JP4209746B2 - Rolling mill and rolling method - Google Patents

Rolling mill and rolling method Download PDF

Info

Publication number
JP4209746B2
JP4209746B2 JP2003297281A JP2003297281A JP4209746B2 JP 4209746 B2 JP4209746 B2 JP 4209746B2 JP 2003297281 A JP2003297281 A JP 2003297281A JP 2003297281 A JP2003297281 A JP 2003297281A JP 4209746 B2 JP4209746 B2 JP 4209746B2
Authority
JP
Japan
Prior art keywords
rolling
rolled material
stand
outlet
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003297281A
Other languages
Japanese (ja)
Other versions
JP2005066614A (en
Inventor
武彦 斎藤
健次郎 成田
幸夫 平間
裕次郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Primetals Technologies Holdings Ltd
Original Assignee
Hitachi Ltd
Mitsubishi Hitachi Metals Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Mitsubishi Hitachi Metals Machinery Inc filed Critical Hitachi Ltd
Priority to JP2003297281A priority Critical patent/JP4209746B2/en
Publication of JP2005066614A publication Critical patent/JP2005066614A/en
Application granted granted Critical
Publication of JP4209746B2 publication Critical patent/JP4209746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は圧延材の板形状を制御する機構を有する圧延機および圧延方法に係り、特に板形状に関してフィードバック制御を行う冷間圧延機および圧延方法に関する。   The present invention relates to a rolling mill and a rolling method having a mechanism for controlling the plate shape of a rolled material, and more particularly to a cold rolling mill and a rolling method for performing feedback control on the plate shape.

圧延加工、特に冷間圧延において所望の板形状を得るために、圧延後の板形状を測定し、目標形状との偏差を小さくするようにロールベンダーやシフト等の機械的制御手段やロールクーラントの幅方向流量分布を変更して形状制御が行われている。この際、圧延後の板の幅方向温度分布を測定し、圧延材に冷却材を噴射し、フィードバック制御時における幅方向温度差を減少させるものがある。このような公知技術としては、特開昭60−96315号公報、特開平2−255209号公報記載のものがある。   In order to obtain the desired plate shape in rolling, especially cold rolling, measure the plate shape after rolling, and use mechanical control means such as roll benders and shifts and roll coolant to reduce the deviation from the target shape. Shape control is performed by changing the flow distribution in the width direction. At this time, there are some which measure the temperature distribution in the width direction of the rolled sheet, inject a coolant onto the rolled material, and reduce the temperature difference in the width direction during feedback control. As such known techniques, there are those described in JP-A-60-96315 and JP-A-2-255209.

特開昭60−96315号公報JP 60-96315 A

特開平2−255209号公報JP-A-2-255209

しかしながら、上記従来技術においては、以下の課題が存在する。
(課題1):「板冷却実施後の残存する幅方向温度分布の未考慮」
特開昭60−96315号公報記載の圧延機および特開平2−255209号公報記載の形状制御方法においては、圧延後に板幅方向の温度分布を測定し、板幅方向の温度分布を減少させるかほぼ一様になるように板冷却を実施するとしている。しかし、種々の圧延条件下における実際の圧延においては、幅方向の温度分布を板冷却によって完全に除去することは困難であり、板幅方向温度分布が残存する。したがって、圧延材温度が室温状態まで降下した際の板形状を所望の形状にするためには、板冷却実施後に残存する幅方向板温度分布が、板形状に及ぼす影響を考慮して制御を行う必要がある。
(課題2):「板温度測定精度悪化による形状制御精度の低下」
特開昭60−96315号公報記載の圧延機においては、最終スタンド出側において板温度を測定し、最終スタンド入側以前の板冷却装置を制御するため、最終スタンドの圧延で板温度分布が付与されると、その温度差を減少させることはできず、形状制御精度が低下する。
However, the following problems exist in the above-described conventional technology.
(Problem 1): “Not considering the remaining temperature distribution in the width direction after plate cooling”
In the rolling mill described in JP-A-60-96315 and the shape control method described in JP-A-2-255209, the temperature distribution in the sheet width direction is measured after rolling to reduce the temperature distribution in the sheet width direction. It is assumed that the plate cooling is performed so as to be almost uniform. However, in actual rolling under various rolling conditions, it is difficult to completely remove the temperature distribution in the width direction by sheet cooling, and the temperature distribution in the sheet width direction remains. Therefore, in order to obtain a desired plate shape when the rolled material temperature is lowered to the room temperature, control is performed in consideration of the influence of the width direction plate temperature distribution remaining after the plate cooling is performed on the plate shape. There is a need.
(Problem 2): “Degradation of shape control accuracy due to deterioration of plate temperature measurement accuracy”
In the rolling mill described in Japanese Patent Application Laid-Open No. 60-96315, a plate temperature distribution is given by rolling the final stand in order to measure the plate temperature on the final stand exit side and to control the plate cooling device before the final stand entry side. If it is done, the temperature difference cannot be reduced, and the shape control accuracy is lowered.

また、特開平2−255209号公報記載の形状制御方法においては、形状検出器の下流側に板温度測定器を配置し、板温度を測定している。しかし、冷間圧延においては、最終スタンド出側の板厚は概ね1.0mm以下となるため板厚方向の熱容量が小さく、外部との接触によりその温度の影響を受けやすい。特開平2−255209号公報記載の板温度測定方法では、板冷却実施後の板温度が形状検出器と接触することによって、形状検出器の表面温度の影響を受け、板温度測定部分において板冷却による温度差低減効果を正しく測定することはできず、形状制御精度が低下する。   In the shape control method described in JP-A-2-255209, a plate temperature measuring device is arranged downstream of the shape detector to measure the plate temperature. However, in cold rolling, the plate thickness on the final stand exit side is approximately 1.0 mm or less, so the heat capacity in the plate thickness direction is small, and it is easily affected by the temperature due to contact with the outside. In the plate temperature measuring method described in JP-A-2-255209, the plate temperature after the plate cooling is brought into contact with the shape detector, thereby being influenced by the surface temperature of the shape detector. The temperature difference reduction effect due to cannot be measured correctly, and the shape control accuracy decreases.

本発明の目的は、板冷却による板幅方向温度差低減効果を正しく測定し評価しうる最適な装置配置を提供するとともに、板冷却実施後に板幅方向温度分布が残る場合においても、その残存する幅方向板温度分布を考慮して制御を行い室温状態での板形状を所望の板形状にすることのできる圧延機および圧延方法を提供することにある。   The object of the present invention is to provide an optimal apparatus arrangement that can correctly measure and evaluate the effect of reducing the temperature difference in the plate width direction due to the plate cooling, and even when the temperature distribution in the plate width direction remains after the plate cooling is performed. An object of the present invention is to provide a rolling mill and a rolling method capable of controlling the width direction plate temperature distribution to obtain a desired plate shape at a room temperature.

