WO2014087516A1 - Method for producing steel sheet - Google Patents
Method for producing steel sheet Download PDFInfo
- Publication number
- WO2014087516A1 WO2014087516A1 PCT/JP2012/081634 JP2012081634W WO2014087516A1 WO 2014087516 A1 WO2014087516 A1 WO 2014087516A1 JP 2012081634 W JP2012081634 W JP 2012081634W WO 2014087516 A1 WO2014087516 A1 WO 2014087516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- hot
- rolled steel
- cooling
- temperature
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/16—Control of thickness, width, diameter or other transverse dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
- B21B37/76—Cooling control on the run-out table
Abstract
Description
すなわち、
(1)本発明の一態様に係る鋼板製造方法は、鋼材を仕上圧延機で熱間圧延することにより、圧延方向に周期的に波高さが変動する耳波形状が形成された熱延鋼板を得る熱間圧延工程と;前記熱延鋼板を、その通板経路上に設けられた冷却区間において冷却する冷却工程と;を備え、前記熱間圧延工程が、予め実験的に求めておいた、前記熱延鋼板の耳波形状の急峻度と前記熱延鋼板の冷却中または冷却後の温度標準偏差Yとの相関関係を示す第1の相関データに基づいて、前記耳波形状の目標急峻度を設定する目標急峻度設定工程と、前記耳波形状の急峻度が前記目標急峻度と一致するように、前記仕上圧延機の運転パラメータを制御する形状制御工程と、を含む。 The present invention employs the following means in order to solve the above problems and achieve the object.
That is,
(1) A method of manufacturing a steel sheet according to an aspect of the present invention includes a hot-rolled steel sheet in which an ear-wave shape whose wave height varies periodically in the rolling direction is formed by hot-rolling a steel material with a finish rolling mill. A hot rolling step to obtain; and a cooling step for cooling the hot-rolled steel sheet in a cooling section provided on the sheet passing path, and the hot rolling step has been experimentally obtained in advance. Based on the first correlation data showing the correlation between the steepness of the ear-wave shape of the hot-rolled steel plate and the temperature standard deviation Y during or after cooling of the hot-rolled steel plate, the target steepness of the ear-wave shape And a shape control step for controlling the operating parameters of the finishing mill so that the steepness of the ear wave shape matches the target steepness.
つまり、本発明によれば、熱間圧延工程において、予め実験的に求めておいた、熱延鋼板の耳波形状の急峻度と熱延鋼板の冷却中または冷却後の温度標準偏差Yとの相関関係を示す第1の相関データに基づいて、耳波形状の目標急峻度を設定し、熱延鋼板に形成される耳波形状の急峻度が上記の目標急峻度と一致するように仕上圧延機を制御することで、冷却後の熱延鋼板の温度標準偏差を小さく抑えることができる(熱延鋼板を均一に冷却できる)。
その結果、冷却後の熱延鋼板に材質バラツキが発生することを抑制することができるので、最終的に後工程である冷間圧延工程を経て得られる鋼板の板厚変動を抑えて歩留まりの向上を実現できる。 The inventor of the present application conducted an extensive investigation on the relationship between the wave shape formed on the hot-rolled steel sheet obtained from the hot rolling process and the temperature standard deviation during or after cooling the hot-rolled steel sheet. It has been found that when the wave shape is controlled to an ear wave shape, the temperature standard deviation of the hot-rolled steel sheet can be controlled to an arbitrary value according to the steepness of the ear wave shape.
That is, according to the present invention, in the hot rolling process, the experimentally obtained in advance the steepness of the ear wave shape of the hot-rolled steel sheet and the temperature standard deviation Y during or after cooling of the hot-rolled steel sheet. Based on the first correlation data indicating the correlation, the target steepness of the ear wave shape is set, and finish rolling is performed so that the steepness of the ear wave shape formed on the hot-rolled steel sheet matches the target steepness. By controlling the machine, the temperature standard deviation of the hot-rolled steel sheet after cooling can be kept small (the hot-rolled steel sheet can be uniformly cooled).
As a result, it is possible to suppress the occurrence of material variations in the hot-rolled steel sheet after cooling, so that the yield can be improved by suppressing fluctuations in the thickness of the steel sheet finally obtained through the cold rolling process, which is a subsequent process. Can be realized.
この熱間圧延設備1は、スラブSを加熱するための加熱炉11と、この加熱炉11において加熱されたスラブSを幅方向に圧延する幅方向圧延機16と、この幅方向に圧延されたスラブSを上下方向から圧延して粗バーBrにする粗圧延機12と、粗バーBrを連続して熱間仕上圧延することで、所定の板厚を有する鋼板(以下、熱延鋼板と称す)Hを形成する仕上圧延機13と、この仕上圧延機13から搬送される熱延鋼板Hを冷却水により冷却する冷却装置14と、冷却装置14により冷却された熱延鋼板Hをコイル状に巻き取る巻取装置15とを備えている。 FIG. 1 schematically shows an example of a
This
また、冷却口31には、冷却ヘッダー(図示省略)が接続されている。この冷却口31の個数によって、上側冷却装置14a及び下側冷却装置14bの冷却能力が決定される。なお、この冷却装置14は、上下スプリットラミナー、パイプラミナー、スプレー冷却等の少なくとも一つで構成されていてもよい。また、この冷却装置14によって熱延鋼板Hが冷却される区間が、本発明における冷却区間に相当する。 The
A cooling header (not shown) is connected to the cooling
これは、中波形状は、鋼板センター部で対称な形状となり、幅方向に一様な変位となるため、通板方向(圧延方向)に不均一な冷却偏差を生じやすいが、耳波形状は、一方のエッジ波(例えばWSの波形状)の影響が他方のエッジ波(例えばDSの波形状)に影響を及ぼす反対称の形状となることが原因である。
即ち、熱延鋼板Hの波形状が耳波形状の場合、熱延鋼板HのDSの波形状は、WSの波形状に対して、180度位相がずれているため、その位相のずれた波形状に対応した冷却偏差がそれぞれ生じており、板幅方向の温度平均を取ると、通板方向の温度標準偏差が小さくなる。
従って、熱延鋼板Hの波形状が耳波形状の場合、熱間圧延設備1において、冷間圧延工程での板厚変動に影響しない程度の実質的に均一な冷却が行われ、最終的に得られる製品鋼板の歩留まりを向上することができる。 As shown in FIG. 4 and FIG. 5, the plate width center (when the wave shape of the hot-rolled steel sheet H at the time of cooling in the
This is because the middle wave shape is symmetrical at the center of the steel plate and is uniformly displaced in the width direction, so it is easy to cause uneven cooling deviation in the sheet passing direction (rolling direction). This is because the influence of one edge wave (for example, the wave shape of WS) becomes an antisymmetric shape that affects the other edge wave (for example, the wave shape of DS).
That is, when the wave shape of the hot-rolled steel sheet H is an ear wave shape, the DS wave shape of the hot-rolled steel sheet H is 180 degrees out of phase with respect to the WS wave shape. Cooling deviations corresponding to the shapes are generated, and the temperature standard deviation in the sheet passing direction becomes small when the temperature average in the sheet width direction is taken.
Therefore, when the wave shape of the hot-rolled steel sheet H is an ear-wave shape, the
つまり、図12に示す急峻度と温度標準偏差Yとの相関関係に基づき、実操業時に要求される温度標準偏差Y(冷間圧延工程での板厚変動を許容レベル内に抑えられる温度標準偏差Y)を実現できる急峻度を求め、その急峻度を目標急峻度として設定し、熱延鋼板Hに形成される耳波形状の急峻度が上記の目標急峻度と一致するように仕上圧延機13の運転パラメータを制御することにより、本発明の目的である、最終的に得られる製品鋼板の歩留まり向上を実現できる。 The investigation results shown in FIGS. 4, 5, and 12 show that when the wave shape of the hot-rolled steel sheet H is controlled to be an ear wave shape, the temperature standard deviation of the hot-rolled steel sheet H after cooling is controlled according to the steepness of the ear wave shape. This suggests that Y can be controlled to an arbitrary value.
That is, based on the correlation between the steepness and the temperature standard deviation Y shown in FIG. 12, the temperature standard deviation Y required during actual operation (the temperature standard deviation that can suppress the thickness variation in the cold rolling process within an allowable level). Y) is obtained, and the steepness is set as the target steepness, and the
具体的には、仕上圧延機13の出口側に、熱延鋼板Hの表面(上面)との距離を測定する距離計を設置しておけば、その距離計から得られる距離測定結果に基づいて、熱延鋼板Hの耳形状の急峻度をリアルタイムで算出することができる。そして、その急峻度の算出結果が目標急峻度と一致するように、仕上圧延機13の運転パラメータをフィードバック制御すれば良い。急峻度の算出及びフィードバック制御には、一般的なマイクロコンピュータ等を備えたコントローラーを使用することができる。 In the shape control step, the operating parameters of the finishing
Specifically, if a distance meter that measures the distance from the surface (upper surface) of the hot-rolled steel sheet H is installed on the exit side of the
さらに、熱延鋼板Hの温度標準偏差Yを可能な限り抑えるには、上記の目標急峻度設定工程において、目標急峻度を0%超0.5%以内に設定することがより好ましい。これによれば、熱延鋼板Hの温度標準偏差Yを約10℃以下に抑えることができる(図12参照)。
以上のように、本実施形態の鋼板製造方法によれば、少なくとも熱間圧延工程及び冷却工程を経て製造される鋼板の歩留まり向上を実現することが可能となる。 As can be seen from the investigation results shown in FIG. 4 and FIG. 5, in the target steepness setting step, it is preferable to set the target steepness within 0% and within 1%. Thereby, the temperature standard deviation Y of the hot-rolled steel sheet H after cooling is suppressed to about 18 ° C. or less (see FIG. 12), and the thickness variation of the product steel sheet in the cold rolling process can be greatly suppressed.
