JP5971229B2 - H-shaped steel cooling control method and H-shaped steel cooling control device - Google Patents

H-shaped steel cooling control method and H-shaped steel cooling control device Download PDF

Info

Publication number
JP5971229B2
JP5971229B2 JP2013246030A JP2013246030A JP5971229B2 JP 5971229 B2 JP5971229 B2 JP 5971229B2 JP 2013246030 A JP2013246030 A JP 2013246030A JP 2013246030 A JP2013246030 A JP 2013246030A JP 5971229 B2 JP5971229 B2 JP 5971229B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
cooling water
flange
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013246030A
Other languages
Japanese (ja)
Other versions
JP2015100844A (en
Inventor
晃輝 山本
晃輝 山本
正章 池原
正章 池原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013246030A priority Critical patent/JP5971229B2/en
Publication of JP2015100844A publication Critical patent/JP2015100844A/en
Application granted granted Critical
Publication of JP5971229B2 publication Critical patent/JP5971229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

本発明は、H形鋼のフランジを冷却する冷却制御方法及びH形鋼の冷却制御装置に関する。   The present invention relates to a cooling control method for cooling a flange of an H-section steel and a cooling control apparatus for the H-section steel.

従来、H形鋼のフランジ冷却による形状制御方法として、例えば特許文献1に記載の技術がある。この技術は、H形鋼のフランジ表面のフランジ幅方向の温度分布をフランジ冷却前後で測定し、このフランジ幅方向温度分布に基づいて、フランジ水冷装置のノズル高さやノズル角度を調整するものである。ここでは、フランジ幅方向温度分布に基づいて、フランジ幅方向の温度中心位置を算出し、この温度中心位置を用いてノズル高さやノズル角度を調整している。   Conventionally, there is a technique described in Patent Document 1, for example, as a shape control method by H-shaped steel flange cooling. This technology measures the temperature distribution in the flange width direction on the flange surface of the H-shaped steel before and after cooling the flange, and adjusts the nozzle height and nozzle angle of the flange water cooling device based on the temperature distribution in the flange width direction. . Here, the temperature center position in the flange width direction is calculated based on the temperature distribution in the flange width direction, and the nozzle height and nozzle angle are adjusted using this temperature center position.

特開平09−295003号公報JP 09-295003 A

しかしながら、上記特許文献1に記載の技術にあっては、フランジ冷却完了後のフランジ幅方向の温度中心位置をフランジ幅中心位置と一致させることはできるが、冷却水の温度のばらつきについては全く考慮されていない。そのため、例えば夏季と冬季など、冷却水の温度が著しく異なるとH形鋼の仕上がり温度がばらつき、冷却後の形状にばらつきが生じてしまう。また、H形鋼のフランジ幅方向の温度分布を測定した後に、その温度分布に基づいて次材に対する冷却条件を変更する構成であるため、最初に通材するH形鋼に対しては適正な冷却条件を設定することができない。
そこで、本発明は、H形鋼の仕上がり温度と冷却後の形状のばらつきを低減することができるH形鋼の冷却制御方法及びH形鋼の冷却制御装置を提供することを課題としている。
However, in the technique described in Patent Document 1, the temperature center position in the flange width direction after completion of the flange cooling can be made to coincide with the flange width center position, but the temperature variation of the cooling water is completely taken into consideration. It has not been. Therefore, for example, when the temperature of the cooling water is significantly different in summer and winter, for example, the finishing temperature of the H-section steel varies, and the shape after cooling varies. In addition, after measuring the temperature distribution of the H-shaped steel in the flange width direction, the cooling condition for the next material is changed based on the temperature distribution. The cooling condition cannot be set.
Then, this invention makes it the subject to provide the cooling control method of H-section steel, and the cooling control apparatus of H-section steel which can reduce the dispersion | variation in the finishing temperature of H-section steel and the shape after cooling.

上記課題を解決するために、本発明に係るH形鋼の冷却制御方法の一態様は、H形鋼製造ラインを搬送しながらH形鋼のフランジ表面に冷却水を噴射して当該フランジを冷却するH形鋼の冷却制御方法であって、前記冷却水の温度に応じて、冷却前後の前記フランジの温度変化量が予め設定した目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整するものであり、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び冷却前後の前記フランジの温度変化量に基づいて決定される冷却速度係数と、前記冷却水の温度との関係を予め算出しておき、前記冷却水の実測温度に対応する冷却速度係数と前記目標温度変化量とに基づいて、冷却前後の前記フランジ温度変化量が前記目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整することを特徴としている。 In order to solve the above problems, one aspect of the cooling control method for H-section steel according to the present invention is to cool the flange by injecting cooling water onto the flange surface of the H-section steel while conveying the H-section steel production line. A method for controlling the cooling of the H-section steel, in which the cooling water is injected so that the temperature change amount of the flange before and after cooling becomes a preset target temperature change amount according to the temperature of the cooling water. And adjusting at least one of the H-shaped steel passing speed, based on the flow rate at which the cooling water is injected, the H-shaped steel passing speed, and the temperature change of the flange before and after cooling. The relationship between the determined cooling rate coefficient and the temperature of the cooling water is calculated in advance, and based on the cooling rate coefficient corresponding to the actually measured temperature of the cooling water and the target temperature change amount, The amount of flange temperature change is the target temperature As a variation, and wherein the flow for injecting cooling water, and adjusting at least one of the passing material speed of the H-shaped steel.

