本発明の実施の形態(以下、本実施の形態という)について、以下、具体的に説明する。本実施の形態に係る熱反応型レジスト材料は、酸化銅(I)の酸素の一部あるいは全部が元素Aに置換された式(1)の組成物を含むことを特徴とする。
CuOxAy (1)
ただし、Aは、N、S及びSeから選択される1種以上であり、0.35≦x+y≦0.65、0≦x、0<yである。
またx、yは、原子比率を示す。式(1)では、Cu:O:Aの原子比率が1:x:yとされている。
銅の酸化物には、化学両論組成の酸化物として酸化銅(I)と酸化銅(II)があり、その他に銅の不完全酸化物として化学両論組成以外の酸化数をとるものがある。
中でも化学両論組成の酸化物は、その材料自身が安定に存在することができる状態のため、経時変化が生じ難く製造安定性に優れる。その製造安定性に優れる化学両論組成の酸化銅(I)は、酸素の一部あるいは全部をN、S及びSeから選択される1種以上の元素Aに置き換えることができる。置き換えられた酸化銅(I)は、化学両論組成近傍においても経時変化が生じ難い状態になり、製造安定性に優れることを見出した。即ち、上記した式(1)の範囲とすることで、非常に優れた製造安定性を得ることができる。
ここで、元素Aとして、N、S、及びSeから選択される1種以上を選択することで、微細パターンの形成時に、酸化銅(I)の熱の吸収量を制御することができるため効率よく熱によるレジストの変質が可能になる。
さらに、上記した組成の範囲内にて調整することで、ピッチが100nm以下の微細パターンにおいても良好なパターンラフネスを発現することができることを見出した。「パターンラフネス」とは、パターン側壁に引いた基準線(ラインアンドスペースの場合は、基準線が直線になる)からのずれの程度を指し、パターン側壁が基準線に近いほど凹凸が小さく、表面が滑らかであることを意味する。
ところで本発明者は特許文献3において、酸化銅(I)に添加剤を加えることで酸化銅の再酸化が抑制できることを公開している。酸化銅(I)に添加剤を混合することで酸化防止の効果が非常に高くなる。
これに対して本実施の形態は、酸化銅(I)の酸素の一部あるいは全部をN、S及びSeから選択される1種以上の元素Aに置換することを特徴的な構成要件としている。これにより従来に比べて、良好なパターンラフネスを維持したまま微細パターンを高精度に形成できる。加えて、酸化銅(I)は、フロン系ガスを用いたドライエッチング耐性の高い材料に該当し、本実施の形態の熱反応型レジスト材料は、フロン系ガスを用いたドライエッチング耐性が高い。
以上により、酸化銅(I)の酸素の一部あるいは全部が元素Aに置換された、CuOxAy(ただし、Aは、N、S、及びSeから選択される1種以上であり、0.35≦x+y≦0.65、0≦x、0<yである。)からなる組成物を含む熱反応型レジスト材料は微細パターン用のマスクとして非常に利用価値が高い材料である。
ここで、x+yが0.35よりも小さく、x+yが0.65より大きいと、酸化銅(I)の結合構造をとり難くなるためレジスト特性が低下する。具体的には、x+yが0.35より小さいと、銅比率が多くなることで金属銅の結合構造の占める割合が多くなる。一方、x+yが0.65より大きいと、酸素及び又は元素Aの比率が多くなることで酸化銅(II)の結合構造の占める割合が多くなる。結合構造が変わることで、原子レベルでの結合状態が変わり、レジスト特性に大きく影響を与える。
本実施の形態では、良好なパターンラフネスを維持したままさらに微細パターンを形成するために、組成物は、CuOxAy(Aは、N、S及びSeから選択される1種以上であり、0.35≦x+y≦0.65、0≦x、0<y)であることがより好ましく、組成物は、CuOxAy(AはNであり、0.35≦x+y≦0.65、0≦x、0<y)であることがさらに好ましく、組成物は、CuOxAy(AはNであり、0.45≦x+y≦0.55、0≦x、0<y)であることが最も好ましい。
酸化銅(I)の酸素の一部あるいは全部を元素Aに置換する方法は特に限定されるものでないが、例えば、スパッタリング法を用いて熱反応型レジスト材料を作製する場合、元素Aを添加又は元素Aの雰囲気で焼成した材料をターゲットに用いる方法又は、元素Aに置換されていない酸化銅(I)をターゲットに用いて、スパッタ中のプロセスガスに元素Aを含むガスを用いる方法等を使用することができる。また、塗布法を用いて熱反応型レジスト材料を作製する場合、元素Aを含有する塗布溶液を用いる方法又は、元素Aを含有しない塗布溶液を用いて、その後の薄膜焼成時に元素Aを含む雰囲気で焼成する方法等を使用することができる。
上記のように、CuOxAy(AはNであり、0.45≦x+y≦0.55、0≦x、0<y)の組成物を含む熱反応型レジスト材料とすることで、光の吸収量を最適にでき、熱反応型レジスト材料の露光特性を効果的に向上させることができる。なお、本実施の形態における組成物の構成元素や組成比は、目的の条件に応じて選択することができる。
また、CuOxAyからなる組成物の状態は、上記した式(1)を満たしていれば、特に指定はなく、例えば組成物の薄膜を例にとって示すと、膜厚方向に均一な組成であってもよく、膜厚方向に向けて徐々に元素Aの量が増減している状態でもよく、元素Aを含まない酸化銅(I)の層と、CuOxAyからなる組成物層とが交互に積層されていてもよい。かかる積層構造では、各層を総合した平均組成物が、上記の式(1)を示す組成物を構成していればよい。
なお、CuOxAyの組成であるか否かは、XRD(X-Ray Diffraction)分析やXPS(X−ray Photoelectron Spectroscopy)分析などで確認することができる。
