いられる。
第1半導体膜10及び第2半導体膜20を介して第3半導体膜15に電流を供給する。この電流の供給には、第1導電層50と、図1に図示していない電極と、が用いられる。電流が供給された第3半導体膜15において、光が放出される。すなわち、半導体層25から光が放出される。半導体発光素子110は、例えば、LEDである。
第3半導体膜15から放出された光の一部(光L1)は、第1半導体膜10を通過して外部に出射する。第3半導体膜15から放出された光の一部(光L2)は、第2半導体膜20及び第2導電層60を通過して、第1導電層50で反射し、第2導電層60及び半導体層25を通過して外部に出射する。第1半導体膜10の表面(図1における上面)が、例えば、光取り出し面となる。半導体層25から放出される発光光(すなわち、第3半導体膜15から放出される光)は、主として光取り出し面から出射する。
実施形態において、発光光に対する第2導電層60の屈折率は、発光光に対する半導体層25の屈折率よりも低い。例えば、半導体層25の屈折率は、上記のように、2.3以上2.6以下である。一方、第2導電層60の屈折率は、例えば、1.5以上2.3未満である。例えば、第2導電層60の屈折率は、例えば、1.6以上2.2以下である。
まず、第2導電層60を設けず、第1導電層50と半導体層25とが接する第1参考例の特性について説明する。
半導体層25の屈折率をnとする。第1導電層50の屈折率をnとする。これらの屈折率は、複素屈折率である。これらの屈折率は、光の消衰係数を含む。
この第1参考例において、第1導電層50と半導体層25との間の界面における反射率R(垂直入射の場合)は、以下の第1式で表される。
Figure 2016062924

第1式において、Re(n)は、第1導電層50の屈折率nの実部である。Im(n)は、第1導電層50の屈折率nの虚部である。上記の第1式において、半導体層25の屈折率nの虚部は、十分小さいので無視している。
第1導電層50には、反射性の金属が用いられるため、第1導電層50の屈折率nの実部Re(n)は、1よりも小さい。または、第1導電層50の屈折率nの虚部Im(n)は、非常に大きく、約5以上である。
半導体層25の屈折率nは高い。このため、半導体層25と第1導電層50とが接する第1参考例においては、第1導電層50としてAgを除く多くの金属を用いた場合には、半導体層25と第1導電層50との界面において、反射率Rが低い。
一方、Agにおいては、屈折率nの実部(すなわちRe(n))は、0.03以上0.2以下程度であり、非常に小さい。このため、第1導電層50としてAgを用いた場合には、第1式において、分子と分母との差が小さい。このため、半導体層25と第1導電層50との間の界面において、Ag以外の金属よりも高い反射率が得られる。なお、屈折率は、波長、Agの純度、表面状態、及び、結晶粒度等の影響を受ける。
次に、第1導電層50と半導体層25との間に、第2導電層60を設けた構成について説明する。第2導電層60の屈折率をnとする。屈折率nは、複素屈折率であり、消衰係数を含む。
まず、第2導電層60における光吸収が無い場合について、第2参考例として、説明する。このとき、屈折率nの虚部は0である。そして、第2導電層60の屈折率nが、半導体層25の屈折率nよりも低い。このような第2参考例において、第1導電層50と第2導電層60との間の界面における反射率Rは、上記の第1式において、屈折率nを屈折率nに置き換えることにより得られる。
この第2参考例における反射率Rは、上記の第1参考例における反射率Rよりも高くなる。すなわち、第2導電層60を設けず、第1導電層50が半導体層25と接する第1参考例においては、第1導電層50と半導体層25との間の界面における反射率Rは、比較的低い。第2参考例においては、半導体層25の屈折率nよりも低い屈折率nを有する第2導電層60を第1導電層50と半導体層25との間に設ける。この第2参考例において、第1導電層50と第2導電層60との間の界面における反射率Rは、第1参考例における反射率Rよりも高い。第2参考例においては、第1参考例よりも高い光取り出し効率が得られると考えられる。
さらに、第2参考例において、半導体層25の屈折率nよりも低い屈折率nを有する第2導電層60を用いることで、第2導電層60と半導体層25との間の界面において、全反射となる波数成分が生じる。これにより、部分的にTIR(TIR:total internal reflector:全反射ミラー)が形成される。これにより、高い光取り出し効率が得られると考えられる。
上記の第2参考例においては、第2導電層60における光吸収を無視している。しかしながら、実際には、光吸収が存在する。従って、光吸収を考慮せずに設計した場合には、第1参考例よりも実際の反射率が低くなる場合がある。実施形態においては、光吸収を考慮した第2導電層60を用いる。
すなわち、第2導電層60においては、導電性を得るために、自由キャリアによる光吸収が生じる。例えば、第2導電層60として、ITO(Indium Tin Oxide)を用いる場合において、ITOの屈折率の虚部は、例えば、0.02程度である。例えば、1μmの厚さのITOにおいては、往復で、約67%の光の損失が生じる。一方、第2導電層60を過度に薄くすると、TIRの特性が低下し、意図した機能が不十分になる。
従って、第2導電層の厚さは、例えば、λ/2Re(n)以上であることが好ましい。さらに、λ/Re(n)程度であることが好ましい。ここで、λは、半導体層25から放出される光の真空中における波長(空気中における波長とほぼ同一)である。これにより、TIRの機能が効果的に得られる。
実施形態においては、第2導電層60の厚さをある程度厚くしつつ、光の損失が小さくなるようにする。
第2導電層60において、屈折率nの虚部Im(n)、すなわち、光吸収率が低いことが望まれる。それと同時に、第2導電層60において、導電性が求められる。以下、第2導電層60における電気抵抗率と、吸収率と、の関係について説明する。
第2導電層60において、電気抵抗率ρは、以下の第2式で表される。
Figure 2016062924