上記目的を達成するために、本発明は、圧延方向が逆になると入側の機器を出側の機器に切り換え、出側の機器を入側の機器に切り換えて圧延を行う可逆式圧延機において、作業ロールと入側および出側形状検出器の間で入側および出側温度測定器を用いて圧延前および圧延後の圧延材の幅方向板温度分布を測定し、作業ロールと入側および出側温度測定器の間で入側および出側冷却材噴射装置を用いて圧延材表面に冷却材を噴射し、入側温度測定器および出側温度測定器のうち少なくとも入側温度測定器の測定値を基に圧延前の圧延材の幅方向板温度分布が減少するよう入側冷却材噴射装置の噴射状態を制御するとともに、出側温度測定器の測定値を基に圧延後の圧延材の幅方向板温度分布が減少するよう出側冷却材噴射装置の噴射状態を制御し、出側形状検出器の検出値と出側温度測定器の測定値を基に室温状態における目標形状との偏差を演算し、この室温状態における目標形状との偏差を基に機械的制御手段及び作業ロールの冷却手段を用いて圧延材の板形状を制御するものである。このように入側および出側冷却を実施して幅方向板温度分布を小さくした上で、残存する板温度分布を考慮した室温状態での目標形状との偏差を演算することにより、板温度分布を考慮した目標形状との偏差は小さくなり、形状制御アクチュエータによって予め補償することが可能となり安定した通板性も確保することができる。また、出側冷却だけを行い、室温状態での目標形状との偏差を演算しない場合に比べても形状制御精度が良くなり、圧延材温度が室温状態まで降下した際の板形状を所望のほぼ平坦にすることが可能となる。 In order to achieve the above object, the present invention provides a reversible rolling mill that performs rolling by switching the entry-side equipment to the exit-side equipment when the rolling direction is reversed, and switching the exit-side equipment to the entry-side equipment. Measure the width direction plate temperature distribution of the rolled material before and after rolling using the inlet and outlet temperature measuring devices between the work roll and the inlet and outlet side shape detectors. Injecting coolant onto the surface of the rolled material using the inlet side and outlet side coolant injection devices between the outlet side temperature measuring devices, and at least of the inlet side temperature measuring device and the inlet side temperature measuring device Based on the measured values, the injection state of the inlet side coolant injection device is controlled so that the width direction plate temperature distribution of the rolled material before rolling decreases, and the rolled material after rolling based on the measured value of the outlet side temperature measuring device The injection state of the outlet coolant injection device is reduced so that the width direction plate temperature distribution of the Gyoshi, exit side shape detector measurements of the detected value and the delivery temperature measuring device calculates the deviation between the target shape at room temperature state based on a mechanical control based on the deviation between the target shape in this room temperature state that controls the plate shape of the rolled material using a cooling means means and the work rolls is also of a. In this way, the inlet side and outlet side cooling is carried out to reduce the width direction plate temperature distribution, and then the plate temperature distribution is calculated by calculating the deviation from the target shape at room temperature in consideration of the remaining plate temperature distribution. Therefore, the deviation from the target shape in consideration of the above becomes small and can be compensated in advance by the shape control actuator, so that a stable plate passing property can be secured. Also, the shape control accuracy is improved compared to the case where only the outlet side cooling is performed and the deviation from the target shape in the room temperature state is not calculated, and the plate shape when the rolling material temperature is lowered to the room temperature state is almost the desired shape. It becomes possible to make it flat.

また、本発明は、入側および出側冷却材噴射装置と入側および出側温度測定器の間で入側および出側ワイピング装置を用いて圧延材表面上の冷却材を除去するものであり、これにより冷却材噴射後に圧延材表面上に付着した冷却材はワイピング装置によって除去され、温度測定器における温度測定精度が向上するとともに、巻取り時における巻きずれ(テレスコピック)を防止することができる。
また、本発明は、複数スタンドからなる連続式圧延機においても同様の構成を採用し、同様に上記目的を達成することができる。
Further, the present invention is to remove the coolant on the surface of the rolled material by using the inlet and outlet wiping devices between the inlet and outlet coolant injection devices and the inlet and outlet temperature measuring devices. Thus, the coolant adhering to the surface of the rolled material after jetting the coolant is removed by the wiping device, so that the temperature measurement accuracy in the temperature measuring device is improved and the winding deviation (telescopic) during winding can be prevented. .
Further, the present invention adopts the same configuration even in a continuous rolling mill composed of a plurality of stands, and can achieve the above-mentioned object in the same manner.

本発明によれば、板冷却による板幅方向温度差低減効果を正しく測定し評価しうる最適な装置配置を提供するとともに、板冷却実施後に板幅方向温度差が残る場合においても、その残存する幅方向板温度分布を考慮して制御を行い室温状態での板形状を所望の板形状にすることができる。   According to the present invention, it is possible to provide an optimal device arrangement capable of correctly measuring and evaluating the effect of reducing the plate width direction temperature difference due to plate cooling, and even when the plate width direction temperature difference remains after the plate cooling is performed. The plate shape in the room temperature state can be changed to a desired plate shape by performing control in consideration of the width direction plate temperature distribution.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の基本形態に係わる圧延機を示す図である。 FIG. 1 is a diagram showing a rolling mill according to the basic embodiment of the present invention.

図1において、圧延機は、圧延材14に直接接触し圧延する上下の作業ロール11,11と、これら作業ロールを鉛直方向に支持する上下の中間ロール12,12と、これら中間ロール12,12を鉛直方向に支持する上下の補強ロール13,13とを備えている。作業ロール11,11および中間ロール12,12には曲げ力を作用させるベンディング装置31,31および32,32がそれぞれ設けられ、中間ロール12,12には更にロールを軸方向に移動するシフト装置33,33が設けられている。これらベンディング装置31,31および32,32、シフト装置33,33は、ベンダー・シフト制御装置18によってその動作を制御される。また、作業ロール11,11に対してクーラントを噴射するクーラントヘッダー列20,20が設けてあり、クーラントヘッダー列20,20は幅方向に一定間隔で配置された個々のノズルで構成され、ロールクーラント制御装置19からの指令により幅方向一定間隔で流量および温度を調整する。   In FIG. 1, the rolling mill includes upper and lower work rolls 11 and 11 that are in direct contact with the rolling material 14 for rolling, upper and lower intermediate rolls 12 and 12 that support these work rolls in the vertical direction, and these intermediate rolls 12 and 12. Are provided with upper and lower reinforcing rolls 13 and 13 for supporting the upper and lower sides in the vertical direction. The work rolls 11, 11 and the intermediate rolls 12, 12 are provided with bending devices 31, 31, 32, 32 for applying a bending force, respectively. The intermediate rolls 12, 12 further have a shift device 33 for moving the rolls in the axial direction. , 33 are provided. The bending devices 31, 31 and 32, 32 and the shift devices 33, 33 are controlled by the vendor shift control device 18. Further, coolant header rows 20 and 20 for injecting coolant to the work rolls 11 and 11 are provided, and the coolant header rows 20 and 20 are configured by individual nozzles arranged at regular intervals in the width direction. The flow rate and temperature are adjusted at regular intervals in the width direction according to a command from the control device 19.

また、作業ロール11,11の出側には、圧延後の圧延材14の板形状を測定する形状検出器15a、圧延後の板温度を測定する温度測定器21a、板表面に冷却材を噴射する装置23aおよび板表面の冷却材を除去するワイピング装置24aが配置されている。温度測定器21aは作業ロール11,11と形状検出器15aの間に配置され圧延後の圧延材14の幅方向板温度分布を測定し、冷却材噴射装置23aは作業ロール11,11と温度測定器21aの間に配置され圧延材表面に冷却材を噴射し、ワイピング装置24aは冷却材噴射装置23aと温度測定器21aの間に配置され圧延材表面上の冷却材を除去する。温度測定器21aの測定値を基に板冷却制御装置22aから冷却材噴射装置23aに指令が送られ、幅方向一定間隔で冷却材の流量および温度を調整する。形状検出器15aおよび温度測定器21aの測定値を基に、目標形状との偏差演算装置16によって、室温状態での目標形状との偏差を演算し、ロール冷却手段・機械的制御手段制御量演算装置17によりロールクーラントの噴射状態およびベンダー・シフトの制御量が演算される。偏差演算装置16は、温度測定器21aの測定値と室温との温度差の分布を計算し、その温度分布から生じる圧延材の熱収縮量の分布(板形状)を計算し、その熱収縮量を補償するよう形状検出器15aの検出値と室温状態での目標形状との偏差を演算する。圧延材の冷却材を板表面上から除去するワイピング装置24aとしては、好ましくは特許第2523725号公報に開示されているローラー型のワイピング装置が使用される。   Further, on the exit side of the work rolls 11, 11, a shape detector 15a for measuring the plate shape of the rolled material 14 after rolling, a temperature measuring device 21a for measuring the plate temperature after rolling, and a coolant are injected on the plate surface. And a wiping device 24a for removing the coolant on the surface of the plate. The temperature measuring device 21a is disposed between the work rolls 11 and 11 and the shape detector 15a and measures the width direction plate temperature distribution of the rolled material 14 after rolling. The coolant injection device 23a measures the temperature of the work rolls 11 and 11 and the temperature. The wiping device 24a is disposed between the cooler 21a and sprays the coolant onto the surface of the rolled material, and the wiping device 24a is disposed between the coolant spray device 23a and the temperature measuring device 21a to remove the coolant on the surface of the rolled material. A command is sent from the plate cooling control device 22a to the coolant injection device 23a based on the measurement value of the temperature measuring device 21a, and the flow rate and temperature of the coolant are adjusted at regular intervals in the width direction. Based on the measurement values of the shape detector 15a and the temperature measuring device 21a, the deviation from the target shape is calculated by the deviation calculating device 16 from the target shape, and the roll cooling means / mechanical control means control amount calculation is calculated. The apparatus 17 calculates the roll coolant injection state and the bender shift control amount. The deviation calculating device 16 calculates the distribution of the temperature difference between the measured value of the temperature measuring device 21a and the room temperature, calculates the distribution (plate shape) of the thermal contraction amount of the rolled material resulting from the temperature distribution, and the thermal contraction amount. The deviation between the detected value of the shape detector 15a and the target shape at room temperature is calculated so as to compensate for the above. As the wiping device 24a for removing the rolling material coolant from the plate surface, a roller type wiping device disclosed in Japanese Patent No. 2523725 is preferably used.

