JP2016058500A - Semiconductor element formation method - Google Patents

Semiconductor element formation method Download PDF

Info

Publication number
JP2016058500A
JP2016058500A JP2014182774A JP2014182774A JP2016058500A JP 2016058500 A JP2016058500 A JP 2016058500A JP 2014182774 A JP2014182774 A JP 2014182774A JP 2014182774 A JP2014182774 A JP 2014182774A JP 2016058500 A JP2016058500 A JP 2016058500A
Authority
JP
Japan
Prior art keywords
film
temperature
annealing
semiconductor substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014182774A
Other languages
Japanese (ja)
Other versions
JP6440246B2 (en
Inventor
後藤 哲也
Tetsuya Goto
哲也 後藤
寺本 章伸
Akinobu Teramoto
章伸 寺本
理人 黒田
Michihito Kuroda
理人 黒田
智之 諏訪
Tomoyuki Suwa
智之 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014182774A priority Critical patent/JP6440246B2/en
Publication of JP2016058500A publication Critical patent/JP2016058500A/en
Application granted granted Critical
Publication of JP6440246B2 publication Critical patent/JP6440246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formation method of a semiconductor element which has atomic-order flatness on an interface between a semiconductor region for channel formation and a gate oxide film.SOLUTION: A semiconductor element formation method includes the step of arranging in an inert gas atmosphere, a Si semiconductor substrate where an element isolation pattern is formed on a surface and performing annealing at a temperature of 900°C or less for a predetermined time. The semiconductor element formation method includes the step of performing a heat treatment before the annealing, at a temperature lower than an annealing temperature in the annealing.SELECTED DRAWING: Figure 3

Description

本発明は、IC、LSI等の半導体装置を構成する半導体素子の形成方法に関するものである。   The present invention relates to a method for forming a semiconductor element constituting a semiconductor device such as an IC or LSI.

IC、LSI等の半導体装置の歴史は、高集積化と構成する半導体素子(トランジスタ等)の微細化の歴史でもある。半導体素子の代表的なものにMOSFET(Metal Oxide Semiconductor Field Effect Transistor)がある。MOSFETは,一方のサイドにソース領域が、他方のサイドにドレイン領域が形成され、その間にチャネル領域が形成される半導体領域(活性領域)が形成されている。そして、該半導体領域上には、ゲート酸化膜が設けられているのが一般的である。該ゲート酸化膜上にはゲート電極が設けてある。前記チャネル領域は、素子の駆動時に該ゲート酸化膜の直下に形成され、その中を移動する電荷量をコントロールすることで素子のON−OFF(スイッチング)動作がなされる。即ち、前記ゲート電極に、ON−OFF信号を印加して前記チャネル領域を流れる電流をON−OFFする(電流駆動)。   The history of semiconductor devices such as ICs and LSIs is also the history of miniaturization of semiconductor elements (transistors and the like) constituting high integration. A typical semiconductor element is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). In the MOSFET, a source region is formed on one side, a drain region is formed on the other side, and a semiconductor region (active region) in which a channel region is formed is formed therebetween. In general, a gate oxide film is provided on the semiconductor region. A gate electrode is provided on the gate oxide film. The channel region is formed immediately below the gate oxide film when the element is driven, and the element is turned on and off by controlling the amount of charge moving through the channel region. That is, an ON-OFF signal is applied to the gate electrode to turn on and off the current flowing through the channel region (current drive).

図1A,1B、1Cに、MOSFETの代表例の構造を模式的に示す。
図1Aに示すMOSFET100は、単結晶のシリコン(Si)半導体基板(シリコンウェーハ)101にソース領域102、ドレイン領域103、これらに挟まれてチャネル領域が形成される半導体領域(活性領域)104が形成されている。
半導体領域104上には、ゲート酸化膜105、ゲート電極106が設けられえてある。図1A,1Bには、半導体領域104とゲート酸化膜105との界面(I)の様子が模式的に拡大して示してある。図1Bには、界面(I)が凹凸性であり、図1Cには、界面(I)が平滑性である場合が一部誇張して記載されてある。MOSFET100が、それ程、微細でない場合は、図1Bに示す界面(I)の凹凸性の影響は、チャネル領域を移動する多量の電荷(electron、hole)に対しては無視できるが、22、14nmと素子サイズが小さくなるにつれ、電荷の移動に対するこの凹凸性の影響が大きくなってくる。そのため、図1Cに示すように、界面(I)の平滑性は、素子サイズが小さくなるにつれ原子オーダーレベルの平滑性までもが要求されてくる。即ち、微細化の要求からMOSFETの素子自体が小さくなるに連れ、前記電流駆動の能力(電流駆動能力)は、前記ゲート酸化膜と前記半導体領域の界面(I)の平坦性の影響が大きくなる。即ち、図1Cに示すように、界面(I)の平滑性が優れていると、電荷はソース領域102からドレイン領域103に向かって、矢印Bで示す様に直進するのに対して、図1Cに示すように、界面(I)に凹凸性があると、電荷は、この凹凸に移動方向を左右されて矢印Aで図示するように依れてドレイン領域103まで移動する。
1A, 1B, and 1C schematically show a structure of a typical MOSFET.
A MOSFET 100 shown in FIG. 1A includes a source region 102 and a drain region 103 formed on a single crystal silicon (Si) semiconductor substrate (silicon wafer) 101, and a semiconductor region (active region) 104 between which a channel region is formed. Has been.
A gate oxide film 105 and a gate electrode 106 can be provided on the semiconductor region 104. 1A and 1B schematically show the interface (I) between the semiconductor region 104 and the gate oxide film 105 in an enlarged manner. FIG. 1B partially exaggerates the case where the interface (I) is uneven and FIG. 1C shows the case where the interface (I) is smooth. When the MOSFET 100 is not so fine, the influence of the unevenness of the interface (I) shown in FIG. 1B can be ignored for a large amount of charges (electrons, holes) moving in the channel region. As the element size becomes smaller, the influence of this unevenness on the movement of charges becomes larger. Therefore, as shown in FIG. 1C, the smoothness of the interface (I) is required to be even to the atomic order level as the element size is reduced. That is, as the MOSFET element itself becomes smaller due to the demand for miniaturization, the current driving capability (current driving capability) becomes more influenced by the flatness of the interface (I) between the gate oxide film and the semiconductor region. . That is, as shown in FIG. 1C, when the smoothness of the interface (I) is excellent, the charge goes straight from the source region 102 toward the drain region 103 as shown by the arrow B, whereas in FIG. If the interface (I) is uneven as shown in FIG. 5B, the electric charge moves to the drain region 103 depending on the unevenness in the direction of movement as shown by the arrow A.

その結果、界面(I)の平坦性が悪いと前記電流駆動能力は低下し素子の高速動作に不向きになるので、単結晶のシリコン(Si)半導体基板(シリコンウェーハ)表面を、極力、平坦にすることが求められる(非特許文献1)。そのため、従来は、MOSFETを高集積に形成する単結晶のシリコン(Si)半導体基板(シリコンウェーハ)の表面に予め原子オーダーの平坦化処理を施していた(例えば、非特許文献2、特許文献1、2)。
しかしながら、実際には、半導体領域上にゲート酸化膜を形成する直前までに、Si半導体基板は、種々のプロセス(イオン注入、ウェル形成、素子分離、エッチング、洗浄、リンスなど)が適用されるため、前記半導体領域表面の当初の原子オーダー平坦性をゲート酸化膜形成後までも維持し続けることは極めて難しい。
その解決法の一つとして提案されているのが、洗浄には、光・大気を完全に遮断し室温で実施する無アルカリ洗浄を採用し、ゲート酸化膜形成には、ラジカル酸化法を採用する方法である(従来法A)。
As a result, when the flatness of the interface (I) is poor, the current driving capability is lowered and unsuitable for high-speed operation of the device. Therefore, the surface of the single crystal silicon (Si) semiconductor substrate (silicon wafer) is made as flat as possible. (Non-Patent Document 1). For this reason, conventionally, planarization treatment in atomic order has been performed in advance on the surface of a single crystal silicon (Si) semiconductor substrate (silicon wafer) on which MOSFETs are highly integrated (for example, Non-Patent Document 2 and Patent Document 1). 2).
However, in practice, various processes (ion implantation, well formation, element isolation, etching, cleaning, rinsing, etc.) are applied to the Si semiconductor substrate immediately before forming the gate oxide film on the semiconductor region. It is extremely difficult to maintain the initial atomic order flatness of the surface of the semiconductor region even after the gate oxide film is formed.
As one of the solutions, alkali-free cleaning that is performed at room temperature with light and air completely blocked is used for cleaning, and radical oxidation is used for gate oxide film formation. This is a method (conventional method A).

