JP2016044575A - Cylinder air-fuel ratio control device for internal combustion engine - Google Patents
Cylinder air-fuel ratio control device for internal combustion engine Download PDFInfo
- Publication number
- JP2016044575A JP2016044575A JP2014167999A JP2014167999A JP2016044575A JP 2016044575 A JP2016044575 A JP 2016044575A JP 2014167999 A JP2014167999 A JP 2014167999A JP 2014167999 A JP2014167999 A JP 2014167999A JP 2016044575 A JP2016044575 A JP 2016044575A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- cylinder
- detection timing
- timing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、内燃機関の各気筒の空燃比を推定し、その推定空燃比に基づいて各気筒の空燃比を制御する内燃機関の気筒別空燃比制御装置に関する発明である。 The present invention relates to a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that estimates the air-fuel ratio of each cylinder of the internal combustion engine and controls the air-fuel ratio of each cylinder based on the estimated air-fuel ratio.
内燃機関の気筒間の空燃比ばらつきを小さくする技術として、例えば、特許文献1(特開2013−253593号公報)に記載されているように、内燃機関の排気集合部に設置した空燃比センサの検出値に基づいて各気筒の空燃比を推定し、各気筒の推定空燃比に基づいて各気筒の空燃比を制御する気筒別空燃比制御を行うようにしたものがある。その際、各気筒から排出される排出ガスが空燃比センサ付近に到達してその空燃比が検出されるまでの遅れ(排気系の応答遅れ)が内燃機関の負荷や回転速度によって変化することを考慮して、負荷や回転速度に応じて各気筒の空燃比検出タイミング(空燃比センサ出力のサンプルタイミング)を設定するようにしている。 As a technique for reducing variation in air-fuel ratio between cylinders of an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-253593), an air-fuel ratio sensor installed in an exhaust collection portion of an internal combustion engine is used. Some cylinders perform air-fuel ratio control for each cylinder in which the air-fuel ratio of each cylinder is estimated based on a detected value and the air-fuel ratio of each cylinder is controlled based on the estimated air-fuel ratio of each cylinder. At that time, the delay until the exhaust gas discharged from each cylinder reaches the vicinity of the air-fuel ratio sensor and the air-fuel ratio is detected (response delay of the exhaust system) changes depending on the load and the rotational speed of the internal combustion engine. In consideration, the air-fuel ratio detection timing (sample timing of the air-fuel ratio sensor output) of each cylinder is set according to the load and the rotational speed.
ところで、内燃機関の負荷や回転速度以外の運転条件(例えば点火時期等)によって排気流速が変化することがあり、排気流速が変化すると、それに伴って排気系の応答遅れが変化して、空燃比センサの出力波形の位相が変化するため、各気筒の適正な空燃比検出タイミングも変化する。 By the way, the exhaust flow velocity may change depending on operating conditions other than the load and rotation speed of the internal combustion engine (for example, ignition timing). When the exhaust flow velocity changes, the response delay of the exhaust system changes accordingly, and the air-fuel ratio Since the phase of the output waveform of the sensor changes, the appropriate air-fuel ratio detection timing of each cylinder also changes.
このため、気筒別空燃比制御の際に、内燃機関の負荷や回転速度に応じて各気筒の空燃比検出タイミングを設定しても、負荷や回転速度以外の運転条件によって排気流速が変化すると、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれる可能性がある。各気筒の空燃比検出タイミングがずれると、各気筒の空燃比の推定精度が低下して、各気筒の空燃比を正しく制御する(気筒間の空燃比ばらつきを小さくするように制御する)ことが困難になる。 For this reason, even when the air-fuel ratio detection timing of each cylinder is set according to the load and rotation speed of the internal combustion engine during the cylinder-by-cylinder air-fuel ratio control, if the exhaust flow velocity changes due to operating conditions other than the load and rotation speed, There is a possibility that the air-fuel ratio detection timing of each cylinder deviates from the proper air-fuel ratio detection timing. When the air-fuel ratio detection timing of each cylinder shifts, the estimation accuracy of the air-fuel ratio of each cylinder decreases, and the air-fuel ratio of each cylinder is correctly controlled (control is performed so as to reduce the air-fuel ratio variation between cylinders). It becomes difficult.