Furthermore, in order to suppress the temperature standard deviation Y of the hot-rolled steel sheet H as much as possible, it is more preferable to set the target steepness within 0% to within 0.5% in the target steepness setting step. According to this, the temperature standard deviation Y of the hot-rolled steel sheet H can be suppressed to about 10 ° C. or less (see FIG. 12).
As described above, according to the steel sheet manufacturing method of the present embodiment, it is possible to achieve an improvement in the yield of steel sheets manufactured through at least a hot rolling process and a cooling process.
詳細は後述するが、目標比率設定工程では、予め実験的に熱延鋼板Hの急峻度及び通板速度を一定値とする条件下で求めておいた、熱延鋼板Hの上下面の熱伝達係数の比率である上下熱伝達係数比率Xと冷却中または冷却後の熱延鋼板Hの温度標準偏差Yとの相関関係を示す第2の相関データに基づいて、温度標準偏差Yが最小値Yminとなる上下熱伝達係数比率X1を目標比率Xtとして設定する。
また、冷却制御工程では、冷却区間(冷却装置14によって熱延鋼板Hが冷却される区間)における熱延鋼板Hの上下熱伝達係数比率Xが上記の目標比率Xtと一致するように、冷却区間における熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する。 Furthermore, in order to further reduce the temperature standard deviation Y of the hot-rolled steel sheet H after cooling, the cooling process of the present embodiment described above includes two processes, a target ratio setting process and a cooling control process. It is preferable.
Although details will be described later, in the target ratio setting step, heat transfer between the upper and lower surfaces of the hot-rolled steel sheet H, which has been experimentally determined in advance under the condition that the steepness of the hot-rolled steel sheet H and the sheet passing speed are constant values. Based on the second correlation data showing the correlation between the vertical heat transfer coefficient ratio X, which is the ratio of the coefficients, and the temperature standard deviation Y of the hot-rolled steel sheet H during or after cooling, the temperature standard deviation Y is the minimum value Ymin. The vertical heat transfer coefficient ratio X1 is set as the target ratio Xt.
Further, in the cooling control step, the cooling section is set such that the vertical heat transfer coefficient ratio X of the hot rolled steel sheet H in the cooling section (the section in which the hot rolled steel sheet H is cooled by the cooling device 14) matches the target ratio Xt. At least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet H is controlled.
先ず、冷却装置14で熱延鋼板Hを冷却する前に、予め冷却装置14の上側冷却装置14aの冷却能力(上側冷却能力)と下側冷却装置14bの冷却能力(下側冷却能力)をそれぞれ調整する。これら上側冷却能力と下側冷却能力は、それぞれ上側冷却装置14aによって冷却される熱延鋼板Hの上面の熱伝達係数と、下側冷却装置14bによって冷却される熱延鋼板Hの下面の熱伝達係数とを用いて調整する。 The second correlation data used in the target ratio setting step is experimentally obtained in advance using the
First, before cooling the hot-rolled steel sheet H with the
また、冷却抜熱量は、熱延鋼板Hの温度差と比熱と質量をそれぞれ乗じた値である(冷却抜熱量=温度差×比熱×質量)。すなわち、冷却抜熱量は冷却装置14における熱延鋼板Hの冷却抜熱量であって、冷却装置14の入口側の温度計と出口側の温度計によってそれぞれ測定される熱延鋼板Hの温度の差と、熱延鋼板Hの比熱と、冷却装置14で冷却される熱延鋼板Hの質量とをそれぞれ乗じた値である。 Here, the calculation method of the heat transfer coefficient of the upper surface and the lower surface of the hot-rolled steel sheet H will be described. The heat transfer coefficient is a value obtained by dividing the amount of heat removed from cooling (heat energy) per unit time from the unit area by the temperature difference between the heat transfer medium and the heat medium (heat transfer coefficient = cooled heat removal / temperature difference). ). The temperature difference here is a difference between the temperature of the hot-rolled steel sheet H measured by the thermometer on the inlet side of the
The cooling heat removal amount is a value obtained by multiplying the temperature difference, specific heat, and mass of the hot-rolled steel sheet H (cooling heat removal amount = temperature difference × specific heat × mass). That is, the amount of heat removed from cooling is the amount of heat removed from the hot-rolled steel sheet H in the
すなわち、上側冷却装置14aのみで熱延鋼板Hを冷却する場合の熱延鋼板Hの熱伝達係数と、下側冷却装置14bのみで熱延鋼板Hを冷却する場合の熱延鋼板Hの熱伝達係数を測定する。
このとき、上側冷却装置14aからの冷却水量と下側冷却装置14bからの冷却水量を同一とする。測定された上側冷却装置14aを用いた場合の熱伝達係数と下側冷却装置14bを用いた場合の熱伝達係数との比率の逆数が、後述の上下熱伝達係数比率Xを“1”とする場合の上側冷却装置14aの冷却水量と下側冷却装置14bの冷却水量との上下比率となる。
そして、このようにして得られた冷却水量の上下比率を、熱延鋼板Hを冷却する際の上側冷却装置14aの冷却水量又は下側冷却装置14bの冷却水量に乗じて、上述した熱延鋼板Hの上面と下面の熱伝達係数の比率(上下熱伝達係数比率X)を算出する。
また、上述では、上側冷却装置14aのみと下側冷却装置14bのみで冷却される熱延鋼板Hの熱伝達係数を用いたが、上側冷却装置14aと下側冷却装置14bの両方で冷却される熱延鋼板Hの熱伝達係数を用いてもよい。すなわち、上側冷却装置14aと下側冷却装置14bの冷却水量を変更した場合の熱延鋼板Hの熱伝達係数を測定し、その熱伝達係数の比率を用いて熱延鋼板Hの上面と下面の熱伝達係数の比率を算出してもよい。 The heat transfer coefficient of the hot-rolled steel sheet H calculated as described above is divided into the heat transfer coefficients of the upper surface and the lower surface of the hot-rolled steel sheet H. These heat transfer coefficients of the upper surface and the lower surface are calculated using, for example, a ratio obtained in advance as follows.
That is, the heat transfer coefficient of the hot-rolled steel sheet H when the hot-rolled steel sheet H is cooled only by the
At this time, the cooling water amount from the
Then, the above-described hot-rolled steel sheet is obtained by multiplying the vertical ratio of the cooling water amount obtained in this way by the cooling water amount of the
In the above description, the heat transfer coefficient of the hot-rolled steel sheet H that is cooled only by the
また、図6は、熱延鋼板Hの波形状の急峻度と熱延鋼板Hの通板速度を一定値とする条件下で、上側冷却装置14aと下側冷却装置14bの冷却能力を調整することにより、熱延鋼板Hの上下熱伝達係数比率Xを変動させながら、冷却後の熱延鋼板Hの温度標準偏差Yを実測して得られた、上下熱伝達係数比率Xと温度標準偏差Yとの相関関係を示すデータ(第2の相関データ)である。
図6を参照すると、温度標準偏差Yと上下熱伝達係数比率Xとの相関関係は、上下熱伝達係数比率Xが“1”の時に温度標準偏差Yが最小値Yminとなる、V字状の関係になっていることが分かる。
なお、熱延鋼板Hの波形状の急峻度とは、波形状の振幅を1周期分の圧延方向の長さで割った値である。図6は、熱延鋼板Hの急峻度を2%とし、通板速度を600m/min(10m/sec)とする条件下で得られた上下熱伝達係数比率Xと温度標準偏差Yとの相関関係を示している。温度標準偏差Yは、熱延鋼板Hの冷却中に測定しても良いし、冷却後に測定しても良い。また、図6において熱延鋼板Hの目標冷却温度は600℃以上の温度であって、例えば800℃である。 And the cooling capacity of the upper
Moreover, FIG. 6 adjusts the cooling capacity of the
Referring to FIG. 6, the correlation between the temperature standard deviation Y and the upper and lower heat transfer coefficient ratio X is V-shaped, with the temperature standard deviation Y being the minimum value Ymin when the upper and lower heat transfer coefficient ratio X is “1”. It turns out that it is related.
The steepness of the wave shape of the hot-rolled steel sheet H is a value obtained by dividing the amplitude of the wave shape by the length in the rolling direction for one cycle. FIG. 6 shows the correlation between the vertical heat transfer coefficient ratio X and the temperature standard deviation Y obtained under the condition that the steepness of the hot-rolled steel sheet H is 2% and the sheet feeding speed is 600 m / min (10 m / sec). Showing the relationship. The temperature standard deviation Y may be measured during cooling of the hot-rolled steel sheet H, or may be measured after cooling. In FIG. 6, the target cooling temperature of the hot-rolled steel sheet H is 600 ° C. or higher, for example, 800 ° C.
次に、a点とc点の真中のd点における温度標準偏差Ydを抽出する。そして、温度標準偏差YdがYa又はYcのどちらの値に近いかを判断する。本実施形態では、YdはYcに近い。
次に、c点とd点の真中のe点における温度標準偏差Yeを抽出する。そして、温度標準偏差YeがYc又はYdのどちらの値に近いかを判断する。本実施形態では、YeはYdに近い。
このような演算を繰り返し行い、熱延鋼板Hの温度標準偏差Yの最小点f(最小値Ymin)を特定する。なお、実用的な最小点fを特定するためには、上述した演算を例えば5回程度行えばよい。また、探索対象の上下熱伝達係数比率Xの範囲を10分割し、それぞれの範囲で上述した演算を行って最小点fを特定してもよい。 FIG. 7 shows a standard case in which different regression lines are obtained across the minimum value Ymin of the temperature standard deviation Y. As shown in FIG. 7, first, temperature standard deviations Ya, Yb, Yc at points c, b, and points c in the middle of the points a and b are extracted. The middle of the points a and b indicates the point c having a value between the upper and lower heat transfer coefficient ratio Xa at the point a and the upper and lower heat transfer coefficient ratio Xb at the point b. Then, it is determined whether the temperature standard deviation Yc is closer to Ya or Yb. In this embodiment, Yc is close to Ya.