T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Elec. Dev.Lett., 12, 652 (1991).T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Elec. Dev. Lett., 12, 652 (1991). L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H.Shirai, and H. Saito, Phy. Rev. B. 54, 2304 (1996).L. Zhong, A. Hojo, Y. Matsushita, Y. Aiba, K. Hayashi, R. Takeda, H. Shirai, and H. Saito, Phy. Rev. B. 54, 2304 (1996).

国際公開WO2011/096417A1International publication WO2011 / 096417A1 国際公開WO2013/150636A1International Publication WO2013 / 150636A1

しかしながら、前記従来法Aでは、アルカリ洗浄が採用できないので、半導体基板の被処理表面上に残るパーティクルの完全除去は難しい。
更に、光・大気を完全遮断が必要であるから、そのための製造装置を用意しなければならず製造コスト増は避けられない。そのために製造される半導体装置の営業利益を圧迫することになる。
そこで、素子分離パターン形成後に、従来の原子オーダー平坦化処理のためのアニール処理を施すことも考えられるが、平坦化の原理がシリコン(Si)のマイグレーションによるため、Si表面に加えSiO2表面も共存すると、SiO2膜の膜質が高品質(化学量論的関係を満たしている)でない場合は、プロセス雰囲気中に僅かでも酸素や水分が存在すると、シリコン(Si)が酸素や水分と反応して、SiO若しくはSiH4となって膜から離脱してしまうことが懸念されている。
そのため、素子製造プロセス実施中の処理雰囲気においては、酸素や水分を可能な限り除外する必要がある。
更に、SiO2膜の膜質が高品質でないと、製造プロセス実施過程で、SiO2膜は、処理雰囲気中から酸素や水分を膜中に取り込みやすくなり、また、その表面に水分を吸着しやすくなる傾向がある。
そのため、SiO2膜にアニール処理を施すと、その処理過程で、膜中より酸素や水分を放出し、放出した酸素や水分がSi膜のSiと反応し、SiO若しくはSiH4となって膜から離脱してしまう懸念がある。
一方、高品質のSiO2膜は、今のところ熱酸化膜でないと得られていないが、高品質のSiO2膜としての熱酸化膜は、1000℃以上の高温でないと容易には得られないという課題がある。
しかし、これまではMOSFETの形成においては、このような高温プロセスを適用すると、素子領域も酸化してしまうため、スパッタリング法やCVD法で素子分離膜・ゲート酸化膜を形成しているが、このような方法では、熱酸化膜のような高品質の膜は得られないとされている。
加えて、Si層の表面は、フッ酸洗浄後の状態で水素終端されているが、その水素は、温度を上げていくと、380℃〜450℃の領域でSi層の表面から離脱する。終端の水素が無くなるとSi層の表面は非常に酸化されやすくなり、シリコン酸化膜が形成されることが多い。このシリコン酸化膜が形成されると、その後の平坦化処理を阻害することになる。
However, in the conventional method A, since alkali cleaning cannot be employed, it is difficult to completely remove particles remaining on the surface to be processed of the semiconductor substrate.
Furthermore, since it is necessary to completely block light and air, a manufacturing apparatus for that purpose must be prepared, and an increase in manufacturing cost is inevitable. For this reason, the operating profit of the semiconductor device to be manufactured is pressed.
Therefore, it is conceivable to perform an annealing process for conventional atomic order flattening after the element isolation pattern is formed. However, since the principle of flattening is due to migration of silicon (Si), the SiO2 surface coexists in addition to the Si surface. Then, if the film quality of the SiO2 film is not high quality (satisfying the stoichiometric relationship), if even a slight amount of oxygen or moisture is present in the process atmosphere, silicon (Si) reacts with oxygen or moisture, There is a concern that it becomes SiO or SiH4 and leaves the film.
Therefore, it is necessary to exclude oxygen and moisture as much as possible in the processing atmosphere during the element manufacturing process.
Furthermore, if the film quality of the SiO2 film is not high, the SiO2 film tends to take oxygen and moisture from the processing atmosphere into the film during the manufacturing process, and also tends to adsorb moisture on the surface. is there.
Therefore, when annealing treatment is performed on the SiO2 film, oxygen and moisture are released from the film during the treatment process, and the released oxygen and moisture react with Si in the Si film to be separated from the film as SiO or SiH4. There is a concern.
On the other hand, a high-quality SiO2 film cannot be obtained unless it is a thermal oxide film, but a thermal oxide film as a high-quality SiO2 film cannot be easily obtained unless the temperature is higher than 1000 ° C. There is.
However, until now, in the formation of MOSFETs, when such a high temperature process is applied, the element region is also oxidized. Therefore, an element isolation film and a gate oxide film are formed by a sputtering method or a CVD method. In such a method, it is said that a high quality film such as a thermal oxide film cannot be obtained.
In addition, the surface of the Si layer is hydrogen-terminated in the state after cleaning with hydrofluoric acid, but the hydrogen desorbs from the surface of the Si layer in the region of 380 ° C. to 450 ° C. as the temperature is increased. When the terminal hydrogen disappears, the surface of the Si layer is very easily oxidized, and a silicon oxide film is often formed. When this silicon oxide film is formed, the subsequent planarization process is hindered.

本発明は、上記の問題に鑑みてなされたものであり、その目的の一つは、素子形成前に予め原子オーダー平坦化表面処理をシリコンウェーハに施さなくても、チャネル形成用の半導体領域(以後、「半導体領域(Ch)」と記すこともある)とゲート酸化膜の界面(I)が原子オーダーの平坦性を備えた半導体素子を形成することが出来る半導体素子の形成方法を提供することである。
本発明のもう一つの目的は、素子の微細化が進んでも、形成される素子の上記界面(I)の平坦性は、原子オーダーレベルで形成でき、より一層の高速動作と高機能化が可能な半導体素子の形成方法を提供することである
The present invention has been made in view of the above problems, and one of its purposes is to form a semiconductor region for channel formation (without forming an atomic order planarization surface treatment in advance on a silicon wafer before device formation). (Hereinafter referred to as “semiconductor region (Ch)”) and an interface (I) between the gate oxide film and a method for forming a semiconductor element capable of forming a semiconductor element having flatness on the atomic order. It is.
Another object of the present invention is that the flatness of the interface (I) of the formed element can be formed at the atomic order level even when the element is miniaturized, and further high-speed operation and high functionality can be achieved. It is to provide a method for forming a semiconductor device

本発明の側面の一つは、FETの形成過程において、表面に素子分離パターンが形成されているSi半導体基板を不活性ガス雰囲気中に配し、900℃以下で所定時間アニール処理する工程を含む半導体素子の形成方法にある。
本発明のもう一つの側面は、 前記アニール処理前に、該アニール処理のアニール温度より低い温度での加熱処理を施す工程を含む半導体素子の形成方法にある。
本発明の更にもう一つの側面は、前記アニール処理前に、プラズマ励起よるラジカル酸化処理を施す工程を含む半導体素子の形成方法にある。
One aspect of the present invention includes a step of providing a Si semiconductor substrate having an element isolation pattern formed on the surface thereof in an inert gas atmosphere and annealing at 900 ° C. or lower for a predetermined time in the FET formation process. A method for forming a semiconductor element is provided.
Another aspect of the present invention lies in a method for forming a semiconductor element, including a step of performing a heat treatment at a temperature lower than the annealing temperature of the annealing treatment before the annealing treatment.
Still another aspect of the present invention lies in a method for forming a semiconductor element, including a step of performing radical oxidation treatment by plasma excitation before the annealing treatment.

本発明によれば、チャネル形成用の半導体領域とゲート酸化膜の界面(I)に原子オーダーの平坦性を備えることが出来、一層の高速動作・高機能化が可能な半導体素子を提供できる。   According to the present invention, the interface (I) between the semiconductor region for channel formation and the gate oxide film can be provided with atomic order flatness, and a semiconductor device capable of further high-speed operation and high functionality can be provided.