そこで、本発明が解決しようとする課題は、内燃機関の排気流速の変化による空燃比検出タイミングのずれを抑制することができる内燃機関の気筒別空燃比制御装置を提供することにある。 Accordingly, an object of the present invention is to provide a cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine that can suppress a deviation in the air-fuel ratio detection timing due to a change in the exhaust flow velocity of the internal combustion engine.
上記課題を解決するために、請求項1に係る発明は、内燃機関(11)の各気筒の排出ガスが合流して流れる排気集合部(34a)に該排出ガスの空燃比を検出する空燃比センサ(36)を設置し、内燃機関(11)の負荷と回転速度のうちの少なくとも一方に応じて各気筒の空燃比検出タイミングを設定する空燃比検出タイミング設定手段(39)と、各気筒の空燃比検出タイミング毎に検出された空燃比センサ(36)の検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段(39)と、各気筒の推定空燃比に基づいて各気筒の空燃比を制御する気筒別空燃比制御手段(39)とを備えた内燃機関の気筒別空燃比制御装置において、空燃比検出タイミング設定手段(39)は、内燃機関(11)の排気流速が変化する要因となる運転条件(以下「排気流速変化要因」という)に応じて空燃比検出タイミングを補正するようにしたものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is directed to an air-fuel ratio for detecting the air-fuel ratio of the exhaust gas in the exhaust collecting portion (34a) through which the exhaust gas of each cylinder of the internal combustion engine (11) flows. An air-fuel ratio detection timing setting means (39) for setting an air-fuel ratio detection timing of each cylinder according to at least one of the load and the rotational speed of the internal combustion engine (11); A cylinder-by-cylinder air-fuel ratio estimating means (39) for estimating the air-fuel ratio of each cylinder based on the detected value of the air-fuel ratio sensor (36) detected at each air-fuel ratio detection timing, and each of the cylinders based on the estimated air-fuel ratio of each cylinder. In the cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine that includes a cylinder-by-cylinder air-fuel ratio control means (39) for controlling the air-fuel ratio of the cylinder, the air-fuel ratio detection timing setting means (39) is an exhaust flow velocity of the internal combustion engine (11). Factors that change It is obtained so as to correct the air-fuel ratio detection timing according to the operating conditions (hereinafter referred to as "exhaust flow rate change factor") that.
この構成では、排気流速変化要因に応じて、排気流速が変化して、空燃比センサの出力波形の位相が変化する(つまり各気筒の適正な空燃比検出タイミングが変化する)のに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれることを抑制することができる。これにより、内燃機関の負荷や回転速度以外の運転条件によって排気流速が変化しても、その排気流速の変化による空燃比検出タイミングのずれを抑制することができるため、各気筒の空燃比の推定精度の低下を抑制することができ、各気筒の空燃比を正しく制御する(気筒間の空燃比ばらつきを小さくするように制御する)ことができる。 In this configuration, the exhaust flow rate changes according to the exhaust flow rate change factor, and the phase of the output waveform of the air-fuel ratio sensor changes (that is, the appropriate air-fuel ratio detection timing of each cylinder changes). Thus, the air-fuel ratio detection timing can be corrected, and deviation of the air-fuel ratio detection timing of each cylinder from the appropriate air-fuel ratio detection timing can be suppressed. As a result, even if the exhaust gas flow rate changes due to operating conditions other than the load and rotation speed of the internal combustion engine, the deviation of the air-fuel ratio detection timing due to the change in the exhaust gas flow rate can be suppressed. The reduction in accuracy can be suppressed, and the air-fuel ratio of each cylinder can be correctly controlled (control so as to reduce the variation in air-fuel ratio between cylinders).
以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11は、第1気筒#1〜第4気筒#4の四つの気筒を有し、このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15と、このスロットルバルブ15の開度(スロットル開度)を検出するスロットル開度センサ16とが設けられている。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An in-line four-
更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19に接続された吸気ポート又はその近傍に、それぞれ吸気ポートに燃料を噴射する燃料噴射弁20が取り付けられている。或は、エンジン11の各気筒に、それぞれ筒内に燃料を直接噴射する燃料噴射弁20が取り付けられているようにしても良い。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。
Further, a
また、エンジン11には、吸気バルブ25と排気バルブ26のバルブタイミング(開閉タイミング)をそれぞれ変化させる可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられていると共に、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30CA毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。
Further, the
一方、エンジン11の排気管34のうちの各気筒の排出ガスが合流して流れる排気集合部34a(各気筒の排気マニホールド35が集合する部分又はそれよりも下流側)には、排出ガスの空燃比を検出する空燃比センサ36が設けられている。この空燃比センサ36の下流側に、排出ガス中のCO,HC,NOX 等を浄化する三元触媒等の触媒37が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ38が取り付けられている。
On the other hand, in the
これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)39に入力される。このECU39は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、燃料噴射時期、点火時期、スロットル開度(吸入空気量)等を制御する。 Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 39. The ECU 39 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the fuel injection are determined according to the engine operating state. The timing, ignition timing, throttle opening (intake air amount), etc. are controlled.