以上のように構成した本基本形態の動作および作用を詳細に説明する。 The operation and action of the basic configuration configured as described above will be described in detail.

図2は、圧延材出側の板温度分布を考慮した場合の目標形状との偏差を示し、図3は、圧延材出側の板温度分布を考慮した場合で、出側板冷却を実施した場合の目標形状との偏差を示し、図4は、室温状態まで圧延材温度が降下した場合における目標形状との偏差を示す図である。   FIG. 2 shows the deviation from the target shape when considering the plate temperature distribution on the rolled material delivery side, and FIG. 3 shows the case where the delivery side plate cooling is performed in consideration of the plate temperature distribution on the rolled material delivery side. The deviation from the target shape is shown, and FIG. 4 is a diagram showing the deviation from the target shape when the rolling material temperature drops to the room temperature state.

冷間圧延においては、通常圧延機出側にて板形状をオンラインで測定し、目標形状との偏差を最小にするようにフィードバック制御が行われている。制御前において、図2(a)に示すような板形状分布を平坦形状にする場合、目標形状との偏差は、図2(c)内の破線で示すような分布となる。この偏差が最小になるように、ロールベンダー力やシフト位置の修正およびロールクーラントの噴射状態を変更する。しかし、圧延加工においては、板材が塑性変形をするため加工に伴う発熱やロールバイトでの摩擦熱等により、板材の温度が上昇する。この時、圧延材端部においては中央部に比べて、板幅方向への放熱が大きいため、図2(b)に示すような分布を持つ。このような温度分布下において、目標形状との偏差を最小にし、例えば平坦形状を得たとしても、温度分布の影響により幅方向で収縮量が異なるため、温度分布がなくなった場合には、結果的にひずみ分布が生じ板形状に変化が生じる。圧延においては、圧延作業中の板形状は、通板状態を安定にするため、できるだけ平坦形状を保つことが優先されるが、最終製品や次工程のためには、放熱後の室温状態における板形状が所望の形状となっていることが求められる。   In cold rolling, the plate shape is usually measured online on the delivery side of the rolling mill, and feedback control is performed so as to minimize the deviation from the target shape. When the plate shape distribution as shown in FIG. 2A is made flat before the control, the deviation from the target shape becomes a distribution as shown by a broken line in FIG. In order to minimize this deviation, the roll bender force and the shift position are corrected and the roll coolant injection state is changed. However, in the rolling process, since the plate material undergoes plastic deformation, the temperature of the plate material rises due to heat generated by the processing, frictional heat generated by a roll tool, and the like. At this time, the end portion of the rolled material has a distribution as shown in FIG. 2B because heat radiation in the plate width direction is larger than that in the center portion. Under such a temperature distribution, even if a deviation from the target shape is minimized, for example, a flat shape is obtained, the shrinkage amount varies in the width direction due to the influence of the temperature distribution, so if the temperature distribution disappears, the result Strain distribution occurs and the plate shape changes. In rolling, the plate shape during the rolling operation is prioritized to keep the flat shape as much as possible in order to stabilize the threading state, but for the final product and the next process, the plate in the room temperature state after heat dissipation The shape is required to be a desired shape.

帯状の薄板における幅方向の温度分布が、冷却後の熱応力およびひずみに与える基本的な影響については、「Theory of Elasticity(Third Edition)」(S.P.Timoshenko & J.N.Goodier:McGRAW-HILL BOOK COMPANY:Chap.13 pp433-439)によって考察されている。簡潔に言えば、温度が高い部分では温度降下幅も大きいため熱収縮が大きく、逆に温度が低い部分では熱収縮が小さくなる。温度分布が存在するときに幅方向各位置における長手方向ひずみが一様であっても、その後温度分布がなくなると、長手方向ひずみに分布が生じることになる。   For the basic effect of the temperature distribution in the width direction of the strip-shaped sheet on the thermal stress and strain after cooling, see “Theory of Elasticity (Third Edition)” (SPTimoshenko & JNGoodier: McGRAW-HILL BOOK COMPANY: Chap .13 pp433-439). Briefly speaking, heat shrinkage is large at a portion where the temperature is high because the temperature drop is large, and conversely, heat shrinkage is small at a portion where the temperature is low. Even if the longitudinal strain at each position in the width direction is uniform when the temperature distribution exists, if the temperature distribution disappears thereafter, the longitudinal strain is distributed.

したがい、圧延直後において、図2(a)のような板形状分布と図2(b)に示す板温度分布を持つ場合、室温状態まで板温度が下がった場合に平坦形状を得るには、図2(c)内実線に示すような板温度分布を考慮した目標形状との偏差をフィードバック制御にて最小にする必要がある。このように、板温度分布を考慮した場合には、図4(a)内実線のように、板温降下時における板形状をほぼ平坦にすることが可能である。一方、圧延直後の板温度分布を考慮せずに、計測された板形状分布のみを用いてフィードバック制御を実施すると、温度降下時に図4(a)内破線のように板端部において伸びを生じた板形状となり、所望の板形状と偏差を持つ。   Therefore, immediately after rolling, when the plate shape distribution as shown in FIG. 2 (a) and the plate temperature distribution shown in FIG. 2 (b) are present, in order to obtain a flat shape when the plate temperature falls to room temperature, 2 (c) It is necessary to minimize the deviation from the target shape in consideration of the plate temperature distribution as shown by the solid line in the feedback control. Thus, when the plate temperature distribution is taken into consideration, the plate shape at the time of the plate temperature drop can be made substantially flat as shown by the solid line in FIG. On the other hand, when feedback control is performed using only the measured plate shape distribution without considering the plate temperature distribution immediately after rolling, elongation occurs at the plate end as shown by the broken line in FIG. It has a desired plate shape and deviation.

このように、フィードバック制御時において目標とする板形状は、板温度分布を考慮した上で設定する必要がある。温度分布から生じる板形状を予め補償する場合、通板状態を安定に保つことが可能な範囲内であれば、圧延後の板形状は平坦でなくても特に問題になることはない。しかし、圧延直後の板温度分布から生じる板形状を、形状制御アクチュエータによって補償(制御)できない場合や、圧延直後における板形状が安定した通板性を阻害する場合には、板温度分布そのものを減少させる必要がある。   As described above, the target plate shape in the feedback control needs to be set in consideration of the plate temperature distribution. When the plate shape generated from the temperature distribution is compensated in advance, there is no particular problem even if the plate shape after rolling is not flat as long as it is within a range in which the plate passing state can be kept stable. However, if the plate shape resulting from the plate temperature distribution immediately after rolling cannot be compensated (controlled) by the shape control actuator, or if the plate shape immediately after rolling hinders stable plate passing, the plate temperature distribution itself is reduced. It is necessary to let

本発明では、上記運転例と同様に圧延機出側にて板形状をオンラインで測定し、目標形状との偏差を最小にするようにフィードバック制御を行うものであるが、そのとき図1に示す冷却材噴射装置23aによって板温度分布そのものを減少させる。冷却材噴射装置23aは板温度測定器21aによって測定された板温度分布を基に、温度が高い部分に対して冷却材を噴射し、板幅方向の温度分布を減少させるように作用する。この際、冷却材には、圧延潤滑材と同じ流体が使用され、水と油を混合したエマルションや油100%の液体が使用される。図3(b)内実線で示す板温度分布は、圧延直後の板表面上に冷却材を噴射した際の板温度分布を示している。このように、圧延材出側において板冷却を実施することによって、幅方向の板温度差が小さくなる。   In the present invention, as in the above operation example, the plate shape is measured online on the rolling mill exit side, and feedback control is performed so as to minimize the deviation from the target shape. The plate temperature distribution itself is decreased by the coolant injection device 23a. Based on the plate temperature distribution measured by the plate temperature measuring device 21a, the coolant injection device 23a jets the coolant to a portion having a high temperature, and acts to reduce the temperature distribution in the plate width direction. At this time, the same fluid as the rolling lubricant is used as the coolant, and an emulsion mixed with water and oil or a liquid of 100% oil is used. The plate temperature distribution indicated by the solid line in FIG. 3B shows the plate temperature distribution when the coolant is injected onto the plate surface immediately after rolling. Thus, the plate temperature difference in the width direction is reduced by performing plate cooling on the rolled material exit side.