第2式において、Nは、キャリア密度である。qは、キャリア電荷である。μは、キャリア移動度である。
一方、第2導電層60の複素屈折率nは、以下の第3式〜第5式で表される。
Figure 2016062924

Figure 2016062924

Figure 2016062924
上記の式において、εは、誘電率である。mは、キャリア有効質量である。ωは、プラズマ角周波数である。τは、散乱緩和時間である。ωは、光の角周波数である。iは、虚数単位である。
第2導電層60の消衰係数κは、複素屈折率nの虚部に対応する。消衰係数κと吸収係数αとの間には、κ=αλ/4πの関係がある。消衰係数κを小さくすることで、吸収が抑制できる。
一方、上記の第2〜第5式で表されるように、電気抵抗率ρと消衰係数κには、密接な関係がある。
図2は、導電層の特性を例示するグラフ図である。
図2は、電気抵抗率ρと消衰係数κとの関係を例示している。この特性は、第2〜第5式に基づいて求められる。第2導電層60としてITOを用いた場合には、キャリア有効質量mは、0.2m〜0.5m程度である。mは、電子の静止質量である。図2の例では、m(キャリア有効質量)として、0.3mを用いている。そして、複素屈折率nの実部が、2.09とする。すなわち、εとして、2.09εを用いている(εは、真空の誘電率である)。そして、μ(移動度)を30、50、70及び100(cm/Vs)で変えた場合を例示している。τとして、有効質量から逆算して求めた値を用いている。図2の横軸は、電気抵抗率ρ(Ωm)である。縦軸は、消衰係数κである。
図2に示すように、移動度μが一定のときにおいて、電気抵抗率ρが低くなると、消衰係数κは大きくなる。従って、第2導電層60における電気抵抗率ρを低くするような材料を用いると、消衰係数κが急激に上昇する。
例えば、第2導電層60としてITOを用いた場合には、移動度μは、通常は、40cm/Vs程度〜70cm/Vs程度である。
半導体発光素子の電極として用いられる光透過性の導電層の電気抵抗率ρは、一般的に、2×10−4Ωm程度である。電気抵抗率ρは、一般的に、5×10−4Ωm以下である。これは、抵抗を低くして、半導体層に電流を十分に均一に供給する観点で定められている。
図2から、移動度μが50cm/Vs程度のときに、電気抵抗率ρが2×10−4Ωmにおいて、消衰係数κは、4×10−2程度である。移動度μが50cm/Vs程度のときに、電気抵抗率ρが5×10−4Ωmにおいて、消衰係数κは、2×10−2程度である。移動度μが70cm/Vs程度のときに、電気抵抗率ρが2×10−4Ωmにおいて、消衰係数κは、3×10−2程度である。移動度μが70cm/Vs程度のときに、電気抵抗率ρが5×10−4Ωmにおいて、消衰係数κは、1.1×10−2程度である。すなわち、半導体発光素子に用いられる一般的な光透過性の電極においては、消衰係数κは、最も低く見積もっても0.011以上である。
これに対して、実施形態に係る半導体発光素子110においては、第2導電層60における消衰係数κを、0.005以下とする。すなわち、実施形態においては、一般的に用いられないような範囲の消衰係数κを用いる。
このとき、図2に示すように、移動度μが50cm/Vs程度のときに、電気抵抗率ρは、1.8×10−3Ωm程度である。移動度μが70cm/Vs程度のときに、電気抵抗率ρは、1.1×10−3Ωm程度である。すなわち、実施形態においては、電気抵抗率ρは、1.1×10−3Ωm以上であり、一般的な光透過性の導電材料の電気抵抗率(5×10−4Ωm以下)よりも高い。
すなわち、実施形態においては、光透過性の導電層において、消衰係数κを小さくするために、電気抵抗率ρを敢えて低くしない。これにより、光吸収が抑えられ、高い光利用効率が得られる。
実施形態においては、例えば、消衰係数κは、0.005以下である。このとき、電気抵抗率ρは、1.1×10−3Ωm以上である。
実施形態において、不純物やバンド端の影響、及び、キャリアの一部が不活性である影響により、電気抵抗率ρは、図2に例示した特性よりも高くなる傾向がある。従って、実施形態において、消衰係数κが、0.005以下のときに、電気抵抗率ρは、2×10−3Ωm以上でも良い。消衰係数κが、0.005以下のときに、電気抵抗率ρは、5×10−3Ωm以上でも良い。消衰係数κが、0.005以下のときに、電気抵抗率ρは、1×10−2Ωm以上でも良い。
なお、不純物やバンド端の影響、及び、キャリアの一部の不活性の影響により、一般的な光透過性の導電層において、電気抵抗率ρが2×10−3Ωmのときに、消衰係数κが、0.01以上、または、0.02以上の場合もある。すなわち、図2に例示した特性よりも、実際の消衰係数κは高い。
第2導電層60の消衰係数κが大きい参考例においては、第2導電層60をTIR効果が得られるように厚くしてしまうと、光の吸収が過度に大きくなる。このため、第2導電層60を設けることで、かえって光の損失が大きくなる。
これに対して、実施形態においては、消衰係数κを、0.005以下とし、一般的な値である0.01〜0.02に対して、著しく小さくする。これにより、第2導電層60における光の吸収を抑制できる。これにより、第2導電層60をTIR効果が得られるように厚くしても、光の吸収は小さくい。このため、第2導電層60を設けることにより、TIRの効果によって、光の取り出し効果が向上し、その効果が、光の吸収による損失を上回る。その結果、光取り出し効率が向上する。
第2導電層60における光吸収によるエネルギーの損失の割合は、以下の第6式で表される。
Figure 2016062924
なお、Im(nt)が、消衰係数κに対応する。
第2導電層60における全反射(エバネッセント波)の効果TR(d)は、以下の第7式〜第9式で表される。
Figure 2016062924