Next, the temperature standard deviation Yd at the point d between the points a and c is extracted. Then, it is determined whether the temperature standard deviation Yd is closer to Ya or Yc. In the present embodiment, Yd is close to Yc.
Next, the temperature standard deviation Ye at the point e between the points c and d is extracted. Then, it is determined whether the temperature standard deviation Ye is closer to Yc or Yd. In the present embodiment, Ye is close to Yd.
Such calculation is repeated to specify the minimum point f (minimum value Ymin) of the temperature standard deviation Y of the hot-rolled steel sheet H. In order to specify the practical minimum point f, the above-described calculation may be performed, for example, about 5 times. Alternatively, the range of the upper and lower heat transfer coefficient ratio X to be searched may be divided into 10, and the above-described calculation is performed in each range to specify the minimum point f.
さらに、熱延鋼板Hに形成される波形状が耳波形状或いは中波形状のいずれの場合であろうとも、上述したように温度標準偏差Yと上下熱伝達係数比率Xとの関係がV字状になっていることを利用して、熱延鋼板Hの温度標準偏差Yが最小値Yminになる上下熱伝達係数比率X1を導出することができる。 As described above, the vertical heat transfer coefficient ratio X1 (Xf in FIG. 7) at which the temperature standard deviation Y of the hot-rolled steel sheet H becomes the minimum value Ymin is derived. In addition, regarding the relationship between the V-shaped temperature standard deviation Y and the upper and lower heat transfer coefficient ratio X, it is easy to obtain a regression function for each of them by the least square method or the like.
Furthermore, as described above, the relationship between the temperature standard deviation Y and the upper and lower heat transfer coefficient ratio X is V-shaped, regardless of whether the wave shape formed on the hot-rolled steel sheet H is an ear wave shape or a medium wave shape. By utilizing this, it is possible to derive the vertical heat transfer coefficient ratio X1 at which the temperature standard deviation Y of the hot-rolled steel sheet H becomes the minimum value Ymin.
そして、冷却制御工程において、冷却区間における熱延鋼板Hの上下熱伝達係数比率Xが上記の目標比率Xt(つまり“1”)と一致するように、冷却区間における熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との少なくとも一方が制御されることになる。
具体的には、冷却区間における熱延鋼板Hの上下熱伝達係数比率Xを目標比率Xt(つまり“1”)と一致させるためには、例えば、上側冷却装置14aの冷却能力と下側冷却装置14bの冷却能力を同等に調整することにより、熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量を等しくすれば良い。
表1は、図6に示した第2の相関データ(つまり、上下熱伝達係数比率Xと温度標準偏差Yとの相関関係)と、各温度標準偏差Yから最小値Ymin(=2.3℃)を差し引いた値(最小値からの標準偏差の差分)と、各温度標準偏差Yの評価を示している。
表1中の上下熱伝達係数比率Xについては、分子が熱延鋼板Hの上面における熱伝達係数であり、分母が熱延鋼板Hの下面における熱伝達係数である。また、表1中の評価(上下熱伝達係数比率Xの条件についての評価)においては、温度標準偏差Yが最小値Yminとなる条件を“A”とし、後述するように最小値からの標準偏差の差分が10℃以内、すなわち操業が可能となる条件を“B”とし、上述した回帰式を得るために試行錯誤的に行った条件を“C”としている。そして、表1を参照しても、評価が“A”となる、すなわち熱延鋼板Hの温度標準偏差Yが最小値Yminになる上下熱伝達係数比率X1は“1”である。 Referring to FIG. 6, the vertical heat transfer coefficient ratio X1 at which the temperature standard deviation Y of the hot-rolled steel sheet H is the minimum value Ymin is “1”. Therefore, when the second correlation data as shown in FIG. 6 is obtained, in order to set the temperature standard deviation Y to the minimum value Ymin, that is, to uniformly cool the hot-rolled steel sheet H, the target ratio at the time of actual operation In the setting step, the target ratio Xt is set to “1”.
In the cooling control step, the upper surface cooling of the hot-rolled steel sheet H in the cooling section is made so that the vertical heat transfer coefficient ratio X of the hot-rolled steel sheet H in the cooling section matches the target ratio Xt (that is, “1”). At least one of the amount of heat and the amount of heat extracted from the bottom surface cooling is controlled.
Specifically, in order to make the vertical heat transfer coefficient ratio X of the hot-rolled steel sheet H in the cooling section coincide with the target ratio Xt (that is, “1”), for example, the cooling capacity of the
Table 1 shows the second correlation data shown in FIG. 6 (that is, the correlation between the upper and lower heat transfer coefficient ratio X and the temperature standard deviation Y) and the minimum value Ymin (= 2.3 ° C.) from each temperature standard deviation Y. ) (The difference of the standard deviation from the minimum value) and the evaluation of each temperature standard deviation Y is shown.
Regarding the upper and lower heat transfer coefficient ratio X in Table 1, the numerator is the heat transfer coefficient on the upper surface of the hot-rolled steel sheet H, and the denominator is the heat transfer coefficient on the lower surface of the hot-rolled steel sheet H. Further, in the evaluation in Table 1 (evaluation of the condition of the vertical heat transfer coefficient ratio X), the condition that the temperature standard deviation Y becomes the minimum value Ymin is “A”, and the standard deviation from the minimum value as will be described later. The difference between the two is within 10 ° C., that is, the condition where the operation is possible is “B”, and the condition which is performed by trial and error to obtain the above-described regression equation is “C”. Even with reference to Table 1, the evaluation is “A”, that is, the vertical heat transfer coefficient ratio X1 at which the temperature standard deviation Y of the hot-rolled steel sheet H becomes the minimum value Ymin is “1”.
なお、熱延鋼板Hの温度測定には様々なノイズがあるため、熱延鋼板Hの温度標準偏差Yの最小値Yminは厳密にはゼロにならない場合がある。そこで、このノイズの影響を除去するため、製造許容範囲を、熱延鋼板Hの温度標準偏差Yが最小値Yminから最小値Ymin+10℃以内の範囲としている。 If the temperature standard deviation Y of the hot-rolled steel sheet H is at least within the range from the minimum value Ymin to the minimum value Ymin + 10 ° C., variations in yield stress, tensile strength, etc. can be suppressed within the production allowable range. Can be cooled uniformly. That is, in the above target ratio setting step, based on the second correlation data obtained experimentally in advance, the vertical heat transfer ratio X in which the temperature standard deviation Y falls within the range from the minimum value Y to the minimum value Ymin + 10 ° C. It may be set as the target ratio Xt.
Since there are various noises in the temperature measurement of the hot-rolled steel sheet H, the minimum value Ymin of the temperature standard deviation Y of the hot-rolled steel sheet H may not be strictly zero. Therefore, in order to remove the influence of this noise, the allowable manufacturing range is a range in which the temperature standard deviation Y of the hot-rolled steel sheet H is within the minimum value Ymin + 10 ° C. from the minimum value Ymin.
そこで、上述した目標比率設定工程及び冷却制御工程に、冷却区間(つまり冷却装置14)の下流側における熱延鋼板Hの温度を時系列で測定する温度測定工程と、その温度の測定結果に基づいて温度の時系列平均値を算出する温度平均値算出工程と、その温度の時系列平均値が所定の目標温度と一致するように、冷却区間における熱延鋼板Hの上面冷却抜熱量と下面冷却抜熱量との合計値を調整する冷却抜熱量調整工程と、を新たに加えても良い。
これらの新たな工程を実現するために、図16に示すように冷却装置14と巻取装置15との間に配置されている、熱延鋼板Hの温度を測定する温度計40を使用することができる。 Generally, during actual operation, when the hot-rolled steel sheet H is wound by the winding
Therefore, in the target ratio setting process and the cooling control process described above, based on the temperature measurement process for measuring the temperature of the hot-rolled steel sheet H on the downstream side of the cooling section (that is, the cooling device 14) in time series and the measurement result of the temperature. The temperature average value calculating step for calculating the time series average value of the temperature and the upper surface cooling heat removal amount and the lower surface cooling of the hot-rolled steel sheet H in the cooling section so that the time series average value of the temperature coincides with a predetermined target temperature. A cooling heat removal amount adjustment step for adjusting the total value of the heat removal amount may be newly added.
In order to realize these new processes, use a
ここで、冷却区間における熱延鋼板Hの上下熱伝達係数比率Xを目標比率Xtと一致させるという制御目標を達成しながら、上面冷却抜熱量と下面冷却抜熱量との合計値を調整する必要がある。
具体的に、上面冷却抜熱量と下面冷却抜熱量との合計値を調整する時には、例えば三塚の式等に代表される実験理論式を用いて予め求められた理論値に対して、実際の操業実績との誤差を補正する様に設定した学習値に基づき、冷却装置14に接続される冷却ヘッダーのオンオフ制御を行っても良い。或いは、実際に温度計40で測定された温度に基づいて、上記冷却ヘッダーのオンオフをフィードバック制御又はフィードフォワード制御してもよい。 In the temperature average value calculating step, the time series average value of the temperature measurement result is calculated using the time series data of the temperature measurement result. Specifically, every time a certain number of temperature measurement results are obtained, an average value of the temperature measurement results for the certain number may be calculated. Then, in the cooling heat removal amount adjustment step, the upper surface cooling heat removal amount and the lower surface cooling of the hot-rolled steel sheet H in the cooling section so that the time-series average value of the temperature measurement results calculated as described above coincides with the predetermined target temperature. Adjust the total value with heat removal.
Here, it is necessary to adjust the total value of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount while achieving the control target of making the vertical heat transfer coefficient ratio X of the hot rolled steel sheet H in the cooling section coincide with the target ratio Xt. is there.