これにより、冷却水の温度によらずに、冷却後の仕上がり温度を略一定に保つことができる。すなわち、冬季など冷却水の温度が夏季と比較して著しく低い場合には、夏季と同じ冷却条件(冷却水の流量、H形鋼の通材速度)で冷却すると、H形鋼の冷却後の仕上がり温度が夏季と比較して著しく低下してしまうことを考慮し、冷却水の流量を少なくしたり、通材速度を速くしたりといった調整を行うことができる。このように、冷却水の温度のばらつきに起因する冷却後の仕上がり温度のばらつきを、最初に通材するH形鋼から低減することができる。   Thereby, the finishing temperature after cooling can be kept substantially constant regardless of the temperature of the cooling water. That is, when the temperature of the cooling water is extremely low compared to the summer, such as in the winter, cooling with the same cooling conditions as the summer (cooling water flow rate, H-section steel passing speed) Considering that the finished temperature is significantly lower than that in summer, it is possible to make adjustments such as reducing the flow rate of cooling water and increasing the material passing speed. Thus, the variation in the finished temperature after cooling due to the variation in the temperature of the cooling water can be reduced from the H-section steel that is initially passed.

また、上記において、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び冷却前後の前記フランジの温度変化量に基づいて決定される冷却速度係数と、前記冷却水の温度との関係を予め算出しておき、前記冷却水の実測温度に対応する冷却速度係数と前記目標温度変化量とに基づいて、冷却前後の前記フランジの温度変化量が前記目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の何れか一方を調整する。
このように、冷却水の温度による冷却速度への影響を予め求めたうえで、冷却水の流量や通材速度を調整する。したがって、冷却前後のフランジの温度変化量が目標温度変化量となるような適正な冷却条件を設定することができる。
Further, in the above, a cooling rate coefficient determined on the basis of a flow rate for injecting the cooling water, a material passing speed of the H-shaped steel, and a temperature change amount of the flange before and after cooling, and a temperature of the cooling water The relationship is calculated in advance, and based on the cooling rate coefficient corresponding to the measured temperature of the cooling water and the target temperature change amount, the temperature change amount of the flange before and after cooling becomes the target temperature change amount. , the flow rate for injecting the cooling water, and that to adjust the one of the passing material speed of the H-shaped steel.
As described above, the flow rate of the cooling water and the material passing speed are adjusted after the influence of the temperature of the cooling water on the cooling rate is obtained in advance. Therefore, it is possible to set an appropriate cooling condition such that the temperature change amount of the flange before and after cooling becomes the target temperature change amount.

さらに、上記において、前記目標温度変化量は、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び前記冷却水の温度をそれぞれ標準値としたときの冷却前後の前記フランジの温度変化量であることが好ましい。これにより、冷却水の温度がばらついた場合でも、冷却後の仕上がり温度を標準水温で冷却したときの仕上がり温度に保つことができる。   Furthermore, in the above, the target temperature change amount is the temperature of the flange before and after cooling when the flow rate for injecting the cooling water, the material passing speed of the H-section steel, and the temperature of the cooling water are standard values. The amount of change is preferred. Thereby, even when the temperature of the cooling water varies, the finished temperature after cooling can be kept at the finished temperature when cooled by the standard water temperature.

また、本発明に係るH形鋼の冷却制御装置の一態様は、H形鋼製造ラインを搬送しながらH形鋼のフランジ表面に冷却水を噴射して当該フランジを冷却するH形鋼の冷却制御装置であって、前記冷却水の温度を測定する温度測定部と、前記温度測定部で測定した前記冷却水の温度に応じて、冷却前後の前記フランジの温度変化量が予め設定した目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整する冷却条件調整部と、を備え、該冷却条件調整部は、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び冷却前後の前記フランジの温度変化量に基づいて決定される冷却速度係数と、前記冷却水の温度との関係を予め算出しておき、前記冷却水の実測温度に対応する冷却速度係数と前記目標温度変化量とに基づいて、冷却前後の前記フランジ温度変化量が前記目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整することを特徴としている。
これにより、冷却水の温度によらずに、冷却後の仕上がり温度を略一定に保つことができる。このように、冷却水の温度のばらつきに起因する冷却後の仕上がり温度のばらつきを低減することができるので、冷却後のH形鋼の形状のばらつきを低減することができる。
Moreover, one aspect | mode of the cooling control apparatus of the H-section steel which concerns on this invention is cooling the H-section steel which injects a cooling water on the flange surface of H-section steel while conveying an H-section steel manufacturing line, and cools the said flange A temperature measuring unit that measures the temperature of the cooling water, and a target temperature in which a temperature change amount of the flange before and after cooling is set in advance according to the temperature of the cooling water measured by the temperature measuring unit. A cooling condition adjusting unit that adjusts at least one of a flow rate for injecting the cooling water and a material passing speed of the H-shaped steel so as to change , and the cooling condition adjusting unit Preliminarily calculating the relationship between the cooling water temperature and the cooling rate coefficient determined based on the flow rate to be injected, the material passing speed of the H-shaped steel, and the temperature change amount of the flange before and after cooling, Cooling rate coefficient corresponding to measured temperature of cooling water Based on the target temperature change amount, at least one of a flow rate for injecting the cooling water and a material passing speed of the H-section steel so that the flange temperature change amount before and after cooling becomes the target temperature change amount. It is characterized by adjusting .
Thereby, the finishing temperature after cooling can be kept substantially constant regardless of the temperature of the cooling water. Thus, since the variation in the finishing temperature after cooling resulting from the variation in the temperature of the cooling water can be reduced, the variation in the shape of the H-shaped steel after cooling can be reduced.

本発明によれば、H形鋼のフランジ表面に噴射する冷却水の温度に応じて、冷却水を噴射する流量やH形鋼の通材速度を調整するので、冷却水の温度がばらついている場合でも、最初に通材する材料から仕上がり温度と冷却後の形状のばらつきを低減することができる。   According to the present invention, the flow rate of the cooling water and the material passing speed of the H-shaped steel are adjusted according to the temperature of the cooling water sprayed to the flange surface of the H-shaped steel, so the temperature of the cooling water varies. Even in this case, it is possible to reduce variations in the finishing temperature and the shape after cooling from the material that is initially passed.