代表的構造例のMOSFETにおけるチャネル領域を移動する電荷の移動状態がゲート絶縁膜直下の界面の平坦性に依存することを説明するための模式的構造説明図。The typical structure explanatory view for explaining that the movement state of the electric charge which moves the channel region in MOSFET of a typical structural example depends on the flatness of the interface just under the gate insulating film. 図1Aの点線で示す円内の拡大図であって、界面(I)が凹凸性である構造の一例を示す図。FIG. 1B is an enlarged view in a circle indicated by a dotted line in FIG. 1A, showing an example of a structure in which an interface (I) is uneven. 図1Aの点線で示す円内の拡大図であって、界面(I)が平滑性である構造の一例を示す図。FIG. 1B is an enlarged view in a circle indicated by a dotted line in FIG. 1A and shows an example of a structure in which an interface (I) is smooth. 本発明に関わる、MOSFETの代表例の構造を模式的に示す模式的構造説明図。The typical structure explanatory view showing typically the structure of the typical example of MOSFET concerning the present invention. 本発明に関わる製造方法の製造プロセスの好適な一例を示す図。The figure which shows a suitable example of the manufacturing process of the manufacturing method in connection with this invention. 図3の各プロセスを模式的に示す断面図。Sectional drawing which shows each process of FIG. 3 typically. 図4Aに続く各プロセスを模式的に示す断面図。FIG. 4B is a cross-sectional view schematically showing each process following FIG. 4A. 本発明に関わって作成された試料の測定結果の一例を示すグラフ。The graph which shows an example of the measurement result of the sample created in connection with this invention. 本発明に関わって作成された試料の測定結果の他の例を示すグラフ。The graph which shows the other example of the measurement result of the sample produced in connection with this invention. 本発明における試料作製の際の温度シーケンス(アニール条件(i))を示すグラフ。The graph which shows the temperature sequence (annealing conditions (i)) in the case of sample preparation in this invention. 本発明における試料作製の際のもう一つの温度シーケンス(アニール条件(ii))を示すグラフ。The graph which shows another temperature sequence (annealing condition (ii)) in the case of sample preparation in this invention.

ここで、本実施形態に係るMOSFETの形成方法について、図2、3を参照して説明する。   Here, a method of forming the MOSFET according to the present embodiment will be described with reference to FIGS.

図2は、本発明に関わる、MOSFETの代表例の構造を模式的に示す模式的構造説明図である。
図2に示すMOSFET900は、STI(Shallow trench Isolation)素子分離法によって、各素子(MOSFET)が分離された構造をしている。
MOSFET900は、半導体基版901、フィールド絶縁膜(埋め込み酸化膜)902a、902b、ソース領域906、ドレイン領域907、ゲート絶縁膜904、ゲート電極905、シリサイド膜903a、903b、903c、層間絶縁膜908a、908b、ゲート取り出し電極909、ソ−ス取り出し電極910、ドレイン取り出し電極911、サイドウォール912で構成されている。
FIG. 2 is a schematic structural explanatory view schematically showing the structure of a typical example of a MOSFET according to the present invention.
A MOSFET 900 shown in FIG. 2 has a structure in which each element (MOSFET) is isolated by an STI (Shallow Trench Isolation) element isolation method.
MOSFET 900 includes a semiconductor substrate 901, field insulating films (buried oxide films) 902a and 902b, source region 906, drain region 907, gate insulating film 904, gate electrode 905, silicide films 903a, 903b and 903c, interlayer insulating film 908a, 908b, a gate extraction electrode 909, a source extraction electrode 910, a drain extraction electrode 911, and a sidewall 912.

図3,図4A,4Bは、本発明に関わる製造プロセスの一部の好適な一例を説明するための模式的製造プロセス説明図である。
図3に示す各工程は、以下の通りである。
工程(A)・・・パッド酸化膜(SiO2膜)301、CVDによる窒化膜302の形成
工程(B)・・・窒化膜(Si3N4)302、酸化膜(SiO2)301、(Si)半導体基板901をエッチングしての浅溝303の形成と、トレンチ酸化膜(SiO2)304の形成
工程(C)・・・フィールド絶縁膜(SiO2膜)902の形成とその上部、トレンチ酸化膜303をCMPで除去
工程(D)・・・自然酸化膜、窒化膜302の除去
工程(E)・・・パッド酸化膜301の除去
工程(F)・・・イオン注入前のWet酸化による酸化膜305の形成
工程(G)・・・ウェル形成(イオン注入)
工程(H)・・・イオン注入前酸化膜305の除去
工程(I)・・・原子オーダー平坦化処理
工程(J)・・・ラジカル酸化によるゲート絶縁膜(酸化膜)904の形成
工程(K)・・・ゲート電極905の形成
3, 4A and 4B are schematic manufacturing process explanatory diagrams for explaining a preferable example of a part of the manufacturing process according to the present invention.
Each process shown in FIG. 3 is as follows.
Step (A): Pad oxide film (SiO 2 film) 301, CVD nitride film forming step (B): Nitride film (Si 3 N 4) 302, oxide film (SiO 2) 301, (Si) semiconductor substrate 901 Step of forming shallow groove 303 by etching and forming trench oxide film (SiO 2) 304 (C)... Forming field insulating film (SiO 2 film) 902 and the upper portion thereof, and removing trench oxide film 303 by CMP Step (D) ... Natural oxide film / nitride film 302 removal step (E) ... Pad oxide film 301 removal step (F) ... Step of forming oxide film 305 by wet oxidation before ion implantation ( G) ... Well formation (ion implantation)
Step (H) ... Removal step of oxide film 305 before ion implantation (I) ... Planarization process of atomic order (J) ... Formation step of gate insulating film (oxide film) 904 by radical oxidation (K) ) ... Formation of gate electrode 905

先ず、半導体基板901(シリコンウェーハ、シリコン半導体基板)の表面を、アルカリ溶液を用いた洗浄法によって洗浄し、純粋水でリンスする。
次に、素子形成領域を定めるために、半導体基板901表面上にパッドSiO2膜301とSi3N4膜302とを形成し,次いで、半導体基板901の所定部位をエッチングして底が浅い分離溝303(303a、303b)を形成する。
溝303の内壁を熱酸化してトレンチ酸化膜304を形成した後に,必要に応じて溝底面や溝側面にチャネルストッパ不純物を導入する。
その後、CVDによるSiO2で溝303内を埋めるように十分量のSiO2を堆積してフィールド絶縁膜902(902a、902b)を形成する。
この際、CMP(Chemical Mechanical Polishing)などの平坦化技術を用いてCVD−SiO2で構成された余分な領域を平坦に削って窒化膜302を露出させる。
最後に窒化膜302を取り除いて素子分離構造を完成させる(「工程(D)」)。
次いで、パッド酸化膜301を除去する(「工程(E)」)。
その後、イオン注入前に、ウェット酸化を行い(「工程(F)」)、次いで、所定領域にイオン注入を行ってウェルを形成して、ソース領域906とドレイン領域907を設ける(「工程(G)」)。
その次に、工程(F)での酸化処理で形成した酸化膜を除去する(「工程(H)」)。
次いで、本発明に関わる原子オーダー平坦化処理を行う(「工程(I)」)。
その後、ラジカル酸化処理を行って、ゲート絶縁膜904を形成する(「工程(J)」)。
ゲート絶縁膜904上にポリシリコン(Poly-Si)膜を堆積させてゲート電極905を形成する(「工程(K)」)。
その後、必要に応じて、シリコン窒化膜などでサイドウォール912(912a、、912b)を形成する。
その次に、好ましい態様として、ゲート電極905表面、ソース領域906表面、ドレイン領域907表面にシリサイド化処理を施して、CoSi等からなるシリサイド膜903(903a、903b、903c)を設けるのが望ましい。
その後に、層間絶縁膜908を設け、該層間絶縁膜908の所定位置にコンタクトホールを形成し、次いで、該コンタクトホールを所望の金属で埋めて、ゲート取り出し金属電極909、ソース取り出し金属電極910、ドレイン取り出し金属電極911をそれぞれ形成する。
以上の様にして、図2に示すような構造のMOSFETを形成する。
First, the surface of the semiconductor substrate 901 (silicon wafer, silicon semiconductor substrate) is cleaned by a cleaning method using an alkaline solution and rinsed with pure water.
Next, in order to define an element formation region, a pad SiO2 film 301 and a Si3N4 film 302 are formed on the surface of the semiconductor substrate 901, and then a predetermined portion of the semiconductor substrate 901 is etched to form a shallow isolation groove 303 (303a). , 303b).
After the inner wall of the groove 303 is thermally oxidized to form the trench oxide film 304, a channel stopper impurity is introduced into the groove bottom surface and the groove side surface as necessary.
Thereafter, a sufficient amount of SiO2 is deposited so as to fill the trench 303 with SiO2 by CVD to form field insulating films 902 (902a, 902b).
At this time, the nitride film 302 is exposed by flattening an excess region formed of CVD-SiO 2 using a planarization technique such as CMP (Chemical Mechanical Polishing).
Finally, the nitride film 302 is removed to complete the element isolation structure (“Step (D)”).
Next, the pad oxide film 301 is removed (“Step (E)”).
Then, before the ion implantation, wet oxidation is performed (“step (F)”), and then ion implantation is performed in a predetermined region to form a well, thereby providing a source region 906 and a drain region 907 (“step (G) ) ").
Next, the oxide film formed by the oxidation treatment in the step (F) is removed (“Step (H)”).
Next, an atomic order flattening process according to the present invention is performed (“Step (I)”).
Thereafter, radical oxidation treatment is performed to form a gate insulating film 904 (“step (J)”).
A polysilicon (Poly-Si) film is deposited on the gate insulating film 904 to form a gate electrode 905 (“Step (K)”).
Thereafter, sidewalls 912 (912a, 912b) are formed with a silicon nitride film or the like as necessary.
Next, as a preferred mode, it is desirable to perform silicide processing on the surface of the gate electrode 905, the surface of the source region 906, and the surface of the drain region 907 to provide silicide films 903 (903a, 903b, 903c) made of CoSi or the like.
After that, an interlayer insulating film 908 is provided, a contact hole is formed at a predetermined position of the interlayer insulating film 908, and then the contact hole is filled with a desired metal to obtain a gate extraction metal electrode 909, a source extraction metal electrode 910, A drain extraction metal electrode 911 is formed.
As described above, a MOSFET having a structure as shown in FIG. 2 is formed.