Specifically, when adjusting the total value of the amount of heat removed from the upper surface cooling and the amount of heat removed from the lower surface cooling, for example, the actual operation with respect to the theoretical value obtained in advance using an experimental theoretical formula represented by the Mitsuka equation, etc. On / off control of the cooling header connected to the
なお、形状計41は、熱延鋼板H上に定められた温度計40と同一の測定位置(以下では、この測定位置を定点と呼ぶ場合がある)の形状を測定する。ここで、形状とは、定点測定で観測される熱延鋼板Hの高さ方向の変動量に熱延鋼板Hの通板方向の移動量を用いて、波のピッチ分の高さ或いは変動成分の線積分で求めた急峻度である。また、同時に単位時間当たりの変動量、つまり変動速度も求める。さらに、形状の測定領域は、温度の測定領域と同様に、熱延鋼板Hの幅方向の全域を含む。温度測定結果と同じく、各測定結果(急峻度、変動速度等)がサンプリングされた時間に通板速度を乗じると、各測定結果の時系列データを圧延方向の位置に紐付けすることが可能となる。
図8は、通常の操業における代表的なストリップのROT内冷却の熱延鋼板Hの温度変動と急峻度の関係を示している。図8における熱延鋼板Hの上下熱伝達係数比率Xは1.2:1であり、上側冷却能力が下側冷却能力よりも高くなっている。図8の上側のグラフは、コイル先端からの距離或いは定点経過時間に対する温度変動を示し、図8の下側のグラフは、コイル先端からの距離または定点経過時間に対する急峻度を示している。
図8における領域Aは、図16に示すストリップ先端部が巻取装置15のコイラーに噛み込まれる前の領域(張力が無い為、形状が悪い領域)である。図8における領域Bは、ストリップ先端部がコイラーに噛み込まれた後の領域(ユニットテンションの影響で波形状がフラットに変化する領域)である。このような熱延鋼板Hの形状がフラットでない領域Aで発生する大きな温度変動(つまり温度標準偏差Y)を改善することが望まれる。 Next, data obtained from the
The
FIG. 8 shows the relationship between the temperature fluctuation and the steepness of the hot-rolled steel sheet H that is cooled in the ROT of a typical strip in a normal operation. The vertical heat transfer coefficient ratio X of the hot-rolled steel sheet H in FIG. 8 is 1.2: 1, and the upper cooling capacity is higher than the lower cooling capacity. The upper graph in FIG. 8 shows the temperature variation with respect to the distance from the coil tip or the fixed point elapsed time, and the lower graph in FIG. 8 shows the distance from the coil tip or the steepness with respect to the fixed point elapsed time.
A region A in FIG. 8 is a region before the strip front end portion shown in FIG. 16 is bitten by the coiler of the winding device 15 (a region having a bad shape because there is no tension). A region B in FIG. 8 is a region after the strip front end portion is bitten by the coiler (a region where the wave shape is changed flat due to the influence of the unit tension). It is desired to improve a large temperature fluctuation (that is, temperature standard deviation Y) generated in the region A where the shape of the hot-rolled steel sheet H is not flat.
なお、平均温度は、原則として周期単位での範囲の平均である。また、1周期の範囲の平均温度は、2周期以上の範囲の平均温度と大きな差がないことが操業データによって確認されている。
従って、少なくとも波形状1周期の範囲の平均温度を算出すればよい。熱延鋼板Hの波形状の範囲の上限は特に限定されないが、好ましくは5周期に設定すれば、十分な精度の平均温度を得られる。また、平均する範囲が周期単位の範囲でなくとも、2~5周期の範囲であれば許容できる平均温度を得られる。 FIG. 9 shows the temperature fluctuation component with respect to the same shape steepness of cooling in the ROT of a typical strip in a normal operation as in FIG. This temperature fluctuation component is a residual obtained by subtracting a time-series average of temperature (hereinafter sometimes referred to as “average temperature”) from the actual steel plate temperature. For example, the average temperature may be averaged over a range of one or more wave shapes of the hot-rolled steel sheet H.
The average temperature is in principle the average of the range in units of cycles. In addition, it has been confirmed by the operation data that the average temperature in the range of one cycle is not significantly different from the average temperature in the range of two cycles or more.
Therefore, it is only necessary to calculate an average temperature in a range of at least one waveform. The upper limit of the corrugated range of the hot-rolled steel sheet H is not particularly limited, but preferably an average temperature with sufficient accuracy can be obtained if it is set to 5 cycles. Further, even if the range to be averaged is not a cycle unit range, an acceptable average temperature can be obtained if it is in the range of 2 to 5 cycles.
また、定点で測定された変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定する。
そして、上記のように決定された制御方向に基づいて、冷却区間における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方を調整すると、図10に示すように、図9と比較して、熱延鋼板Hの形状がフラットでない領域Aで発生する温度変動を低減できることがわかった。 Here, when the upward direction in the vertical direction of the hot-rolled steel sheet H (direction perpendicular to the upper and lower surfaces of the hot-rolled steel sheet H) is positive, the wave shape of the hot-rolled steel sheet H is a region where the fluctuation rate measured at a fixed point is positive. When the temperature of the hot-rolled steel sheet H (temperature measured at a fixed point) is lower than the average temperature in the range of one cycle or more, at least one of the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases. Is determined as the control direction, and when the temperature of the hot-rolled steel sheet H is higher than the average temperature, at least one of the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases is determined as the control direction. To do.
Further, when the temperature of the hot-rolled steel sheet H is lower than the above average temperature in the region where the fluctuation rate measured at a fixed point is negative, the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases. Is determined as a control direction, and when the temperature of the hot-rolled steel sheet H is higher than the above average temperature, at least one of the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases is controlled. Determine as direction.
Then, when at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet H in the cooling section is adjusted based on the control direction determined as described above, as shown in FIG. And it turned out that the temperature fluctuation generate | occur | produced in the area | region A where the shape of the hot-rolled steel plate H is not flat can be reduced.
また、定点で測定された変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定する。
そして、上記のように決定された制御方向に基づいて、冷却区間における熱延鋼板Hの上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方を調整すると、図11に示すように、図9と比較して、熱延鋼板Hの形状がフラットでない領域Aで発生する温度変動が拡大することがわかった。なお、ここで説明する例でも冷却停止温度を変えてよいという前提にはなっていない。すなわち、このように上面冷却抜熱量及び下面冷却抜熱量の増減方向(制御方向)を決定する場合でも、熱延鋼板Hの冷却停止温度が所定の目標冷却温度になるように冷却抜熱量が調整される。 The case where the reverse operation is performed will be described below. When the temperature of the hot-rolled steel sheet H is lower than the average temperature of the hot-rolled steel sheet H in a region where the fluctuation rate measured at a fixed point is positive, the direction in which the upper surface cooling heat removal amount increases and the lower surface cooling heat removal amount decreases. When at least one of the directions is determined as the control direction and the temperature of the hot-rolled steel sheet H is higher than the average temperature, at least one of the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases is determined. Determine as the control direction.
Further, when the temperature of the hot-rolled steel sheet H is lower than the above average temperature in a region where the fluctuation rate measured at a fixed point is negative, the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases. Is determined as a control direction, and when the temperature of the hot-rolled steel sheet H is higher than the above average temperature, at least one of the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases is controlled. Determine as direction.
Then, when at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet H in the cooling section is adjusted based on the control direction determined as described above, as shown in FIG. And it turned out that the temperature fluctuation which generate | occur | produces in the area | region A where the shape of the hot-rolled steel plate H is not flat expands. In the example described here, it is not assumed that the cooling stop temperature may be changed. That is, even when determining the increase / decrease direction (control direction) of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount, the cooling heat removal amount is adjusted so that the cooling stop temperature of the hot-rolled steel sheet H becomes the predetermined target cooling temperature. Is done.
ここで、制御方向決定工程では、上記のように、熱延鋼板Hの定点での変動速度が正の領域で、熱延鋼板Hの定点での平均温度に対して熱延鋼板Hの定点での温度が低い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定する。
また、この制御方向決定工程では、上記の変動速度が負の領域で、上記の平均温度に対して熱延鋼板Hの温度が低い場合は、上面冷却抜熱量が増加する方向及び下面冷却抜熱量が減少する方向の少なくとも一方を制御方向として決定し、上記の平均温度に対して熱延鋼板Hの温度が高い場合は、上面冷却抜熱量が減少する方向及び下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定する。
なお、この冷却方法においても、冷却区間における熱延鋼板Hの上下熱伝達係数比率Xを目標比率Xtと一致させるという制御目標を達成しながら、上面冷却抜熱量と下面冷却抜熱量を調整する必要がある。 Thus, in the target ratio setting process and the cooling control process described above, the temperature measurement process for measuring the temperature (temperature at a fixed point) of the hot rolled steel sheet H on the downstream side of the cooling section in time series, and the hot rolled steel sheet H Fluctuation rate measurement process that measures the variation rate in the vertical direction of the hot-rolled steel sheet H at the same location (fixed point) as the temperature measurement location, and the amount of heat removed from the top surface and the bottom surface based on the temperature measurement result and the variation rate measurement result A control direction determining step for determining a control direction of the cooling heat removal amount, and a cooling heat removal amount for adjusting at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet H in the cooling section based on the determined control direction. An adjustment step may be newly added.
Here, in the control direction determination step, as described above, the fluctuation speed at the fixed point of the hot-rolled steel sheet H is a positive region, and the fixed temperature of the hot-rolled steel sheet H with respect to the average temperature at the fixed point of the hot-rolled steel sheet H. When the temperature is low, at least one of the direction in which the amount of heat removal from the upper surface cooling decreases and the direction in which the amount of heat removal from the lower surface cooling increases is determined as the control direction, and the temperature of the hot rolled steel sheet H is higher than the above average temperature Determines at least one of the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases as the control direction.
In this control direction determination step, when the temperature of the hot-rolled steel sheet H is lower than the average temperature in the region where the fluctuation speed is negative, the upper surface cooling heat removal amount and the lower surface cooling heat removal amount are increased. When the temperature of the hot-rolled steel sheet H is higher than the above average temperature, the direction of decreasing the upper surface cooling heat removal amount and the direction of increasing the lower surface cooling heat removal amount are determined. At least one is determined as a control direction.