そして、このように出側冷却を実施して幅方向板温度分布を小さくした上で、偏差演算装置16によって残存する板温度分布を考慮した室温状態での目標形状との偏差を演算する。これにより制御前において図3(a)に示すような板形状分布を平坦形状にする場合、図3(c)内実線で示すように板温度分布を考慮した目標形状との偏差は小さくなり、形状制御アクチュエータによって予め補償することが可能となり安定した通板性も確保することができる。   Then, after performing the outlet side cooling in this way to reduce the width direction plate temperature distribution, the deviation calculating device 16 calculates the deviation from the target shape in the room temperature state in consideration of the remaining plate temperature distribution. Thus, when the plate shape distribution as shown in FIG. 3A is made flat before the control, the deviation from the target shape considering the plate temperature distribution becomes small as shown by the solid line in FIG. It is possible to compensate in advance by the shape control actuator, and it is possible to secure a stable plate passing property.

さらに、出側冷却を実施せずに圧延機の形状制御アクチュエータが飽和した場合においても、図4(b)内実線で示すように、出側にて板冷却を行うことによって形状制御アクチュエータの飽和が解消し、圧延材温度が室温状態まで降下した際の板形状を所望のほぼ平坦にすることが可能となる。   Furthermore, even when the shape control actuator of the rolling mill is saturated without performing the exit side cooling, as shown by the solid line in FIG. 4B, the shape control actuator is saturated by performing plate cooling on the exit side. Is eliminated, and the plate shape when the temperature of the rolled material is lowered to the room temperature can be made substantially flat as desired.

また、特開平2−2552−9号公報等の従来技術においては、圧延後に板幅方向の温度分布を測定し、板幅方向の温度分布を減少させるように板冷却を実施している。しかし、種々の圧延条件下における実際の圧延においては、幅方向の温度分布を板冷却によって完全に除去することは困難であり、図3(b)内実線で示すように板幅方向温度分布が残存する。よって、この温度分布を考慮せずに室温状態での目標形状との偏差を演算し、形状制御を行った場合は、その残存する温度分布による熱収縮量の分、板形状が悪化し、圧延材温度が室温状態まで降下した際の板形状を所望の形状にすることができない。   In the prior art such as Japanese Patent Laid-Open No. 2-255-9, the temperature distribution in the sheet width direction is measured after rolling, and the plate cooling is performed so as to reduce the temperature distribution in the sheet width direction. However, in actual rolling under various rolling conditions, it is difficult to completely remove the temperature distribution in the width direction by sheet cooling, and as shown by the solid line in FIG. Remains. Therefore, when calculating the deviation from the target shape at room temperature without considering this temperature distribution, and performing shape control, the amount of heat shrinkage due to the remaining temperature distribution, the plate shape deteriorates, rolling The plate shape when the material temperature drops to room temperature cannot be made a desired shape.

本発明では、出側冷却を実施して幅方向板温度分布を小さくした場合でも、残存する幅方向板温度分布を考慮して室温状態での目標形状との偏差を演算し制御を行う。よって、出側冷却だけを行い、室温状態での目標形状との偏差を演算しない場合に比べても形状制御精度が良くなり、圧延材温度が室温状態まで降下した際の板形状を所望のほぼ平坦にすることが可能となる。   In the present invention, even when the outlet side cooling is performed to reduce the width direction plate temperature distribution, the deviation from the target shape in the room temperature state is calculated and controlled in consideration of the remaining width direction plate temperature distribution. Therefore, only the outlet side cooling is performed, and the shape control accuracy is improved compared to the case where the deviation from the target shape in the room temperature state is not calculated, and the plate shape when the rolling material temperature falls to the room temperature state is almost the desired shape. It becomes possible to make it flat.

また、本発明では、圧延材出側において、作業ロール11,11と形状検出器15aの間に温度検出器21aを配置し、作業ロール11,11と温度検出器21aの間に冷却剤噴射装置23aを配置している。つまり、冷却材噴射装置23aの下流側に板温度測定器21aを配置して圧延後の板材の温度を制御し、板温度測定器21aの下流側に形状検出器15aを配置して圧延材の板形状分布を測定している。このように配置することによって冷却材噴射装置23aの効果を下流側の板温度測定器によって連続的に測定可能となり、かつ形状検出器15aの表面温度の影響を受けることもなくなり、巻き取り温度をより正確に制御可能である。逆に、板温度測定器21aの下流側に冷却材噴射装置23aを配置した場合は、冷却材噴射後の温度分布を測定することができず、形状検出器15aの下流側に温度検出器21aを配置した場合は、形状検出器15aの表面温度の影響を受け板冷却による温度差低減効果を正しく測定することができないため、巻き取り温度の正確な測定ができないばかりか、室温状態での板形状も正確に予測できなくなり、本発明本来の目的を達成不可能となる。   Moreover, in this invention, the temperature detector 21a is arrange | positioned between the work rolls 11 and 11 and the shape detector 15a in the rolling material delivery side, and a coolant injection apparatus is provided between the work rolls 11 and 11 and the temperature detector 21a. 23a is arranged. That is, the plate temperature measuring device 21a is disposed downstream of the coolant injection device 23a to control the temperature of the rolled plate material, and the shape detector 15a is disposed downstream of the plate temperature measuring device 21a to The plate shape distribution is measured. By arranging in this way, the effect of the coolant injection device 23a can be continuously measured by the plate temperature measuring device on the downstream side, and it is not affected by the surface temperature of the shape detector 15a, and the winding temperature is reduced. More accurate control is possible. Conversely, when the coolant injection device 23a is arranged on the downstream side of the plate temperature measuring device 21a, the temperature distribution after the coolant injection cannot be measured, and the temperature detector 21a on the downstream side of the shape detector 15a. Is not affected by the surface temperature of the shape detector 15a, and the effect of reducing the temperature difference due to the cooling of the plate cannot be measured correctly. The shape cannot be accurately predicted, and the original object of the present invention cannot be achieved.

また、本発明では、冷却剤噴射装置23aと温度測定器21aの間にワイピング装置24aを配置したため、冷却材噴射後に圧延材表面上に付着した冷却材はワイピング装置24aによって除去され、温度測定器21aにおける温度測定精度が向上するとともに、巻取り時における巻きずれ(テレスコピック)を防止することができる。   In the present invention, since the wiping device 24a is disposed between the coolant injection device 23a and the temperature measuring device 21a, the coolant adhering to the surface of the rolled material after the coolant injection is removed by the wiping device 24a, and the temperature measuring device The temperature measurement accuracy in 21a can be improved, and winding deviation (telescopic) during winding can be prevented.

圧延直後の板温度を測定する場合、本発明に示すように非接触状態で測定することが望ましく、例えば物体からの赤外線放射率を測定する放射温度計等が好ましい。接触型の温度計を直接板材に接触させても板材の温度は測定できるが、板材の急激な温度変化に対する応答性が悪く、圧延材速度が1000mpmを超える冷間圧延には適さない。さらに、接触式の温度計では、温度計自体が接触することによって、摩擦発熱を生じることになり、計測誤差を生じることになる。   When measuring the plate temperature immediately after rolling, it is desirable to measure in a non-contact state as shown in the present invention, and for example, a radiation thermometer that measures infrared emissivity from an object is preferable. Although the temperature of the plate material can be measured even if a contact-type thermometer is brought into direct contact with the plate material, the responsiveness to a rapid temperature change of the plate material is poor and it is not suitable for cold rolling in which the rolling material speed exceeds 1000 mpm. Furthermore, in a contact-type thermometer, when the thermometer itself contacts, frictional heat generation occurs, resulting in a measurement error.