又、トランジスタを同一半導体基板に多数形成する場合の各トランジスタ間の素子分離方法は、図2,3,4A,4Bで説明した様に、分離溝をエッチングにより予め形成した後にフィールド絶縁膜を該溝中に埋め込むSTI(Shallow trench Isolation)の他、LOCOS(Local
Oxidation of Silicon)素子分離法、SOI(Silicon on Insulator)にMOSFETを形成する際に採用されるメサ分離法、トレンチ分離法、等が用いられる。
微細化においては、STIが有利であり、SOIの場合は、トレンチ分離、特に、Si層を部分的に残すトレンチ分離が好ましく採用される。
更に、本発明は、FIN−FETなどのマルチ・チャンネルFETにも適用され得ることは、当業者なら容易に想到出来る。
In addition, when a large number of transistors are formed on the same semiconductor substrate, the element isolation method between the transistors is as described in FIGS. 2, 3, 4A and 4B. In addition to STI (Shallow trench Isolation) embedded in trenches, LOCOS (Local
Oxidation of Silicon (Oxidation of Silicon) element isolation method, mesa isolation method, trench isolation method, etc. employed when forming a MOSFET in SOI (Silicon on Insulator) are used.
In miniaturization, STI is advantageous, and in the case of SOI, trench isolation, particularly trench isolation that partially leaves the Si layer is preferably employed.
Furthermore, those skilled in the art can easily conceive that the present invention can be applied to multi-channel FETs such as FIN-FETs.

本発明の半導体素子の形成方法においては、上記のMOSFET形成過程において、表面に素子分離パターンが形成されている半導体基板をアルゴン(Ar)等の不活性ガス雰囲気中、900℃以下で所定時間アニールする工程を含む。
この工程を実施することで、ゲート絶縁膜を形成する活性化領域表面は原子オーダーレベルでの平滑性(平坦性)となる。この平滑性を備えた活性化領域表面にゲート絶縁膜を形成すれば、活性化領域とゲート絶縁膜の接触界面は該平滑性が維持された状態でMOSFETが形成できる。
不活性ガスとしては、Arガスの他、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)、窒素(N2)などが使用され得る。
本発明においては、素子分離パターン形成直後であると、半導体基板の被処理表面は、Si表面の他、酸化シリコン(SiO2)表面も存在するため、SiO2膜の膜質が高品質(化学量論的関係を満たしている)でない場合、プロセス雰囲気中に僅かでも酸素や水素が存在すると、シリコン(Si)が酸素や水素と反応して、SiO若しくはSiH4となって膜から離脱してしまうことが考えられるので、素子製造プロセス実施中の処理雰囲気からは、酸素や水分を可能な限り除外する。
本発明においては処理雰囲気形成のために処理雰囲気形成空間に導入される不活性ガス中の酸素・水分濃度は、100ppb以下、好ましくは、30ppb以下、より好ましくは10ppb以下とするのが望ましい。
又、本発明における平坦化処理を実施する前に、素子分離パターンが形成されている半導体基板にプレ・アニール処理を施して、事前に該半導体基板から酸素・水分を除去しておくのが好ましい。
その際、除去時に揮発した酸素・水分がシリコン膜のSiと反応してシリコン酸化膜を作るとその後の平坦化を阻害してしま恐れがあるので、プレ・アニール処理は低温で行うのが好ましい。
更に、原子オーダー平坦化時には、Si膜の表面はフッ酸洗浄後の状態で水素終端されているが、その水素は、温度を上げていくと、380℃〜450℃の温度領域でSi膜から離脱する。そのために、終端の水素がSi膜表面から無くなるとSi膜表面は非常に酸化されやすくなる。
以上の点をトータルに考慮すると、酸素・水分除去処理は、380℃以下で行うことが望ましい。低温すぎると、酸素・水分除去効果が小さくなるので、より好ましくは、300℃〜380℃の温度領域で行うのが望ましい。
プレ・アニール処理の雰囲気は、平坦化処理の雰囲気と同じである必要はないが、望ましくは、煩雑さを避けるために、プレ・アニール処理の雰囲気と平坦化処理の雰囲気と同じにするのが好ましい。
上記の酸素・水分除去のプレ・アニール処理は、排気された不活性ガス中の酸素・水分濃度が好ましくは、100ppb以下、より好ましくは、30ppb以下、更に好ましくは、10ppb以下となるまで行うのが望ましい。
In the method for forming a semiconductor element of the present invention, in the MOSFET formation process, the semiconductor substrate having an element isolation pattern formed on the surface is annealed at 900 ° C. or lower for a predetermined time in an inert gas atmosphere such as argon (Ar). The process of carrying out is included.
By performing this process, the surface of the activated region where the gate insulating film is formed becomes smooth (flatness) at the atomic order level. If a gate insulating film is formed on the surface of the activated region having smoothness, a MOSFET can be formed with the smoothness maintained at the contact interface between the activated region and the gate insulating film.
As the inert gas, helium (He), neon (Ne), krypton (Kr), xenon (Xe), nitrogen (N2), and the like can be used in addition to Ar gas.
In the present invention, since the surface to be processed of the semiconductor substrate is not only the Si surface but also the silicon oxide (SiO 2) surface immediately after the formation of the element isolation pattern, the quality of the SiO 2 film is high (stoichiometric). If there is even a small amount of oxygen or hydrogen in the process atmosphere, silicon (Si) reacts with oxygen or hydrogen to become SiO or SiH4 and is detached from the film. Therefore, oxygen and moisture are excluded as much as possible from the processing atmosphere during the device manufacturing process.
In the present invention, the oxygen / water concentration in the inert gas introduced into the processing atmosphere forming space for forming the processing atmosphere is preferably 100 ppb or less, preferably 30 ppb or less, more preferably 10 ppb or less.
In addition, before performing the planarization treatment in the present invention, it is preferable to perform pre-annealing treatment on the semiconductor substrate on which the element isolation pattern is formed to remove oxygen and moisture from the semiconductor substrate in advance. .
At this time, if the oxygen / moisture volatilized at the time of removal reacts with Si of the silicon film to form a silicon oxide film, the subsequent planarization may be hindered. Therefore, it is preferable to perform the pre-annealing process at a low temperature. .
Furthermore, when the atomic order is flattened, the surface of the Si film is terminated with hydrogen in a state after cleaning with hydrofluoric acid. However, when the temperature is increased, the hydrogen is removed from the Si film in a temperature range of 380 ° C. to 450 ° C. break away. Therefore, if the terminal hydrogen disappears from the Si film surface, the Si film surface is very easily oxidized.
Considering the above points in total, it is desirable to perform the oxygen / water removal treatment at 380 ° C. or lower. If the temperature is too low, the effect of removing oxygen and moisture becomes small, and it is more preferable to carry out in a temperature range of 300 ° C to 380 ° C.
The pre-annealing atmosphere need not be the same as the planarizing atmosphere, but preferably the pre-annealing atmosphere and the planarizing atmosphere should be the same to avoid complications. preferable.
The pre-annealing treatment for removing oxygen / moisture is performed until the oxygen / water concentration in the exhausted inert gas is preferably 100 ppb or less, more preferably 30 ppb or less, and even more preferably 10 ppb or less. Is desirable.