Figure 2016062924

Figure 2016062924
上記の式において、Le(θ、n、n)は、エバネッセント波の浸透長である。θは、半導体層25内における光の進行角である。nは、半導体層25の屈折率である。nは、第2導電層60の屈折率である。λは、半導体層25から放出される光の真空中における波長である。光の真空中における波長は、光の空気中における波長と実質的に同じである。θは、臨界角である。第9式において、配向はランバート配光であると仮定している。dは、第2導電層60の厚さである。
図3は、半導体発光素子の特性を例示するグラフ図である。
図3は、TIRの効果ETIRと第2導電層60の厚さdとの関係を例示している。図3は、第9式に基づいて導出される。この例では、第9式において第2導電層60の厚さdを無限大としたときの値を基準(=1)として、TIRの効果ETIRを示している。
第2導電層60における平均パワー反射率Rr(d)(干渉の効果IFに相当)は、以下の第10式〜第18式で表される。
Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924

Figure 2016062924
上記の式において、θは、半導体層内における光の進行角である。nは、半導体屈折率(実数)である。nは、透明導電層屈折率(実数)である。nは、金属層屈折率(複素数)である。λは、光の真空波長(空気中における波長とほぼ同一)である。iは、虚数単位である。θcは、臨界角(全反射となる角度)である。Rs(θ,n,n)は、振幅反射率(S波、フレネル反射)である。Rp(θ,n,n)は、振幅反射率(P波、フレネル反射)である。Ts(θ,n,n)は、振幅透過率(S波、フレネル反射)である。Tp(θ,n,n)は、振幅透過率(P波、フレネル反射)である。Θ(θ)は、透明導電層内における光の進行角である。dは、透明導電層の厚さである。φ(θ,d)は、透明導電層内往復による位相変化量である。As(θ,n,n,n,d)は、半導体層から見た透明導電層/金属導電層の振幅反射率(多重反射による干渉込み、各角度成分毎)(S波、多重反射)である。Ap(θ,n,n,n,d)は、半導体層から見た透明導電層/金属導電層の振幅反射率(多重反射による干渉込み、各角度成分毎)(P波、多重反射)である。Rr(d)は、平均パワー反射率である。第18式において、配向は、ランバート配光としている。
図4(a)及び図4(b)は、半導体発光素子の特性を例示するグラフ図である。
図4(a)及び図4(b)は、2種類の条件について、平均パワー反射率Rr(d)と第2導電層60の厚さdとの関係を例示している。図4(a)及び図4(b)は、第18式を用いて計算した結果をグラフ化したものである。
図4(a)において、条件は以下である。
半導体層25の屈折率n=2.47、
半導体層25の屈折率n=2.09、
第1導電層50の屈折率n=0.1+2.5i(iは、虚数単位)、
半導体層25から放出される光の真空中における波長λ=450nm。
第1導電層50の垂直反射率は92.3%であり、全立体角平均は95.5%である。 図4(a)に示すように、平均パワー反射率Rr(d)は、0.967に収束している。
図4(b)において、条件は以下である。
半導体層25の屈折率n=2.47、
半導体層25の屈折率n=1.70、
第1導電層50の屈折率n=0.1+2.5i(iは、虚数単位)、
半導体層25から放出される光の真空中における波長λ=450nm。
図4(b)に示すように、平均パワー反射率Rr(d)は、0.979に収束している。
図5は、半導体発光素子の特性を例示する模式図である。
図5は、光透過性の第2導電層60の光学特性、すなわち、透過率TS、全反射の効果TR及び多重反射による干渉の効果IFを例示している。横軸は、第2導電層60の厚さtである。この例では、消衰係数κが小さい場合(κ≦0.005)と、消衰係数が大きい場合(κ>0.01)の2つの場合が模式的に示されている。図5の縦軸において、上方向は、平均パワー反射率が向上することに対応する。下方向は、平均パワー反射率が劣化することに対応する。
図5に示すように、厚さtが増大すると、透過率TSは上昇し、1に漸近してゆく。この透過率TSの低下は、光吸収による。消衰係数κが大きいと透過率TSの低下は、激しい。消衰係数κが小さいと、高い透過率TSが維持できる。
一方、厚さtが増大すると、全反射の効果TRは、低下する。この全反射の効果TRは、エバネッセント波の浸透長による。厚さtの増大につれて、干渉の効果IFは振動し、振幅が減少する。
第2導電層60において、半導体層25から第2導電層60に染み出すエバネッセント波を半導体層25に戻すことで、光の損失が低減できる。これにより、TIRの機能が十分に得られる。例えば、第2導電層60の厚さtは、λ/2Re(n)以上であることが好ましい。厚さtは、例えば、λ/Re(n)程度であることが好ましい。ここで、λは、半導体層25から放出される光の真空中における波長(空気中における波長とほぼ同一)である。これにより、TIRの機能が効果的に得られる。
図2に例示したように、干渉の効果IFは振動するため、干渉の効果IFが極大となる条件に厚さtを設定することが好ましい。図2に示した干渉の効果IFの最初の極大値に対応する厚さtは、実質的にλ/Re(n)である。実用的には、厚さtをλ/Re(n)の約0.7倍以上約1.4倍以下において、干渉の効果IFを有効に利用できる。