Even in this cooling method, it is necessary to adjust the upper surface cooling heat removal amount and the lower surface cooling heat removal amount while achieving the control target of making the upper and lower heat transfer coefficient ratio X of the hot rolled steel sheet H in the cooling section coincide with the target ratio Xt. There is.
また、上側冷却装置14aと下側冷却装置14bの冷却ヘッダー(冷却口31)を間引いて、上側冷却装置14aと下側冷却装置14bから噴射される冷却水の流量や圧力を調整してもよい。例えば冷却ヘッダーを間引く前の上側冷却装置14aの冷却能力が、下側冷却装置14bの冷却能力よりも上回っている場合、上側冷却装置14aを構成する冷却ヘッダーを間引くことが好ましい。 When adjusting the cooling capacity of the
In addition, the cooling headers (cooling ports 31) of the
このため、熱延鋼板Hを均一に冷却することができない。一方、膜沸騰領域では、熱延鋼板Hの表面全体が蒸気膜に覆われた状態で熱延鋼板Hの冷却が行われるので、熱延鋼板Hを均一に冷却することができる。したがって、本実施形態のように熱延鋼板Hの温度が600℃以上の範囲において、熱延鋼板Hをより均一に冷却することができる。 In the above embodiment, the cooling of the hot-rolled steel sheet H by the cooling
For this reason, the hot-rolled steel sheet H cannot be cooled uniformly. On the other hand, in the film boiling region, since the hot-rolled steel sheet H is cooled in a state where the entire surface of the hot-rolled steel sheet H is covered with the vapor film, the hot-rolled steel sheet H can be uniformly cooled. Therefore, the hot-rolled steel sheet H can be cooled more uniformly in the range where the temperature of the hot-rolled steel sheet H is 600 ° C. or more as in this embodiment.
Yz’=Yz×2/z・・・・(1) Therefore, the vertical heat transfer coefficient ratio X of the hot-rolled steel sheet H is fixed in advance, and the steepness is changed stepwise from 3% to 0%, for example, as shown in FIG. Table data indicating a correlation with the temperature standard deviation Y after cooling of the steel plate H is obtained. Then, the temperature standard deviation Y with respect to the steepness z% of the actual hot-rolled steel sheet H is corrected to a temperature standard deviation Y ′ with respect to a predetermined steepness by an interpolation function. Specifically, when the predetermined steepness is set to 2% as the correction condition, the temperature standard deviation Yz ′ is calculated by the following equation (1) based on the temperature standard deviation Yz at the steepness z%. Alternatively, for example, the steepness gradient α in FIG. 12 may be calculated by the least square method or the like, and the temperature standard deviation Yz ′ may be calculated using the gradient α.
Yz ′ = Yz × 2 / z (1)
この表3における上下熱伝達係数比率Xの表示と評価の基準については、表1の評価と同様であるので説明を省略する。この図13又は表3を用いて、急峻度に応じた熱延鋼板Hの温度標準偏差Yを導出できる。そして、例えば、急峻度を2%に補正する場合、表3における評価が“B”となる、すなわち熱延鋼板Hの最小値からの標準偏差の差分が10℃以内となる上下熱伝達係数比率Xを1.1に設定することができる。 Further, in the regression equation of the V-shaped curve shown in FIG. 13, the steepness may be corrected to a predetermined steepness, and the temperature standard deviation Y may be derived from the regression equation. Table 3 shows the temperature standard deviation Y of the hot-rolled steel sheet H when the vertical heat transfer coefficient ratio X is varied as shown in FIG. 13 with respect to the steepness in FIG. The minimum value Ymin from each temperature standard deviation Y (Ymin = 1.2 ° C. when the steepness is 1%, Ymin = 2.3 ° C. when the steepness is 2%, Ymin = 3% when the steepness is 3%) The value obtained by subtracting 3.5 ° C. (difference of standard deviation from the minimum value) and the evaluation of each temperature standard deviation Y are shown.
The display and evaluation criteria for the upper and lower heat transfer coefficient ratio X in Table 3 are the same as those in Table 1 and will not be described. Using FIG. 13 or Table 3, the temperature standard deviation Y of the hot-rolled steel sheet H according to the steepness can be derived. For example, when the steepness is corrected to 2%, the evaluation in Table 3 is “B”, that is, the ratio of the vertical heat transfer coefficient that the difference of the standard deviation from the minimum value of the hot-rolled steel sheet H is within 10 ° C. X can be set to 1.1.
Yz’=Yv×10/v・・・・(2) Similarly, for example, as illustrated in FIG. 14, the sheet feeding speed is changed stepwise from 5 m / sec (300 m / min) to 20 m / sec (1200 m / min), and the sheet feeding speed and the hot rolled steel sheet H are changed. Table data indicating a correlation with the temperature standard deviation Y after cooling is obtained. Then, the temperature standard deviation Y with respect to the sheet passing speed v (m / sec) of the actual hot rolled steel sheet H is corrected to a temperature standard deviation Y ′ with respect to a predetermined sheet passing speed by an interpolation function. Specifically, when the predetermined sheet passing speed is set to 10 (m / sec) as the correction condition, the temperature standard is expressed by the following formula (2) based on the temperature standard deviation Yv at the sheet passing speed v (m / sec). Deviation Yv ′ is calculated. Alternatively, for example, the gradient β of the sheet feeding speed in FIG. 14 may be calculated by a least square method or the like, and the temperature standard deviation Yv ′ may be calculated using the gradient β.
Yz ′ = Yv × 10 / v (2)
この表4における上下熱伝達係数比率Xの表示と評価の基準については、表1の評価と同様であるので説明を省略する。この図15又は表4を用いて、通板速度に応じた熱延鋼板Hの温度標準偏差Yを導出できる。そして、例えば、通板速度を10m/secに補正する場合、表4における評価が“B”となる、すなわち熱延鋼板Hの最小値からの標準偏差の差分が10℃以内となる上下熱伝達係数比率Xを1.1に設定することができる。 Further, in the regression formula of the V-shaped curve shown in FIG. 15, the plate passing speed may be corrected to a predetermined plate passing speed, and the temperature standard deviation Y may be derived from the regression formula. Table 4 shows the temperature standard deviation Y and the temperature standard deviation of the hot-rolled steel sheet H when the vertical heat transfer coefficient ratio X is varied as shown in FIG. 15 with respect to the sheet passing speed in FIG. Minimum value Ymin from Y (Ymin = 1.2 ° C when the plate speed is 5 m / s, Ymin = 2.3 ° C when the plate speed is 10 m / s, and 15 m / s when the plate speed is 15 m / s) Ymin = 3.5 ° C, Ymin = 4.6 ° C when the plate speed is 20m / s (the difference of the standard deviation from the minimum value), and the evaluation of each temperature standard deviation Y Yes.
The display and evaluation criteria for the upper and lower heat transfer coefficient ratio X in Table 4 are the same as those in Table 1 and will not be described. Using FIG. 15 or Table 4, the temperature standard deviation Y of the hot-rolled steel sheet H corresponding to the sheet passing speed can be derived. For example, when correcting the sheet passing speed to 10 m / sec, the evaluation in Table 4 is “B”, that is, the vertical heat transfer is such that the difference of the standard deviation from the minimum value of the hot rolled steel sheet H is within 10 ° C. The coefficient ratio X can be set to 1.1.
また、温度標準偏差Yの大きさに基づいて、その温度標準偏差Yが許容範囲、例えば最小値Yminから最小値Ymin+10℃以内の範囲に収まるように上下熱伝達係数比率Xを決定することができる。この上下熱伝達係数比率Xを決定する方法は、図6及び図7を用いて説明した上記実施形態と同様であるので、詳細な説明を省略する。なお、この温度標準偏差Yを最小値Yminから最小値Ymin+10℃以内の範囲に収めることにより、降伏応力、引張強さなどのバラつきを製造許容範囲内に抑えられ、熱延鋼板Hを均一に冷却できる。
また、かなりのばらつきはあるものの、冷却水量密度比率が、温度標準偏差Yが最小値Yminとなる冷却水量密度比率に対して±5%以内であれば、温度標準偏差Yを最小値Yminから最小値Ymin+10℃以内の範囲に収めることができる。すなわち、冷却水量密度を用いる場合、冷却水量密度の上下比率(冷却水量密度比率)を、温度標準偏差Yが最小値Yminとなる冷却水量密度比率に対して±5%以内に設定することが望ましい。ただし、この許容範囲は必ずしも上下同水量密度を含むとは限らない。 That is, if the fluctuation position of the temperature associated with the wave shape of these hot-rolled steel sheets H is grasped, it becomes clear whether the temperature standard deviation Y currently generated is generated by the upper cooling or the lower cooling. It becomes possible to do. Therefore, the increase / decrease direction (control direction) of the upper cooling capacity (upper surface cooling heat removal amount) and the lower cooling capacity (lower surface cooling heat removal amount) to reduce the temperature standard deviation Y is determined, and the vertical heat transfer coefficient ratio X is adjusted. can do.
Further, based on the magnitude of the temperature standard deviation Y, the vertical heat transfer coefficient ratio X can be determined so that the temperature standard deviation Y falls within an allowable range, for example, the range from the minimum value Ymin to the minimum value Ymin + 10 ° C. . The method for determining the upper and lower heat transfer coefficient ratio X is the same as that in the embodiment described with reference to FIGS. By keeping the temperature standard deviation Y within the range from the minimum value Ymin to the minimum value Ymin + 10 ° C, variations in yield stress, tensile strength, etc. can be kept within the manufacturing tolerances, and the hot-rolled steel sheet H can be cooled uniformly. it can.
In addition, although there is considerable variation, if the cooling water amount density ratio is within ± 5% of the cooling water amount density ratio at which the temperature standard deviation Y is the minimum value Ymin, the temperature standard deviation Y is minimized from the minimum value Ymin. The value can be kept within a range of Ymin + 10 ° C. That is, when the cooling water amount density is used, it is desirable that the ratio of the cooling water amount density (cooling water amount density ratio) is set within ± 5% with respect to the cooling water amount density ratio at which the temperature standard deviation Y is the minimum value Ymin. . However, this allowable range does not necessarily include the same upper and lower water density.