以下、実施例に基づき本発明をさらに詳細に説明する。
「試料1の作成」
先ず、口径200mmφ、表面が(100)配向のシリコンウェーハ(Si半導体基板)を用意し、以下の手順でシリコンウェーハ(半導体基板)表面の洗浄を行った。

即ち、オゾン(O3)水を用いてシリコンウェーハ表面を10分間洗浄し、希HF(0.5wt%)を用いて1分間洗浄し、最後に、超純水リンスを3分間行った。
このように表面を洗浄処理された半導体基板(1)を利用して、公知のMOSデバイス作成プロセスで、シャロートレンチ分離(STI)を行い、Pウェル、Nウェルをイオン注入で作成し、ゲート絶縁膜を850℃のウェット熱酸化により形成し、その後、ゲート電極形成、ソース領域・ドレイン領域の形成、層間絶縁膜の形成、コンタクトホールの形成、メタルコンタクトの形成等を行い、NMOSTr(ゲート長:0.4μm)を、半導体基板(1)に131072個、作成した。
上記のようにしてNMOSTrを作り込まれた半導体基板は、ラジカル酸化(Kr/O2プラズマによるラジカル酸化)でゲート酸化膜を形成する直前に、希フッ酸(0.5%)処理を1分間施して自然酸化膜を除去した。
次いで、純水リンスを10分間した直後にアニール処理装置の所定位置にセットしてアニール処理(本発明における平坦化処理)を施した。この際のアニール条件は図7に示す温度シーケンスのアニール条件(i)(試料1−1)。
ゲート長Lが、0.28μm(試料1−2)、0.25μm(試料1−3)、0.22μm(試料1−4)とした以外は、試料1−1と同様な手順と条件で、半導体基板にNMOSTrを131072個、それぞれに作り込んだ。
Hereinafter, the present invention will be described in more detail based on examples.
“Preparation of sample 1”
First, a silicon wafer (Si semiconductor substrate) having a diameter of 200 mmφ and a surface of (100) orientation was prepared, and the surface of the silicon wafer (semiconductor substrate) was cleaned by the following procedure.

That is, the surface of the silicon wafer was washed with ozone (O 3) water for 10 minutes, washed with diluted HF (0.5 wt%) for 1 minute, and finally rinsed with ultrapure water for 3 minutes.
Using the semiconductor substrate (1) whose surface has been cleaned in this manner, shallow trench isolation (STI) is performed by a well-known MOS device fabrication process, and P and N wells are formed by ion implantation, and gate insulation is performed. A film is formed by wet thermal oxidation at 850 ° C., and then gate electrode formation, source / drain region formation, interlayer insulation film formation, contact hole formation, metal contact formation, etc. are performed, and NMOSTr (gate length: 0.410 μm) was formed in 131072 pieces on the semiconductor substrate (1).
The semiconductor substrate in which the NMOS Tr is formed as described above is subjected to dilute hydrofluoric acid (0.5%) treatment for 1 minute immediately before forming the gate oxide film by radical oxidation (radical oxidation by Kr / O2 plasma). The natural oxide film was removed.
Next, immediately after rinsing with pure water for 10 minutes, it was set at a predetermined position of the annealing treatment apparatus and subjected to annealing treatment (planarization treatment in the present invention). The annealing conditions at this time are the annealing conditions (i) of the temperature sequence shown in FIG. 7 (Sample 1-1).
The procedure and conditions were the same as those of Sample 1-1, except that the gate length L was 0.28 μm (Sample 1-2), 0.25 μm (Sample 1-3), and 0.22 μm (Sample 1-4). In this case, 131072 NMOS transistors were formed on each semiconductor substrate.

「試料A(比較例A)の作成」
先ず、口径200mmφ、表面が(100)配向のシリコンウェーハ(「半導体基板(2)」)を用意し、半導体基板(2)表面の洗浄とリンスを試料1と同様に行った。

この半導体基板(2)を用いて、試料1と同様に、公知のCMOSデバイス作成プロセスで、シャロートレンチ分離(STI)を行い、Pウェル、Nウェルをイオン注入で作成し、ゲート絶縁膜を850℃のウェット熱酸化により形成し、その後、ゲート電極形成、ソース・ドレイン形成、層間絶縁膜形成、コンタクトホール形成、メタルコンタクト形成等を行い、NMOSTr(ゲート長L 0.40μm)を作成した(試料A)。
半導体基板(2)に作り込まれたNMOSTrは、131072個である。
“Preparation of Sample A (Comparative Example A)”
First, a silicon wafer (“semiconductor substrate (2)”) having a diameter of 200 mmφ and a surface of (100) orientation was prepared, and cleaning and rinsing of the surface of the semiconductor substrate (2) were performed in the same manner as the sample 1.

Using this semiconductor substrate (2), in the same manner as Sample 1, shallow trench isolation (STI) is performed by a known CMOS device manufacturing process, P well and N well are formed by ion implantation, and a gate insulating film is formed by 850. Formed by wet thermal oxidation at 0 ° C., followed by gate electrode formation, source / drain formation, interlayer insulating film formation, contact hole formation, metal contact formation, etc., to produce NMOSTr (gate length L 0.40 μm) (sample) A).
The number of NMOS Trs built in the semiconductor substrate (2) is 131,072.

「試料Bの作成(比較例B)」
後で詳述するように、口径200mmφ、表面が(100)配向のシリコンウェーハ(「半導体基板(3)」))を用意し、半導体基板(3)表面の洗浄とリンスを行い、次いで、このように洗浄処理した半導体基板(3)を、図7に示す温度シーケンスに従って、850度で300分(「工程(5)」)アニール処理して平坦化を図った。加熱中のアルゴン(Ar)流量は、28L/分であった。
先ず、口径200mmφ、表面が(100)配向の半導体基板(3)を用意し、

オゾン(O3)水を用いて半導体基板(3)表面を10分間洗浄し、その後、希HF(0.5wt%)を用いて1分間洗浄し、最後に、超純水リンスを3分間行った。
その後、上記のように洗浄・リンス処理を施した半導体基板(3)を熱処理装置内に載置した。次いで、該熱処理装置内の熱処理空間に、水分が0.2ppb以下、酸素(O2)が0.1ppb以下のアルゴン(Ar)ガスを20L/min流しながら、熱処理温度850℃、熱処理時間300分の条件下で前記半導体基板(3)に対し熱処理を行った。
この際の熱処理の温度シーケンスが、図7に示される。
即ち、先ず、シリコンウェーハの温度が30℃の状態を60分間維持した(「工程(1)」)。その後、5℃/分の昇温スピードでシリコンウェーハの温度が200℃になるまで昇温し、200℃で120分保持した(「工程(2)」)。
次いで、4℃/分の昇温スピードでシリコンウェーハの温度が600℃になるまで昇温し、600℃で20分保持した(「工程(3)」)。
引き続き、3℃/分の昇温スピードでシリコンウェーハの温度が800℃になるまで昇温し、800℃で20分保持した(「工程(4)」)。
次いで、1.5℃/分の昇温スピードでシリコンウェーハの温度が850℃になるまで昇温し、850℃で300分保持した(「工程(5)」)。
その後、図7に示す温度シーケンスでシリコンウェーハの温度が30℃になるまで降温した。