図5に示すように、消衰係数κが大きい場合は、吸収による損失が大きく、全反射の効果TR及び干渉の効果IFの効果よりも透過率TSの低下が大きくなる。このため、高い光取り出し効率が得られない。これに対して、消衰係数κを小さくすることで、吸収による損失を、全反射の効果TR及び干渉の効果IFの効果よりも小さくできる。これにより、高い光取り出し効果が得られる。
図6(a)及び図6(b)は、半導体発光素子の特性を例示するグラフ図である。
図6(a)及び図6(b)は、上記の透過率TS、全反射の効果TR及び干渉の効果IFの効果を考慮したときの光取り出し効率のシミュレーション結果を例示している。
図6(a)の例では、第1導電層50の反射率Rfは92%である。第2導電層60の屈折率nは、2.09+κiである。κ=0.0011の場合と、κ=0.005の場合と、を例示している。κ=0.0011の場合、ITOに対応する。半導体層25の屈折率nsは、2.47+0.000036iである。この値は、GaNに対応する。第1導電層50の屈折率nmは、0.1+2.5iである。この値は、Agに対応する。半導体層25から放出される光の波長λ(空気中または真空中の波長)は、450nmである。第2導電層60中における波長λ1は、λ/Re(n)であり、215.3nmである。
図6(b)の例では、第2導電層の存在により第1導電層の表面状態が良好に保たれる場合を想定した計算であり、このとき第1導電層50の反射率Rfは97%である。現実には92%〜97%の値を取り得る。第2導電層60の屈折率nは、2.09+κiである。κ=0.0011の場合と、κ=0.0003の場合と、κ=0.0005の場合と、例示している。
このモデルでは、半導体層25の光取り出し面にはランダムな凹凸が設けられており、半導体素子の全体が、屈折率が1.5の樹脂で覆われている。シミュレーションにおいては、周期境界を用いたFDTD法(Finite-difference time-domain method、時間領域差分法)が用いられる。なお、第1導電層50に対向する電極の影響は無視している。TE−like発光(電気双極子が活性層面に対して平行に振動する光源)と、TM−like発光(電気双極子が活性層面に対して垂直に振動する光源)のそれぞれについて、外部に出射する光の強度が求められる。これらを合計して、光取り出し効率Effが求められる。図6には、第2導電層60の厚さtを変えたときの、光取り出し効率Effが示されている。横軸は厚さtであり、縦軸は光取り出し効率Effである。
図6に示すように、反射率Rfが92%のとき、厚さtが0のとき、すなわち、第2導電層60を設けないとき、光取り出し効率Effは、約80%である。第2導電層60の厚さtが20nmのときに、光取り出し効率Effは約77%であり、低下する。これは、図5に例示した干渉の効果IFによる。厚さtが20nmから200nmの範囲において、厚さtの増大するにつれて光取り出し効率Effが上昇する。これは、図5に例示した全反射の効果TR(TIRの効果)の寄与が大きいと考えられる。そして、厚さtが200nmを超えると、厚さtの増大するにつれて光取り出し効率Effが低下する。この範囲では、吸収による透過率TSの効果が大きくなる。
波長が450nmのときにおいては、第2導電層60の厚さtは、140nm以上280nm以下において、光取り出し効率Effが高くなる。すなわち、第2導電層60の厚さtが、(2/3)・λ1以上(4/3)・λ1以下のとき、(2/3)・λ/Re(n)以上(4/3)・λ/Re(n)以下において、光取り出し効率Effが高くなる。
実施形態においては、第2導電層60の厚さtは、半導体層25から放出された光の第2導電層60中における波長の、2/3以上4/3以下、すなわち、0.67倍以上1.33倍以下とする。これにより、高い発光効率が得られる。
図7(a)及び図7(b)は、半導体発光素子の特性を例示するグラフ図である。
これらの図は、第2導電層60を設けないときの光取り出し効率Eff0に対して、第2導電層60を設けたときの光取り出し効率Eff1の変化率を示している。縦軸は、光取り出し効率の変化率ΔEffである。ΔEff=(Eff1−Eff0)/Eff0である。横軸は、消衰係数κである。
図7(a)においては、第2導電層60の屈折率nが2.09+κiである。図7(b)においては、第2導電層60の屈折率nが1.70+κiである。これらの図には、第1導電層50の反射率Rfが92%のとき(図6の例と同様)と、97%のときが例示されている。第2導電層60の厚さtは、それぞれの上記において最高の光取り出し効率が得られる厚さ(200nm)である。これ以外の条件は、図6に関して説明した条件が用いられている。
図7(a)に示すように、反射率Rfが92%のとき、消衰係数κが0のとき、光取り出し効率の変化率ΔEffは、最高であり、約6.8%である。反射率Rfが97%のとき、例えば、消衰係数κが0.001のとき、光取り出し効率の変化率ΔEffは、約10.0%である。
光取り出し効率の変化率ΔEffは、消衰係数κの増に伴って減少する。これは、上述したように、消衰係数κが増加すると、吸収による損失が大きくなるためである。
図7(b)に示すように、屈折率nの実部が1.70においては、消衰係数κの上限は、屈折率nの実部が2.09のときよりも高くなる。
半導体発光素子110の製造方法の例について説明する。
基板上に、半導体層25、第2導電層60となる膜、第2半導体膜20、第3半導体膜15、及び、第1半導体膜10をこの順で、ピタキシャル成長させる。