その際、ECU39は、所定の空燃比F/B制御実行条件が成立したときに、空燃比センサ36の出力に基づいて排出ガスの空燃比を目標空燃比に一致させるように混合気の空燃比(例えば燃料噴射量)をF/B制御する空燃比F/B制御を実行する。ここで、「F/B」は「フィードバック」を意味する(以下、同様)。
At this time, the ECU 39 sets the air-fuel ratio of the air-fuel mixture so that the air-fuel ratio of the exhaust gas matches the target air-fuel ratio based on the output of the air-
具体的には、図2に示すように、まず、空燃比偏差算出部40で、検出空燃比(空燃比センサ36で検出した排出ガスの空燃比)と目標空燃比との偏差を算出し、空燃比F/B制御部41で、検出空燃比と目標空燃比との偏差が小さくなるように空燃比補正係数を算出する。そして、噴射量算出部42で、エンジン回転速度やエンジン負荷(吸気管負圧や吸入空気量等)に基づいて算出されたベース噴射量や空燃比補正係数等に基づいて燃料噴射量を算出し、その燃料噴射量に基づいて各気筒の燃料噴射弁20を制御する。
Specifically, as shown in FIG. 2, first, the air-fuel ratio
更に、ECU39は、後述する図3の気筒別空燃比制御ルーチンを実行することで、各気筒の空燃比検出タイミング毎に検出された空燃比センサ36の検出値に基づいて各気筒の空燃比を気筒毎に推定する気筒別空燃比推定を実行し、各気筒の推定空燃比に基づいて各気筒の空燃比を気筒毎に制御する気筒別空燃比制御を実行する。
Further, the
具体的には、図2に示すように、まず、気筒別空燃比推定部43で、後述する気筒別空燃比推定モデルを用いて空燃比センサ36の検出値(排気集合部34aを流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を気筒毎に推定し、基準空燃比算出部44で、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比に設定する。この後、気筒別空燃比偏差算出部45で、各気筒の推定空燃比と基準空燃比との偏差を気筒毎に算出し、気筒別空燃比制御部46で、各気筒の推定空燃比と基準空燃比との偏差が小さくなるように気筒別補正値として例えば燃料補正量(燃料噴射量の補正量)を気筒毎に算出する。その算出結果に基づいて各気筒の燃料噴射量を気筒毎に補正することで、各気筒に供給する混合気の空燃比を気筒毎に補正して気筒間の空燃比ばらつきを小さくする。
Specifically, as shown in FIG. 2, first, the cylinder-by-cylinder air-fuel
ここで、空燃比センサ36の検出値(排気集合部34aを流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。
Here, a specific model for estimating the air-fuel ratio of each cylinder based on the detected value of the air-fuel ratio sensor 36 (actual air-fuel ratio of the exhaust gas flowing through the
排気集合部34aにおけるガス交換に着目して、空燃比センサ36の検出値を、排気集合部34aにおける各気筒の推定空燃比の履歴と空燃比センサ36の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、このモデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。
Paying attention to the gas exchange in the
より具体的には、排気集合部34aにおけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、ys は空燃比センサ36の検出値、uは排気集合部34aに流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, ys is a detected value of the air-
排気系では、排気集合部34aにおけるガス流入及び混合の一次遅れ要素と、空燃比センサ36の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。
In the exhaust system, there are a first-order lag element for gas inflow and mixing in the
上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ36の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-
更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).
以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。 As described above, the cylinder-by-cylinder air-fuel ratio estimation model is configured by the Kalman filter type observer, whereby the air-fuel ratio of each cylinder can be sequentially estimated as the combustion cycle proceeds.
次に、各気筒の空燃比検出タイミング(空燃比センサ36の出力のサンプルタイミング)の設定方法について説明する。各気筒から排出される排出ガスが空燃比センサ36付近に到達してその空燃比が検出されるまでの遅れ(以下「排気系の応答遅れ」という)がエンジン運転状態によって変化する。これを考慮して、本実施例では、エンジン運転状態(例えばエンジン回転速度や負荷)に応じてマップにより各気筒の空燃比検出タイミングを設定し、空燃比センサ36の出力をECU39に取り込むようにしている。一般に、エンジン11の負荷が小さくなるほど、排気系の応答遅れが大きくなるため、各気筒の空燃比検出タイミングは、エンジン11の負荷が小さくなるほど、遅角側にシフトされるように設定されている。
Next, a method for setting the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 36) will be described. The delay until the exhaust gas discharged from each cylinder reaches the vicinity of the air-
しかしながら、各気筒の排気ポートから空燃比センサ36までの排気マニホールド35の長さが各気筒毎に異なると共に、各気筒の排出ガスの流れがエンジン運転状態(エンジン回転速度や筒内充填空気量等)によって複雑に変化する。しかも、エンジン11の製造ばらつきや経年変化によっても排気系の応答遅れが変化するため、エンジン設計・製造過程で、各気筒の排気系の応答遅れ(各気筒の空燃比検出タイミング)と負荷との関係を精度良くマップ化しておくことは困難である。このため、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれる可能性がある。
However, the length of the
そこで、ECU39は、気筒別空燃比制御中に推定空燃比に基づいて空燃比検出タイミングのずれの有無を判定する空燃比検出タイミング判定を行い、空燃比検出タイミングのずれ有りと判定されたときに空燃比検出タイミングを補正する。
Therefore, the
例えば、エンジン11の1サイクル(720CA)内で空燃比センサ36の検出値のばらつき(変動)が最大となるように空燃比検出タイミングを補正するLocal学習を実行する。このLocal学習の実行後に、気筒別空燃比制御中に少なくとも一つの気筒の推定空燃比の変化とその気筒の気筒別補正値(例えば燃料補正量)の変化との関係に基づいて空燃比検出タイミングを補正するGlobal学習を実行する。このGlobal学習では、各気筒の推定空燃比が想定している各気筒番号を仮想的に複数通り変更した場合の各々において少なくとも一つの気筒の推定空燃比の変化とその推定空燃比の変更後の気筒番号の気筒別補正値の変化との相関値を算出し、この相関値が最大となるように空燃比検出タイミングを補正する。
For example, the local learning for correcting the air-fuel ratio detection timing is executed so that the variation (fluctuation) of the detection value of the air-
或は、Local学習の実行後(つまりLocal学習により空燃比検出タイミングが補正された後)、空燃比検出タイミングがずれていると判定される毎に該空燃比検出タイミングをエンジン11の燃焼間隔(4気筒の場合には180CA)又はその複数倍ずつ補正するGlobal学習を実行することで、各気筒の空燃比検出タイミングを他の気筒の空燃比検出タイミングと入れ替えて、各気筒の空燃比検出タイミングを正しい空燃比検出タイミングに補正するようにしても良い。 Alternatively, after the local learning is executed (that is, after the air-fuel ratio detection timing is corrected by the local learning), the air-fuel ratio detection timing is set to the combustion interval ( (In the case of four cylinders, 180 CA) or a global learning that corrects multiple times of each is performed to replace the air-fuel ratio detection timing of each cylinder with the air-fuel ratio detection timing of the other cylinders. May be corrected to the correct air-fuel ratio detection timing.
ところで、エンジン11負荷や回転速度以外の運転条件(例えば点火時期等)によって排気流速が変化することがあり、排気流速が変化すると、それに伴って排気系の応答遅れが変化して、空燃比センサ36の出力波形の位相が変化するため、各気筒の適正な空燃比検出タイミングも変化する。
By the way, the exhaust flow rate may change depending on operating conditions (for example, ignition timing) other than the load of the
このため、気筒別空燃比制御の際に、エンジン11の負荷や回転速度に応じて各気筒の空燃比検出タイミングを設定しても、負荷や回転速度以外の運転条件によって排気流速が変化すると、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれる可能性がある。各気筒の空燃比検出タイミングがずれると、各気筒の空燃比の推定精度が低下して、各気筒の空燃比を正しく制御する(気筒間の空燃比ばらつきを小さくするように制御する)ことが困難になる。
For this reason, even if the air-fuel ratio detection timing of each cylinder is set according to the load and rotation speed of the
この対策として、本実施例では、ECU39により後述する図4の空燃比検出タイミング設定ルーチンを実行することで、エンジン11の排気流速が変化する要因となる運転条件(以下「排気流速変化要因」という)に応じて空燃比検出タイミングを補正するようにしている。
As a countermeasure, in this embodiment, the
このようにすれば、排気流速変化要因に応じて、排気流速が変化して、空燃比センサ36の出力波形の位相が変化する(つまり各気筒の適正な空燃比検出タイミングが変化する)のに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれることを抑制することができる。
In this way, the exhaust flow rate changes in accordance with the exhaust flow rate change factor, and the phase of the output waveform of the air-
本実施例では、排気流速変化要因として、エンジン11の点火時期と燃料噴射時期と負荷の変化量とを用い、これらの点火時期と燃料噴射時期と負荷の変化量とに応じて空燃比検出タイミングを補正するようにしている。
In this embodiment, the
点火時期(例えばベース点火時期からの遅角量)が変化すると、燃焼タイミングの変化により排気圧が変化して、排気流速が変化するため、点火時期は、排気流速変化要因となる。 When the ignition timing (for example, the retard amount from the base ignition timing) changes, the exhaust pressure changes due to the change in the combustion timing, and the exhaust flow velocity changes. Therefore, the ignition timing becomes an exhaust flow velocity change factor.
また、燃料噴射時期が変化する(例えば吸気行程噴射と圧縮行程噴射との間で切り換わる)と、燃焼状態が変化して、排気流速が変化するため、燃料噴射時期は、排気流速変化要因となる。 In addition, when the fuel injection timing changes (for example, switching between intake stroke injection and compression stroke injection), the combustion state changes and the exhaust flow velocity changes, so the fuel injection timing depends on the exhaust flow velocity change factor. Become.
更に、負荷の変化量(例えば吸入空気量の所定期間の変化量)が変化すると、排出ガス量の所定期間の変化量が変化して、排気流速が変化するため、負荷の変化量は、排気流速変化要因となる。
以下、本実施例でECU39が実行する図3及び図4の各ルーチンの処理内容を説明する。
Furthermore, when the amount of change in load (for example, the amount of change in intake air amount over a predetermined period) changes, the amount of change in exhaust gas amount over a predetermined period changes, and the exhaust flow rate changes. It becomes a flow velocity change factor.
Hereinafter, the processing content of each routine of FIG.3 and FIG.4 which ECU39 performs by a present Example is demonstrated.
[気筒別空燃比制御ルーチン]
図3に示す気筒別空燃比制御ルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30CA毎)に起動され、特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control routine shown in FIG. 3 is started at predetermined crank angles (for example, every 30 CA) in synchronization with the output pulse of the
本ルーチンが起動されると、まず、ステップ101で、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この気筒別空燃比制御の実行条件としては、例えば、次の条件(1) 〜(3) がある。
(1) 空燃比センサ36が活性状態であること
(2) 空燃比センサ36が異常(故障)と判定されていないこと
(3) エンジン運転領域(例えばエンジン回転速度と吸気管圧力)が空燃比推定精度を確保できる運転領域であること
When this routine is started, first, at
(1) The air-
(2) The air-
(3) The engine operating range (for example, engine speed and intake pipe pressure) must be an operating range where air-fuel ratio estimation accuracy can be ensured.
これら三つの条件(1) 〜(3) を全て満したときに気筒別空燃比制御の実行条件が成立し、いずれか1つでも満たさない条件があれば、実行条件が不成立となる。実行条件が不成立の場合は、ステップ102以降の処理を行うことなく、本ルーチンを終了する。
The execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied when all of these three conditions (1) to (3) are satisfied. If any one of the conditions is not satisfied, the execution condition is not satisfied. If the execution condition is not satisfied, this routine is terminated without performing the processing after
一方、実行条件が成立している場合は、ステップ102に進み、後述する図4の空燃比検出タイミング設定ルーチンを実行して、各気筒の空燃比検出タイミング(空燃比センサ36の出力のサンプルタイミング)を設定する。
On the other hand, if the execution condition is satisfied, the routine proceeds to step 102 where an air-fuel ratio detection timing setting routine shown in FIG. 4 described later is executed to detect the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-
この後、ステップ103に進み、現在のクランク角が上記ステップ102で設定した空燃比検出タイミングであるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。
Thereafter, the routine proceeds to step 103, where it is determined whether or not the current crank angle is the air-fuel ratio detection timing set in
これに対して、現在のクランク角が上記ステップ102で設定した空燃比検出タイミングであれば、ステップ104に進み、空燃比センサ36の出力(空燃比検出値)を読み込む。
On the other hand, if the current crank angle is the air-fuel ratio detection timing set in
この後、ステップ105に進み、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ36の検出値に基づいて推定する。このステップ105の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。
Thereafter, the routine proceeds to step 105, where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detected value of the air-
この後、ステップ106に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定する。
この後、ステップ107に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように各気筒の気筒別補正値として燃料補正量を算出する。
Thereafter, the routine proceeds to step 106, where the average value of the estimated air-fuel ratios of all cylinders is calculated, and the average value is set as the reference air-fuel ratio (target air-fuel ratio of all cylinders).
Thereafter, the routine proceeds to step 107, where the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated, and the fuel correction amount is calculated as a cylinder-specific correction value for each cylinder so that the deviation becomes small.
この後、ステップ108に進み、各気筒の燃料補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを小さくするように制御する。 Thereafter, the routine proceeds to step 108 where the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder by correcting the fuel injection amount for each cylinder based on the fuel correction amount for each cylinder. Control is performed to reduce the variation in air-fuel ratio.
[空燃比検出タイミング設定ルーチン]
図4に示す空燃比検出タイミング設定ルーチンは、前記図3の気筒別空燃比制御ルーチンのステップ102で実行されるサブルーチンであり、特許請求の範囲でいう空燃比検出タイミング設定手段としての役割を果たす。
[Air-fuel ratio detection timing setting routine]
The air-fuel ratio detection timing setting routine shown in FIG. 4 is a subroutine executed in
本ルーチンが起動されると、まず、ステップ201で、各種センサの出力やECU39の演算情報(例えば点火時期や燃料噴射時期等)を読み込む。
この後、ステップ202に進み、現在のエンジン11の負荷(例えば吸気管圧力)に応じて各気筒のベース空燃比検出タイミングSb をマップ(図5参照)により算出する。尚、エンジン回転速度と負荷に応じて各気筒のベース空燃比検出タイミングSb をマップにより算出するようにしても良い。このベース空燃比検出タイミングSb を算出するマップは、図示しない空燃比検出タイミングずれ学習補正用のルーチン(例えばLocal学習実行ルーチンやGlobal学習実行ルーチン)によって学習補正される。
When this routine is started, first, in
Thereafter, the routine proceeds to step 202, where the base air-fuel ratio detection timing Sb of each cylinder is calculated from a map (see FIG. 5) according to the current load (for example, intake pipe pressure) of the
この後、ステップ203に進み、図6に示す点火時期に応じた補正量S1 のマップを参照して、現在の点火時期(例えばベース点火時期からの遅角量)に応じた補正量S1 を算出する。図6の補正量S1 のマップは、点火時期が遅角側になる(つまりベース点火時期からの遅角量が大きくなる)ほど補正量S1 が小さくなる(空燃比検出タイミングの進角量が大きくなる)ように設定されている。この補正量S1 のマップは、予め試験や設計データ等に基づいて作成され、ECU39のROMに記憶されている。
Thereafter, the routine proceeds to step 203, where the correction amount S1 corresponding to the current ignition timing (for example, the retard amount from the base ignition timing) is calculated with reference to the map of the correction amount S1 corresponding to the ignition timing shown in FIG. To do. In the map of the correction amount S1 in FIG. 6, the correction amount S1 decreases (the advance amount of the air-fuel ratio detection timing increases) as the ignition timing becomes retarded (that is, the retardation amount from the base ignition timing increases). Is set). The map of the correction amount S1 is created in advance based on tests and design data, and stored in the ROM of the
この後、ステップ204に進み、図7に示す燃料噴射時期に応じた補正量S2 のマップを参照して、現在の燃料噴射時期に応じた補正量S2 を算出する。図7の補正量S2 のマップは、燃料噴射時期が吸気行程の場合よりも圧縮行程の場合の方が補正量S2 が小さくなる(空燃比検出タイミングの進角量が大きくなる)ように設定されている。この補正量S2 のマップは、予め試験や設計データ等に基づいて作成され、ECU39のROMに記憶されている。
Thereafter, the routine proceeds to step 204, where the correction amount S2 corresponding to the current fuel injection timing is calculated with reference to the map of the correction amount S2 corresponding to the fuel injection timing shown in FIG. The map of the correction amount S2 in FIG. 7 is set so that the correction amount S2 is smaller (the advance amount of the air-fuel ratio detection timing is larger) when the fuel injection timing is the compression stroke than when the fuel injection timing is the intake stroke. ing. The map of the correction amount S2 is created in advance based on tests and design data, and stored in the ROM of the