本実施の形態に係る熱反応型レジスト材料は、密度が4.00g/cm3より大きく、6.07g/cm3より小さい酸化銅(I)の酸素の一部あるいは全部が元素Aに置換された式(1)を満たすCuOxAyの組成物を含有することを特徴とする。
一般的な酸化銅(I)のバルクの物性は、融点が1232〜1235℃、沸点(分解)が1800℃、密度が6.04g/cm3である。一方、熱反応型レジスト材料として酸化銅(I)を用いる場合、バルクでは用いることが困難なため、例えば、薄膜として用いることができる。薄膜は、塗布や物理蒸着等の方法を用いて作製されるが、これらの方法を用いると、密度が変化する。酸化銅(I)の場合においても、化学両論組成から銅や酸素が抜けことにより密度が低下し、逆に過剰に入ることで密度が増加し、条件によってはバルク密度を超える。また、蒸着時に用いるキャリアガスが薄膜中に取り込まれることでも密度が変化する。加えて、薄膜に単純に疎な空隙があり、薄膜の密度が低下する。本発明者は、この薄膜の密度が、熱反応型レジスト材料を用いて超微細パーンを形成する際に大きな影響を与えることを見出し、本発明に至った。
ここで、熱反応型レジスト材料を用いた微細パターンの形成は、熱により熱反応型レジスト材料が変質した箇所と変質していない箇所との差に現像液を作用させ微細パターンを顕在化させることで達成する。この際、熱は、隣接する変質させたくない箇所にも伝熱するため、微細パターンの解像度、即ちラフネス等を低下させる。特に、超微細パターン形成時には熱で変質させたい箇所と変質させたくない箇所が近接してくることで、伝熱の影響が顕著になり、微細パターンの解像度に大きく影響を与えることが判明した。
本発明者は、かかる課題を解決すべく鋭意検討し実験を重ねた結果、上記した式(1)を満たすCuOxAyの組成物を含む熱反応型レジスト材料において、CuOxAyの密度を4.00g/cm3より大きく、6.07g/cm3より小さくすることで、ピッチ100nm以下の超微細パターンの形成が可能であることを見出した。本実施の形態に係るCuOxAyの密度は、4.20g/cm3以上、5.95g/cm3以下がより好ましく、4.40g/cm3以上、5.95g/cm3以下がさらに好ましく、4.60g/cm3以上、5.95g/cm3以下がよりさらに好ましく、4.85g/cm3以上、5.95g/cm3以下がいっそう好ましく、5.05g/cm3以上、5.95g/cm3以下がよりいっそう好ましく、5.20g/cm3以上、5.90g/cm3以下がさらにいっそう好ましく、5.20g/cm3以上、5.75g/cm3以下が最も好ましい。なお、添加剤を添加した熱反応型レジスト材料を使用する場合は、添加剤を含めたCuOxAyの密度が上記範囲であることが好ましい。
密度が高すぎると伝熱の影響が大きくパターンラフネスを悪化させる、又は、超微細パターン形成の妨げになる。一方、密度が低すぎると、超微細パターンは形成できるものの、パターン部に空隙が多く、鬆の入った状態となりパターンラフネスを悪化させる、又は空隙が多いことにより粒子成長できる空間が確保され粒子成長がし易い状態になり、パターンラフネスを悪化させる。本実施の形態に係るCuOxAyの密度は、目的の条件に応じて選択することができる。一方、広範に使用されているフォトレジスト材料では、反応メカニズムが熱ではなく光であるため、レジスト密度によるパターンラフネスへの影響は発生しない。そのためこのようなレジストの密度に関する検討はこれまでなされてこなかった。
なお、熱反応型レジスト材料において、CuOxAyの密度は、ラザフォード後方散乱分析(RBS:Rutherford Backscattering Spectrometry)やX線反射率測定法(XRR:X−Ray Reflection)や偏光解析法(エリプソメトリー)を用いて求めることができる。
この密度の範囲の材料を熱反応型レジスト材料として用いることで、ピッチ100nm以下の超微細パターンにおいても良好なパターンラフネスを発現することができる。
本実施の形態における熱反応型レジスト材料は、上記した式(1)を満たすCuOxAyの組成物とともにNa、Mg、Si、Sr、V、Cr、Mo、W、Ag、Zn、Ga、Ge、Nb、Ta及びその酸化物、窒化物、並びに酸窒化物のうち、1つ以上が添加剤として含まれることが好ましい。添加剤を加えることで微細パターン形成時の現像特性を向上させることができ、パターンラフネスに優れた微細パターンを得ることが可能になる。
添加剤は、Na、Si、V、Cr、Mo、W、Zn、Ge及びその酸化物、窒化物、並びに酸窒化物のうち、少なくとも1つが含まれることがより好ましく、Na、Si、Mo、W及びその酸化物、窒化物、並びに酸窒化物のうち、少なくとも1つが含まれることがさらに好ましく、Si及びその酸化物、窒化物、並びに酸窒化物のうち、少なくとも1つが含まれることが最も好ましい。Si及びその酸化物、窒化物、並びに酸窒化物のうち少なくとも1つが含まれることで、微細パターン形成時の現像特性をより効果的に向上させることができ、パターンラフネスにより優れた微細パターンを得ることが可能になる。
本実施の形態のCuOxAyの組成物への添加剤の添加量について説明する。添加剤の添加量は、特に指定ないが、少なすぎると現像特性の向上の効果が小さく、多すぎると逆にレジスト特性を悪化させてしまう。従って、添加剤の量は、熱反応型レジスト材料全体を100mol%としたときに、CuOxAyの組成物に対して、即ち、Cuに対して、2.0mol%以上30.0mol%以下であり、3.0mol%以上20.0mol%以下が好ましく、4.0mol%以上15.0mol%以下がより好ましく、5.0mol%以上12.0mol%以下がさらに好ましく、6.0mol%以上10.0mol%以下が最も好ましい。