このとき、例えば、第2導電層60となる膜におけるSn濃度を低くすることで吸収が低くできる。例えば、第2導電層60となる膜の密度を低くすることで屈折率を低くすることができる。これにより、小さい消衰係数κが得られる。
膜成形の方法として、スパッタ法を用いてもよい。スパッタ法においても、Sn濃度を低くすることで、吸収が低くできる。スパッタ法においても、密度を低くすることで屈折率を低くすることができる。これにより、小さい消衰係数κが得られる。
膜成形の方法として、ゾルゲル法や、塗布後に焼結する方法等を用いても良い。低屈折率フィラーを用いることにより、屈折率を低くすることができる。低屈折率フィラーの粒径は、50nm以下であることが好ましい。平均20nm以下であることがさらに好ましい。これによって、効果的な全反射が得られる。
実施形態においては、電極における反射率を向上させ、光取り出し効率が向上できる。第2導電層60を用いることで、反射率を向上できるので、第1導電層50として、Ag以外の材料を用いることができる。第2導電層60を半導体層25と第1導電層50の間に設けることで、第1導電層50から不純物(金属元素など)が半導体層25に侵入することが抑制され、信頼性が向上する。
実施形態において、消衰係数κは、エリプソメトリ解析による情報に基づいて得られる。例えば、吸収係数を求めることで、消衰係数κが得られる。
図8は、第1の実施形態に係る半導体発光素子の一部を例示する模式的断面図である。 図8に示すように、第3半導体膜15は、障壁層BLと、井戸層WLと、を含む。この例では、複数の障壁層BLと、複数の井戸層WLと、が設けられている。複数の障壁層BLと、複数の井戸層WLと、は、Z軸方向に沿って交互に配置される。この例では、複数の井戸層WLが設けられている。実施形態において、井戸層WLの数は、1でも良い。
井戸層WLのバンドギャップエネルギーは、障壁層BLのバンドギャップエネルギーよりも小さい。井戸層WLには、Inを含む窒化物半導体(例えばInGaN)が用いられる。障壁層BLには、例えばGaNが用いられる。
第1半導体膜10の少なくとも一部は、n形半導体膜21である。n形半導体膜11は、コンタクト層を含む。第2半導体膜20の少なくとも一部は、p形半導体膜21である。p形半導体膜21は、コンタクト層を含む。
(第2の実施形態)
図9は、第2の実施形態に係る半導体発光素子を例示する模式的断面図である。
図9に示すように、本実施形態に係る半導体発光素子120においては、半導体層25、第1導電層50及び第2導電層60に加えて、第1電極51、第2電極52、支持部75、中間導電層76及びパッシベーション膜80が設けられている。
支持部75の上に、中間導電層76が設けられる。中間導電層76の上に、第1導電層50が設けられる。第1導電層50の上に、第2導電層60が設けられる。第2導電層60の上に、第2半導体膜20、第3半導体膜15、第1半導体膜10がこの順で設けられる。第1半導体膜10の上面(第1面10a)には、凹凸10dpが設けられる。第1面10aの上に、第1電極51が設けられる。第1面10aとは反対側の第2面10bに第3半導体膜15は接している。
中間導電層76と第1導電層50は電気的に接続されている。中間導電層76の一部の上に、第2電極52が設けられる。パッシベーション膜80は、半導体層25の側面に設けられている。
第1電極51と第2電極52との間に電圧を印加するこことで、半導体層25に電流が供給され、第3半導体膜15から光が放出される。
第1導電層50には、例えば、Agが用いられている。半導体発光素子120においては、発光光は、第1導電層50で反射して、第1面10aから外部に出射する。実施形態に係る第2導電層60を用いることで高い光取り出し効率が得られる。
図10は、第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。 図10に示すように、本実施形態に係る半導体発光素子121においては、半導体層25、第1導電層50及び第2導電層60に加えて、電極41、配線層54、絶縁層65、パッシベーション膜80、支持部75、中間導電層76、裏面電極77、パッド電極78が設けられている。
第1半導体膜10は、第1半導体領域11aと第2半導体領域11bとを含む。第2半導体領域11bから第1半導体領域11aに向かう方向は、Z軸方向と交差する。
第2半導体領域11bと第2半導体膜20との間に、第3半導体膜15が設けられる。
第1半導体膜10と支持部75との間に、第2半導体膜20及び第3半導体膜15が配置される。
第1半導体領域11bと支持部75との間に電極41が配置される。電極41は、第1半導体膜10と電気的に接続される。電極41と支持部75との間に中間導電層76が配置される。この例では、支持部75は導電性である。中間導電層76は、導電性であり、支持部75と電極41とを電気的に接続する。
この例では、裏面電極77が設けられており、裏面電極77と中間導電層76との間に支持部75が配置される。
支持部75と第2半導体膜20との間に、第1導電層50が設けられる。第1導電層50と第2半導体膜20との間に第2導電層60が設けられる。支持部75と第1導電層50との間に配線層54が設けられる。配線層54は、第1導電層50を介して、第2半導体膜20と電気的に接続される。配線層54は、例えば、X−Y平面に沿って延びる。