また、分割冷却区間Z2においては、その下流側における温度計40と形状計41の測定結果に基づいて、上側冷却装置14aと下側冷却装置14bの冷却能力がフィードフォワード制御されてもよいし、或いはフィードバック制御されてもよい。いずれの場合においても、分割冷却区間Z2において、上面冷却抜熱量及び下面冷却抜熱量の少なくとも一方が調整される。 For example, in the divided cooling zone Z1, the cooling capacity of the
In the divided cooling zone Z2, the cooling capacity of the
本願発明者は、実施例1として、板厚2.3mm、板幅1200mmのハイテン(いわゆる高張力鋼板)を材料とし、当該材料に中波形状、耳波形状をそれぞれ形成させ、その急峻度を0%(波形成無し)~2%までの種々の値に変更して冷却を行った場合の、後工程(即ち、冷延工程)における冷延ゲージ変動(板厚変動)と板幅方向平均温度変動を測定し、評価を行った。なお、本実施例1および以下に説明する実施例2、3では、便宜上、中波形状を形成した場合の急峻度を-0.5%~-2%と表し、耳波形状を形成した場合の急峻度を0.5%~2%と表した。
また、中波形状及び耳波形状の測定は市販の形状測定器を用いて測定したものであり、中波形状の測定箇所は板中央から左右30mm以内の板中央部であり、耳波形状の測定箇所は板端から25mmの箇所とした。更に、本実施例1においては、冷却時の上下冷却比(上下熱伝達係数比率)は上冷却:下冷却=1.2:1とし、通板速度を400m/min、鋼板の巻き取り温度(CT)を500℃とした。
その測定結果及び評価結果を以下の表5に示す。このとき、以下の実施例における評価基準としては、後工程における冷延ゲージ変動が0~25μmに抑えられたものをA(製品として良好)、25~50μmであったものをB(許容範囲)、50μm超であったものをC(製品不良)として評価している。なお、表5中の総合評価については、後述する。また、表5中には、参考のため鋼板圧延方向における各波形状の温度標準偏差も記載した。 (Example 1)
The inventor of the present application uses, as a material, high tension (so-called high-tensile steel plate) with a plate thickness of 2.3 mm and a plate width of 1200 mm as a material, and forms a medium wave shape and an ear wave shape in the material, respectively, and the steepness is determined. Cold rolling gauge fluctuation (sheet thickness fluctuation) and average in the sheet width direction in the subsequent process (ie, cold rolling process) when cooling is performed with various values ranging from 0% (no wave formation) to 2%. Temperature fluctuation was measured and evaluated. In Example 1 and Examples 2 and 3 described below, for the sake of convenience, the steepness when the medium wave shape is formed is represented as -0.5% to -2%, and the case where the ear wave shape is formed. The steepness was expressed as 0.5% to 2%.
Further, the measurement of the medium wave shape and the ear wave shape was measured using a commercially available shape measuring instrument, and the measurement location of the medium wave shape is the center portion of the plate within 30 mm on the left and right sides of the plate center. The measurement location was 25 mm from the edge of the plate. Furthermore, in Example 1, the vertical cooling ratio (vertical heat transfer coefficient ratio) at the time of cooling was set to upper cooling: lower cooling = 1.2: 1, the plate speed was 400 m / min, and the steel sheet winding temperature ( CT) was 500 ° C.
The measurement results and evaluation results are shown in Table 5 below. At this time, the evaluation criteria in the following examples are A (good as a product) in which the cold-rolling gauge fluctuation in the subsequent process is suppressed to 0 to 25 μm, and B (allowable range) in which 25 to 50 μm. In this case, the value exceeding 50 μm is evaluated as C (product defect). The comprehensive evaluation in Table 5 will be described later. In Table 5, the temperature standard deviation of each wave shape in the steel sheet rolling direction is also shown for reference.
次に、本願発明者は、実施例2として、上記実施例1と同様の材料に中波形状、耳波形状をそれぞれ形成させ、その急峻度を0%(波形成無し)~2%までの種々の値に変更して冷却を行った場合の、後工程(即ち、冷延工程)における冷延ゲージ変動(板厚変動)と板幅方向平均温度変動を測定し、評価を行った。なお、本実施例2では、通板速度を600m/minとし、その他の条件は実施例1と同一とした。その測定結果及び評価結果を以下の表6に示す。 (Example 2)
Next, the inventor of the present application forms a medium wave shape and an ear wave shape in the same material as in Example 1 as Example 2, and the steepness is 0% (no wave formation) to 2%. When cooling was performed by changing to various values, the cold-rolling gauge fluctuation (sheet thickness fluctuation) and the sheet width direction average temperature fluctuation in the subsequent process (that is, cold rolling process) were measured and evaluated. In Example 2, the sheet passing speed was 600 m / min, and the other conditions were the same as in Example 1. The measurement results and evaluation results are shown in Table 6 below.
次に、本願発明者は、実施例3として、上記実施例1、2と同様の材料に中波形状、耳波形状をそれぞれ形成させ、その急峻度を0%(波形成無し)~2%までの種々の値に変更して冷却を行った場合の、後工程(即ち、冷延工程)における冷延ゲージ変動(板厚変動)と板幅方向平均温度変動を測定し、評価を行った。なお、本実施例3では、冷却時の上下冷却比(上下熱伝達係数比率)を上冷却:下冷却=1.1:1とし、その他の条件は上記実施例1と同一とした。その測定結果及び評価結果を以下の表7に示す。 (Example 3)
Next, the inventor of the present application forms a medium wave shape and an ear wave shape in the same material as in Examples 1 and 2 as Example 3, and the steepness is 0% (no wave formation) to 2%. In the case of cooling by changing to various values up to the above, the cold-rolled gauge fluctuation (sheet thickness fluctuation) and the sheet width direction average temperature fluctuation in the subsequent process (that is, cold rolling process) were measured and evaluated. . In Example 3, the vertical cooling ratio (upper and lower heat transfer coefficient ratio) during cooling was set to upper cooling: lower cooling = 1.1: 1, and the other conditions were the same as those in Example 1. The measurement results and evaluation results are shown in Table 7 below.
11 加熱炉
12 粗圧延機
12a ワークロール
12b 4重圧延機
13 仕上圧延機
13a 仕上げ圧延ロール
14 冷却装置
14a 上側冷却装置
14b 下側冷却装置
15 巻取装置
16 幅方向圧延機
31 冷却口
32 搬送ロール
40 温度計
41 形状計
H 熱延鋼板
S スラブ
Z1、Z2 分割冷却区間 DESCRIPTION OF
Claims (19)
- 鋼材を仕上圧延機で熱間圧延することにより、圧延方向に周期的に波高さが変動する耳波形状が形成された熱延鋼板を得る熱間圧延工程と;
前記熱延鋼板を、その通板経路上に設けられた冷却区間において冷却する冷却工程と;
を備え、
前記熱間圧延工程は、
予め実験的に求めておいた、前記熱延鋼板の前記耳波形状の急峻度と前記熱延鋼板の冷却中または冷却後の温度標準偏差Yと相関関係を示す第1の相関データに基づいて、前記耳波形状の目標急峻度を設定する目標急峻度設定工程と、
前記耳波形状の急峻度が前記目標急峻度と一致するように、前記仕上圧延機の運転パラメータを制御する形状制御工程と、
を含むことを特徴とする鋼板製造方法。 A hot rolling step of obtaining a hot-rolled steel sheet in which an ear wave shape in which the wave height fluctuates periodically in the rolling direction is formed by hot rolling the steel material with a finish rolling mill;
A cooling step of cooling the hot-rolled steel sheet in a cooling section provided on the plate passage;
With
The hot rolling step is
Based on first correlation data indicating a correlation between the steepness of the ear wave shape of the hot-rolled steel sheet and the temperature standard deviation Y during or after cooling of the hot-rolled steel sheet, which has been experimentally obtained in advance. A target steepness setting step for setting a target steepness of the ear wave shape;
A shape control step for controlling operating parameters of the finishing mill such that the steepness of the ear wave shape matches the target steepness;
A method for producing a steel sheet, comprising: - 前記目標急峻度設定工程では、前記目標急峻度を0%超1%以内に設定することを特徴とする鋼板製造方法。 In the target steepness setting step, the target steepness is set to more than 0% and within 1%.
- 前記冷却工程が、
予め実験的に前記熱延鋼板の急峻度及び通板速度を一定値とする条件下で求めておいた、前記熱延鋼板の上下面の熱伝達係数の比率である上下熱伝達係数比率Xと前記熱延鋼板の冷却中または冷却後の前記温度標準偏差Yとの相関関係を示す第2の相関データに基づいて、前記温度標準偏差Yが最小値Yminとなる上下熱伝達係数比率X1を目標比率Xtとして設定する目標比率設定工程と;
前記冷却区間における前記熱延鋼板の上下熱伝達係数比率Xが前記目標比率Xtと一致するように、前記冷却区間における前記熱延鋼板の上面冷却抜熱量と下面冷却抜熱量との少なくとも一方を制御する冷却制御工程と;
を有することを特徴とする請求項1又は2に記載の鋼板製造方法。 The cooling step is
The upper and lower heat transfer coefficient ratio X, which is the ratio of the heat transfer coefficients of the upper and lower surfaces of the hot rolled steel sheet, experimentally determined in advance under the condition that the steepness and the sheet passing speed of the hot rolled steel sheet are constant values, Based on the second correlation data indicating the correlation with the temperature standard deviation Y during or after cooling of the hot-rolled steel sheet, the target is the vertical heat transfer coefficient ratio X1 at which the temperature standard deviation Y becomes the minimum value Ymin. A target ratio setting step to set as the ratio Xt;
Control at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot rolled steel sheet in the cooling section so that the vertical heat transfer coefficient ratio X of the hot rolled steel sheet in the cooling section matches the target ratio Xt. A cooling control step to perform;
The steel sheet manufacturing method according to claim 1 or 2, wherein - 前記目標比率設定工程では、前記第2の相関データに基づいて、前記温度標準偏差Yが最小値Yminから最小値Ymin+10℃以内の範囲に収まる上下熱伝達係数比率Xを前記目標比率Xtとして設定することを特徴とする請求項3に記載の鋼板製造方法。 In the target ratio setting step, based on the second correlation data, a vertical heat transfer coefficient ratio X in which the temperature standard deviation Y falls within the range of the minimum value Ymin to the minimum value Ymin + 10 ° C. is set as the target ratio Xt. The method for producing a steel sheet according to claim 3.