H形鋼圧延ラインを示す概略図である。It is the schematic which shows a H-section steel rolling line. H形鋼を示す図である。It is a figure which shows H-section steel. フランジ水冷設備の概要を説明する図である。It is a figure explaining the outline | summary of a flange water cooling equipment. 温度プロフィールの変化例を示す図である。It is a figure which shows the example of a change of a temperature profile. フランジ形状不良の発生例である。This is an example of a defective flange shape. 冷却速度係数の測定点を示す図である。It is a figure which shows the measuring point of a cooling rate coefficient. フランジA点での冷却水の温度と冷却速度係数との関係を示す図である。It is a figure which shows the relationship between the temperature of the cooling water in the flange A point, and a cooling rate coefficient. フランジB点での冷却水の温度と冷却速度係数との関係を示す図である。It is a figure which shows the relationship between the temperature of the cooling water in the flange B point, and a cooling rate coefficient. 冷却制御処理を実行する冷却制御装置の機能ブロック図である。It is a functional block diagram of the cooling control apparatus which performs cooling control processing.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態のH形鋼の冷却制御方法を適用するH形鋼圧延ライン(搬送ライン)を示す概略図である。
この図1に示すように、H形鋼圧延ライン1は、上流側から下流側に向けて、加熱炉2、粗圧延機3、中間圧延機4、水冷設備5、仕上圧延機6を順次配置している。
加熱炉2は、断面が扁平形状のH形鋼素材を所定の温度に加熱するものであり、加熱炉2で加熱処理されたH形鋼素材は、粗圧延機3で粗造形圧延される。粗造形後のH形鋼素材は、中間圧延機4で中間圧延が施された後、水冷設備5で冷却され、仕上圧延機6で仕上圧延が施されてH形鋼が製造される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an H-section steel rolling line (conveyance line) to which the H-section steel cooling control method of this embodiment is applied.
As shown in FIG. 1, in the H-section steel rolling line 1, a heating furnace 2, a rough rolling mill 3, an intermediate rolling mill 4, a water cooling facility 5, and a finishing rolling mill 6 are sequentially arranged from the upstream side to the downstream side. doing.
The heating furnace 2 heats an H-shaped steel material having a flat cross section to a predetermined temperature, and the H-shaped steel material heat-treated in the heating furnace 2 is roughly shaped and rolled by the roughing mill 3. After the rough shaping, the H-shaped steel material is subjected to intermediate rolling by the intermediate rolling mill 4, then cooled by the water-cooling equipment 5, and finish-rolled by the finishing mill 6 to produce H-shaped steel.

図2に示すように、H形鋼10は、フランジ11とウェブ12とを備え、フランジ11が鉛直方向となる姿勢でH形鋼圧延ライン1の図示しないテーブルロール上を搬送される。そして、水冷設備5は、H形鋼10のフランジ11の外表面から冷却水を噴射することで、H形鋼10を冷却するようになっている。
すなわち、水冷設備5は、第1冷却ゾーン5aと第2冷却ゾーン5bとで構成されており、それぞれ冷却水を噴射するためのノズルがH形鋼圧延ライン1を挟んで対向配置されている。ここで、第1冷却ゾーン5aでは、図3(a)に示すように、ノズル5cから冷却水を噴射してフランジ11の幅方向中央部をスポット冷却する。また、第2冷却ゾーン5bでは、図3(b)に示すように、ノズル5dから冷却水を噴射してフランジ11の全幅を冷却する。
As shown in FIG. 2, the H-section steel 10 includes a flange 11 and a web 12, and is conveyed on a table roll (not shown) of the H-section steel rolling line 1 in a posture in which the flange 11 is in the vertical direction. And the water cooling equipment 5 cools the H-section steel 10 by injecting cooling water from the outer surface of the flange 11 of the H-section steel 10.
That is, the water cooling facility 5 is composed of a first cooling zone 5 a and a second cooling zone 5 b, and nozzles for injecting cooling water are arranged opposite to each other across the H-section steel rolling line 1. Here, in the 1st cooling zone 5a, as shown to Fig.3 (a), a cooling water is injected from the nozzle 5c and the center part of the width direction of the flange 11 is spot-cooled. In the second cooling zone 5b, as shown in FIG. 3B, cooling water is injected from the nozzle 5d to cool the entire width of the flange 11.

また、中間圧延機4の前後、及び仕上圧延機6の前後には、それぞれ温度計7a〜7dが配置されている。そのため、温度計7bと7cとで、水冷設備5による冷却前のフランジ温度と冷却後のフランジ温度とを測定可能となっている。
ここで、フランジ幅方向の温度分布は、冷却水を噴射する流量やH形鋼の通材速度、冷却水の温度などにより決定する。つまり、冷却水の流量や通材速度を同一条件に設定しても、冷却水の温度の影響によりフランジ幅方向の温度分布は変化する。
In addition, thermometers 7a to 7d are arranged before and after the intermediate rolling mill 4 and before and after the finish rolling mill 6, respectively. Therefore, the thermometers 7b and 7c can measure the flange temperature before cooling by the water cooling facility 5 and the flange temperature after cooling.
Here, the temperature distribution in the flange width direction is determined by the flow rate at which the cooling water is injected, the H-beam passing speed, the temperature of the cooling water, and the like. That is, even if the cooling water flow rate and the material passing speed are set to the same condition, the temperature distribution in the flange width direction changes due to the influence of the cooling water temperature.

図4は、フランジ11の温度プロフィール例を示す図である。この図4に示すように、夏季と冬季など、冷却水の温度に差があると温度プロフィールが変化する。具体的には、冬季の冷却水の温度は夏季のそれと比べて著しく低いため、冷却水の流量や通材速度を同一条件に設定しても、冬季の冷却後のフランジ温度は夏季の冷却後のフランジ温度よりも低くなる。このように、温度プロフィールが変化すると、仕上圧延機6でのH形鋼の温度(水冷設備5の仕上がり温度)がばらつき、図5(a)に示すようなフランジの外倒れや、図5(b)に示すようなフランジの内倒れといった形状不良が発生し得る。   FIG. 4 is a diagram illustrating an example of a temperature profile of the flange 11. As shown in FIG. 4, the temperature profile changes when there is a difference in the temperature of the cooling water, such as in summer and winter. Specifically, since the temperature of the cooling water in winter is significantly lower than that in summer, the flange temperature after cooling in winter will be Lower than the flange temperature. As described above, when the temperature profile changes, the temperature of the H-section steel in the finishing mill 6 (finished temperature of the water cooling equipment 5) varies, and the flange falls over as shown in FIG. As shown in b), a shape defect such as inward flange fall may occur.