支持部75と配線層54との間に絶縁層65が配置される。支持部75と絶縁層65との間に中間導電層76が配置される。支持部75と電気的に接続されている中間導電層76は、絶縁層65により、配線層54、第1導電層50及び第2半導体膜20と電気的に絶縁される。
配線層54の一端54eは、パッド電極78と支持部75との間の位置に延在している。配線層54は、パッド電極78と電気的に接続される。
第1半導体膜10、第3半導体膜15、第2半導体膜20を含む半導体層25の側面25sにパッシベーション膜80が設けられる。これにより、半導体層25が保護される。第1半導体層10の第1面10aに凹凸10dpが設けられる、第1面10aの上に絶縁層30(保護膜)が設けられる。
パッド電極78と裏面電極77との間に電圧を印加する。配線層54、第1導電層50、第2半導体膜20、支持部75、中間導電層76、電極41及び第1半導体膜10を介して、第3半導体膜15に電流が供給される。半導体発光素子121は、例えば、LEDである。
第3半導体膜15から放出された光は、電極41及び第1導電層50で反射し、第1半導体膜10を通過して、外部に出射する。
電極41には、銀、銀合金及びアルミニウム(Al)の少なくともいずれかが用いられる。高い光反射率が得られる。これらの電極は、Ni、Pt、Mg、Zn及びTiの少なくともいずれかを含んでも良い。例えば、半導体層25との良好なオーミック接触性が得られる。
半導体発光素子121においても、実施形態に係る第2導電層60を用いることで高い光取り出し効率が得られる。
図11は、第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。 図11に示すように、本実施形態に係る半導体発光素子122においても、半導体層25、第1導電層50及び第2導電層60に加えて、電極41、絶縁層65a、絶縁層65a65b、支持部75及び電流ブロック部67が設けられている。
第1半導体膜10の一部に電極41が接している。電極41と第3半導体膜15との間、及び、電極41と第2第2半導体膜20との間に絶縁層65が設けられている。支持部75と電極41との間に、絶縁層65bが設けられている。絶縁層65bの一部は、第1導電層50と絶縁層65bとの間に延在している。絶縁層65bの一部は、第1導電層50と絶縁層65aとの間に位置する。電極41の一部と第1半導体膜10との間に電流ブロック部67が設けられる。電流ブロック部67は、電極41と第1半導体膜10との間に流れる電流を抑制する。例えば電気抵抗が高い材料、または、接触抵抗が高い材料が用いられる。支持部75は、例えば、一方の電極として機能する。支持部75は、例えば、電流広がり層として機能する。支持部75は、例えば、はんだ埋め込み層を含んでも良い。支持部75は、接続層を含んでも良い。
図12(a)及び図12(b)は、第2の実施形態に係る別の半導体発光素子を例示する模式的断面図である。
図12(a)に示すように、半導体発光素子123においては、電極41と第1導電層50との間、電極41と第2導電層60との間、電極41と第2半導体膜20との間、及び、電極41と第3半導体膜15との間に絶縁層65が設けられている。絶縁層65は、電極41の側面と、第1半導体膜10と、の間にも設けられている。この例では、電極41は、第1電極膜41aと、第2電極膜41bと、を含む。第2電極膜41bと第1半導体膜10との間に第1電極膜41aが設けられる。第1電極膜41aの反射率は、第2電極膜41bの反射率よりも高い。
図12(b)に示すように、半導体発光素子124においては、絶縁層65の下面の位置が、第1導電層50の位置よりも高い。この例では、絶縁層65の下面の位置は、第2半導体膜20と第2導電層60との間の界面の位置と実質的に一致している。絶縁層65の下面の位置は、種々の変形が可能である。
実施形態によれば、高光取り出し効率の半導体発光素子半導体発光素子が提供できる。
なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電形などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれる半導体膜、半導体層、導電層、電極及び絶縁層などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した半導体発光素子を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…第1半導体膜、 10a…第1面、 10b…第2面、 10dp…凹凸、 11…n形半導体膜、 11a…第1半導体領域、 11b…第2半導体領域、 15…第3半導体膜、 20…第2半導体膜、 21…p形半導体膜、 25…半導体層、 25s…側面、 30…絶縁層、 40、41…電極、 41a、41b…第1、第2電極膜、 50…第1導電層、 51…第1電極、 52…第2電極、 54…配線層、 54e…一端、 60…第2導電層、 65、65a、65b…絶縁層、 67…電流ブロック部、 75…支持部、 76…中間導電層、 77…裏面電極、 78…パッド電極、 80…パッシベーション膜、 ΔEff…変化率、 ρ…電気抵抗率、 110、120、121、122、123、124…半導体発光素子、 BL…障壁層、 Eff…光取り出し効率、 IF…干渉の効果、 L1、L2…光、 Rf…反射率、 TR…全反射の効果、 TS…透過率、 WL…井戸層、 t…厚さ