即ち、工程(5)の後、1℃/分の降温スピードでシリコンウェーハの温度が800℃になるまで降温し、800℃で20分保持した(「工程(6)」)。
その後、1.5℃/分の降温スピードで、シリコンウェーハの温度が30度になるまで降温させた。その後、熱処理装置のヒータをOFFにした。
このようにして準備した半導体基板(3)に、以下のようにして、131072個のNMOSトランジスタ(Tr)を作り込んだ。
先ず、上記のようにして準備した半導体基板(3)の表面を、T. Ohmi, "Total room temperature wet cleaning Si substrate
surface,” J. Electrochem. Soc., Vol. 143, No. 9,
pp.2957-2964, Sep. 1996.に記載された、アルカリ溶液を用いない洗浄法によって洗浄した。
“Preparation of Sample B (Comparative Example B)”
As will be described later in detail, a silicon wafer having a diameter of 200 mmφ and a surface of (100) orientation (“semiconductor substrate (3)”)) is prepared, and the surface of the semiconductor substrate (3) is cleaned and rinsed. The semiconductor substrate (3) thus cleaned was annealed at 850 ° C. for 300 minutes (“step (5)”) in accordance with the temperature sequence shown in FIG. The argon (Ar) flow rate during heating was 28 L / min.
First, a semiconductor substrate (3) having a diameter of 200 mmφ and a (100) -oriented surface is prepared.

The surface of the semiconductor substrate (3) was washed with ozone (O3) water for 10 minutes, then washed with dilute HF (0.5 wt%) for 1 minute, and finally ultrapure water rinse was performed for 3 minutes. .
Thereafter, the semiconductor substrate (3) subjected to the cleaning and rinsing treatment as described above was placed in a heat treatment apparatus. Next, an argon (Ar) gas having a moisture content of 0.2 ppb or less and oxygen (O 2) of 0.1 ppb or less flows in the heat treatment space in the heat treatment apparatus at a heat treatment temperature of 850 ° C. and a heat treatment time of 300 minutes. Under the conditions, the semiconductor substrate (3) was heat-treated.
The temperature sequence of the heat treatment at this time is shown in FIG.
That is, first, the temperature of the silicon wafer was maintained at 30 ° C. for 60 minutes (“Step (1)”). Thereafter, the temperature of the silicon wafer was increased to 200 ° C. at a temperature increase rate of 5 ° C./min, and held at 200 ° C. for 120 minutes (“step (2)”).
Next, the temperature of the silicon wafer was increased to 600 ° C. at a rate of temperature increase of 4 ° C./min, and held at 600 ° C. for 20 minutes (“Step (3)”).
Subsequently, the temperature of the silicon wafer was increased at a temperature increase rate of 3 ° C./min until the temperature of the silicon wafer reached 800 ° C., and held at 800 ° C. for 20 minutes (“Step (4)”).
Next, the temperature of the silicon wafer was increased to 850 ° C. at a temperature increase rate of 1.5 ° C./min, and held at 850 ° C. for 300 minutes (“Step (5)”).
Thereafter, the temperature was lowered until the temperature of the silicon wafer reached 30 ° C. in the temperature sequence shown in FIG.

That is, after the step (5), the temperature of the silicon wafer was lowered at a temperature drop rate of 1 ° C./min until the temperature of the silicon wafer reached 800 ° C. and held at 800 ° C. for 20 minutes (“step (6)”).
Thereafter, the temperature of the silicon wafer was lowered to 30 ° C. at a temperature lowering speed of 1.5 ° C./min. Thereafter, the heater of the heat treatment apparatus was turned off.
131072 NMOS transistors (Tr) were formed in the semiconductor substrate (3) thus prepared as follows.
First, T. Ohmi, “Total room temperature wet cleaning Si substrate
surface, ”J. Electrochem. Soc., Vol. 143, No. 9,
pp.2957-2964, Sep. 1996. Washing was performed by a washing method not using an alkaline solution.

次に、図2,3で説明した手順で、上記の処理を施した半導体基板(3)に、STIによる素子分離法を適用して、フィールド酸化膜902を形成した。
次いで、図2,3で説明した手順と条件に従って、また、図2,3の説明にはないことは、当業者が容易に実施できる他の公知の方法を用いて、図2に示すような構造のNMOSTrを131072個、半導体基板(3)に形成した。
尚、試料1−1〜1−4、試料A,B共に、ゲート酸化膜は、原子オーダー平坦面を荒らさない、Kr/O2プラズマによるラジカル酸化により形成した。
Next, the field oxide film 902 was formed on the semiconductor substrate (3) subjected to the above-described processing by applying the element isolation method by STI according to the procedure described in FIGS.
Then, according to the procedures and conditions described in FIGS. 2 and 3, and not shown in FIGS. 2 and 3, as shown in FIG. 2, using other known methods that can be easily implemented by those skilled in the art. 131072 NMOS transistors having a structure were formed on the semiconductor substrate (3).
In each of Samples 1-1 to 1-4 and Samples A and B, the gate oxide film was formed by radical oxidation using Kr / O2 plasma without roughening the atomic order flat surface.

「各試料の評価」
試料1−1、試料A,Bにおいて、131072個のNMOSTrの、ドレイン電流5μAの時のノイズ電圧(ゲート-ソース間電圧の揺らぎ)を評価し、累積頻度確率が99%のNMOSTrのノイズ電圧を評価したところ、図5に示される結果が得られた。
この結果から、試料1−1、試料B共に、試料Aよりノイズ低減が実現されたことが判る。
しかし、試料Bの場合は、平坦化アニールの後、原子オーダー平坦面を維持するのに、アルカリ洗浄を用いることが出来ない(アルカリ洗浄すると平坦面が荒れる傾向がある)ために、水素水超音波洗浄等でパーティクルを除去する必要があった。そのために、除去効率が悪く、長時間の洗浄が必要で、生産効率が著しく下がった。又、形成した平坦面を荒らさないために、ウェット洗浄時に完全遮光しなくてはならず、プロセス工程が煩雑となった。
以上のことから、試料1−1に実施した本発明に関わる半導体素子の形成方法が格段に優れていることが示された。
"Evaluation of each sample"
In Sample 1-1, Sample A, and B, the noise voltage (fluctuation of gate-source voltage) of 131072 NMOSTr at the drain current of 5 μA was evaluated, and the noise voltage of the NMOSTr having a cumulative frequency probability of 99% was evaluated. As a result of the evaluation, the result shown in FIG. 5 was obtained.
From this result, it can be seen that both Sample 1-1 and Sample B achieve noise reduction compared to Sample A.
However, in the case of Sample B, after the planarization annealing, alkali cleaning cannot be used to maintain the atomic order flat surface (the flat surface tends to be roughened by alkali cleaning). It was necessary to remove particles by sonic cleaning or the like. For this reason, the removal efficiency is poor, long time washing is required, and the production efficiency is remarkably lowered. Further, in order not to roughen the formed flat surface, it is necessary to completely shield the light during wet cleaning, and the process steps become complicated.
From the above, it was shown that the method for forming a semiconductor element according to the present invention performed on Sample 1-1 is remarkably excellent.