本発明者らは、冷却水の温度に応じて冷却水を噴射する流量や被冷却材であるH形鋼素材の通材速度を調整することで、H形鋼の仕上がり温度や冷却後の形状のばらつきを低減させることができることを知見した。
先ず、本発明者らは、冷却水の水温の影響を評価するために、次のような冷却速度係数実績をH形鋼の断面毎に調査した。
冷却速度係数=(冷却前温度−冷却後温度)/冷却水の流量×通材速度 ………(1)
ここでは、冷却水の流量と被冷却材の通材速度とをそれぞれ標準値に設定した状態で、冷却水の温度を所定範囲(例えば24℃〜33℃)内で変化させ、冷却前のフランジ温度と冷却後のフランジ温度とを測定することで、上記冷却速度係数を求めた。
なお、第1冷却ゾーン5aの冷却水の標準流量は2100[L/min]、第2冷却ゾーン5bの冷却水の標準流量は1160[L/min]、標準通材速度は3.0[m/s]に設定した。このように、このH形鋼圧延ライン1では、第1冷却ゾーン5a標準流量を、第2冷却ゾーン5bの標準流量に対して相対的に大きく設定している。
The inventors adjust the flow rate of jetting the cooling water according to the temperature of the cooling water and the passing speed of the H-shaped steel material that is the material to be cooled, so that the finished temperature of the H-shaped steel and the shape after cooling are adjusted. It has been found that the variation of can be reduced.
First, in order to evaluate the influence of the coolant temperature, the present inventors investigated the following cooling rate coefficient results for each cross section of the H-section steel.
Cooling rate coefficient = (temperature before cooling−temperature after cooling) / flow rate of cooling water × feeding speed ………… (1)
Here, the cooling water temperature is changed within a predetermined range (for example, 24 ° C. to 33 ° C.) in a state where the flow rate of the cooling water and the material passing speed of the material to be cooled are set to standard values, respectively, and the flange before cooling is performed. The cooling rate coefficient was determined by measuring the temperature and the flange temperature after cooling.
The standard flow rate of the cooling water in the first cooling zone 5a is 2100 [L / min], the standard flow rate of the cooling water in the second cooling zone 5b is 1160 [L / min], and the standard material passing speed is 3.0 [m. / S]. Thus, in this H-section steel rolling line 1, the first cooling zone 5a standard flow rate is set relatively large with respect to the standard flow rate of the second cooling zone 5b.

上記の条件で、図6に示すフランジ11のA点及びB点についてそれぞれ冷却速度係数を求めた結果を図7及び図8に示す。この図7と図8とを比較すると、フランジ11のB点における冷却速度係数は、冷却水の温度変化の影響を大きく受けることが分かる。
そこで、本実施形態では、特に第1冷却ゾーン5aにおいて、図8に示す冷却水の温度と冷却速度係数との関係を用いて、冷却水の温度に応じて冷却水の流量や通材速度といった冷却条件を適正に設定する冷却制御処理を実行する。
7 and 8 show the results of obtaining the cooling rate coefficients for the points A and B of the flange 11 shown in FIG. 6 under the above conditions. Comparing FIG. 7 and FIG. 8, it can be seen that the cooling rate coefficient at the point B of the flange 11 is greatly affected by the temperature change of the cooling water.
Therefore, in this embodiment, particularly in the first cooling zone 5a, using the relationship between the temperature of the cooling water and the cooling rate coefficient shown in FIG. A cooling control process for appropriately setting the cooling condition is executed.

図9は、冷却制御処理を実行する冷却制御装置の機能ブロック図である。この冷却制御装置20は、例えばCPUやメモリ等を有するマイクロコンピュータで構成され、冷却速度係数格納部21と、目標温度変化設定部22と、冷却速度係数算出部23と、流量設定部24と、通材速度設定部25とを備える。
冷却速度係数格納部21は、予め求めた図8に示すような冷却水の温度と冷却速度係数との関係を示す関係式を格納しておく。
FIG. 9 is a functional block diagram of a cooling control device that executes cooling control processing. The cooling control device 20 is composed of, for example, a microcomputer having a CPU, a memory, and the like, and includes a cooling rate coefficient storage unit 21, a target temperature change setting unit 22, a cooling rate coefficient calculation unit 23, a flow rate setting unit 24, And a material passing speed setting unit 25.
The cooling rate coefficient storage unit 21 stores a relational expression indicating the relationship between the cooling water temperature and the cooling rate coefficient obtained in advance as shown in FIG.

目標温度変化設定部22は、標準冷却条件(標準流量、標準通材速度、標準冷却水温度(ここでは32℃))での被冷却材の冷却前後の温度変化量を、目標温度変化量として設定する。ここでは、先ず、冷却速度係数格納部21に格納した関係式を参照し、標準温度(32℃)における冷却速度係数を算出する。次に、算出した標準温度での冷却速度係数と、標準流量と、標準通材速度とから、上記(1)式をもとに被冷却材の冷却前後の温度変化量(冷却前温度−冷却後温度)を算出する。そして、これを目標温度変化量として設定する。   The target temperature change setting unit 22 uses, as a target temperature change amount, a temperature change amount before and after cooling of the material to be cooled under standard cooling conditions (standard flow rate, standard material passing speed, standard cooling water temperature (32 ° C. in this case)). Set. Here, first, the cooling rate coefficient at the standard temperature (32 ° C.) is calculated with reference to the relational expression stored in the cooling rate coefficient storage unit 21. Next, based on the calculated cooling rate coefficient at the standard temperature, standard flow rate, and standard material passing speed, the amount of change in temperature before and after cooling of the material to be cooled based on the above equation (1) (temperature before cooling−cooling) After temperature) is calculated. This is set as the target temperature change amount.