また、非接触、接触式を問わず物体の温度を測定する場合、計測対象物の表面上に液体等が介在すると、その液体自体の温度を測定するため、計測誤差を生じることになる。本発明では、圧延材の冷却材を板表面上から除去する装置として、特許第2523725号公報に開示されているローラー型のワイピング装置を使用している。このワイピング装置は、板材を鉛直方向から挟み込む小径のローラーを静圧軸受によって支持しているため、高速で通過する板材との摩擦抵抗が小さく摩擦発熱の影響を軽減でき、冷却材の除去能力も高く、温度測定時の精度向上および巻きずれを防止できる。   Further, when measuring the temperature of an object regardless of the non-contact type or the contact type, if a liquid or the like is present on the surface of the measurement object, the temperature of the liquid itself is measured, resulting in a measurement error. In the present invention, a roller-type wiping device disclosed in Japanese Patent No. 2523725 is used as an apparatus for removing the rolling material coolant from the plate surface. In this wiping device, a small-diameter roller that sandwiches the plate material from the vertical direction is supported by a hydrostatic bearing, so the frictional resistance with the plate material passing at high speed is small and the effect of frictional heat generation can be reduced, and the ability to remove coolant is also provided High, can improve accuracy during temperature measurement and prevent winding deviation.

図5は本発明の第1の実施の形態例に係わる圧延機を示す図である。図中、図1に示した部材と同様のものには同じ符号を付している。 FIG. 5 is a view showing a rolling mill according to the first embodiment of the present invention. In the figure, the same members as those shown in FIG.

図5において、図1に示した基本形態の構成に加えて、圧延材入側において板材の温度分布を測定する入側温度測定器21b、入側冷却材噴射装置23bおよび入側ワイピング装置24bが設けられている。入側温度測定器21bおよび出側温度測定器21aの少なくとも一方で計測された温度分布を基に、入側板冷却制御装置22bから入側冷却材噴射装置23bに指令が送られ、幅方向一定間隔で冷却材の流量および温度を調整する。 5, in addition to the configuration of the basic form shown in FIG. 1, an inlet side temperature measuring device 21b, an inlet side coolant injection device 23b, and an inlet side wiping device 24b that measure the temperature distribution of the plate material on the rolling material inlet side are provided. Is provided. A command is sent from the inlet side plate cooling control device 22b to the inlet side coolant injection device 23b on the basis of the temperature distribution measured by at least one of the inlet side temperature measuring device 21b and the outlet side temperature measuring device 21a, and a constant interval in the width direction. To adjust the coolant flow rate and temperature.

以上のように構成した第1の実施の形態の動作および作用を詳細に説明する。 The operation and action of the first embodiment configured as described above will be described in detail.

図6は、圧延材出側の板温度分布を考慮した場合で、入出側板冷却を実施した場合の目標形状との偏差を示す図である。   FIG. 6 is a diagram showing a deviation from a target shape when the plate temperature distribution on the rolled material delivery side is taken into account and the entry / exit side plate cooling is performed.

冷間圧延においては、アルミ圧延のように圧延方向が一方向のみで実施される場合と、鋼・銅に代表されるような可逆(リバース)式の圧延を実施する場合がある。本実施の形態は、主に可逆式圧延に本発明を適用した場合のものである。可逆式圧延においては、圧延方向を変えながら1コイルに対して複数パスを連続して行うため、圧下を重ねるにしたがい圧延材の温度が徐々に上昇する。   In cold rolling, there are a case where the rolling direction is performed in only one direction as in aluminum rolling, and a case where reversible rolling such as steel and copper is performed. In the present embodiment, the present invention is mainly applied to reversible rolling. In reversible rolling, a plurality of passes are continuously performed on one coil while changing the rolling direction, and therefore the temperature of the rolled material gradually increases as the rolling is repeated.

このような場合、圧延材入側においても温度分布が生じるため、温度ムラによる変形抵抗や摩擦係数の分布が生じ、圧延機の形状制御アクチュエータによってその形状が制御不可能な場合には、出側における板形状と出側の温度分布を補償した目標形状に偏差が残存する。さらに、出側の冷却材噴射装置23aを用いた冷却においても圧延機の機械的な形状制御手段が飽和した場合には、予め板形状を補償することが不可能となり、所望の板形状が得られないという問題が生じる。   In such a case, the temperature distribution also occurs on the rolling material entry side, so that the distribution of deformation resistance and friction coefficient due to temperature unevenness occurs, and the shape cannot be controlled by the shape control actuator of the rolling mill. Deviations remain in the target shape that compensates for the plate shape and the temperature distribution on the outlet side. Furthermore, even in the cooling using the outlet side coolant injection device 23a, if the mechanical shape control means of the rolling mill is saturated, the plate shape cannot be compensated in advance, and a desired plate shape can be obtained. The problem of not being able to occur.

本発明では、入側温度測定器21bで入側温度を計測し、その計測結果を基に板冷却制御装置22bでクーラントの噴射状態を変更する。その結果、入側の幅方向温度差を減少させることが可能になると同時に、入側温度を全体的に降下させて出側温度全体を低下させることが可能となる。図6(b)内実線で示したものが、入出側において板冷却を実施した場合の出側板温度分布を示している。制御前において、図6(a)に示すような板形状分布を平坦形状にする場合、図6(b)内実線のものでは図3(b)内実線で示した出側のみを板冷却した場合に比べて幅方向板温度差ならびに温度全体が低下し、図6(c)内実線で示す目標形状との偏差分布も小さくなる。その結果、形状制御アクチュエータによる補償(制御)量が少なくても所望の板形状が得られる。本実施形態の場合、入側ワイピング装置24bは入側冷却材が逆流し、入側温度測定器21bの測定面上への流れ込みを防止する効果がある。   In the present invention, the inlet temperature is measured by the inlet temperature measuring device 21b, and the coolant injection state is changed by the plate cooling controller 22b based on the measurement result. As a result, it is possible to reduce the temperature difference in the width direction on the entry side, and at the same time, it is possible to lower the entry side temperature as a whole and to lower the entire exit side temperature. The solid line in FIG. 6B shows the outlet side plate temperature distribution when plate cooling is performed on the inlet / outlet side. Before the control, when the plate shape distribution as shown in FIG. 6A is made flat, only the outlet side indicated by the solid line in FIG. Compared to the case, the width direction plate temperature difference and the entire temperature are lowered, and the deviation distribution from the target shape indicated by the solid line in FIG. As a result, a desired plate shape can be obtained even if the amount of compensation (control) by the shape control actuator is small. In the case of this embodiment, the entrance-side wiping device 24b has an effect of preventing the entrance-side coolant from flowing back and flowing into the measurement surface of the entrance-side temperature measuring device 21b.

また、出側にて板冷却を行っても、圧延機の機械的な形状制御手段が飽和し、出側における板形状と出側の温度分布を補償した目標形状に偏差が残る場合は、入側にて板冷却を行うことによって、図4(c)内実線で示すように、圧延材温度が室温状態まで降下した際の板形状を所望のほぼ平坦にすることが可能となる。   In addition, even if plate cooling is performed on the exit side, if the mechanical shape control means of the rolling mill is saturated and a deviation remains between the plate shape on the exit side and the target shape that compensates for the temperature distribution on the exit side, By performing plate cooling on the side, as shown by the solid line in FIG. 4C, the plate shape when the rolling material temperature is lowered to the room temperature state can be made substantially flat as desired.

入側板冷却制御装置22bは、常時、入側温度測定器21bの計測結果を基に入側冷却材噴射装置23bに指令を送り上記のようにクーラントの噴射状態を制御してもよいし、計測した入側の幅方向温度差が大きい場合にのみ入側冷却材噴射装置23bに指令を送り、クーラントの噴射状態を制御してもよい。   The inlet side plate cooling control device 22b may always send a command to the inlet side coolant injection device 23b based on the measurement result of the inlet side temperature measuring device 21b to control the coolant injection state as described above. Only when the inlet side width direction temperature difference is large, a command may be sent to the inlet side coolant injection device 23b to control the injection state of the coolant.

また、入側温度測定器21bにて温度分布が計測されなかった場合(計測された温度分布が平坦であった場合)は、出側板冷却制御装置22aから入側板冷却制御装置22bに対して送られた信号を基に、入側冷却剤噴射装置23bはクーラントの噴射状態を変更してもよい。この場合、出側の温度測定器21aによって測定された圧延後の圧延材の幅方向温度分布を入側板冷却制御装置22bによっても減少させることが可能になると同時に、入側温度を全体的に降下させて出側温度全体を低下させることが可能となる。   Further, when the temperature distribution is not measured by the entry side temperature measuring device 21b (when the measured temperature distribution is flat), it is sent from the exit side plate cooling control device 22a to the entry side plate cooling control device 22b. Based on the received signal, the inlet side coolant injection device 23b may change the injection state of the coolant. In this case, it becomes possible to reduce the temperature distribution in the width direction of the rolled material after rolling measured by the temperature measuring device 21a on the outlet side also by the inlet side plate cooling control device 22b, and at the same time, the inlet side temperature is lowered overall. Thus, it is possible to lower the entire outlet temperature.