- 前記第2の相関データは、前記急峻度及び前記通板速度の値が異なる複数の条件のそれぞれについて用意されており、
前記目標比率設定工程では、前記複数の第2の相関データの内、前記急峻度及び前記通板速度の実測値に応じた第2の相関データに基づいて前記目標比率Xtを設定することを特徴とする請求項3に記載の鋼板製造方法。 The second correlation data is prepared for each of a plurality of conditions with different values of the steepness and the plate passing speed,
In the target ratio setting step, the target ratio Xt is set based on second correlation data corresponding to the measured values of the steepness and the sheet passing speed among the plurality of second correlation data. The steel plate manufacturing method according to claim 3. - 前記第2の相関データは、前記上下熱伝達係数比率Xと前記温度標準偏差Yとの相関関係を回帰式で示すデータであることを特徴とする請求項3に記載の鋼板製造方法。 The steel sheet manufacturing method according to claim 3, wherein the second correlation data is data indicating a correlation between the upper and lower heat transfer coefficient ratio X and the temperature standard deviation Y by a regression equation.
- 前記回帰式は線形回帰によって導出されたものであることを特徴とする請求項6に記載の鋼板製造方法。 The steel sheet manufacturing method according to claim 6, wherein the regression equation is derived by linear regression.
- 前記第2の相関データは、前記上下熱伝達係数比率Xと前記温度標準偏差Yとの相関関係をテーブルで示すデータであることを特徴とする請求項3に記載の鋼板製造方法。 The steel sheet manufacturing method according to claim 3, wherein the second correlation data is data indicating a correlation between the upper and lower heat transfer coefficient ratio X and the temperature standard deviation Y in a table.
- 前記冷却区間の下流側における前記熱延鋼板の温度を時系列で測定する温度測定工程と;
前記温度の測定結果に基づいて前記温度の時系列平均値を算出する温度平均値算出工程と;
前記温度の時系列平均値が所定の目標温度と一致するように、前記冷却区間における前記熱延鋼板の前記上面冷却抜熱量と前記下面冷却抜熱量との合計値を調整する冷却抜熱量調整工程と;
をさらに有することを特徴とする請求項3に記載の鋼板製造方法。 A temperature measuring step of measuring the temperature of the hot-rolled steel sheet downstream of the cooling section in time series;
A temperature average value calculating step of calculating a time-series average value of the temperature based on the measurement result of the temperature;
A cooling heat removal amount adjustment step of adjusting a total value of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet in the cooling section so that the time-series average value of the temperatures coincides with a predetermined target temperature. When;
The steel sheet manufacturing method according to claim 3, further comprising: - 前記冷却区間の下流側における前記熱延鋼板の温度を時系列で測定する温度測定工程と;
前記冷却区間の下流側における前記熱延鋼板の温度測定箇所と同一箇所での前記熱延鋼板の鉛直方向の変動速度を時系列で測定する変動速度測定工程と;
前記熱延鋼板の鉛直方向の上向きを正とした場合において、前記変動速度が正の領域で、前記熱延鋼板の波形状1周期以上の範囲の平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、
前記変動速度が負の領域で、前記平均温度に対して前記熱延鋼板の温度が低い場合は、前記上面冷却抜熱量が増加する方向及び前記下面冷却抜熱量が減少する方向の少なくとも一方を前記制御方向として決定し、前記平均温度に対して前記熱延鋼板の温度が高い場合は、前記上面冷却抜熱量が減少する方向及び前記下面冷却抜熱量が増加する方向の少なくとも一方を前記制御方向として決定する制御方向決定工程と;
前記制御方向決定工程にて決定された前記制御方向に基づいて、前記冷却区間における前記熱延鋼板の前記上面冷却抜熱量及び前記下面冷却抜熱量の少なくとも一方を調整する冷却抜熱量調整工程と;
をさらに有することを特徴とする請求項3に記載の鋼板製造方法。 A temperature measuring step of measuring the temperature of the hot-rolled steel sheet downstream of the cooling section in time series;
A fluctuation rate measurement step of measuring, in a time series, a fluctuation rate in the vertical direction of the hot-rolled steel plate at the same location as the temperature measurement location of the hot-rolled steel plate on the downstream side of the cooling section;
When the upward direction in the vertical direction of the hot-rolled steel sheet is positive, the temperature of the hot-rolled steel sheet is in an area where the fluctuation rate is positive, with respect to the average temperature in the range of one or more wave shapes of the hot-rolled steel sheet. If it is low, determine at least one of the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases as the control direction, and when the temperature of the hot-rolled steel sheet is higher than the average temperature, Determining at least one of the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases as the control direction;
When the temperature of the hot-rolled steel sheet is lower than the average temperature in a region where the fluctuation speed is negative, at least one of the direction in which the upper surface cooling heat removal amount increases and the direction in which the lower surface cooling heat removal amount decreases is When the temperature of the hot-rolled steel sheet is determined as a control direction and the average temperature is higher, at least one of the direction in which the upper surface cooling heat removal amount decreases and the direction in which the lower surface cooling heat removal amount increases is set as the control direction. A control direction determining step to determine;
A cooling heat removal amount adjustment step of adjusting at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet in the cooling section based on the control direction determined in the control direction determination step;
The steel sheet manufacturing method according to claim 3, further comprising: - 前記冷却区間は、前記熱延鋼板の通板方向に沿って複数の分割冷却区間に分割されており、
前記温度測定工程及び前記変動速度測定工程では、前記分割冷却区間の境のそれぞれにおいて前記熱延鋼板の温度及び変動速度を時系列的に測定し、
前記制御方向決定工程では、前記分割冷却区間の境のそれぞれにおける前記熱延鋼板の温度及び変動速度の測定結果に基づいて、前記分割冷却区間のそれぞれについて前記熱延鋼板の上下面の冷却抜熱量の増減方向を決定し、
前記冷却抜熱量調整工程では、前記分割冷却区間のそれぞれについて決定された前記制御方向に基づいて、前記分割冷却区間のそれぞれにおいて前記熱延鋼板の前記上面冷却抜熱量及び前記下面冷却抜熱量の少なくとも一方を調整するためにフィードバック制御又はフィードフォワード制御を行う
ことを特徴とする請求項10に記載の鋼板製造方法。 The cooling section is divided into a plurality of divided cooling sections along the sheet passing direction of the hot-rolled steel sheet,
In the temperature measurement step and the fluctuation rate measurement step, the temperature and fluctuation rate of the hot-rolled steel sheet are measured in time series at each boundary of the divided cooling section,
In the control direction determination step, based on the measurement results of the temperature and the fluctuation rate of the hot-rolled steel sheet at each boundary of the divided cooling section, the amount of cooling heat removed from the upper and lower surfaces of the hot-rolled steel sheet for each of the divided cooling sections. Determine the direction of increase or decrease
In the cooling heat removal amount adjustment step, based on the control direction determined for each of the divided cooling sections, at least the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet in each of the divided cooling sections. The steel sheet manufacturing method according to claim 10, wherein feedback control or feedforward control is performed to adjust one of them. - 前記分割冷却区間の境のそれぞれにおいて前記熱延鋼板の前記急峻度又は前記通板速度を測定する測定工程と;
前記急峻度または前記通板速度の測定結果に基づいて、前記分割冷却区間のそれぞれにおける前記熱延鋼板の前記上面冷却抜熱量及び前記下面冷却抜熱量の少なくとも一方を補正する冷却抜熱量補正工程と;
をさらに有することを特徴とする請求項11に記載の鋼板製造方法。 A measuring step of measuring the steepness of the hot-rolled steel sheet or the sheet passing speed at each boundary of the divided cooling section;
A cooling heat removal amount correcting step for correcting at least one of the upper surface cooling heat removal amount and the lower surface cooling heat removal amount of the hot-rolled steel sheet in each of the divided cooling sections based on the measurement result of the steepness or the sheet passing speed; ;
The steel sheet manufacturing method according to claim 11, further comprising: - 前記冷却区間の下流側において、前記熱延鋼板の温度標準偏差が許容される範囲に入るように、前記熱延鋼板をさらに冷却する後冷却工程をさらに有することを特徴とする請求項3に記載の鋼板製造方法。
4. The method according to claim 3, further comprising a post-cooling step of further cooling the hot-rolled steel sheet so that a temperature standard deviation of the hot-rolled steel sheet falls within an allowable range on the downstream side of the cooling section. Steel plate manufacturing method.
- 前記冷却区間における前記熱延鋼板の通板速度は、550m/min以上から機械的な限界速度以下の範囲で設定されていることを特徴とする請求項3に記載の鋼板製造方法。 The steel sheet manufacturing method according to claim 3, wherein a sheet passing speed of the hot-rolled steel sheet in the cooling section is set in a range of 550 m / min or more to a mechanical limit speed or less.
- 前記熱延鋼板の引張強度は800MPa以上であることを特徴とする請求項14に記載の鋼板製造方法。 The steel sheet manufacturing method according to claim 14, wherein the hot-rolled steel sheet has a tensile strength of 800 MPa or more.