冷却速度係数算出部23は、水冷設備5に設置された温度計5Aで測定した冷却水の温度を入力し、その温度実測値をもとに、冷却速度係数格納部21に格納した関係式を参照し、温度実測値に対応する冷却速度係数を算出する。
流量設定部24は、実測した冷却水で冷却したときの冷却前後のフランジ11の温度変化量が、目標温度変化設定部22で設定した目標温度変化量となるような冷却水の流量を設定する。具体的には、目標温度変化設定部22で設定した目標温度変化量と、冷却速度係数算出部23で算出した冷却速度係数と、標準通材速度とに基づいて、上記(1)式をもとに冷却水の流量を算出する。
すなわち、ここで算出される冷却水の流量は、通材速度を標準通材速度に設定して冷却したとき、フランジ11の冷却前後の温度変化量が、標準冷却条件で冷却したときのフランジ11の冷却前後の温度変化量と等しくなるような流量である。
The cooling rate coefficient calculation unit 23 inputs the temperature of the cooling water measured by the thermometer 5A installed in the water cooling facility 5, and based on the measured temperature value, the relational expression stored in the cooling rate coefficient storage unit 21 is obtained. The cooling rate coefficient corresponding to the actually measured temperature value is calculated with reference to FIG.
The flow rate setting unit 24 sets the flow rate of the cooling water so that the temperature change amount of the flange 11 before and after cooling when cooled with the actually measured cooling water becomes the target temperature change amount set by the target temperature change setting unit 22. . Specifically, based on the target temperature change amount set by the target temperature change setting unit 22, the cooling rate coefficient calculated by the cooling rate coefficient calculating unit 23, and the standard material passing speed, the above equation (1) is also obtained. And the flow rate of the cooling water is calculated.
That is, the flow rate of the cooling water calculated here is the flange 11 when the temperature change amount before and after the cooling of the flange 11 is cooled under the standard cooling condition when cooling is performed with the passing speed set to the standard passing speed. The flow rate is equal to the amount of temperature change before and after cooling.

そして、流量設定部24は、算出した冷却水の流量を流量指令値として水冷設備5の流量制御部5Bに出力する。これにより、水冷設備5から噴射される冷却水の流量が、流量指令値に応じて調整される。
ここで、流量設定部24が冷却水の流量を設定することに代えて、通材速度設定部25が通材速度を設定するようにしてもよい。この場合、通材速度設定部25は、実測した冷却水で冷却したときの冷却前後のフランジ11の温度変化量が、目標温度変化設定部22で設定した目標温度変化量となるような通材速度を設定する。具体的には、目標温度変化設定部22で設定した目標温度変化量と、冷却速度係数算出部23で算出した冷却速度係数と、標準流量とに基づいて、上記(1)式をもとに通材速度を算出する。
すなわち、ここで算出される通材速度は、冷却水の流量を標準流量に設定して冷却したとき、フランジ11の冷却前後の温度変化量が、標準冷却条件で冷却したときのフランジ11の温度変化量と等しくなるような通材速度である。
Then, the flow rate setting unit 24 outputs the calculated flow rate of the cooling water to the flow rate control unit 5B of the water cooling facility 5 as a flow rate command value. Thereby, the flow volume of the cooling water injected from the water cooling equipment 5 is adjusted according to the flow rate command value.
Here, instead of the flow rate setting unit 24 setting the flow rate of the cooling water, the material passing rate setting unit 25 may set the material passing rate. In this case, the material passing speed setting unit 25 passes the material so that the temperature change amount of the flange 11 before and after cooling when cooled with the measured cooling water becomes the target temperature change amount set by the target temperature change setting unit 22. Set the speed. Specifically, based on the above equation (1) based on the target temperature change amount set by the target temperature change setting unit 22, the cooling rate coefficient calculated by the cooling rate coefficient calculating unit 23, and the standard flow rate. Calculate the threading speed.
That is, the material passing speed calculated here is the temperature of the flange 11 when the cooling water is cooled under the standard cooling condition when the cooling water is cooled by setting the flow rate of the cooling water to the standard flow rate. The material passing speed is equal to the amount of change.

そして、通材速度設定部25は、算出した通材速度を通材速度指令値としてH形鋼圧延ライン1の通材速度制御部1Aに出力する。これにより、H形鋼圧延ライン1の通材速度が通材速度指令値に応じて調整される。
このように、本実施形態では、冷却水の温度による冷却速度への影響を予め求めたうえで、冷却水の温度の測定実績により冷却水を噴射する流量や被冷却材の通材速度を設定する。
なお、温度計5Aが温度測定部に対応し、冷却速度係数算出部23、流量設定部24及び通材速度設定部25が冷却条件調整部に対応している。
Then, the material passing speed setting unit 25 outputs the calculated material passing speed to the material passing speed control unit 1A of the H-section steel rolling line 1 as the material passing speed command value. Thereby, the threading speed of the H-section steel rolling line 1 is adjusted according to the threading speed command value.
As described above, in this embodiment, after determining the influence of the cooling water temperature on the cooling rate in advance, the flow rate for injecting the cooling water and the material passing speed of the material to be cooled are set according to the measurement result of the cooling water temperature. To do.
The thermometer 5A corresponds to the temperature measurement unit, and the cooling rate coefficient calculation unit 23, the flow rate setting unit 24, and the material passing rate setting unit 25 correspond to the cooling condition adjustment unit.