なお、図5に示す制御系は板材が右側に進行する場合に使用する装置と制御の流れであり、左側に進行するときは、図2記載圧延ロール中心線に対して線対称的な装置と制御の流れになる。入側形状検出器15bはそのときに用いるものである。   The control system shown in FIG. 5 is an apparatus and control flow used when the plate material proceeds to the right side. When the plate material proceeds to the left side, the apparatus is axisymmetric with respect to the rolling roll center line shown in FIG. It becomes the flow of control. The entry side shape detector 15b is used at that time.

図7は本発明の第2の実施の形態に係わる圧延機を示す図である。図中、図1に示した部材と同様のものには同じ符号を付している。 FIG. 7 is a view showing a rolling mill according to the second embodiment of the present invention. In the figure, the same members as those shown in FIG.

図7において、圧延材は一方向のみに進行する。最終スタンド出側における構成は、基本形態に加えて最終スタンドとその手前のスタンド間におけるスタンド間冷却材噴射装置23c、ワイピング装置24c、板温度測定器21cを備えている。本実施の形態は、複数の圧延スタンドで構成され、圧延速度は2000mpm近くなるタンデム圧延に本発明を適用した場合のものである。 In FIG. 7, the rolled material proceeds in only one direction. In addition to the basic configuration, the configuration on the final stand exit side includes an inter-stand coolant injection device 23c, a wiping device 24c, and a plate temperature measuring device 21c between the final stand and the stand in front thereof. This embodiment is a case where the present invention is applied to tandem rolling which is composed of a plurality of rolling stands and the rolling speed is close to 2000 mpm.

最終スタンド手前のスタンドにおいて圧延終了後の板温度分布を温度測定器21cによって計測する。計測された温度分布を基に、スタンド間板冷却制御装置22cから入側冷却材噴射装置23cに指令が送られ、幅方向一定間隔で冷却材の流量および温度を調整する。冷却材噴射装置23cの下流側には、スタンド間ワイピング装置24cを配置することで、圧延材表面上の冷却材を除去し、温度測定器21cの測定精度を向上している。ロールクーラントヘッダー列20から噴射されるクーラントは、高速通板により温度測定器21cの位置まで逆流することはなく、温度測定器21cの上流側のみにワイピング装置24cを設けるだけで測定精度を確保できる。   In the stand before the final stand, the plate temperature distribution after the end of rolling is measured by the temperature measuring device 21c. Based on the measured temperature distribution, a command is sent from the inter-stand plate cooling control device 22c to the inlet side coolant injection device 23c to adjust the flow rate and temperature of the coolant at regular intervals in the width direction. By disposing the inter-stand wiping device 24c on the downstream side of the coolant injection device 23c, the coolant on the surface of the rolled material is removed, and the measurement accuracy of the temperature measuring device 21c is improved. The coolant sprayed from the roll coolant header row 20 does not flow back to the position of the temperature measuring device 21c by the high-speed passage plate, and the measurement accuracy can be ensured only by providing the wiping device 24c only on the upstream side of the temperature measuring device 21c. .

スタンド間板冷却制御装置22cは図5に示した入側板冷却制御装置22bと同様に入側冷却剤噴射装置23cを制御する。   The inter-stand plate cooling controller 22c controls the inlet-side coolant injection device 23c in the same manner as the inlet-side plate cooling controller 22b shown in FIG.

第1の実施の形態と同様に、本実施の形態は最終スタンド出側において板冷却を実施しても形状制御アクチュエータが飽和する場合や、最終スタンド手前のスタンドにおいて、著しい幅方向温度差が付与される場合に効果がある。さらに出側にて板温度分布が残存する場合には、スタンド間の板冷却を実施することにより、最終スタンド入側の幅方向温度差および温度全体を降下させることができ、圧延材温度が室温状態まで降下した際の板形状を所望のほぼ平坦にすることが可能となる。 Similar to the first embodiment, in this embodiment, even if plate cooling is performed on the exit side of the final stand, the shape control actuator is saturated, or a significant temperature difference in the width direction is given to the stand before the final stand. It is effective when it is done. Furthermore, when the plate temperature distribution remains on the exit side, the temperature difference in the width direction on the final stand entrance side and the entire temperature can be lowered by performing plate cooling between the stands, and the rolling material temperature is room temperature. The plate shape when lowered to a state can be made substantially flat as desired.

本発明の基本形態に係わる圧延機を示す図である。It is a figure which shows the rolling mill concerning the basic form of this invention. 圧延材出側の板温度分布を考慮した場合の目標形状との偏差を示す図である。It is a figure which shows the deviation from the target shape at the time of considering the plate | board temperature distribution by the side of rolling material. 圧延材出側の板温度分布を考慮した場合で、出側板冷却を実施した場合の目標形状との偏差を示す図である。It is a figure which shows the deviation | shift with the target shape at the time of implementing an exit side plate cooling, when the plate temperature distribution of the rolling material exit side is considered. 室温状態まで圧延材温度が降下した場合における目標形状との偏差を示す図である。It is a figure which shows the deviation from the target shape in case a rolling material temperature falls to a room temperature state. 本発明の第1の実施の形態に係わる圧延機を示す図であり、主に可逆式圧延機に本発明を適用した場合のものである。It is a figure which shows the rolling mill concerning the 1st Embodiment of this invention, and is a thing at the time of applying this invention mainly to a reversible rolling mill. 圧延材出側の板温度分布を考慮した場合で、入出側板冷却を実施した場合の目標形状との偏差を示す図である。It is a figure which shows the deviation with the target shape at the time of implementing cooling of the entrance / exit side plate, when the plate temperature distribution on the exit side of the rolled material is taken into consideration. 本発明の第2の実施の形態に係わる圧延機を示す図であり、主にタンデム圧延機に本発明を適用した場合のものである。It is a figure which shows the rolling mill concerning the 2nd Embodiment of this invention, and is a thing at the time of applying this invention mainly to a tandem rolling mill.

符号の説明Explanation of symbols

11…作業ロール 12…中間ロール 13…補強ロール 15a、b…形状検出器 21a、b、c…温度測定器 22a、b、c…板冷却制御装置 23a、b、c…冷却材噴射装置 24a、b、c…ワイピング装置 16…目標形状との偏差演算装置 17…ロール冷却手段、機械的制御手段制御量演算装置 18…ベンダー、シフト制御装置 19…ロールクーラント制御装置 DESCRIPTION OF SYMBOLS 11 ... Work roll 12 ... Intermediate roll 13 ... Reinforcement roll 15a, b ... Shape detector 21a, b, c ... Temperature measuring device 22a, b, c ... Plate cooling control device 23a, b, c ... Coolant injection device 24a, b, c ... Wiping device 16 ... Deviation calculation device with target shape 17 ... Roll cooling means, mechanical control means control amount calculation device 18 ... Bender, shift control device 19 ... Roll coolant control device

Claims (4)