実施例2
「試料2−1〜2−3の作成」
アニール条件を、図7に示す温度シーケンスのアニール条件(i)にした以外は、試料1−2〜1−4と同様の手順と条件で、試料2−1〜2−3を作成した。

・試料2−1:ゲート長L・・・0.28μm
・試料2−2:ゲート長L・・・0.25μm
・試料2−3:ゲート長L・・・0.22μm

図8に示す温度シーケンスは、工程(c)が加わった以外は、図7に示す温度シーケンスの場合と本質的に同じである。
本実施例において、この工程(c)を導入した理由は、図7に示す温度シーケンスで平坦化アニール処理を施した場合に、Ar排ガス中の水分濃度を、350℃に昇温した直後に計測すると、サンプルによっては、1ppm程度観測されたので、この水分の影響を極力避けるためである。
その理由は、観測された水分は、純水リンス時にSi半導体基板上の素子分離用のSiO2膜に付着した水と考えられ、この状態で更に昇温すると、水とSi表面が反応して平坦化を阻害する恐れがあると推察されたことによる。
図8に示すように、350℃で300分加熱維持する工程(c)を設けた場合は、工程(c)以降の工程での、Ar排ガス中の水分濃度は、10ppb以下まで下げることが出来た。
これにより、その後850℃まで昇温しても、水分を殆ど放出することなく、平坦化処理を完了することが出来た。
試料1−1と同様の評価を、試料1−2〜1−4、試料2−1〜2−3にも適用した。
すると、トランジスタのゲート長Lを短くしていくと、図6のグラフCに示すように、試料1の素子作成方法だと、微細化が進むに連れ、ノイズ電圧の低減効果が低減する様子が見られる様になった。
これに対して、試料2−1〜2−3の場合は、図6のグラフEに示されるように、微細化が進むに連れても、ノイズ電圧の低減効果が低減する様子は見られなかった。
原因を調べてみると、試料1−2〜1−4の場合は、素子分離パターンのエッジに問題があり、素子の微細化が進むとその影響が効いてくるのではないかと推測された。
Example 2
“Preparation of Samples 2-1 to 2-3”
Samples 2-1 to 2-3 were created in the same procedure and conditions as Samples 1-2 to 1-4 except that the annealing conditions were the annealing conditions (i) of the temperature sequence shown in FIG.

Sample 2-1: Gate length L: 0.28 μm
Sample 2-2: Gate length L: 0.25 μm
Sample 2-3: Gate length L: 0.22 μm

The temperature sequence shown in FIG. 8 is essentially the same as the temperature sequence shown in FIG. 7 except that step (c) is added.
In this embodiment, the reason for introducing this step (c) is that the moisture concentration in the Ar exhaust gas is measured immediately after the temperature is raised to 350 ° C. when the planarization annealing process is performed in the temperature sequence shown in FIG. Then, since about 1 ppm was observed depending on the sample, this is to avoid the influence of moisture as much as possible.
The reason is that the observed moisture is considered to be water adhering to the SiO2 film for element isolation on the Si semiconductor substrate during rinsing with pure water, and when the temperature is further raised in this state, the water and the Si surface react to become flat. This is because it is assumed that there is a possibility of inhibiting the transformation.
As shown in FIG. 8, when the step (c) for heating and maintaining at 350 ° C. for 300 minutes is provided, the moisture concentration in the Ar exhaust gas in the steps after the step (c) can be lowered to 10 ppb or less. It was.
Thereby, even if it raised to 850 degreeC after that, the planarization process was able to be completed, releasing almost no water | moisture content.
The same evaluation as that of Sample 1-1 was applied to Samples 1-2 to 1-4 and Samples 2-1 to 2-3.
Then, as the gate length L of the transistor is shortened, as shown in the graph C of FIG. 6, according to the element manufacturing method of the sample 1, the noise voltage reduction effect decreases as the miniaturization progresses. It came to be seen.
On the other hand, in the case of Samples 2-1 to 2-3, as shown in the graph E of FIG. 6, the noise voltage reduction effect is not reduced as the miniaturization progresses. It was.
Examining the cause, it was presumed that in Samples 1-2 to 1-4, there was a problem with the edge of the element isolation pattern, and that the effect would become effective as the miniaturization of the element progressed.

実施例3
「試料3−1〜3−3の作成」
平坦化アニール処理の前に、2.45GHzのマイクロ波励起のプラズマ(Kr/O2プラズマ)により、ラジカル酸化する処理工程を加えた以外は、試料1−2〜1−4と同様の手順と条件で、試料3−1〜3−3を作成した。
この際のラジカル酸化の条件は、以下の通りであった。

・半導体基板:200mmウェーハ
・ガス流量:クリプトン(Kr)・・・1000sccm
酸素(O2)ガス・・・10sccm
・マイクロ波パワー:3500W
・マイクロ波パワー投入時間:4分

・試料3−1:ゲート長L・・・0.28μm
・試料3−2:ゲート長L・・・0.25μm
・試料3−3:ゲート長L・・・0.22μm
Example 3
“Preparation of Samples 3-1 to 3-3”
The procedure and conditions are the same as those of Samples 1-2 to 1-4 except that a treatment step for radical oxidation is performed by plasma excited by microwaves (Kr / O2 plasma) at 2.45 GHz before the planarization annealing treatment. Samples 3-1 to 3-3 were prepared.
The conditions for radical oxidation at this time were as follows.

・ Semiconductor substrate: 200 mm wafer ・ Gas flow rate: Krypton (Kr): 1000 sccm
Oxygen (O2) gas ... 10 sccm
・ Microwave power: 3500W
・ Microwave power input time: 4 minutes

Sample 3-1: Gate length L: 0.28 μm
Sample 3-2: Gate length L: 0.25 μm
Sample 3-3: Gate length L: 0.22 μm

試料1−1と同様の評価を、試料3−2〜3−3にも適用した。その結果が、図6のグラフDに示される。
図6の結果から明らかなように、試料3−1〜3−3の場合は、微細化が進むに連れて、ノイズ電圧の低減効果の向上が継続される様子が見られる。
これは、平坦化アニール処理の前にラジカル酸化処理を行うことにより、Si領域部分の表面には、4nm程度の酸化膜が形成され、また、SiO2膜の部分は、弱い結合がラジカルにより酸化されて脱ガスの少ない膜となったものと推察される。
Evaluation similar to that of Sample 1-1 was applied to Samples 3-2 to 3-3. The result is shown in graph D of FIG.
As is clear from the results of FIG. 6, in the case of Samples 3-1 to 3-3, it can be seen that the noise voltage reduction effect continues to improve as miniaturization progresses.
This is because a radical oxidation process is performed before the planarization annealing process, so that an oxide film of about 4 nm is formed on the surface of the Si region part, and weak bonds are oxidized by radicals in the SiO 2 film part. It is presumed that the film was less degassed.

実施例4
「試料4−1〜3−4の作成」
実施例1において、平坦化処理のアニール条件を、工程(4)の経過後の1.5℃/分のスピードでの昇温の時間を、実施例1の場合より延ばして900℃まで昇温し、この温度で工程(5)を実施した以外は、実施例の場合と同様の手順と条件で、4つの試料、試料4−1〜4−4を作成した。
試料1−1〜1−4と同様の評価をしたら、試料1−1〜1−4よりやや効果は下がるものの、比較例A,Bと比べると遥かに優れた結果を示した。

・試料4−1:ゲート長L・・・0.40μm
・試料4−2:ゲート長L・・・0.28μm
・試料4−3:ゲート長L・・・0.25μm
・試料4−4:ゲート長L・・・0.22μm
Example 4
“Preparation of Samples 4-1 to 3-4”
In Example 1, the annealing conditions for the planarization treatment were increased to 900 ° C. by extending the temperature raising time at a speed of 1.5 ° C./min after the elapse of step (4) from that in Example 1. Then, four samples, samples 4-1 to 4-4, were prepared under the same procedure and conditions as in the example except that step (5) was performed at this temperature.
When the same evaluations as Samples 1-1 to 1-4 were made, the results were far superior to Comparative Examples A and B, although the effect was slightly lower than Samples 1-1 to 1-4.

Sample 4-1: gate length L: 0.40 μm
Sample 4-2: gate length L: 0.28 μm
Sample 4-3: Gate length L: 0.25 μm
Sample 4-4: Gate length L: 0.22 μm

本発明は、MOSFETに用いた場合についてのみ説明したが、本発明は何らこれに限定されることなく、他のFETにも幅広く応用できるもので、FET搭載のあらゆる集積半導体装置に適用される。
また、これまでの本発明の説明においては、ゲート絶縁膜の形成は、典型的ということで、ラジカル酸化、ラジカル窒化、ラジカル酸・窒化の場合について記したが、本発明はこれに限定される訳ではない。この他、CVD、スパッター、蒸着等の方法で、堆積による膜形成を行う場合も本発明の範疇であることは、当分野の当業者なら容易想到のことであることは断わるまでもないことが理解される。
例えば、FIN−FET等で採用されている、ALD(Atomic Layer Deposition:,原子層堆積法)等で酸化ハフニウム等を形成している場合にも、有効に本発明は適用され得る。
以上の説明から容易に推察されるように、本発明は、半導体に関わる多くの分野に大いに貢献し得るものである。
Although the present invention has been described only with respect to the case where it is used for a MOSFET, the present invention is not limited to this, but can be widely applied to other FETs, and can be applied to all integrated semiconductor devices equipped with FETs.
Further, in the description of the present invention so far, the formation of the gate insulating film is typical, and thus the case of radical oxidation, radical nitridation, radical acid / nitridation has been described, but the present invention is limited to this. Not a translation. In addition, it goes without saying that a person skilled in the art can easily arrive at the scope of the present invention when forming a film by deposition by a method such as CVD, sputtering, or vapor deposition. Understood.
For example, the present invention can also be effectively applied to the case where hafnium oxide or the like is formed by ALD (Atomic Layer Deposition), which is employed in FIN-FETs or the like.
As can be easily inferred from the above description, the present invention can greatly contribute to many fields related to semiconductors.