(実施例)
以下、実施例により本発明の効果を具体的に説明する。
ここでは、図1に示すH形鋼圧延ライン1において、H−700×200×9×19のH形鋼の水冷を行い、フランジ11のA点及びB点における冷却後の実績温度を調査した。
比較例1として、冷却水の流量及び通材速度を標準値(流量:2100[L/min]、通材速度:3.0[m/s])とし、冷却水の温度を32℃として実績温度を測定した。
比較例2として、冷却水の流量及び通材速度を標準値(流量:2100[L/min]、通材速度:3.0[m/s])とし、冷却水の温度を33℃として実績温度を測定した。
比較例3として、冷却水の流量及び通材速度を標準値(流量:2100[L/min]、通材速度:3.0[m/s])とし、冷却水の温度を25℃として実績温度を測定した。
(Example)
Hereinafter, the effect of the present invention will be specifically described with reference to examples.
Here, in the H-section steel rolling line 1 shown in FIG. 1, H-700 × 200 × 9 × 19 H-section steel is water-cooled, and the actual temperatures after cooling at the points A and B of the flange 11 are investigated. .
As Comparative Example 1, the flow rate of cooling water and the material passing speed are standard values (flow rate: 2100 [L / min], material passing speed: 3.0 [m / s]), and the cooling water temperature is 32 ° C. The temperature was measured.
As Comparative Example 2, the flow rate of cooling water and the material passing speed are standard values (flow rate: 2100 [L / min], material passing speed: 3.0 [m / s]), and the temperature of the cooling water is 33 ° C. The temperature was measured.
As Comparative Example 3, the coolant flow rate and material passing speed are standard values (flow rate: 2100 [L / min], material passing speed: 3.0 [m / s]), and the cooling water temperature is 25 ° C. The temperature was measured.

また、実施例1として、通材速度を標準値(3.0[m/s])、冷却水の温度を25℃とし、第1冷却ゾーン5aでの冷却水の流量を冷却制御処理により適正流量に調整して実績温度を測定した。すなわち、25℃の冷却水で冷却したときの冷却前後の温度変化量が、標準冷却条件(冷却水32℃)で冷却したときの冷却前後の温度変化量と等しくなるように、冷却水の流量を標準流量よりも少なく設定した。ここでは、冷却水の流量を1800[L/min]に設定した。   Further, as Example 1, the material passing speed is a standard value (3.0 [m / s]), the temperature of the cooling water is 25 ° C., and the flow rate of the cooling water in the first cooling zone 5a is appropriate by the cooling control process. The actual temperature was measured by adjusting the flow rate. That is, the flow rate of cooling water so that the amount of temperature change before and after cooling when cooled with 25 ° C. cooling water is equal to the amount of temperature change before and after cooling when cooled under standard cooling conditions (cooling water 32 ° C.). Was set lower than the standard flow rate. Here, the flow rate of the cooling water was set to 1800 [L / min].

さらに、実施例2として、冷却水の流量を標準値(2100[L/min])、冷却水の温度を24℃とし、通材速度を冷却制御処理により適正速度に調整して実績温度を測定した。すなわち、24℃の冷却水で冷却したときの冷却前後の温度変化量が、標準冷却条件(冷却水32℃)であるときの冷却前後の温度変化量と等しくなるように、通材速度を標準速度よりも速く設定した。ここでは、通材速度を3.4[m/s]に設定した。
上記の方法でそれぞれ冷却後の目標温度と実績温度とを比較した。その結果を表1に示す。
Furthermore, as Example 2, the flow rate of the cooling water is a standard value (2100 [L / min]), the temperature of the cooling water is 24 ° C., and the actual temperature is measured by adjusting the material passing speed to an appropriate speed by the cooling control process. did. That is, the material passing speed is standardized so that the amount of temperature change before and after cooling when cooled with 24 ° C. cooling water is equal to the amount of temperature change before and after cooling under standard cooling conditions (cooling water 32 ° C.). Set faster than speed. Here, the material passing speed was set to 3.4 [m / s].
The target temperature after cooling and the actual temperature were respectively compared by the above methods. The results are shown in Table 1.

Figure 0005971229
Figure 0005971229

この表1からも分かるように、冷却水の温度が標準温度又は標準温度付近である場合には、冷却水の流量及び通材速度が標準値のままでも、冷却後の目標温度に対する実績温度の誤差は少ないことが確認できた(比較例1、比較例2)。しかしながら、冷却水の温度が標準温度に対して著しく低下した場合、冷却水の流量及び通材速度が標準値のままだと、冷却後の目標温度に対する実績温度の誤差が大きくなることがわかる(比較例3)。比較例3では、フランジB点での実績温度は、目標温度に対して−40℃と大きく下回っている。   As can be seen from Table 1, when the temperature of the cooling water is at or near the standard temperature, the actual temperature relative to the target temperature after cooling is maintained even if the cooling water flow rate and the material passing speed remain at the standard values. It was confirmed that the error was small (Comparative Example 1 and Comparative Example 2). However, when the temperature of the cooling water is significantly lower than the standard temperature, it can be seen that the error of the actual temperature with respect to the target temperature after cooling becomes large if the flow rate of the cooling water and the material passing speed remain at the standard values ( Comparative Example 3). In Comparative Example 3, the actual temperature at the flange B point is significantly below -40 ° C with respect to the target temperature.

これに対して、実施例1及び実施例2では、冷却水の温度が標準温度に対して著しく低下している場合であっても、冷却水の流量や通材速度を適正値に調整することで、目標温度と実績温度との誤差を11℃程度に収めることができることが確認できた。
このように、冷却水の温度によらずに、冷却後の仕上がり温度を略一定に保つことができる。すなわち、冬季など冷却水の温度が夏季と比較して著しく低い場合であっても、冷却水の流量を夏季と比較して少なくしたり、通材速度を速くしたりといった調整を行うことで、冷却水の温度のばらつきに起因する冷却後の仕上がり温度のばらつきを低減することができる。したがって、冷却後のH形鋼の形状のばらつきを低減することができる。
On the other hand, in Example 1 and Example 2, even if the temperature of the cooling water is significantly lower than the standard temperature, the flow rate of the cooling water and the material passing speed are adjusted to appropriate values. Thus, it was confirmed that the error between the target temperature and the actual temperature can be kept within about 11 ° C.
In this way, the finished temperature after cooling can be kept substantially constant regardless of the temperature of the cooling water. In other words, even when the temperature of the cooling water is extremely low compared to the summer, such as in the winter, by adjusting the flow rate of the cooling water to be smaller than that of the summer or to increase the material passing speed, Variations in the finished temperature after cooling caused by variations in the temperature of the cooling water can be reduced. Therefore, variation in the shape of the H-shaped steel after cooling can be reduced.