Claims (6)

  1. 半導体層と、
    第1導電層と、
    前記半導体層と前記第1導電層との間に設けられた第2導電層と、
    を備え、
    前記第2導電層の光透過率は、前記第1導電層の光透過率よりも高く、
    前記第2導電層の消衰係数は、0.005以下である半導体発光素子。
  2. 前記第1導電層の光反射率は、前記第2導電層の光反射率よりも高い請求項1記載の半導体発光素子。
  3. 前記第2導電層の電気抵抗率は、1.1×10−3Ωm以上である請求項1または2に記載の半導体発光素子。
  4. 前記半導体層から放出される光に対する前記第2導電層の屈折率は、前記光に対する前記半導体層の屈折率よりも低い請求項1〜3のいずれか1つに記載の半導体発光素子。
  5. 前記第2導電層の厚さは、前記光の前記第2導電層中における波長の0.67倍以上1.33倍以下である請求項4記載の半導体発光素子。
  6. 前記半導体層は、窒化物半導体を含み、
    前記第2導電層は、In、Ga、Sn、Al、Zn、Ge、Sr、Mg、Ni及びSiからなる群から選択された少なくとも1つの元素を含む酸化物を含む請求項1〜5のいずれか1つに記載の半導体発光素子。
JP2014187111A 2014-09-12 2014-09-12 半導体発光素子 Pending JP2016062924A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014187111A JP2016062924A (ja) 2014-09-12 2014-09-12 半導体発光素子
TW104106714A TW201611337A (zh) 2014-09-12 2015-03-03 半導體發光元件
CN201510097400.3A CN105990488A (zh) 2014-09-12 2015-03-05 半导体发光元件
US14/642,477 US9299903B1 (en) 2014-09-12 2015-03-09 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187111A JP2016062924A (ja) 2014-09-12 2014-09-12 半導体発光素子