100・・・MOSFET
102・・・ソ−ス領域
103・・・ドレイン領域
104・・・半導体領域
105・・・ゲート酸化膜
106・・・ゲート電極
301・・・SiO2膜
302・・・Si3N4膜
303・・・浅溝
304・・・トレンチ酸化膜
305・・・酸化膜
900・・・MOSFET
901・・・半導体基板
902・・・フィールド絶縁膜
903・・・シリサイド膜
904・・・ゲート絶縁膜
905・・・ゲート電極
906・・・ソ−ス領域
907・・・ドレイン領域
908・・・層間絶縁膜
909・・・ゲート取り出し電極
910・・・ソース取り出し電極
911・・・ドレイン取り出し電極
912・・・サイドウォール
100 ... MOSFET
102 ... Source region 103 ... Drain region 104 ... Semiconductor region 105 ... Gate oxide film 106 ... Gate electrode 301 ... SiO2 film 302 ... Si3N4 film 303 ... Shallow Trench 304 ... trench oxide film 305 ... oxide film 900 ... MOSFET
901 ... Semiconductor substrate 902 ... Field insulating film 903 ... Silicide film 904 ... Gate insulating film 905 ... Gate electrode 906 ... Source region 907 ... Drain region 908 ... Interlayer insulating film 909... Gate extraction electrode 910... Source extraction electrode 911... Drain extraction electrode 912.

Claims (4)

FETの形成過程において、表面に素子分離パターンが形成されているSi半導体基板を不活性ガス雰囲気中に配し、900℃以下で所定時間アニール処理する工程を含む半導体素子の形成方法。   A method for forming a semiconductor element, comprising: a step of forming a FET in a process in which an Si semiconductor substrate having an element isolation pattern formed thereon is placed in an inert gas atmosphere and annealed at 900 ° C. or lower for a predetermined time. 前記アニール処理前に、該アニール処理のアニール温度より低い温度での加熱処理を施す工程を含む、請求項1に記載の半導体素子の形成方法。   The method for forming a semiconductor element according to claim 1, further comprising a step of performing a heat treatment at a temperature lower than an annealing temperature of the annealing treatment before the annealing treatment. 前記アニール処理前に、プラズマ励起によるラジカル酸化処理を施す工程を含む、請求項1に記載の半導体素子の形成方法。 The method for forming a semiconductor device according to claim 1, comprising a step of performing radical oxidation treatment by plasma excitation before the annealing treatment. 前記不活性ガスが、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)の少なくともいずれか1つである、請求項1に記載の半導体素子の形成方法。

The method for forming a semiconductor device according to claim 1, wherein the inert gas is at least one of argon (Ar), krypton (Kr), and xenon (Xe).

JP2014182774A 2014-09-08 2014-09-08 Method for forming semiconductor element Active JP6440246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182774A JP6440246B2 (en) 2014-09-08 2014-09-08 Method for forming semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182774A JP6440246B2 (en) 2014-09-08 2014-09-08 Method for forming semiconductor element

Publications (2)

Publication Number Publication Date
JP2016058500A true JP2016058500A (en) 2016-04-21
JP6440246B2 JP6440246B2 (en) 2018-12-19

Family

ID=55758815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182774A Active JP6440246B2 (en) 2014-09-08 2014-09-08 Method for forming semiconductor element

Country Status (1)

Country Link
JP (1) JP6440246B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240746A (en) * 1985-08-16 1987-02-21 Nec Corp Semiconductor device
JPH0350823A (en) * 1989-07-19 1991-03-05 Nec Corp Manufacture of semiconductor device
JPH04373177A (en) * 1991-06-24 1992-12-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPH09148455A (en) * 1995-11-13 1997-06-06 At & T Corp Manufacture of device
JPH09326487A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Semiconductor device and its manufacturing method
JPH118206A (en) * 1997-06-13 1999-01-12 Nec Corp Fabrication of semiconductor device
JP2001217306A (en) * 1999-11-25 2001-08-10 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2003133309A (en) * 2001-10-26 2003-05-09 Matsushita Electric Works Ltd Method and device for forming thin insulating film, field emission electron source, and mosfet
WO2006129643A1 (en) * 2005-05-31 2006-12-07 Tokyo Electron Limited Plasma treatment apparatus and plasma treatment method
JP2007221058A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method for manufacturing semiconductor device
WO2013073671A1 (en) * 2011-11-17 2013-05-23 国立大学法人東北大学 Semiconductor device and method for manufacturing same
JP2013157425A (en) * 2012-01-30 2013-08-15 Fujitsu Semiconductor Ltd Semiconductor device manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240746A (en) * 1985-08-16 1987-02-21 Nec Corp Semiconductor device
JPH0350823A (en) * 1989-07-19 1991-03-05 Nec Corp Manufacture of semiconductor device
JPH04373177A (en) * 1991-06-24 1992-12-25 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
JPH09148455A (en) * 1995-11-13 1997-06-06 At & T Corp Manufacture of device
JPH09326487A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Semiconductor device and its manufacturing method
JPH118206A (en) * 1997-06-13 1999-01-12 Nec Corp Fabrication of semiconductor device
JP2001217306A (en) * 1999-11-25 2001-08-10 Mitsubishi Electric Corp Semiconductor device and method of manufacturing the same
JP2003133309A (en) * 2001-10-26 2003-05-09 Matsushita Electric Works Ltd Method and device for forming thin insulating film, field emission electron source, and mosfet
WO2006129643A1 (en) * 2005-05-31 2006-12-07 Tokyo Electron Limited Plasma treatment apparatus and plasma treatment method
JP2007221058A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method for manufacturing semiconductor device
WO2013073671A1 (en) * 2011-11-17 2013-05-23 国立大学法人東北大学 Semiconductor device and method for manufacturing same
JP2013157425A (en) * 2012-01-30 2013-08-15 Fujitsu Semiconductor Ltd Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP6440246B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US7078282B2 (en) Replacement gate flow facilitating high yield and incorporation of etch stop layers and/or stressed films
KR100741442B1 (en) Semiconductor device and manufacturing method for the same
JP4598639B2 (en) Manufacturing method of semiconductor device
JP4669679B2 (en) Method for manufacturing silicon nitride film and method for manufacturing semiconductor device
JP4485754B2 (en) Manufacturing method of semiconductor device
TWI604562B (en) Method of selective nitridation
CN104810368B (en) Cmos transistor and forming method thereof
TW200409238A (en) Method for fabricating a nitrided silicon-oxide gate dielectric
KR101157747B1 (en) Methods and apparatus of fluorine passivation
US20040132253A1 (en) Manufacture method of semiconductor device with gate insulating films of different thickness
TW201705232A (en) Semiconductor component and method for fabricating the same
US7514376B2 (en) Manufacture of semiconductor device having nitridized insulating film
WO2011079604A1 (en) Semiconductor device and manufacturing method thereof
US9831084B2 (en) Hydroxyl group termination for nucleation of a dielectric metallic oxide
JP3593340B2 (en) Manufacturing method of integrated circuit device
TWI818928B (en) Method for fabricating semiconductor device
JP2010177265A (en) Manufacturing method for semiconductor device
CN103545185B (en) A kind of method that use dummy grid manufactures semiconductor devices
US11289330B2 (en) Semiconductor-on-insulator (SOI) substrate and method for forming
CN104253047B (en) The forming method of transistor
CN105097534B (en) A method of making semiconductor devices
JP4694782B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor surface processing method
JP6440246B2 (en) Method for forming semiconductor element
CN107591363B (en) Method for forming semiconductor device
JP2008072001A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R150 Certificate of patent or registration of utility model

Ref document number: 6440246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250