また、冷却制御処理に先立って、冷却水を噴射する流量、H形鋼の通材速度、及び冷却前後のフランジ11の温度変化量に基づいて決定される冷却速度係数と、冷却水の温度との関係を予め求めておく。そして、冷却水の実測温度に対応する冷却速度係数と目標温度変化量とに基づいて、冷却前後のフランジ11の温度変化量が目標温度変化量となるように、冷却水を噴射する流量やH形鋼の通材速度を調整する。
このように、冷却水の温度による冷却速度への影響を予め求めたうえで、冷却水の流量や通材速度を調整するので、冷却前後のフランジの温度変化量が目標温度変化量となるような適正な冷却条件を設定することができる。
Prior to the cooling control process, the cooling rate coefficient determined based on the flow rate of jetting the cooling water, the H-beam passing speed, and the temperature change amount of the flange 11 before and after cooling, and the temperature of the cooling water The relationship is obtained in advance. Then, based on the cooling rate coefficient corresponding to the measured temperature of the cooling water and the target temperature change amount, the flow rate of the cooling water and H so that the temperature change amount of the flange 11 before and after cooling becomes the target temperature change amount Adjust the threading speed of the shape steel.
As described above, the flow rate of the cooling water and the material passing speed are adjusted after obtaining the influence of the cooling water temperature on the cooling rate in advance, so that the temperature change amount of the flange before and after cooling becomes the target temperature change amount. It is possible to set appropriate and appropriate cooling conditions.

ところで、H形鋼の冷却制御として、実際に冷却を行った後のH形鋼のフランジ幅方向の温度分布を測定した後に、その温度分布に基づいて次材に対する冷却条件を変更するような方法もあるが、この場合、最初に通材するH形鋼に対しては適正な冷却条件を設定することができない。そのため、圧延1本目の材料については温度精度が不十分であり、形状不良が発生しやすい。   By the way, as a cooling control of the H-section steel, after measuring the temperature distribution in the flange width direction of the H-section steel after actually cooling, a method of changing the cooling condition for the next material based on the temperature distribution However, in this case, it is not possible to set appropriate cooling conditions for the H-section steel that is initially passed. Therefore, the temperature accuracy of the first rolled material is insufficient and shape defects are likely to occur.

これに対して、本実施形態では、冷却水の温度の測定実績により冷却水を噴射する流量や通材速度を調整するので、圧延1本目から目標どおりの温度で材料を製造することができる。
以上のように、冷却水温度のばらつきに起因するH形鋼の仕上がり温度や冷却後の形状のばらつきを低減することができるので、良好なフランジ形状を有するH形鋼を得ることができる。
On the other hand, in this embodiment, since the flow rate and material passing speed which inject a cooling water are adjusted with the measurement performance of the temperature of a cooling water, material can be manufactured at the temperature as a target from the 1st rolling.
As described above, since the finish temperature of the H-section steel and the variation in the shape after cooling due to the variation in the coolant temperature can be reduced, an H-section steel having a good flange shape can be obtained.

(変形例)
上記実施形態においては、冷却水の実測温度に対応する冷却速度係数と目標温度変化量とに基づいて、冷却前後のフランジの温度変化量が目標温度変化量となるように冷却水の流量や通材速度を調整する際、冷却水の流量及び通材速度の何れか一方を標準値に設定し、他方を調整する場合について説明したが、冷却水の流量及び通材速度の両方を調整することもできる。
(Modification)
In the above embodiment, based on the cooling rate coefficient corresponding to the measured temperature of the cooling water and the target temperature change amount, the flow rate and flow of the cooling water are set so that the temperature change amount of the flange before and after cooling becomes the target temperature change amount. When adjusting the material speed, one of the cooling water flow rate and the material passing speed is set to the standard value and the other is adjusted. However, both the cooling water flow rate and the material passing speed should be adjusted. You can also.

1…H形鋼圧延ライン、2…加熱炉、3…粗圧延機、4…中間圧延機、5…水冷設備、5a…第1冷却ゾーン、5b…第2冷却ゾーン、5c,5d…ノズル、6…仕上圧延機、7a〜7d…温度計、10…H形鋼、11…フランジ、12…ウェブ   DESCRIPTION OF SYMBOLS 1 ... H-section steel rolling line, 2 ... Heating furnace, 3 ... Rough rolling mill, 4 ... Intermediate rolling mill, 5 ... Water cooling equipment, 5a ... 1st cooling zone, 5b ... 2nd cooling zone, 5c, 5d ... Nozzle, 6 ... Finishing mill, 7a to 7d ... Thermometer, 10 ... H-section steel, 11 ... Flange, 12 ... Web

Claims (3)