圧延材を圧延する作業ロールと、この作業ロールの入側に配置され、圧延方向が逆になったときに出側形状検出器となる入側形状検出器と、前記作業ロールの出側に配置され、圧延後の圧延材の板形状分布を測定する出側形状検出器と、圧延材の板形状を制御する機械的制御手段および前記作業ロールの冷却手段とを備え、圧延方向が逆になると入側の機器を出側の機器に切り換え、出側の機器を入側の機器に切り換えて圧延を行う可逆式圧延機において、
前記作業ロールと前記入側および出側形状検出器の間で圧延前及び圧延後の圧延材の幅方向板温度分布を測定する入側および出側温度測定器と、
前記作業ロールと前記入側および出側温度測定器の間で圧延材表面に冷却材を噴射する入側および出側冷却剤噴射装置と、
前記入側および出側冷却材噴射装置と前記入側および出側温度測定器の間で圧延材表面上の冷却材を除去する入側および出側ワイピング装置と、
前記入側温度測定器および出側温度測定器のうち少なくとも前記入側温度測定器の測定値を基に前記圧延前の圧延材の幅方向板温度分布が減少するよう前記入側冷却材噴射装置の噴射状態を制御する装置と、
前記出側温度測定器の測定値を基に前記圧延後の圧延材の幅方向板温度分布が減少するよう前記出側冷却材噴射装置の噴射状態を制御する装置と、
前記出側形状検出器の検出値と前記出側温度測定器の測定値を基に室温状態における目標形状との偏差を演算する装置と、
前記室温状態における目標形状との偏差を基に前記機械的制御手段及び作業ロールの冷却手段の制御量を演算し圧延材の板形状を制御する装置とを備えることを特徴とする可逆式圧延機。
A work roll for rolling the rolled material, an entry side shape detector which is arranged on the entry side of the work roll and becomes an exit side shape detector when the rolling direction is reversed, and is arranged on the exit side of the work roll is a delivery side shape detector that measure the plate-shape distribution of the strip after rolling, and a cooling means of a mechanical control means and said work rolls to control the plate shape of the rolled material, the rolling direction is reversed Then, in the reversible rolling mill that performs rolling by switching the equipment on the entry side to the equipment on the exit side, switching the equipment on the exit side to the equipment on the entry side ,
Between the work roll and the entry side and exit side shape detectors, an entry side and an exit side temperature measuring device for measuring the width direction plate temperature distribution of the rolled material before and after rolling, and
An inlet-side and outlet-side coolant injection device that injects a coolant onto the surface of the rolled material between the work roll and the inlet-side and outlet-side temperature measuring devices;
An inlet and outlet wiping device that removes coolant on the surface of the rolled material between the inlet and outlet coolant injection devices and the inlet and outlet temperature measuring devices;
The inlet side coolant injection device such that the width direction plate temperature distribution of the rolled material before rolling is reduced based on at least the measured value of the inlet side temperature measuring device among the inlet side temperature measuring device and the outlet side temperature measuring device. A device for controlling the injection state of
An apparatus for controlling the injection state of the outlet coolant injection device so that the width direction plate temperature distribution of the rolled material after rolling is reduced based on the measurement value of the outlet temperature measuring device;
An apparatus for calculating a deviation from a target shape in a room temperature state based on a detected value of the outlet side shape detector and a measured value of the outlet side temperature measuring device;
Reversible rolling mill, characterized in that it comprises a device for controlling the strip shape of the rolled material and calculates the control amount of the cooling means of said mechanical control means and the work rolls deviation based on the target shape of the room temperature state .
圧延材を圧延する作業ロールを各スタンドが備え、かつ最終スタンドの作業ロール出側で圧延後の圧延材の板形状分布を測定する出側形状検出器と、前記最終スタンドに設けられ、圧延材の板形状を制御する機械的制御手段および前記作業ロールの冷却手段とを備えた複数スタンドからなる連続式圧延機において、
前記最終スタンドの作業ロールと前記出側形状検出器の間で圧延後の圧延材の幅方向板温度分布を測定する出側温度測定器および前記最終スタンドとその手前のスタンド間で圧延材の幅方向板温度分布を測定するスタンド間温度測定器と、
前記最終スタンドの作業ロールと前記出側温度測定器の間で圧延材表面に冷却材を噴射する出側冷却剤噴射装置および前記最終スタンドの手前のスタンドと前記スタンド間温度測定器の間で圧延材表面に冷却材を噴射するスタンド間冷却材噴射装置と、
前記出側冷却材噴射装置と前記出側温度測定器の間で圧延材表面上の冷却材を除去する出側ワイピング装置および前記スタンド間冷却材噴射装置と前記スタンド間温度測定器の間で圧延材表面上の冷却材を除去するスタンド間ワイピング装置と、
前記スタンド間温度測定器および出側温度測定器のうち少なくとも前記スタンド間温度測定器の測定値を基にスタンド間の圧延材の幅方向板温度分布が減少するよう前記スタンド間冷却材噴射装置の噴射状態を制御する装置と、
前記出側温度測定器の測定値を基に前記圧延後の圧延材の幅方向板温度分布が減少するよう前記出側冷却材噴射装置の噴射状態を制御する装置と、
前記出側形状検出器の検出値と前記出側温度測定器の測定値を基に室温状態における目標形状との偏差を演算する装置と、
前記室温状態における目標形状との偏差を基に前記機械的制御手段及び作業ロールの冷却手段の制御量を演算し圧延材の板形状を制御する装置とを備えることを特徴とする連続式圧延機。
Each stand is provided with a work roll for rolling the rolled material, and an exit side shape detector for measuring the plate shape distribution of the rolled material after rolling on the work roll exit side of the final stand, and provided on the final stand, the rolled material In a continuous rolling mill comprising a plurality of stands provided with a mechanical control means for controlling the plate shape and a cooling means for the work roll,
The exit side temperature measuring device for measuring the width direction plate temperature distribution of the rolled material after rolling between the work roll of the final stand and the exit side shape detector, and the width of the rolled material between the final stand and the stand in front thereof A temperature measuring device between stands for measuring the direction plate temperature distribution;
Between the outlet side coolant injection system and the final inter-stand in front of the stand and the stand temperature measuring device for injecting coolant into rolled material surface between said delivery temperature measuring device and work rolls of the final stand An inter-stand coolant injection device for injecting a coolant onto the surface of the rolled material;
Rolling between the outlet side wiping device for removing the coolant on the surface of the rolled material between the outlet side coolant injection device and the outlet side temperature measuring device and between the inter-stand coolant injection device and the inter-stand temperature measuring device An inter-stand wiping device for removing coolant on the material surface;
Of the inter-stand coolant injection device, the width direction plate temperature distribution of the rolled material between the stands is reduced based on at least the measurement value of the inter-stand temperature measurement device of the inter-stand temperature measuring device and the outlet temperature measuring device. A device for controlling the injection state;
An apparatus for controlling the injection state of the outlet coolant injection device so that the width direction plate temperature distribution of the rolled material after rolling is reduced based on the measurement value of the outlet temperature measuring device;
An apparatus for calculating a deviation from a target shape in a room temperature state based on a detected value of the outlet side shape detector and a measured value of the outlet side temperature measuring device;
Continuous rolling mill, characterized in that it comprises a device for controlling the strip shape of the rolled material and calculates the control amount of the cooling means of said mechanical control means and the work rolls deviation based on the target shape of the room temperature state .
圧延方向が逆になると入側の機器を出側の機器に切り換え、出側の機器を入側の機器に切り換えて圧延を行う可逆式圧延機において、作業ロールの入側および出側に配置された入側および出側形状検出器のうち側形状検出器を用いて圧延後の板形状分布を測定し、機械的制御手段および前記作業ロールの冷却手段を用いて圧延材の板形状を制御する圧延方法において、
前記作業ロールと前記入側および出側形状検出器の間で入側および出側温度測定器を用いて圧延前および圧延後の圧延材の幅方向板温度分布を測定すること、
前記作業ロールと前記入側および出側温度測定器の間で入側および出側冷却材噴射装置を用いて圧延材表面に冷却材を噴射すること、
前記入側および出側冷却材噴射装置と前記入側および出側温度測定器の間で入側および出側ワイピング装置を用いて圧延材表面上の冷却材を除去すること、
前記入側温度測定器および出側温度測定器のうち少なくとも前記入側温度測定器の測定値を基に前記圧延前の圧延材の幅方向板温度分布が減少するよう前記入側冷却材噴射装置の噴射状態を制御するとともに、前記出側温度測定器の測定値を基に前記圧延後の圧延材の幅方向板温度分布が減少するよう前記出側冷却材噴射装置の噴射状態を制御すること、
前記出側形状検出器の検出値と前記出側温度測定器の測定値を基に室温状態における目標形状との偏差を演算し、この室温状態における目標形状との偏差を基に前記機械的制御手段及び作業ロールの冷却手段を用いて圧延材の板形状を制御することを特徴とする圧延方法。
In a reversible rolling mill that performs rolling by switching the entry side equipment to the exit side equipment when the rolling direction is reversed, and switching the exit side equipment to the entry side equipment, they are arranged on the entry side and the exit side of the work roll. and the incoming side and outgoing side shape detector using exit-side shape detector of measuring the strip shape distribution after rolling, a plate shape of the rolled material using a cooling means of a mechanical control means and said work rolls In the rolling method for controlling
Measuring the width direction plate temperature distribution of the rolled material before rolling and after rolling using an inlet and outlet temperature measuring device between the work roll and the inlet and outlet shape detectors;
Injecting coolant onto the surface of the rolled material using the inlet and outlet coolant injection devices between the work roll and the inlet and outlet temperature measuring devices;
Removing the coolant on the surface of the rolled material using the entry side and exit side wiping devices between the entrance and exit side coolant injection devices and the entrance and exit side temperature measuring devices;
The inlet side coolant injection device so that the width direction plate temperature distribution of the rolled material before rolling is reduced based on at least the measured value of the inlet side temperature measuring device among the inlet side temperature measuring device and the outlet side temperature measuring device. And controlling the injection state of the outlet coolant injection device so that the width direction plate temperature distribution of the rolled material after rolling is reduced based on the measured value of the outlet temperature measuring device. ,
Based on the detected value of the outlet shape detector and the measured value of the outlet temperature measuring device, a deviation from the target shape in the room temperature state is calculated, and the mechanical control is performed based on the deviation from the target shape in the room temperature state. rolling method characterized that you control the plate shape of the rolled material using a cooling means means and the work rolls.
複数スタンドからなる連続式圧延機において、最終スタンドの作業ロール出側で出側形状検出器を用いて圧延後の圧延材の板形状分布を測定し、前記最終スタンドに設けられた機械的制御手段および前記作業ロールの冷却手段を用いて圧延材の板形状を制御する圧延方法において、
前記最終スタンドの作業ロールと前記出側形状検出器の間で出側温度測定器を用いて圧延後の圧延材の幅方向板温度分布を測定するとともに、前記最終スタンドとその手前のスタンド間でスタンド間温度測定器を用いて圧延材の幅方向板温度分布を測定すること、
前記最終スタンドの作業ロールと前記出側温度測定器の間で出側冷却材噴射装置を用いて圧延材表面に冷却材を噴射するとともに、前記最終スタンドの手前のスタンドと前記スタンド間温度測定器の間でスタンド間冷却材噴射装置を用いて圧延材表面に冷却材を噴射すること、
前記出側冷却材噴射装置と前記出側温度測定器の間及び前記スタンド間冷却材噴射装置と前記スタンド間温度測定器の間でそれぞれワイピング装置を用いて圧延材表面上の冷却材を除去すること、
前記スタンド間温度測定器および出側温度測定器のうち少なくとも前記スタンド間温度測定器の測定値を基にスタンド間の圧延材の幅方向板温度分布が減少するよう前記スタンド間冷却材噴射装置の噴射状態を制御するとともに、前記出側温度測定器の測定値を基に前記圧延後の圧延材の幅方向板温度分布が減少するよう前記出側冷却材噴射装置の噴射状態を制御すること、
前記出側形状検出器の検出値と前記出側温度測定器の測定値を基に室温状態における目標形状との偏差を演算し、この室温状態における目標形状との偏差を基に前記機械的制御手段及び作業ロールの冷却手段を用いて圧延材の板形状を制御することを特徴とする圧延方法。
In the continuous rolling mill comprising a plurality stand, with the delivery side shape detector in the work roll exit side of the final stand was measured a plate shape distribution of the strip after rolling, mechanical control provided in the final stand In the rolling method of controlling the plate shape of the rolled material using the means and the cooling means of the work roll,
While measuring the width direction plate temperature distribution of the rolled material after rolling using the outlet side temperature measuring device between the work roll of the final stand and the outlet side shape detector, between the final stand and the stand in front thereof Measuring the width direction plate temperature distribution of the rolled material using a temperature measuring device between stands,
Thereby injecting the coolant to the rolling material surface using the delivery side coolant injector between said delivery temperature measuring device and work rolls of the last stand, the last stand before the stand and the stand between temperature measurements Injecting coolant onto the surface of the rolled material using an inter-stand coolant injection device between the units ,
The coolant on the surface of the rolled material is removed using a wiping device between the outlet side coolant injection device and the outlet side temperature measuring device and between the inter-stand coolant injection device and the inter-stand temperature measuring device. thing,
Of the inter-stand coolant injection device, the width direction plate temperature distribution of the rolled material between the stands is reduced based on at least the measurement value of the inter-stand temperature measurement device of the inter-stand temperature measuring device and the outlet temperature measuring device. Controlling the injection state and controlling the injection state of the outlet side coolant injection device so that the width direction plate temperature distribution of the rolled material after rolling is reduced based on the measured value of the outlet side temperature measuring device,
Based on the detected value of the outlet side shape detector and the measured value of the outlet side temperature measuring device, the deviation from the target shape in the room temperature state is calculated, and the mechanical control is performed based on the deviation from the target shape in the room temperature state. rolling method characterized that you control the plate shape of the rolled material using a cooling means means and the work rolls.
JP2003297281A 2003-08-21 2003-08-21 Rolling mill and rolling method Expired - Fee Related JP4209746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297281A JP4209746B2 (en) 2003-08-21 2003-08-21 Rolling mill and rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297281A JP4209746B2 (en) 2003-08-21 2003-08-21 Rolling mill and rolling method