また、酸化銅(I)を構造ユニットとして考えた化学式Cu2O2xA2yに対しては、添加剤の割合は3.9mol%以上46.2mol%以下であることが好ましい。添加剤の割合は5.8mol%以上33.3mol%以下であることがより好ましく、7.7mol%以上26.1mol%以下であることがさらに好ましく、9.5mol%以上21.4mol%以下であることがよりさらに好ましく、11.3mol%以上18.2mol%以下であることが最も好ましい。
あるいは、本実施の形態に係る熱反応型レジスト材料に用いられる上記した式(1)を満たすCuOxAyの組成物は、添加剤として、Na、Li、K、並びにそれらのハロゲン化物及び酸化物からなる群(A)から少なくとも1つ以上、且つV族、VI族、XIV族、並びにそれらの酸化物及び窒化物からなる群(B)から少なくとも1つ以上が添加されていることが好ましい。群(A)及び群(B)から添加剤を加えることで、酸化銅(I)の粒子サイズを微細に制御し、且つ、超微細パターン形成時の現像特性を向上させることができる。
添加剤は、群(A)からはナトリウム(Na)及びその酸化物がより好ましい。群(B)からはV族からニオブ(Nb)、タンタル(Ta)、VI属からモリブデン(Mo)、XIV族からシリコン(Si)、ゲルマニウム(Ge)、並びにそれらの酸化物及び窒化物から少なくとも1つ以上が添加されていることがより好ましく、V族からニオブ、XIV族からシリコン、ゲルマニウム、及びそれらの酸化物から少なくとも1つ以上が添加されていることがさらに好ましく、V族からニオブ、XIV族からシリコン、及びそれらの酸化物から少なくとも1つ以上が添加されていることがさらにより好ましく、XIV族からシリコンの酸化物が添加されていることが最も好ましい。添加剤として、酸化物は、熱反応型レジスト材料を成膜する上で、制御しやすいため好ましい。群(A)から前記材料を選択することで、超微細パターン形成時の現像特性が向上し、群(B)から前記材料を選択することで、粒子サイズを低減することができる。
本実施の形態に係る上記した式(1)を満たすCuOxAyの組成物への群(A)の添加剤において、ナトリウム及びその酸化物が好ましい理由について以下に詳説する。酸素が元素Aに置換されていない酸化銅(I)は、一般的に合成の途中過程でナトリウムを含む材料を用いるため、ナトリウム及びその酸化物が残留する傾向にある。したがって、添加剤としてナトリウム及びその酸化物を選択することで、添加剤を加えなくても原料に含まれるナトリウム及びその酸化物が本願の発明の効果を奏することができるため好ましい。以上のことから、本実施の形態に係る添加とは、原料にもともと含まれる不純物も添加の範囲であり、原料に含まれる割合に応じてさらに添加することも可能である。
一方、特殊な合成方法を使用することで、ナトリウムが含有されない酸化銅(I)を合成することは可能であり、市販品としても存在する。この酸化銅(I)を用いて、添加剤を加えることが可能になる。ただ、特殊な合成方法を用いた酸化銅(I)はコストが高いため、必要に応じて、ナトリウム及びその酸化物を含有する酸化銅(I)と、ナトリウム及びその酸化物を含有しない酸化銅(I)を使い分ければよい。また、ナトリウム及びその酸化物を含有しない酸化銅(I)を合成する方法として、熱反応型レジスト材料からなるレジスト層を成膜する際、出発物質として酸化銅(I)を使用しないで、金属銅を使用し、成膜過程で銅を酸化させ酸化銅(I)を得る方法もある。この場合コスト面では問題ない。一方、成膜の酸素量の制御という観点で、出発物質に酸化銅(I)を用いる方法に比べ微調整が必要になる。必要に応じて、出発物質に酸化銅(I)を用いる方法と、出発物質に金属銅を用いる方法を使い分ければよい。一般的な合成方法を用いて作製された酸化銅(I)を本実施の形態に係る熱反応型レジスト材料に用いるのが好ましい。
本実施の形態に係る添加剤の添加量は、上記した式(1)を満たすCuOxAyの組成物の密度が4.00g/cm3より大きく、6.07g/cm3より小さい範囲にある場合、特に制限はないが、添加量が少なすぎると前記効果が少なく、添加量が多すぎると前記効果が発揮できない。従って、上記した式(1)を満たすCuOxAyの組成物に対して、即ち、Cuに対して、群(A)の添加剤の割合は0.0001mol%以上3.0mol%以下、群(B)の添加剤の割合は3.0mol%以上15.0mol%以下であることが好ましい。群(A)の添加剤の割合は0.0001mol%以上2.0mol%以下、群(B)の添加剤の割合は5.0mol%以上12.0mol%以下であることがより好ましく、群(A)の添加剤の割合は0.0001mol%以上1.0mol%以下、群(B)の添加剤の割合は5.0mol%以上10.0mol%以下であることが最も好ましい。
また、酸化銅(I)を構造ユニットとして考えた化学式Cu2O2xA2yに対しては、群(A)の添加剤の割合は0.0002mol%以上5.8mol%以下、群(B)の添加剤の割合は5.8mol%以上26.1mol%以下であることが好ましい。群(A)の添加剤の割合は0.0002mol%以上4.0mol%以下、群(B)の添加剤の割合は9.5mol%以上21.5mol%以下であることがより好ましく、群(A)の添加剤の割合は0.0002mol%以上2.0mol%以下、群(B)の添加剤の割合は9.5mol%以上18.2mol%以下であることが最も好ましい。
本実施の形態に係る式(1)を満たすCuOxAyの組成物への添加剤において、複数選択した場合は、複数添加剤の合計の割合が前記添加剤の範囲にあることが好ましい。なお、本実施の形態に係る式(1)を満たすCuOxAyの組成物への添加剤は、目的の条件に応じて選択することができ、粒子サイズを抑制する効果としてはニオブ又はシリコンの酸化物が好ましく、基材にSiO2や石英を用いる場合は、親和性の観点からシリコンの酸化物が好ましく、レジストのドライエッチング耐性を高くする効果としてはクロム(Cr)並びにその酸化物及び窒化物から少なくとも1つ以上が添加されることが好ましい。
本実施の形態に係る(1)を満たすCuOxAyの組成物を用いた微細パターンの形成において、露光による熱変質が非結晶から結晶に変化する相変化モードであることが好ましい。(1)を満たすCuOxAyの組成物の相変化は、比較的低温で生じるため、粗大粒子の成長が抑制でき、微細パターンの形成に好適である。
本実施の形態のCuOxAyからなる組成物を含む熱反応型レジスト材料は、前述のとおり、フロン系ガスを用いたドライエッチング処理に対し、高い耐性を有する。微細パターン形状とともに溝の深さも所望の深さに深くしたパターンを形成したい場合は、熱反応型レジスト材料を単独で使用するだけでは困難であり、熱反応型レジスト材料の下層にエッチング層を形成した積層構造が必要になる。この場合、下層のエッチング層がドライエッチング処理されている間、マスクとして機能している熱反応型レジスト材料には、高いドライエッチング耐性が求められることになる。
本実施の形態に係る熱反応型レジスト材料は、前述のとおり、フロン系ガスを用いたドライエッチング処理に対し、高い耐性を有するため、アスペクト比(溝の深さをパターン幅で除した値)を自由に選択できることで、設計の自由度が広がる。このことからも、本実施の形態に係る熱反応型のレジスト材料は、ドライエッチングの耐性が高いことが重要になる。さらにドライエッチング層は、レジスト層に対してドライエッチングレートが速い材料が好ましい。
エッチング層を構成するエッチング材料は、選択する元素の主たるフッ化物の沸点が低い材料を選択することが好ましい。具体的には、フッ化物の沸点が250℃未満の元素から選ばれる1つ以上の材料の酸化物、窒化物、硫化物、炭化物、及びシリサイドのうち少なくともいずれか1つより選択されることが好ましい。
本実施の形態に係るエッチング材料は具体的には、Ta、Mo、W、C、Si、Ge、Te、及び、P並びにそれら2種類以上の複合物、並びにそれらの酸化物、窒化物、及び炭酸化物からなる群より選ぶことができる材料であり、好ましくは、Ta、Si、Ge、及びP並びにそれらの酸化物、窒化物、硫化物、及び炭酸化物並びにMo、Wのシリサイドからなる群より選ばれた材料であり、さらに好ましくは、Ta、Si、Ge、及びP並びにそれらの酸化物、窒化物からなる群より選ばれた材料である。特に好ましくは、特に成膜の容易性、経時安定性、強度、コスト、密着性等の観点から、SiO2、Si、Si3N4であり、最も好ましくはSiO2である。
なお、基材とエッチング層とを一体化しても、均一な微細パターンを形成することが可能である。
続いて、本実施の形態に係る熱反応型レジスト材料を用いたモールドの製造方法を説明する。
まず、第1の工程として、基材上に、熱反応型レジスト層を成膜する。続いて、第2の工程として熱反応型レジスト層を露光した後、現像液で現像する。続いて第3の工程として、現像後の熱反応型レジストをマスクとして、フロン系ガスを用いて基材をドライエッチング処理して微細パターンを形成する。続いて、第4の工程として、熱反応型レジストを除去して、モールドを製造する。
第1の工程において、熱反応型レジスト層を成膜する場合は、スパッタリング法や蒸着法やCVD法を用いた成膜が好ましい。熱反応型レジスト材料は、数十nmレベルの微細パターン加工が可能であるため、微細パターンサイズによっては、成膜時の熱反応型レジスト材料の膜厚分布や表面の凹凸が非常に大きく影響することが考えられる。そこで、これらの影響をできる限り少なくするために、膜厚の均一性等の制御がやや困難な塗布法やスプレー法などによる成膜方法より、スパッタリング法や蒸着法やCVD法などの成膜方法で熱反応型レジスト材料を形成することが好ましい。
本実施の形態では、熱反応型レジスト材料で構成されたレジスト層は、単層であっても良く、図1に示すように、複数のレジスト層を組み合わせた多層構造(基材1上にエッチング層2が形成され、エッチング層2の上に第1レジスト層3a及び第2レジスト層3bが順次形成された構造)であっても良い。なお、どのようなレジストを選択するかは、工程や要求加工精度等によって適宜変更することができる。
また熱反応型レジスト層は、必要に応じて、放熱設計を設けることができる。放熱設計は、熱反応型レジスト材料から、できるだけ早く熱を逃がす必要があるときに設計する。例えば、放熱設計は、熱が篭ることで、露光による熱反応のスポット形状より、広い領域で熱による反応が進行してしまう場合に行う。放熱設計は、熱反応型レジスト材料で構成されたレジスト層3の上方に空気より熱伝導率の高い材料層5(図2参照、図2において図1と同じ符号は図1と同じ層を示す)を成膜した積層構造をとることや、熱反応型レジスト材料で構成されたレジスト層3の下方に基材1より熱伝導率の高い材料層5(図3参照、図3において図1、図2と同じ符号は、図1、図2と同じ層を示す)を成膜した積層構造をとることで可能である。
本実施の形態に係る熱反応型レジスト材料からなるレジスト層の膜厚は、10nm以上100nm以下であることが好ましい。熱反応型レジスト材料の加熱は、露光等の光を熱反応型レジスト材料が吸収して熱に変化することで達成される。従って、加熱を達成するためには、熱反応型レジスト材料が光を吸収する必要があり、この光の吸収量は膜厚に大きく依存する。熱反応型レジスト材料からなるレジスト層の膜厚が10nm以上だと、光の吸収量が多くなるため、効率よく加熱しやすくなる。従って、本実施の形態の熱反応型レジスト材料からなるレジスト層の膜厚は10nm以上が好ましい。なお、レジスト層の膜厚が薄い場合でも、熱反応型レジスト材料からなる薄膜の上方と下方の両方、又はいずれか一方に光吸収層などを配置することで、光の吸収量を補うことができる。
一方、熱反応型レジスト材料からなるレジスト層の膜厚を100nm以下とすることで、露光による膜厚方向への均一性を適切に確保することができる。即ち、深さ方向だけでなく、膜面方向の微細パターンの加工精度も好ましいものとなる。以上のことから、熱反応型レジスト材料からなるレジスト層の膜厚は、10nm以上100nm以下であり、好ましくは10nm以上80nm以下であり、より好ましくは10nm以上50nm以下であり、さらに好ましくは10nm以上35nm以下であり、最も好ましくは15nm以上25nm以下である。レジスト層の膜厚を、最も好ましい15nm以上25nm以下の範囲にすることで、露光等による光の吸収量が適度にあり、膜厚方向と膜深さ方向の熱の均一性を保てるという利点がある。加えて、膜厚変化に対する光吸収量の変化率が小さいため、膜厚斑が生じた場合でも加熱斑になりにくく、均一なパターン形成が可能であるという利点がある。
本発明に係る基材の形状は、平板形状又はスリーブ(ロール、ドラム)形状とすることができる。光ディスクの原盤やナノインプリントなどで用いられるモールドの多くは小型で平板形状であるため、簡単な装置により転写することが可能である。一方、スリーブ形状は、大面積にパターンを転写できる特徴がある。
本発明に係る基材は、材質について特に制限を受けない。しかし、表面平滑性、加工性に優れる材質であり、かつ、ドライエッチング処理できる材質であることが好ましい。そのような材質の代表としてガラスを用いることができる。その他、基材として、シリコン、二酸化ケイ素などを用いることもでき、ドライエッチングを実施する場合は、ドライエッチング層を設けることで、基材としてアルミニウム、チタニウム、銅、銀又は金などを用いることもできる。中でも、ドライエッチング処理の観点から、基材としては石英ガラスが好適であり、ドライエッチング処理の時間を制御するだけで、所望のアスペクト比を形成することができる。
次に、本実施の形態に係る露光工程について説明する。露光に用いるレーザーは、KrFやArFレーザーなどのエキシマレーザーや、半導体レーザー、電子線、X線等を用いることができる。KrFやArFレーザーなどのエキシマレーザーは装置が非常に大型で高価なこと、電子線、X線などは真空チャンバーを使用する必要があることからコストや大型化の観点からかなりの制限がある。従って、光源装置を非常に小型化でき、安価である半導体レーザーを用いることが好ましい。
一般的に、電子線やエキシマレーザー等を用いて露光光源を短波長化することで微細パターンの形成を可能にしてきたが、本実施の形態に係る熱反応型レジスト材料は半導体レーザーでも十分に微細パターンを形成することが可能である。
本実施の形態に係る熱反応型レジスト材料は、レーザーのスポット径内(照射範囲内)に熱反応する領域と熱反応しない領域の双方を有することが好ましい。本実施の形態においては、レジスト材料としてフォトレジスト材料ではなく、熱反応型レジスト材料に着眼したことにより、レーザー光の照射範囲内において、レジスト材料が反応する領域、及び反応しない領域の双方を有することを達成している。図4は、熱反応型レジスト材料にレーザー光を照射した場合におけるレーザー光のスポット径(照射領域)とスポット径内の温度分布との関係を示す模式図である。図4に示すように、熱反応型レジスト材料の主面に対し、略垂直にレーザー光を照射した場合、レーザー光のスポット径は、レーザー光の焦点を中心に、レジスト材料の主面に対して略円形形状に形成される。ここで、レーザー光のスポット径内における温度分布は、図4の上段に示すように、レーザー光の焦点付近を頂点とし、照射範囲の外周縁に向かうにつれて低くなる。この場合、所定の温度で反応する熱反応型レジスト材料を用いることにより、レーザー光の焦点付近を露光することができる。即ち、熱反応型レジスト材料が、レーザーのスポット径内に生じた温度分布に対して、所定温度以上で反応する領域を持つようにすることで、スポット径より微細な加工を実現することを可能にしている。これにより、本実施の形態では、小型でかつ安価で特殊な付帯設備が不要である半導体レーザーを使って露光を行うことができる。例えば、現状市販されている短波長の半導体レーザーの波長は405nm程度で、そのスポット径は420nm程度(開口数:0.85)である。このため、420nm以下の微細加工は、フォトレジスト材料を使う限り原理的に不可能であるが、熱反応型レジスト材料を使うことでこの限界を超えることが出来、半導体レーザーの波長以下の微細加工を行うことができる。
次に、本実施の形態に係る現像工程について説明する。現像工程では、露光工程で熱変質した部分又は熱変質していない部分を選択的に除去する工程であり、除去には、ウェットエッチング又はドライエッチングを用いることができる。均一性やコスト等の観点で、ウェットエッチングが好ましい。現像工程に用いることのできる現像液は、酸溶液、アルカリ溶液、錯形成剤、及び有機溶剤等を単独又は適時組合せて用いることができる。酸溶液としては、塩酸、硫酸、硝酸、燐酸、酢酸、シュウ酸、フッ酸、硝酸アンモニウムなどを用いることができる。アルカリ溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア、TMAH(水酸化テトラメチルアンモニウム)等を用いることができる。錯形成剤としては、シュウ酸、エチレンジアミン4酢酸及びその塩、グリシン等の溶液を単独又は混合溶液として用いることができる。また、現像液中に過酸化水素や過酸化マンガン等の電位調整剤等を添加しても良い。さらに、現像液中に界面活性剤等を添加して現像性を向上させても良い。また、現像工程においては、まず酸現像液で現像した後に、アルカリ現像液で現像して所望の現像を達成する。あるいは、アルカリ現像液で現像した後に、酸現像液で現像して所望の現像を達成する。又は、複数段階にわたる現像を行っても良い。なお、選択する熱反応型レジストによっては、現像が不要な場合がある。
現像液を熱反応型レジスト層に作用させる方法は特に限定されず、現像液に熱反応型レジスト層を浸漬させてもよく、現像液を熱反応型レジスト層に噴射してもよい。現像液に熱反応型レジスト層を浸漬させる際に液を循環させるか、あるいは熱反応型レジスト層を動作させることにより、単位時間当たりに熱反応型レジスト層に触れる液の量を増加させると、現像速度を上げることができる。また、現像液を熱反応型レジスト層に噴射する際に噴射圧を上げることで、現像速度を上げることができる。現像液を熱反応型レジスト層に噴射させる場合は、ノズルを移動させる方法、熱反応型レジスト層を回転させる方法等を単独で用いることもできるが、併用すると現像が均一に進行するため好ましい。噴射に用いるノズルの種類は任意のものが使用可能で、例えばラインスリット、フルコーンノズル、ホローコーンノズル、フラットノズル、均一フラットノズル、ソリッドノズル等を挙げることができ、熱反応型レジスト層や基材の形状に合わせて選択できる。また、一流体ノズルでも二流体ノズルでも構わない。
現像液を熱反応型レジスト層に作用させる際に、不溶性の微粉末等の不純物が現像液中に存在すると、特に微細なパターンを現像する際にムラの原因となるおそれがあるので、現像液を事前にろ過しておくことが好ましい。ろ過に用いるフィルターの材質は現像液と反応しないものなら任意に選択でき、例えばPFA、PTFE等を挙げることができる。フィルターの目の粗さはパターンの微細度合いに応じて選択すればよいが、0.2μm以下、より好ましくは0.1μm以下である。また、溶出した成分の析出、再付着を防ぐためには、浸漬より噴射が好ましく、さらに、現像液を熱反応型レジスト層に噴射する場合は現像液を使い捨てにすることが望ましい。現像液を再利用する場合は、溶出成分を除去することが好ましい。
現像方法においては、熱反応型レジスト層を洗浄する工程と、現像後の基材及び熱反応型レジスト層を洗浄する工程と、を含むことが好ましい。
次に、本実施の形態に係るドライエッチング工程について説明する。ドライエッチング処理する際に用いられる装置としては、真空中でフロン系ガスが導入でき、プラズマが形成でき、エッチング処理ができるものであれば特に制限はなく、例えば、市販のドライエッチング装置、RIE装置、ICP装置等を用いることができる。ドライエッチング処理を行うガス種、時間、電力等は、熱反応型レジストの種類、第1熱伝導層(エッチング層)の種類、厚み、エッチングレート等によって適宜決定し得る。ドライエッチング処理に用いるフロン系ガスは、特に制限はないが、CF4、CHF3、CH2F2、C2F6、C3F8、C4F6、C4F8、C4F10、C5F10、SF6、CCl2F2などのフルオロカーボンなどが挙げられ、単独で用いても、複数のガスを混合して用いても構わない。さらにこれらのガスにO2、H2、Ar、N2、COなどを混合したガス、またHBr、NF3、SF6、CF3Br、HCl、HI、BBr3、BCl3、Cl2、SiCl4の混合ガスやこれらにAr、O2、H2、N2、COなどのガスを混合したガスもフロン系ガスの範囲とする。
さらに、前述のエッチングガスの種類、組成、エッチング圧力及び温度といった条件を最適化することによってレジストマスクの耐性や、基材やエッチング層のエッチング方向を制御することができる。例えば、フロン系のエッチングガスにAr添加することで、フロン系ガスの解離度を制御して、基材やエッチング層と熱反応型レジスト層のエッチングレートを増減させる方法や、使用するフロンガスのFとCとのモル比の制御や、ドライエッチング処理の圧力の制御で、エッチング方向を垂直から斜めに制御して、所望のモールド形状を製造する方法などがある。
最後に、モールドの製造過程において、熱反応型レジスト材料を除去する必要がある。熱反応型レジスト材料の除去方法は、基材やエッチング層に影響がなければ特に制限はなく、例えば、ウェットエッチング、ドライエッチングなどを用いることができる。
本実施の形態においては、上記したモールドの製造方法を用いることにより、1nm以上1μm以下のピッチの微細パターンを有するモールドを製造することが可能となる。本実施の形態に係る微細パターンのピッチは、1nm以上5μm以下であり、1nm以上3μm以下が好ましく、1nm以上1μm以下がより好ましく、10nm以上950nm以下がさらに好ましく、30nm以上800nm以下が最も好ましい。また本実施の形態では、LERを1.5nm以下にすることができる。LER(Line Edge Roughness)とは、パターンの乱れを表す指標である。具体的には、パターン側壁が基準線に比してどの程度凹凸があるかを表す指標である。本実施の形態では、レジストパターンをマスクとして基材(または、ドライエッチング層)をドライエッチングしてパターンを基材に転写する。その際、レジストのパターンラフネスがドライエッチングを介して忠実に基材側に転写される。以上のことから、レジストのラフネスが基材のラフネスに影響を与えることになる。したがってモールドを構成する基材に形成された微細パターンのLERが1.5nm以下であるとともに、基材に微細パターンを形成するために用いられるマスクとしての、レジスト層やドライエッチング層の微細パターンのLERも1.5nm以下であることが必要とされる。
ここで微細パターンについて図5を用いて説明する。図5は微細パターンの製造工程を示す断面図である。図5Aは、基材51とレジスト52からなる微細パターンを示した断面図である。続いて、図5Bは、レジスト52からなる微細パターンをマスクとして、基材51(基材の変わりにドライエッチング層を用いることも可能であるが、ここでは基材をドライエッチングした図を用いて説明する)をドライエッチングして、微細パターンを基材に転写した、レジスト52と基材53からなる微細パターン54を示した断面図である。最後に、図5Cは、レジスト52を除去した基材53からなる微細パターンを示した断面図である。
本実施の形態のレジスト組成を用いることで上記した全ての微細パターンにおいて、LERが1.5nm以下にすることができる。
以下、本発明の効果を明確にするために実施した実施例及び比較例により本発明を詳細に説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。
[LER]
LER(Line Edge Roughness)とは、パターンの乱れを表す指標であり、パターンエッジ形状のラフネス、即ち、パターン端部にできた凹凸の大きさを表す。LERの値が小さいほど、パターン形状にバラつきがないことを表す。LERは、現像後のレジスト層の表面をSEM(走査型電子顕微鏡)にて観察し、得られた像をSEMI International Standardsに記載のSEMI P47−0307に従い導出した。
[実施例1]
以下の表1に示すCuO0.49N0.01、CuO0.4N0.1、CuO0.3N0.2、CuO0.2N0.3、及び、CuN0.5からなる組成物を夫々含む熱反応型レジスト材料を作製した。そして各熱反応型レジスト材料を、2インチ(in)φ及び厚み0.5mmの石英ガラス基材上に、スパッタリング法を用いて20nmの膜厚にて成膜した。なお表1に示す各組成はXPSで同定した。また、各熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を以下の条件で露光した。
露光用半導体レーザー波長:405nm
レンズ開口数:0.85
露光レーザーパワー:1mW〜25mW
送りピッチ:60nm〜800nm
露光速度:0.6m/s〜11.0m/s
露光中にレーザーの強度を変調させることで、さまざまな形状やパターンを作製できるが、実験では露光精度を確かめるために、パターンとして連続の溝形を使用した。形成する形状は目的とする用途によっては孤立した円形や楕円形状等でも構わず、本発明は露光形状によって何ら制限を受けるものではない。
続いて、上記の露光機によって露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEM(走査型電子顕微鏡)にて表面形状を観察したところ、表1の値のLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジスト層のみを剥離し、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[実施例2]
熱反応型レジスト材料に含まれる組成物としてCuO0.4S0.1、CuO0.4Se0.1を選択した以外は、実施例1と同様の条件で成膜を実施した。なお表1に示す各組成はXPSで同定した。また、各熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1に示すLERが得られ、非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6/O2(比率95%:5%)を用い、処理ガス圧を1Pa、処理電力を300W、処理時間1.5分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離し、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[実施例3]
表1に示すCuO0.5N0.15、CuO0.3N0.05からなる組成物を夫々含む熱反応型レジスト材料を作製した。そして各熱反応型レジスト材料を、φ80mm、長さ400mmの石英ガラスロール基材上に、スパッタ法を用いて15nmの膜厚で成膜した。なお表1に示各組成は、XPSで同定した。また、各熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト材料を以下の条件で露光した。
露光用半導体レーザー波長:405nm
レンズ開口数:0.85
露光レーザーパワー:1mW〜25mW
送りピッチ:60nm〜800nm
回転速度:210〜1670rpm
露光中にレーザーの強度を変調させることで、さまざまな形状やパターンを作製できるが、実験では露光精度を確かめるために、パターンとして溝形状を使用した。形成する形状は目的とする用途によっては孤立した円形状や孤立した楕円形状等でも構わず、本発明は露光形状によって何ら制限を受けるものではない。
続いて、露光された熱反応型レジストの現像を行った。現像液は、表1に示す条件で行った。現像時間は、2分間での現像を実施した。
上記で得られたパターン付の基板を、UV硬化樹脂を使って表面形状をフィルムに転写させた。得られたフィルムをSEMにて表面観察をしたところ、ほぼモールドを反転した形状が観察され、表1の値のLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてCF4/O2(比率98%:2%)を用い、処理ガス圧を1Pa、処理電力を1000W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離したものを基材として、UV硬化樹脂を使って表面形状をフィルムに転写させた。得られたフィルムをSEMにて表面観察をしたところ、ほぼモールドを反転した形状が観察され、非常に良好なパターンラフネスを示した。
[実施例4]
熱反応型レジスト材料に含まれる組成物としてCuO0.4N0.1及び添加剤としてSiO2(8mol%)を選択した以外は、実施例1と同様の条件で成膜を実施した。なお表1に示す組成はXPSで同定し、添加剤としてのSiO2の添加量はXRF(蛍光X線)で同定した。また、熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1の値のLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離し、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[実施例5]
表1に示す組成の積層材料を形成した。このとき、熱反応型レジスト材料に含まれる平均組成物はCuO0.4N0.1であった。また、各熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
また表1に示すように、上記の積層材料に加えて添加剤としてSiO2を8mol%添加した熱反応型レジスト材料も作製した。具体的には、2inφ、厚み0.5mmの石英ガラス基材上に、CuO0.5をスパッタ法により10nmの膜厚で成膜し、その上にCuO0.2N0.3をスパッタ法で5nmの膜厚で成膜し積層材料とした。一方、添加剤を加えた組成では、2inφ、厚み0.5mmの石英ガラス基材上に、CuO0.5と添加剤としてSiO2を8mol%添加した組成物をスパッタ法により10nmの膜厚で成膜し、その上にCuO0.2N0.3と添加剤としてSiO2を8mol%添加した組成物をスパッタ法により5nmの膜厚で成膜し積層材料とした。なお表1に示す組成はXPSとXRFで同定した。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1に示すLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離し、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[実施例6]
膜厚方向に向けて表1に示すようにCuO0.5〜CuN0.5まで徐々にOの組成比がNに置換されるように組成を変動させた。このとき得られた平均組成物は表1に示すCuO0.25N0.25であった。具体的には、2inφ、厚み0.5mmの石英ガラス基材上に、成膜開始時はプロセスガスとしてアルゴンと酸素のみで窒素を導入しない条件でスパッタ法により成膜した。そして徐々に窒素の導入量を増やすとともに酸素の導入量を減らし、成膜終了時点でアルゴンと窒素のみの条件で成膜を行い、膜厚20nmの成膜を行った。なお表1に示す組成はXPSで同定した。また、熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1の値のLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離したものを、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[実施例7]
熱反応型レジスト材料に含まれる組成物としてCuO0.4N0.1及び添加剤としてNa2O(0.01mol%)/SiO2(8mol%)を選択した以外は、実施例1と同様の条件で成膜を実施した。なお表1に示す組成はXPSで同定し、添加剤としてのNa2O/SiO2の添加量はXRFで同定した。また、熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1の値のLERが得られ非常に良好なパターンラフネスを示した。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離し、SEMにて断面形状を観察したところ、良好なパターンラフネスが観察された。
上記で得られたパターン付の基板をモールドとして用いて、UV硬化樹脂を使って表面形状をフィルムに転写させたところ、ほぼモールドを反転した形状がフィルム上に転写された。
[比較例1]
熱反応型レジスト材料に含まれる組成物としてCuO0.8N0.2とCuO0.1N0.05を選択した以外は、実施例1と同様の条件で成膜を実施した。なお、組成はXPSで同定した。また、各熱反応型レジスト材料の密度は、XRR分析で求め、表1の値を得た。
以上のように成膜した熱反応型レジスト層を実施例1と同じ条件で露光した。続いて、露光された熱反応型レジスト層を現像した。現像液は、表1に示す条件で行った。現像時間は、1分間で実施した。
このように現像された熱反応型レジスト層について、SEMにて表面形状を観察したところ、表1の値のLERが得られ、実施例に比べパターンラフネスが悪かった。
次に得られた熱反応型レジストをマスクとして、ドライエッチング処理による石英ガラス基材のエッチングを行った。ドライエッチングは、エッチングガスとしてSF6を用い、処理ガス圧を1Pa、処理電力を300W、処理時間2分の条件で行った。これらパターンが付与された基板から熱反応型レジストのみを剥離し、SEMにて断面形状を観察したところ、ラフネスの悪いパターンがそのまま観察された。
実施例1〜実施例7と比較例1とを比較すると、実施例1〜実施例7に係る熱反応型レジスト材料を用いると、優れたパターンラフネスを維持したまま微細パターンの形成が可能であることがわかった。
実施例1〜実施例7に基づいて、熱反応型レジスト材料に含まれる組成物としてCuOxAyを導き出した。このとき、Aは、N、S及び、Seから選択される1種以上であり、0.35≦x+y≦0.65、0≦x、0<yとした。