Publications (1)

Publication Number Publication Date
JP2016062924A true JP2016062924A (ja) 2016-04-25

Family

ID=55455634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187111A Pending JP2016062924A (ja) 2014-09-12 2014-09-12 半導体発光素子

Country Status (4)

Country Link
US (1) US9299903B1 (ja)
JP (1) JP2016062924A (ja)
CN (1) CN105990488A (ja)
TW (1) TW201611337A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032820A (ja) * 2016-08-26 2018-03-01 ローム株式会社 半導体発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813764B1 (ko) * 2004-03-29 2008-03-13 쇼와 덴코 가부시키가이샤 화합물 반도체 발광 소자 및 그 제조 방법
JP2005317676A (ja) 2004-04-27 2005-11-10 Sony Corp 半導体発光素子、半導体発光装置及び半導体発光素子の製造方法
JP4453515B2 (ja) 2004-10-22 2010-04-21 豊田合成株式会社 半導体発光素子
JP2009260316A (ja) 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd 半導体発光素子およびそれを用いる照明装置
JP2009289592A (ja) * 2008-05-29 2009-12-10 Canon Inc 表示装置
JP4881451B2 (ja) * 2010-03-08 2012-02-22 株式会社東芝 半導体発光素子
WO2012067075A1 (ja) * 2010-11-15 2012-05-24 日本電気株式会社 光素子
JP5661660B2 (ja) 2012-02-07 2015-01-28 株式会社東芝 半導体発光素子
JP5687651B2 (ja) * 2012-03-24 2015-03-18 株式会社東芝 有機電界発光素子、照明装置及び有機電界発光素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032820A (ja) * 2016-08-26 2018-03-01 ローム株式会社 半導体発光素子

Also Published As

Publication number Publication date
US9299903B1 (en) 2016-03-29
CN105990488A (zh) 2016-10-05
US20160079502A1 (en) 2016-03-17
TW201611337A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
US7615789B2 (en) Vertical light emitting diode device structure
TWI581458B (zh) 發光元件
US9209370B2 (en) Light emitting device and light emitting device package
TWI520379B (zh) 發光二極體晶片
CN104465920A (zh) 第iii族氮化物半导体发光器件
TWI601312B (zh) 光電半導體晶片
CN103779464A (zh) 覆晶式发光二极管及其应用
JP5258853B2 (ja) 半導体発光素子及びその製造方法
JP2012124306A (ja) 半導体発光素子
CN113169256A (zh) 用于发光二极管芯片的互连
JPWO2013051326A1 (ja) 窒化物半導体発光素子、及び窒化物半導体発光素子の製造方法
JP2012038950A (ja) 半導体発光素子及びその製造方法
CN104103733A (zh) 一种倒装发光二极管芯片及其制造方法
TW201637240A (zh) 半導體發光元件及其製造方法
TWI533472B (zh) 半導體發光元件及其製造方法
US20130328077A1 (en) Light-emitting element
KR20120002130A (ko) 플립칩형 발광 소자 및 그 제조 방법
US8841685B2 (en) Optoelectronic semiconductor chip
EP2226859A2 (en) Semiconductor light emitting device
CN112997324A (zh) 半导体发光器件
JP2016062924A (ja) 半導体発光素子
TW201349576A (zh) 具反射鏡保護層的發光二極體
JP2011124275A (ja) 発光装置
KR20120062660A (ko) 수직 구조 발광 다이오드
US11367808B2 (en) Radiation-emitting semiconductor chip with overlapping contact layers