- 前記仕上圧延機は複数の圧延スタンドから構成されており、
前記複数の圧延スタンド同士の間で前記熱延鋼板の補助冷却を行う補助冷却工程をさらに有することを特徴とする請求項14に記載の鋼板製造方法。 The finish rolling mill is composed of a plurality of rolling stands,
The steel sheet manufacturing method according to claim 14, further comprising an auxiliary cooling step of performing auxiliary cooling of the hot-rolled steel sheet between the plurality of rolling stands. - 前記冷却区間には、前記熱延鋼板の上面に冷却水を噴射する複数のヘッダーを有する上側冷却装置と、前記熱延鋼板の下面に冷却水を噴射する複数のヘッダーを有する下側冷却装置とが設けられており、
前記上面冷却抜熱量及び前記下面冷却抜熱量は、前記各ヘッダーをオンオフ制御することによって調整されることを特徴とする請求項3に記載の鋼板製造方法。 In the cooling section, an upper cooling device having a plurality of headers for injecting cooling water onto the upper surface of the hot-rolled steel plate, and a lower cooling device having a plurality of headers for injecting cooling water to the lower surface of the hot-rolled steel plate, Is provided,
The steel sheet manufacturing method according to claim 3, wherein the upper surface cooling heat removal amount and the lower surface cooling heat removal amount are adjusted by on / off controlling the headers. - 前記冷却区間には、前記熱延鋼板の上面に冷却水を噴射する複数のヘッダーを有する上側冷却装置と、前記熱延鋼板の下面に冷却水を噴射する複数のヘッダーを有する下側冷却装置とが設けられており、
前記上面冷却抜熱量及び前記下面冷却抜熱量は、前記各ヘッダーの水量密度、圧力及び水温の少なくとも一つを制御することによって調整されることを特徴とする請求項3に記載の鋼板製造方法。 In the cooling section, an upper cooling device having a plurality of headers for injecting cooling water onto the upper surface of the hot-rolled steel plate, and a lower cooling device having a plurality of headers for injecting cooling water to the lower surface of the hot-rolled steel plate, Is provided,
The steel sheet manufacturing method according to claim 3, wherein the upper surface cooling heat removal amount and the lower surface cooling heat removal amount are adjusted by controlling at least one of a water amount density, a pressure, and a water temperature of each header. - 前記冷却区間での冷却は、前記熱延鋼板の温度が600℃以上の範囲で行われることを特徴とする請求項3に記載の鋼板製造方法。 The method for manufacturing a steel sheet according to claim 3, wherein the cooling in the cooling section is performed in a range where the temperature of the hot-rolled steel sheet is 600 ° C or higher.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12873879.6A EP2933031B1 (en) | 2012-12-06 | 2012-12-06 | Method for producing steel sheet |
JP2013511451A JP5310964B1 (en) | 2012-12-06 | 2012-12-06 | Steel plate manufacturing method |
KR1020137019174A KR101528690B1 (en) | 2012-12-06 | 2012-12-06 | Method for manufacturing steel sheet |
CN201280005604.4A CN103998154B (en) | 2012-12-06 | 2012-12-06 | Steel sheet manufacturing method |
PCT/JP2012/081634 WO2014087516A1 (en) | 2012-12-06 | 2012-12-06 | Method for producing steel sheet |
US14/111,959 US9211574B2 (en) | 2011-07-27 | 2012-12-06 | Method for manufacturing steel sheet |
BR112013028631-8A BR112013028631B1 (en) | 2012-12-06 | 2012-12-06 | METHOD FOR STEEL SHEET PRODUCTION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/081634 WO2014087516A1 (en) | 2012-12-06 | 2012-12-06 | Method for producing steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014087516A1 true WO2014087516A1 (en) | 2014-06-12 |
Family
ID=49529542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081634 WO2014087516A1 (en) | 2011-07-27 | 2012-12-06 | Method for producing steel sheet |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2933031B1 (en) |
JP (1) | JP5310964B1 (en) |
KR (1) | KR101528690B1 (en) |
CN (1) | CN103998154B (en) |
BR (1) | BR112013028631B1 (en) |
WO (1) | WO2014087516A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3305421A4 (en) * | 2015-06-08 | 2019-01-16 | Nisshin Steel Co., Ltd. | Pretreatment method for coating or printing |
CN113182362B (en) * | 2021-04-01 | 2022-07-08 | 本钢板材股份有限公司 | Production method of high-flatness cold-rolled strip steel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06328117A (en) * | 1993-05-18 | 1994-11-29 | Nippon Steel Corp | Method for injecting water in rot cooling of continuous hot rolling |
JPH0763750B2 (en) * | 1988-12-28 | 1995-07-12 | 新日本製鐵株式会社 | Cooling control device for hot rolled steel sheet |
JP2003048003A (en) | 2001-07-31 | 2003-02-18 | Nkk Corp | Method for manufacturing hot-rolled steel sheet |
JP2005074463A (en) | 2003-08-29 | 2005-03-24 | Nippon Steel Corp | Cooling method of steel plate |
JP2005271052A (en) | 2004-03-25 | 2005-10-06 | Jfe Steel Kk | Hot-rolling method |
JP2011073054A (en) * | 2009-10-02 | 2011-04-14 | Nippon Steel Corp | Method and apparatus for cooling hot-rolled steel sheet |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11347629A (en) * | 1998-06-09 | 1999-12-21 | Nkk Corp | Straightening and cooling device for high temperature steel plate and its straightening and cooling method |
US6615633B1 (en) * | 1999-11-18 | 2003-09-09 | Nippon Steel Corporation | Metal plateness controlling method and device |
JP4392115B2 (en) * | 2000-08-03 | 2009-12-24 | 日鐵プラント設計株式会社 | Method and apparatus for controlling flatness of metal plate |
JP4209746B2 (en) * | 2003-08-21 | 2009-01-14 | 株式会社日立製作所 | Rolling mill and rolling method |
JP2007216246A (en) * | 2006-02-15 | 2007-08-30 | Jfe Steel Kk | Method for controlling shape of metal strip in hot rolling |
JP4957586B2 (en) * | 2008-02-29 | 2012-06-20 | 住友金属工業株式会社 | Manufacturing method of hot-rolled steel sheet and manufacturing equipment arrangement |
JP5124856B2 (en) * | 2008-10-31 | 2013-01-23 | 新日鐵住金株式会社 | Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method |
CN101780478B (en) * | 2009-01-21 | 2012-07-04 | 中冶赛迪工程技术股份有限公司 | Method and device for controlling strip shape and precision of hot rolling steel strips and plates |
CN102596440B (en) * | 2009-11-24 | 2014-11-05 | 新日铁住金株式会社 | Hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing device |
-
2012
- 2012-12-06 JP JP2013511451A patent/JP5310964B1/en active Active
- 2012-12-06 WO PCT/JP2012/081634 patent/WO2014087516A1/en active Application Filing
- 2012-12-06 KR KR1020137019174A patent/KR101528690B1/en active IP Right Grant
- 2012-12-06 EP EP12873879.6A patent/EP2933031B1/en active Active
- 2012-12-06 BR BR112013028631-8A patent/BR112013028631B1/en active IP Right Grant
- 2012-12-06 CN CN201280005604.4A patent/CN103998154B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0763750B2 (en) * | 1988-12-28 | 1995-07-12 | 新日本製鐵株式会社 | Cooling control device for hot rolled steel sheet |
JPH06328117A (en) * | 1993-05-18 | 1994-11-29 | Nippon Steel Corp | Method for injecting water in rot cooling of continuous hot rolling |
JP2003048003A (en) | 2001-07-31 | 2003-02-18 | Nkk Corp | Method for manufacturing hot-rolled steel sheet |
JP2005074463A (en) | 2003-08-29 | 2005-03-24 | Nippon Steel Corp | Cooling method of steel plate |
JP2005271052A (en) | 2004-03-25 | 2005-10-06 | Jfe Steel Kk | Hot-rolling method |
JP2011073054A (en) * | 2009-10-02 | 2011-04-14 | Nippon Steel Corp | Method and apparatus for cooling hot-rolled steel sheet |
Also Published As
Publication number | Publication date |
---|---|
BR112013028631B1 (en) | 2022-02-15 |
EP2933031A4 (en) | 2016-08-24 |
CN103998154A (en) | 2014-08-20 |
JP5310964B1 (en) | 2013-10-09 |
BR112013028631A2 (en) | 2017-01-24 |
KR20140100883A (en) | 2014-08-18 |
KR101528690B1 (en) | 2015-06-12 |
CN103998154B (en) | 2015-09-09 |
EP2933031B1 (en) | 2018-11-14 |
JPWO2014087516A1 (en) | 2017-01-05 |
EP2933031A1 (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104511484B (en) | The micro-middle wave board-shape control method of a kind of hot-strip | |
US9186710B2 (en) | Method for cooling hot-rolled steel sheet | |
EP3426418A1 (en) | Method and apparatus for controlling metal strip profile during rolling with direct measurement of process parameters | |
US9566625B2 (en) | Apparatus for cooling hot-rolled steel sheet | |
JP5310965B1 (en) | Hot-rolled steel sheet cooling method | |
EP2929949B1 (en) | Device for cooling hot-rolled steel sheet | |
JP5626275B2 (en) | Method for cooling hot-rolled steel sheet | |
JP5310964B1 (en) | Steel plate manufacturing method | |
JP2008238241A (en) | Manufacturing method of aluminum metal sheet | |
US9211574B2 (en) | Method for manufacturing steel sheet | |
JP3596460B2 (en) | Heat treatment method for thick steel plate and heat treatment equipment | |
TWI516317B (en) | Steel sheet manufacturing method | |
TWI477328B (en) | Apparatus for cooling hot rolled steel sheet | |
JP5644811B2 (en) | Method for cooling hot-rolled steel sheet | |
TWI515054B (en) | Method of cooling hot rolled steel sheet | |
JP5673370B2 (en) | Method for cooling hot-rolled steel sheet | |
JP5278580B2 (en) | Hot-rolled steel plate cooling device and cooling method | |
JP4964061B2 (en) | Control method for steel wire rod cooling | |
JP6551282B2 (en) | Hot finish rolling method | |
JP2003275804A (en) | Method for manufacturing hot rolled steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013511451 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137019174 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012873879 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14111959 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013028631 Country of ref document: BR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12873879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112013028631 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131106 |