Publications (2)

Publication Number Publication Date
JP2005066614A JP2005066614A (en) 2005-03-17
JP4209746B2 true JP4209746B2 (en) 2009-01-14

Family

ID=34403194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297281A Expired - Fee Related JP4209746B2 (en) 2003-08-21 2003-08-21 Rolling mill and rolling method

Country Status (1)

Country Link
JP (1) JP4209746B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589850B2 (en) * 2005-09-08 2010-12-01 株式会社日立製作所 Rolling control device and rolling control method
JP2007216246A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for controlling shape of metal strip in hot rolling
JP5124856B2 (en) * 2008-10-31 2013-01-23 新日鐵住金株式会社 Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method
JP5663848B2 (en) * 2009-06-30 2015-02-04 新日鐵住金株式会社 Hot-rolled steel sheet cooling device and operation control method thereof
KR101175781B1 (en) * 2009-10-29 2012-08-21 현대제철 주식회사 Apparatus for measuring temperature of rolling process and method for measuring temperature of rolling material at rolling process
JP4918155B2 (en) 2010-09-28 2012-04-18 三菱日立製鉄機械株式会社 Hot rolled steel strip manufacturing apparatus and manufacturing method
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
CN102397886B (en) * 2011-10-17 2014-04-09 中冶南方工程技术有限公司 System for correcting plate detection error due to transverse temperature difference of cold-rolled strip
CN103998154B (en) * 2012-12-06 2015-09-09 新日铁住金株式会社 Steel sheet manufacturing method
KR101498897B1 (en) * 2013-08-28 2015-03-05 현대제철 주식회사 Method for diagnosing temperature deviation of rolling material and apparatus thereof
CN105642679B (en) * 2014-11-14 2019-04-23 宝山钢铁股份有限公司 Steel-plate shape preliminary examination and initial temperature control method and device

Also Published As

Publication number Publication date
JP2005066614A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4209746B2 (en) Rolling mill and rolling method
CN108698098B (en) Method and device for controlling a metal strip profile during rolling
US8500927B2 (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot rolled steel sheet
JPH0448521B2 (en)
JPWO2008093396A1 (en) Hot rolling mill temperature control device
RU2263000C2 (en) Planeness determining method and apparatus for performing the same
KR101498843B1 (en) Hot rolled steel sheet cooling device
KR101467724B1 (en) Method for cooling hot-rolled steel sheet
JP5821568B2 (en) Steel strip rolling method
JP3930847B2 (en) Thick plate rolling method
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP6663872B2 (en) Rolling mill control device, rolling mill control method, and rolling mill control program
JP2000167613A (en) Sheet rolling mill and method for controlling sheet shape
JP2898910B2 (en) Coolant control method in plate rolling mill
JP3946733B2 (en) Shape control method and shape control apparatus in rolling mill
JP5419648B2 (en) Shape control method in kiss rolling
JP4848984B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP3828784B2 (en) Rolling mill and rolling method
JP2008030095A (en) Rolling mill and method of setting roll cooling time
JP2020025977A (en) Cooling device of hot rolled steel sheet and cooling method of hot rolled steel sheet
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP3771781B2 (en) Thick steel plate rolling equipment and thick steel plate rolling method
EP0487274A2 (en) Strip elongation control in continuous annealing furnaces
US11883868B2 (en) Method for producing a metal article
JP3282714B2 (en) Cooling method for hot steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Ref document number: 4209746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees