JP2016047538A - Cooling method of steel plate - Google Patents

Cooling method of steel plate Download PDF

Info

Publication number
JP2016047538A
JP2016047538A JP2014172670A JP2014172670A JP2016047538A JP 2016047538 A JP2016047538 A JP 2016047538A JP 2014172670 A JP2014172670 A JP 2014172670A JP 2014172670 A JP2014172670 A JP 2014172670A JP 2016047538 A JP2016047538 A JP 2016047538A
Authority
JP
Japan
Prior art keywords
cooling
water
steel plate
ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014172670A
Other languages
Japanese (ja)
Other versions
JP6430179B2 (en
Inventor
真沙美 楯
Masami Tate
真沙美 楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014172670A priority Critical patent/JP6430179B2/en
Publication of JP2016047538A publication Critical patent/JP2016047538A/en
Application granted granted Critical
Publication of JP6430179B2 publication Critical patent/JP6430179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for producing a steel plate having no configuration error, such as crook or curve, upon cooling the steel plate and having excellent flatness.SOLUTION: There is provided a cooling method for a steel plate 3 in which hot rolled steel plate 3 having high temperature is transported to a cooling device 2 comprising a plurality of cooling zones whose entrance/exit sides are partitioned with drainer rolls 5, and is cooled from the upper and lower surfaces. When the plurality of steel plates are continuously cooled, actual value of deformation ratio indicated by height difference in surfaces of the cooled steel plate 3, which is obtained by cooling one steel plate 3 of the plurality of steel plates 3 under a predetermined cooling condition, is defined as actual cooling deformation ratio. Upper/lower water volume ratio is corrected into corrected upper/lower water volume ratio so that the deformation ratio is less than the actual cooling deformation ratio when the upper/lower water volume ratio (upper/lower water volume ratio=upper surface cooling water volume density/lower surface cooling water volume density) under the predetermined cooling condition is defined as pre-correction upper/lower water volume ratio. A steel plate 3 to be cooled next to the one steel plate 3 is cooled under a cooling condition of the corrected upper/lower water volume ratio.SELECTED DRAWING: Figure 1

Description

本発明は、上下ノズルを有しかつこのノズルの注水量が制御可能な冷却ゾーンを鋼板進行方向に複数備えた冷却装置内で、熱間圧延された高温の鋼板を冷却する方法に関する。具体的には、当該冷却装置内の前記鋼板に対して、上記ノズルより冷却水を特定の条件で供給して、冷却後の鋼板の平坦度を高い状態とする冷却方法に関する。   The present invention relates to a method of cooling a hot-rolled high-temperature steel sheet in a cooling device having a plurality of cooling zones having upper and lower nozzles and capable of controlling the amount of water injected from the nozzles in the traveling direction of the steel sheet. Specifically, the present invention relates to a cooling method in which cooling water is supplied from the nozzle under specific conditions to the steel plate in the cooling device so that the flatness of the steel plate after cooling is high.

鋼板の製造に当たっては、鋼板に要求される機械的性質を確保するために、熱間圧延後の鋼板に対して制御冷却が行われる。この制御冷却は、熱間圧延後、高温状態にある鋼板を、所定の冷却速度で、所定の冷却停止温度まで冷却することにより行われる。この冷却の際に、冷却速度及び冷却停止温度は、冷却水量、冷却時間、鋼板の搬送速度により調整される。この調整では、冷却中における鋼板の上面、下面の温度が同一となるように、上面側水量密度、下面側水量密度が制御される。   In manufacturing the steel plate, controlled cooling is performed on the hot-rolled steel plate in order to ensure the mechanical properties required for the steel plate. This controlled cooling is performed by cooling the steel plate in a high temperature state after hot rolling to a predetermined cooling stop temperature at a predetermined cooling rate. In this cooling, the cooling rate and the cooling stop temperature are adjusted by the amount of cooling water, the cooling time, and the conveying speed of the steel plate. In this adjustment, the upper surface side water amount density and the lower surface side water amount density are controlled so that the temperatures of the upper surface and the lower surface of the steel plate during cooling are the same.

特許文献1には、圧延時の操業条件から予め算出された鋼板先端から尾端までの温度に応じて、冷却中における上下面の温度が同一となるように、上下から供給される水量を鋼板搬送中に変更する方法が開示されている。即ち、特許文献1には、予め鋼板温度と最適上下水量比(上下面の温度降下量が同一となるような冷却能の得られる上下水量比)との関係を求めておき、この関係に従って、鋼板先端温度から鋼板尾端温度に応じて、上下から供給される水量を鋼板搬送中に変更することが記載されている。   In Patent Document 1, the amount of water supplied from above and below is adjusted so that the temperature of the upper and lower surfaces during cooling is the same according to the temperature from the front end to the tail end of the steel plate calculated in advance from the operating conditions during rolling. A method of changing during transport is disclosed. That is, in Patent Document 1, the relationship between the steel plate temperature and the optimum water and water ratio (the water and water ratio that provides the cooling ability so that the temperature drop on the upper and lower surfaces are the same) is obtained in advance, and according to this relationship, It is described that the amount of water supplied from above and below is changed during the conveyance of the steel sheet according to the steel sheet tip temperature and the steel sheet tail temperature.

特許文献2には、仕上圧延前の板厚40mm以上の厚鋼板の上面をラミナーフローで、下面をスプレーで冷却するに際し、上下面の水量比を板厚に応じて(板厚(mm)/30)±1.0の範囲で冷却する厚鋼板の冷却方法が開示されている。   In Patent Document 2, when the upper surface of a steel plate having a thickness of 40 mm or more before finish rolling is cooled by a laminar flow and the lower surface is cooled by spraying, the water volume ratio between the upper and lower surfaces depends on the plate thickness (plate thickness (mm) / 30) A method of cooling a thick steel plate that is cooled within a range of ± 1.0 is disclosed.

また、熱間圧延後の鋼板の制御冷却における上下水量比は、冷却予定鋼板の寸法や圧延終了時の鋼板温度、冷却水量、冷却停止温度などの冷却条件に基づいて予め設定されるのが一般的である。   In addition, the water / water ratio in the controlled cooling of the steel sheet after hot rolling is generally set in advance based on the cooling conditions such as the dimensions of the steel sheet to be cooled, the steel sheet temperature at the end of rolling, the cooling water amount, and the cooling stop temperature. Is.

特開2006−192489号公報JP 2006-192489 A 特開平6−142750号公報JP-A-6-142750

冷却装置における冷却水の供給は、供給水量の安定を目的として、鋼板の圧延完了前から開始されている。したがって、このときの上下水量比は、冷却予定の鋼板のサイズや圧延終了時の鋼板温度、冷却水量、冷却停止温度などの冷却条件に基づいて予め設定されているものである。   Supply of cooling water in the cooling device is started before the completion of rolling of the steel sheet for the purpose of stabilizing the amount of supplied water. Accordingly, the water / water ratio at this time is set in advance based on the cooling conditions such as the size of the steel plate to be cooled, the steel plate temperature at the end of rolling, the amount of cooling water, and the cooling stop temperature.

しかしながら、気温、水温、板厚、鋼種、鋼板温度などの影響により、平坦度に優れた鋼板を製造するための上下水量比は変化する。このため、冷却予定の鋼板のサイズや圧延終了時の鋼板温度等が同じであっても、冷却条件を鋼板毎に調整することが好ましい。   However, due to the influence of air temperature, water temperature, plate thickness, steel type, steel plate temperature, etc., the water / water ratio for producing a steel plate with excellent flatness changes. For this reason, even if the size of the steel plate to be cooled, the steel plate temperature at the end of rolling, and the like are the same, it is preferable to adjust the cooling conditions for each steel plate.

本発明は、鋼板を冷却した際、反りや曲がりなどの形状不良がなく、平坦度に優れた鋼板を製造するための冷却方法を提供することを目的とする。   An object of this invention is to provide the cooling method for manufacturing the steel plate which was excellent in flatness, without shape defects, such as a curvature and a bending, when cooling a steel plate.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、所定の冷却条件で冷却したときの冷却完了後の鋼板面内における高低差で表される歪量を実測し、この値を実冷却歪量とし、上記所定の冷却条件における上下水量比(上下水量比=上面側冷却水量密度/下面側冷却水量密度)の条件を補正前上下水量比としたときに、上記実冷却歪量よりも歪量が小さくなるように、歪量を実測した鋼板の、次の鋼板の冷却における上下水量比を補正すれば、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the amount of strain represented by the height difference in the steel sheet after completion of cooling when cooled under the predetermined cooling conditions was measured, and this value was regarded as the actual cooling strain amount, and the ratio of the amount of water and water in the above specified cooling conditions The amount of strain was measured so that the amount of distortion was smaller than the actual cooling strain amount when the condition of (upper and lower water amount ratio = upper surface side cooling water amount density / lower surface side cooling water amount density) was the pre-correction water amount ratio. It has been found that the above problems can be solved by correcting the ratio of the amount of water and water in the cooling of the next steel plate, and the present invention has been completed. More specifically, the present invention provides the following.

[1]熱間圧延された高温の鋼板を、入出側を水切ロールで仕切られた複数の冷却ゾーンを備えた冷却装置に搬送し、鋼板上下面から冷却する鋼板の冷却方法において、
複数の鋼板を連続的に冷却する際に、前記複数の鋼板における一の鋼板を所定の冷却条件で冷却したときの冷却後の鋼板面内における高低差で表される歪量の実測値を実冷却歪量とし、前記所定の冷却条件における上下水量比(上下水量比=上面側冷却水量密度/下面側冷却水量密度)を補正前上下水量比としたときに、前記実冷却歪量よりも歪量が小さくなるように、上下水量比を補正して補正後上下水量比とし、前記補正後上下水量比の冷却条件で、前記一の鋼板の次に冷却される鋼板を冷却することを特徴とする冷却方法。
[1] In a method for cooling a steel sheet, the hot-rolled hot steel sheet is transported to a cooling device having a plurality of cooling zones partitioned on the entry and exit sides by a draining roll, and cooled from the upper and lower surfaces of the steel sheet.
When continuously cooling a plurality of steel plates, an actual measured value of the strain amount expressed by the height difference in the steel plate surface after cooling when one steel plate of the plurality of steel plates is cooled under a predetermined cooling condition is realized. When the cooling strain amount is set, and the vertical water amount ratio (upper and lower water amount ratio = upper surface side cooling water amount density / lower surface side cooling water amount density) under the predetermined cooling condition is set as the pre-correction upper and lower water amount ratio, the distortion is larger than the actual cooling strain amount. Correcting the water / water ratio to obtain a corrected water / water ratio, and cooling the steel sheet to be cooled next to the one steel sheet under the cooling condition of the corrected water / water ratio after the correction. Cooling method.

[2]前記補正後上下水量比は、前記補正前上下水量比から下記式(1)で求められることを特徴とする請求項1に記載の鋼板の冷却方法。
補正後上下水量比=補正前上下水量比×(1−α×実冷却歪量) (1)
ただし、式(1)において、αは実測データより定める定数である。
[2] The steel sheet cooling method according to claim 1, wherein the corrected water and water ratio is obtained from the pre-correction water and water ratio by the following formula (1).
Corrected water / water ratio = Water / water ratio before correction x (1-α x actual cooling strain) (1)
However, in Formula (1), (alpha) is a constant defined from actual measurement data.

本発明によれば、気温、水温、板厚、鋼種、鋼板温度などの影響があっても、冷却後の鋼板は平坦度に優れる。   According to the present invention, the steel plate after cooling is excellent in flatness even if there is an influence of air temperature, water temperature, plate thickness, steel type, steel plate temperature and the like.

また、本発明では、板厚や鋼板温度等によらず、冷却後の歪量に基づいて上下流量比を制御するため、板厚や表面温度ごとに細かい指示をせずとも、平坦度に優れた鋼板を製造できる。   In addition, in the present invention, the vertical flow rate ratio is controlled based on the strain after cooling, regardless of the plate thickness, the steel plate temperature, etc., so excellent flatness is achieved without giving detailed instructions for each plate thickness or surface temperature. Steel plate can be manufactured.

一般的な冷却装置を示す図である。It is a figure which shows a general cooling device. 本発明適用前の冷却条件で冷却した鋼板の状態を示す結果である。It is a result which shows the state of the steel plate cooled on the cooling conditions before application of this invention. 本発明適用後の冷却条件で冷却した鋼板の状態を示す結果である。It is a result which shows the state of the steel plate cooled on the cooling conditions after this invention application.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

先ず、冷却装置の一例について図1を用いて説明する。図1には、水切ロールで仕切られた複数の冷却ゾーンを備えた冷却装置の一例を示す。高温の鋼板は冷却装置内を搬送され、各冷却ゾーンで冷却されて、冷却装置から搬出される(図面矢印方向)。図1中、1が熱間圧延機、2が冷却装置、3が鋼板、4がテーブルロール、5が水切りロール、6が上面ノズル、7が下面ノズルである。   First, an example of the cooling device will be described with reference to FIG. In FIG. 1, an example of the cooling device provided with the some cooling zone partitioned off with the draining roll is shown. The hot steel plate is conveyed through the cooling device, cooled in each cooling zone, and carried out of the cooling device (in the direction of the arrow in the drawing). In FIG. 1, 1 is a hot rolling mill, 2 is a cooling device, 3 is a steel plate, 4 is a table roll, 5 is a draining roll, 6 is an upper surface nozzle, and 7 is a lower surface nozzle.

上面ノズル6は、一般的に鋼板幅方向に矩形の開口断面を有するスリットノズルで、鋼板搬送方向に鋼板上面を覆うようにラミナーフロー冷却水を噴射する。下面ノズル7は、一般的に円管ノズルで鋼板幅、長さ方向に多数設置され、鋼板下面側に向けて冷却水を噴射する。水切りロール5は1つの上面ノズル6から噴射された冷却水が次の冷却ゾーンに流れ込まないようにカットするロールであり、テーブルロール4の直上に設置され、水切りロール5とテーブルロール4で鋼板を挟む形となっている。従って、1冷却ゾーンはテーブルロール4同士、水切りロール5同士が向かい合う空間から成っている。   The upper surface nozzle 6 is generally a slit nozzle having a rectangular opening cross section in the steel plate width direction, and injects laminar flow cooling water so as to cover the upper surface of the steel plate in the steel plate conveyance direction. The lower surface nozzle 7 is generally a circular tube nozzle and is installed in a large number in the width and length directions of the steel plate, and injects cooling water toward the lower surface side of the steel plate. The draining roll 5 is a roll that cuts the cooling water sprayed from one upper surface nozzle 6 so as not to flow into the next cooling zone, and is installed immediately above the table roll 4. It is sandwiched. Therefore, one cooling zone consists of a space where the table rolls 4 face each other and the draining rolls 5 face each other.

図1には図示されていないが、冷却装置入、出側には鋼板上面の温度を測定する放射温度計が、鋼板下面の温度を測定する光ファイバー型温度計が設置されている。さらに、冷却装置出側には、冷却完了後の鋼板の鋼板面内の高低差を測定するための距離計(図示せず)が設置されている。   Although not shown in FIG. 1, a radiation thermometer that measures the temperature of the upper surface of the steel sheet and a fiber optic thermometer that measures the temperature of the lower surface of the steel sheet are installed on the inlet side and the outlet side of the cooling device. Furthermore, a distance meter (not shown) for measuring the height difference in the steel plate surface of the steel plate after completion of cooling is installed on the cooling device outlet side.

次いで、本発明の冷却方法について説明する。本発明の冷却方法では、所定の冷却条件で冷却し、冷却完了後に鋼板面内における高低差を実測し実冷却歪量とし、上記所定の冷却条件における上下水量比(上下水量比=上面側冷却水量密度/下面側冷却水量密度)の条件を補正前上下水量比としたときに、上記実冷却歪量よりも歪量が小さくなるように上下水量比を補正する。   Next, the cooling method of the present invention will be described. In the cooling method of the present invention, cooling is performed under a predetermined cooling condition, and after the cooling is completed, the height difference in the steel sheet surface is measured and used as an actual cooling strain amount, and the vertical water amount ratio (vertical water amount ratio = upper surface side cooling under the predetermined cooling condition). When the condition of (water density / lower surface side cooling water density) is the pre-correction water / water ratio, the water / water ratio is corrected so that the amount of distortion is smaller than the actual cooling distortion.

実冷却歪量は、所定の冷却条件を採用して冷却した鋼板の歪量の実測値であればよい。上記所定の冷却条件は、一般的な方法で決定すればよい。本発明においては、予定の鋼板のサイズや圧延終了時の鋼板温度、冷却水量、冷却停止温度などの冷却条件に基づいて、所定の冷却条件を決定することが好ましい。なお、本発明において歪量とは、鋼板面内における高低差で表される歪量であり、例えば、鋼板面内の最高点と最低点との差が歪量である。また鋼板の上面と下面の冷却速度の違いにより上記歪が生じるため、鋼板は上反り又は下反りになる。上反りとは鋼板の幅方向断面が下に凸の形状であり、下反りとは鋼板の幅方向断面が上に凸の形状である。上記歪量は反り量を意味し、本発明においては上反りであれば歪量が負の値、下反りであれば正の値とする。   The actual cooling strain amount may be an actual measurement value of the strain amount of the steel sheet cooled by adopting predetermined cooling conditions. The predetermined cooling condition may be determined by a general method. In the present invention, it is preferable to determine a predetermined cooling condition based on a cooling condition such as a planned steel sheet size, a steel sheet temperature at the end of rolling, a cooling water amount, and a cooling stop temperature. In the present invention, the strain amount is a strain amount represented by a difference in elevation in the steel plate surface. For example, the difference between the highest point and the lowest point in the steel plate surface is the strain amount. Moreover, since the said distortion arises by the difference in the cooling rate of the upper surface of a steel plate, and a lower surface, a steel plate will warp upward or downward. An upward warp is a shape in which the cross section in the width direction of the steel plate is convex downward, and a downward warp is a shape in which the cross section in the width direction of the steel plate is convex upward. The amount of distortion means the amount of warpage, and in the present invention, the amount of distortion is a negative value if warped, and a positive value if warped.

補正前上下水量比は、上記所定の冷却条件での、上下水量比を意味する。なお、本発明の効果を高めるためには、上記所定の冷却条件の決定の際に、上下面の温度降下量が同一となるような冷却能が得られるように、上下水量比の条件を決めることが好ましい。   The water / water ratio before correction means the water / water ratio in the predetermined cooling condition. In order to enhance the effect of the present invention, when determining the predetermined cooling condition, the condition of the water amount ratio is determined so that the cooling ability can be obtained so that the temperature drop amounts on the upper and lower surfaces are the same. It is preferable.

上記所定の冷却条件で冷却した鋼板の冷却完了後の歪量を、レーザ距離計などを用いて測定する。鋼板までの距離を測定し、鋼板の幅方向における高低差を測定する。特に任意の位置における幅方向の最高点と最低点の高さの差を幅方向歪量とする。また、鋼板の長手方向の任意の位置における幅方向歪量を複数測定する。各位置における幅方向歪量のうち、鋼板中で最も大きい幅方向歪量を最大幅方向歪量とする。ここで、幅方向歪量は、連続的に全体に亘って測定することが好ましい。また、鋼板の長手方向の任意の位置における各幅方向における幅方向歪量を鋼板全長にわたって平均した値を長手方向平均幅方向歪量とする。歪量の測定は、実冷却歪量を次鋼板以降の冷却条件に反映させる必要があるため、冷却装置の出側の近くで行うことが好ましい。   The amount of strain after the cooling of the steel sheet cooled under the predetermined cooling condition is measured using a laser distance meter or the like. The distance to the steel plate is measured, and the height difference in the width direction of the steel plate is measured. In particular, the difference in height between the highest point and the lowest point in the width direction at an arbitrary position is defined as the amount of strain in the width direction. Further, a plurality of width direction strain amounts at arbitrary positions in the longitudinal direction of the steel sheet are measured. Of the amount of strain in the width direction at each position, the largest amount of strain in the width direction in the steel sheet is defined as the maximum amount of strain in the width direction. Here, it is preferable to measure the amount of strain in the width direction continuously over the whole. Moreover, let the value which averaged the width direction distortion amount in each width direction in the arbitrary positions of the longitudinal direction of a steel plate over the steel plate full length be a longitudinal direction average width direction distortion amount. The measurement of the strain amount is preferably performed near the outlet side of the cooling device because the actual cooling strain amount needs to be reflected in the cooling conditions after the subsequent steel plate.

上記のように、冷却完了後の鋼板の歪量を測定し、歪量が小さくなるように上下水量比(上下水量比=上面側冷却水量密度/下面側冷却水量密度)を補正する。例えば、鋼板が上反りとなった場合には、鋼板の下側の冷却が上側よりも強すぎるため、上下水量比がより大きくなるように補正する。逆に鋼板が下反りとなった場合には、鋼板の上側の冷却が下側よりも強すぎるため、上下水量比がより小さくなるように補正する。補正後上下水量比は過去の実績から適当と思われる補正量を、冷却後の鋼板の上反り、下反りに応じて、補正前上下水量比に加減して補正しても良いし、下記の方法により定めてもよい。   As described above, the strain amount of the steel sheet after completion of cooling is measured, and the vertical water amount ratio (vertical water amount ratio = upper surface side cooling water amount density / lower surface side cooling water amount density) is corrected so as to reduce the strain amount. For example, when the steel plate is warped, the cooling on the lower side of the steel plate is too stronger than the upper side, and therefore the correction is made so that the water amount ratio is larger. On the contrary, when the steel plate is warped, the cooling on the upper side of the steel plate is too strong than the lower side, and therefore the correction is made so that the ratio of the amount of water to water is smaller. The corrected water and sewage ratio may be corrected by adding or subtracting the correction amount that seems to be appropriate based on past results to the pre-correction water and sewage ratio according to the upper and lower warpage of the steel sheet after cooling. It may be determined by a method.

複数の上下水量比で鋼板を冷却し、冷却後の歪量を実測する。横軸を歪量、縦軸を上下水量比としてプロットして、直線近似したときの直線の傾きをαとする。ここでαは歪量による上下水量比の補正係数となる。そして下記(1)式により、上下水量比を補正する。   The steel sheet is cooled at a plurality of water / water ratios, and the amount of strain after cooling is measured. Plotting the horizontal axis as the strain amount and the vertical axis as the water amount ratio, the slope of the straight line when approximated by a straight line is α. Here, α is a correction coefficient for the water / water ratio by the amount of distortion. Then, the upper and lower water ratio is corrected by the following equation (1).

補正後上下水量比=補正前上下水量比×(1−α×実冷却歪量) (1)
さらに、次の鋼板を補正後上下水量比で冷却し冷却完了後の鋼板の歪量が十分に小さくなっていなければ、さらに上記の上下水量比の補正を繰り返す。
Corrected water / water ratio = Water / water ratio before correction x (1-α x actual cooling strain) (1)
Further, the next steel plate is cooled at the corrected water / water ratio, and the correction of the water / water ratio is repeated if the amount of distortion of the steel plate after cooling is not sufficiently reduced.

また、歪量としては、最大幅方向歪量、長手方向平均幅方向歪量などのいずれを用いても良いが、鋼板の幅方向歪は鋼板の先端で最大となることが一般的であるので、最大幅方向歪量(一般的には鋼板先端での幅方向歪量と同じとなることが多い)を用いることが最も簡便で有効である。   Further, as the amount of strain, any of the maximum width direction strain amount, the longitudinal direction average width direction strain amount, etc. may be used. However, since the width direction strain of the steel sheet is generally maximized at the tip of the steel sheet. It is most convenient and effective to use the maximum amount of strain in the width direction (generally the same as the amount of strain in the width direction at the tip of the steel plate in many cases).

上記の通り、本発明によれば、実冷却歪量をもとに、その歪量が小さくなる条件を決定するため、気温、水温、板厚、鋼種、鋼板温度などの様々な影響を考慮していることになる。   As described above, according to the present invention, in order to determine the conditions for reducing the strain amount based on the actual cooling strain amount, various effects such as air temperature, water temperature, sheet thickness, steel type, steel plate temperature are considered. Will be.

また、本発明では、板厚や鋼板温度等によらず、冷却後の歪量に基づいて上下流量比を制御するため、板厚や表面温度ごとに細かい指示をせずとも、平坦度に優れた鋼板を製造できる。   In addition, in the present invention, the vertical flow rate ratio is controlled based on the strain after cooling, regardless of the plate thickness, the steel plate temperature, etc., so excellent flatness is achieved without giving detailed instructions for each plate thickness or surface temperature. Steel plate can be manufactured.

1つ前に冷却された鋼板の状態から、上記の方法で補正後上下水量比を導出することを連続的に実施すれば、気温等の変化が生じても平坦度に優れた鋼板となる。なお、「連続的に」とは、毎回、1つ前に冷却された鋼板の状態から補正後上下水量比を導出してもよいし、数個おき、数十個おきに1つ前に冷却された鋼板の状態から、上記補正後上下水量比を導出してもよい。特に、気温の変化等が小さい場合には、毎回、上記補正後上下水量比を導出する必要はない。   By continuously deriving the corrected water and water ratio by the above method from the state of the steel plate that has been cooled one before, a steel plate having excellent flatness can be obtained even if the temperature or the like changes. “Continuously” means that the corrected water and water ratio may be derived from the state of the steel plate that has been cooled one time before, or every few or several tens of times before cooling. The corrected water and water ratio may be derived from the state of the steel sheet. In particular, when the change in temperature or the like is small, it is not necessary to derive the corrected water and water ratio every time.

なお、本発明の冷却方法は、例えば、図1に示す冷却装置に、冷却後の鋼板の歪量を測定する歪量測定部と、該歪量測定部での測定結果を受け取り、補正後上下水量比を算出する電子計算機と、電子計算機で算出された結果に基づき上下水量比を制御する上下水量比制御部と、を設ければ実施できる。   In the cooling method of the present invention, for example, the cooling device shown in FIG. 1 receives the strain amount measuring unit for measuring the strain amount of the steel sheet after cooling, and the measurement result in the strain amount measuring unit, This can be implemented by providing an electronic computer that calculates the water amount ratio and a water and water ratio control unit that controls the water and water ratio based on the result calculated by the computer.

25.8mm×2206mm×8016mmの厚鋼板について、鋼板の上記サイズ、冷却開始温度(740℃)、冷却水量(57.3ton/min)、冷却停止温度(650℃)に基づいて、過去の実績から最適と考えられる鋼板の上下水量比を0.67とした。   Based on the above results of the steel plate of 25.8 mm x 2206 mm x 8016 mm, based on the above results, cooling start temperature (740 ° C), cooling water amount (57.3 ton / min), cooling stop temperature (650 ° C) The water / water ratio of the steel plate considered to be optimal was 0.67.

上記の冷却条件で、熱間圧延後の鋼板の制御冷却を行ったところ、上反りであり、最大幅方向歪量が−9.0mmとなった(図2参照)。この歪量を実冷却歪量として、以下、本発明を実施した。なお、図2はレーザ変位計を用いて測定した鋼板内の歪み分布である。   When controlled cooling of the steel sheet after hot rolling was performed under the above cooling conditions, it was warped and the maximum width direction strain amount was −9.0 mm (see FIG. 2). Hereinafter, the present invention was carried out with this strain amount as the actual cooling strain amount. FIG. 2 shows the strain distribution in the steel sheet measured using a laser displacement meter.

それまでの、上下水量比と最大幅方向歪量の測定データから前記式(1)のαは0.018と求められた。前記式(1)においてα=0.018として下記式(2)を得た。   From the measurement data of the water and water ratio and the maximum width direction strain until then, α in the formula (1) was determined to be 0.018. In the above formula (1), α = 0.018 was obtained to obtain the following formula (2).

補正後上下水量比=補正前上下水量比×(1−0.018×実冷却歪量) (2)
上記式(2)に、補正前上下水量比に0.67を代入し、実冷却歪量に−9.0を代入すると、補正後上下水量比0.78が得られた。この上下水量比で、同様のサイズの厚鋼板に同様の冷却開始温度、冷却停止温度で制御冷却を行ったところ、最大幅方向歪量は0.9mmであった(図2と同様の方法で測定した図3参照)。
Water / water ratio after correction = Water / water ratio before correction × (1−0.018 × actual cooling strain amount) (2)
Substituting 0.67 into the uncorrected water / water ratio before correction and substituting −9.0 into the actual cooling strain into the above equation (2), a corrected water / water ratio of 0.78 was obtained. When controlled cooling was performed at the same cooling start temperature and cooling stop temperature on a thick steel plate of the same size at this water / water ratio, the maximum strain in the width direction was 0.9 mm (in the same manner as in FIG. 2). FIG. 3 measured).

以上の通り、冷却後の鋼板の歪量に基づいて上下水量比を補正することで、歪量が減少し、即ち、平坦度の高い鋼板となることが分かった。   As described above, it has been found that the amount of strain is reduced by correcting the water and water ratio based on the strain amount of the steel plate after cooling, that is, the steel plate has a high flatness.

1 熱間圧延機
2 冷却装置
3 鋼板
4 テーブルロール
5 水切りロール
6 上面ノズル
7 下面ノズル
DESCRIPTION OF SYMBOLS 1 Hot rolling mill 2 Cooling device 3 Steel plate 4 Table roll 5 Draining roll 6 Upper surface nozzle 7 Lower surface nozzle

Claims (2)

熱間圧延された高温の鋼板を、入出側を水切ロールで仕切られた複数の冷却ゾーンを備えた冷却装置に搬送し、鋼板上下面から冷却する鋼板の冷却方法において、
複数の鋼板を連続的に冷却する際に、前記複数の鋼板における一の鋼板を所定の冷却条件で冷却したときの冷却後の鋼板面内における高低差で表される歪量の実測値を実冷却歪量とし、前記所定の冷却条件における上下水量比(上下水量比=上面側冷却水量密度/下面側冷却水量密度)を補正前上下水量比としたときに、前記実冷却歪量よりも歪量が小さくなるように、上下水量比を補正して補正後上下水量比とし、前記補正後上下水量比の冷却条件で、前記一の鋼板の次に冷却される鋼板を冷却することを特徴とする冷却方法。
In the method of cooling a steel plate, the hot-rolled hot steel plate is conveyed to a cooling device having a plurality of cooling zones partitioned on the entry and exit sides by a draining roll, and cooled from the upper and lower surfaces of the steel plate.
When continuously cooling a plurality of steel plates, an actual measured value of the strain amount expressed by the height difference in the steel plate surface after cooling when one steel plate of the plurality of steel plates is cooled under a predetermined cooling condition is realized. When the cooling strain amount is set, and the vertical water amount ratio (upper and lower water amount ratio = upper surface side cooling water amount density / lower surface side cooling water amount density) under the predetermined cooling condition is set as the pre-correction upper and lower water amount ratio, the distortion is larger than the actual cooling strain amount. Correcting the water / water ratio to obtain a corrected water / water ratio, and cooling the steel sheet to be cooled next to the one steel sheet under the cooling condition of the corrected water / water ratio after the correction. Cooling method.
前記補正後上下水量比は、前記補正前上下水量比から下記式(1)で求められることを特徴とする請求項1に記載の鋼板の冷却方法。
補正後上下水量比=補正前上下水量比×(1−α×実冷却歪量) (1)
ただし、式(1)において、αは実測データより定める定数である。
The steel sheet cooling method according to claim 1, wherein the corrected water and water ratio is obtained from the pre-correction water and water ratio by the following formula (1).
Corrected water / water ratio = Water / water ratio before correction x (1-α x actual cooling strain) (1)
However, in Formula (1), (alpha) is a constant defined from actual measurement data.
JP2014172670A 2014-08-27 2014-08-27 Steel plate cooling method Active JP6430179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172670A JP6430179B2 (en) 2014-08-27 2014-08-27 Steel plate cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014172670A JP6430179B2 (en) 2014-08-27 2014-08-27 Steel plate cooling method

Publications (2)

Publication Number Publication Date
JP2016047538A true JP2016047538A (en) 2016-04-07
JP6430179B2 JP6430179B2 (en) 2018-11-28

Family

ID=55648748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172670A Active JP6430179B2 (en) 2014-08-27 2014-08-27 Steel plate cooling method

Country Status (1)

Country Link
JP (1) JP6430179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922371B1 (en) 2019-02-07 2023-06-07 JFE Steel Corporation Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218454A (en) * 1975-08-04 1977-02-12 Nippon Steel Corp Method of manufacturing steel plate
JPS584209U (en) * 1981-06-30 1983-01-12 新日本製鐵株式会社 Online cooling device for cooled material
JPH05317941A (en) * 1992-05-20 1993-12-03 Nippon Steel Corp Method for controlling water cooling for barsteel and wire rod
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JPH08117807A (en) * 1994-10-27 1996-05-14 Nippon Steel Corp Manufacture of thick steel plate excellent in toughness
JPH10263696A (en) * 1997-03-21 1998-10-06 Nippon Steel Corp Cooling method at the time of winding hot rolled steel sheet
JP2002361317A (en) * 2001-06-12 2002-12-17 Kawasaki Steel Corp Hot endless rolling method and method for manufacturing hot endless rolling product
JP2003025008A (en) * 2001-07-12 2003-01-28 Kawasaki Steel Corp Control method for cooling metallic material to be rolled in hot rolling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218454A (en) * 1975-08-04 1977-02-12 Nippon Steel Corp Method of manufacturing steel plate
JPS584209U (en) * 1981-06-30 1983-01-12 新日本製鐵株式会社 Online cooling device for cooled material
JPH05317941A (en) * 1992-05-20 1993-12-03 Nippon Steel Corp Method for controlling water cooling for barsteel and wire rod
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JPH08117807A (en) * 1994-10-27 1996-05-14 Nippon Steel Corp Manufacture of thick steel plate excellent in toughness
JPH10263696A (en) * 1997-03-21 1998-10-06 Nippon Steel Corp Cooling method at the time of winding hot rolled steel sheet
JP2002361317A (en) * 2001-06-12 2002-12-17 Kawasaki Steel Corp Hot endless rolling method and method for manufacturing hot endless rolling product
JP2003025008A (en) * 2001-07-12 2003-01-28 Kawasaki Steel Corp Control method for cooling metallic material to be rolled in hot rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922371B1 (en) 2019-02-07 2023-06-07 JFE Steel Corporation Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate

Also Published As

Publication number Publication date
JP6430179B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR100780503B1 (en) Controllable cooling method for thick steel plate and cooling device for the thick steel plate
JP2018529845A (en) Hot-dip galvanized layer thickness control system and method for continuously variable thickness strip material
EP3156512B1 (en) Method for cooling steel strip and cooling installation
KR101149210B1 (en) Cooling control apparatus for hot rolled steel sheets and method thereof
KR101467724B1 (en) Method for cooling hot-rolled steel sheet
JP6430179B2 (en) Steel plate cooling method
KR20140100884A (en) Hot rolled steel sheet cooling device
KR20200085880A (en) Cooling device and cooling method of thick steel plate and manufacturing equipment and manufacturing method of thick steel plate
EP2979770B1 (en) Thick steel plate manufacturing device and manufacturing method
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP6353385B2 (en) Thick steel plate cooling method and thick steel plate cooling device
TW202037419A (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP6086089B2 (en) Steel plate cooling method
JP2013123734A (en) Method and device for controlling hot finishing temperature
WO2019106785A1 (en) Plate warp correction device for metal plates, and continuous plating processing equipment for metal plates
JP2009056504A (en) Manufacturing method and manufacturing device of hot-rolled steel sheet
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JP6275525B2 (en) Thick steel plate cooling method, thick steel plate manufacturing method, and thick steel plate cooling apparatus
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JP7017439B2 (en) Thick steel plate cooling method
WO2014087516A1 (en) Method for producing steel sheet
JP2008188604A (en) Temperature control method in cooling of steel sheet
JP2014050875A (en) Cooling device, manufacturing apparatus and manufacturing method of hot rolled steel sheet
JP5971229B2 (en) H-shaped steel cooling control method and H-shaped steel cooling control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170818

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171013

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181031

R150 Certificate of patent or registration of utility model

Ref document number: 6430179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250