搬送ライン上でH形鋼のフランジ表面に冷却水を噴射して当該フランジを冷却するH形鋼の冷却制御方法であって、
前記冷却水の温度に応じて、冷却前後の前記フランジの温度変化量が予め設定した目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整するものであり、
前記冷却水を噴射する流量、前記H形鋼の通材速度、及び冷却前後の前記フランジの温度変化量に基づいて決定される冷却速度係数と、前記冷却水の温度との関係を予め算出しておき、
前記冷却水の実測温度に対応する冷却速度係数と前記目標温度変化量とに基づいて、冷却前後の前記フランジ温度変化量が前記目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整することを特徴とするH形鋼の冷却制御方法。
A cooling control method for H-section steel that cools the flange by injecting cooling water onto the flange surface of the H-section steel on a conveyance line,
According to the temperature of the cooling water, at least the flow rate of injecting the cooling water and the material passing speed of the H-shaped steel so that the temperature change amount of the flange before and after cooling becomes a preset target temperature change amount. One to adjust ,
The relationship between the cooling water temperature and the cooling rate coefficient determined based on the flow rate for injecting the cooling water, the material passing speed of the H-shaped steel, and the temperature change amount of the flange before and after cooling is calculated in advance. Leave
Based on the cooling rate coefficient corresponding to the measured temperature of the cooling water and the target temperature change amount, the flow rate at which the cooling water is injected so that the flange temperature change amount before and after cooling becomes the target temperature change amount, And the cooling control method of H-section steel characterized by adjusting at least one of the material passing speed of said H-section steel .
前記目標温度変化量は、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び前記冷却水の温度をそれぞれ標準値としたときの冷却前後の前記フランジの温度変化量であることを特徴とする請求項に記載のH形鋼の冷却制御方法。 The target temperature change amount is a temperature change amount of the flange before and after cooling when the flow rate for injecting the cooling water, the material passing speed of the H-shaped steel, and the temperature of the cooling water are standard values. The method for controlling cooling of an H-section steel according to claim 1 . 搬送ライン上でH形鋼のフランジ表面に冷却水を噴射して当該フランジを冷却するH形鋼の冷却制御装置であって、
前記冷却水の温度を測定する温度測定部と、
前記温度測定部で測定した前記冷却水の温度に応じて、冷却前後の前記フランジの温度変化量が予め設定した目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整する冷却条件調整部と、を備え
該冷却条件調整部は、前記冷却水を噴射する流量、前記H形鋼の通材速度、及び冷却前後の前記フランジの温度変化量に基づいて決定される冷却速度係数と、前記冷却水の温度との関係を予め算出しておき、
前記冷却水の実測温度に対応する冷却速度係数と前記目標温度変化量とに基づいて、冷却前後の前記フランジ温度変化量が前記目標温度変化量となるように、前記冷却水を噴射する流量、及び前記H形鋼の通材速度の少なくとも一方を調整することを特徴とするH形鋼の冷却制御装置。
A cooling control device for H-section steel that cools the flange by injecting cooling water onto the flange surface of the H-section steel on a conveyance line,
A temperature measuring unit for measuring the temperature of the cooling water;
According to the temperature of the cooling water measured by the temperature measuring unit, the flow rate for injecting the cooling water so that the temperature change amount of the flange before and after cooling becomes a preset target temperature change amount, and the H shape A cooling condition adjusting unit for adjusting at least one of the steel passing speed ,
The cooling condition adjustment unit includes a cooling rate coefficient determined based on a flow rate for injecting the cooling water, a material passing speed of the H-shaped steel, and a temperature change amount of the flange before and after cooling, and a temperature of the cooling water. Is calculated in advance,
Based on the cooling rate coefficient corresponding to the measured temperature of the cooling water and the target temperature change amount, the flow rate at which the cooling water is injected so that the flange temperature change amount before and after cooling becomes the target temperature change amount, And at least one of the H-shaped steel passing speeds is adjusted .
JP2013246030A 2013-11-28 2013-11-28 H-shaped steel cooling control method and H-shaped steel cooling control device Active JP5971229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246030A JP5971229B2 (en) 2013-11-28 2013-11-28 H-shaped steel cooling control method and H-shaped steel cooling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246030A JP5971229B2 (en) 2013-11-28 2013-11-28 H-shaped steel cooling control method and H-shaped steel cooling control device

Publications (2)

Publication Number Publication Date
JP2015100844A JP2015100844A (en) 2015-06-04
JP5971229B2 true JP5971229B2 (en) 2016-08-17

Family

ID=53377018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246030A Active JP5971229B2 (en) 2013-11-28 2013-11-28 H-shaped steel cooling control method and H-shaped steel cooling control device

Country Status (1)

Country Link
JP (1) JP5971229B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597338B2 (en) * 2016-01-21 2019-10-30 日本製鉄株式会社 Cooling method and steel plate manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950157B2 (en) * 1994-08-22 1999-09-20 住友金属工業株式会社 Control cooling method

Also Published As

Publication number Publication date
JP2015100844A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN104511482B (en) A kind of hot-strip convex degree control method
US9186710B2 (en) Method for cooling hot-rolled steel sheet
JP2021536063A (en) Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and equipment
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
EP2929949B1 (en) Device for cooling hot-rolled steel sheet
JP5971229B2 (en) H-shaped steel cooling control method and H-shaped steel cooling control device
WO2014087524A1 (en) Method for cooling hot-rolled steel sheet
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP5626275B2 (en) Method for cooling hot-rolled steel sheet
US9211574B2 (en) Method for manufacturing steel sheet
CN105195523B (en) A kind of method for improving hot-rolled intermediate billet head temperature computational accuracy
EP2933031B1 (en) Method for producing steel sheet
KR20140036510A (en) Method and apparatus of pass line setting during rough plate rolling
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
KR20110000388A (en) Cooling method for inverted angle
KR101281317B1 (en) Cooling control method and system for high carbon hot rolled steel sheet having low deviation in mechanical properties
KR101372634B1 (en) Method for manufacturing of hot-rolled steel plate with excellent in flatness
TWI516317B (en) Steel sheet manufacturing method
JP5966454B2 (en) Thick steel plate measuring control method and thick steel plate measuring control device
KR20110022333A (en) Apparatus for controling of accelerated cooling
KR101485663B1 (en) Control method of continuous casting slab width
KR101543464B1 (en) Method for manufacturing steel plate with different width
JP5741634B2 (en) Method and apparatus for cooling control of hot-rolled steel sheet
JP5644811B2 (en) Method for cooling hot-rolled steel sheet
JP2010167503A (en) Method, device and computer program for controlling cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250