この後、ステップ205に進み、図8に示す負荷変化量に応じた補正量S3 のマップを参照して、現在の負荷変化量に応じた補正量S3 を算出する。ここで、負荷変化量は、例えば、吸入空気量GNの所定期間(例えばTDC間)の変化量dGNである。図8の補正量S3 のマップは、負荷変化量が大きくなるほど補正量S3 が大きくなる(空燃比検出タイミングの遅角量が大きくなる)ように設定されている。この補正量S3 のマップは、予め試験や設計データ等に基づいて作成され、ECU39のROMに記憶されている。
Thereafter, the process proceeds to step 205, where the correction amount S3 corresponding to the current load change amount is calculated with reference to the map of the correction amount S3 corresponding to the load change amount shown in FIG. Here, the load change amount is, for example, a change amount dGN of the intake air amount GN during a predetermined period (for example, between TDCs). The map of the correction amount S3 in FIG. 8 is set so that the correction amount S3 increases (the retardation amount of the air-fuel ratio detection timing increases) as the load change amount increases. The map of the correction amount S3 is created in advance based on tests and design data, and is stored in the ROM of the
この後、ステップ206に進み、各補正量S1 〜S3 を用いてベース空燃比検出タイミングSb を補正して最終的な空燃比検出タイミングSを求める。これにより、点火時期と燃料噴射時期と負荷変化量に応じて空燃比検出タイミングを補正する。
S=Sb +S1 +S2 +S3
Thereafter, the routine proceeds to step 206, where the correction amounts S1 to S3 are used to correct the base air-fuel ratio detection timing Sb to obtain the final air-fuel ratio detection timing S. Thus, the air-fuel ratio detection timing is corrected according to the ignition timing, the fuel injection timing, and the load change amount.
S = Sb + S1 + S2 + S3
以上説明した本実施例では、エンジン11の排気流速が変化する要因となる運転条件である排気流速変化要因(点火時期と燃料噴射時期と負荷変化量)に応じて空燃比検出タイミングを補正するようにしている。このようにすれば、排気流速変化要因に応じて、排気流速が変化して、空燃比センサ36の出力波形の位相が変化する(つまり各気筒の適正な空燃比検出タイミングが変化する)のに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングが適正な空燃比検出タイミングからずれることを抑制することができる。これにより、エンジン11の負荷や回転速度以外の運転条件(点火時期や燃料噴射時期や負荷変化量)によって排気流速が変化しても、その排気流速の変化による空燃比検出タイミングのずれを抑制することができるため、各気筒の空燃比の推定精度の低下を抑制することができ、各気筒の空燃比を正しく制御する(気筒間の空燃比ばらつきを小さくするように制御する)ことができる。
In the present embodiment described above, the air-fuel ratio detection timing is corrected in accordance with the exhaust flow velocity change factors (ignition timing, fuel injection timing, and load change amount), which are operating conditions that cause the exhaust flow velocity of the
具体的には、点火時期が変化すると、燃焼タイミングの変化により排気圧が変化して、排気流速が変化するため、空燃比センサ36の出力波形の位相が変化する。例えば、図9に示すように、点火時期が遅角されると、排気流速が上昇して、空燃比センサ36の出力波形の位相が進角方向に変化する(図9の破線参照)。
Specifically, when the ignition timing changes, the exhaust pressure changes due to the change in combustion timing, and the exhaust flow velocity changes, so the phase of the output waveform of the air-
そこで、本実施例では、点火時期(例えばベース点火時期からの遅角量)に応じて補正量S1 を算出し、この補正量S1 を用いてベース空燃比検出タイミングを補正して最終的な空燃比検出タイミングを求めることで、点火時期に応じて空燃比検出タイミングを補正するようにしている。このようにすれば、点火時期の変化(例えば触媒暖機制御時の点火時期遅角)によって排気流速が変化して、空燃比センサ36の出力波形の位相が変化するのに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングのずれを抑制することができる。
Therefore, in this embodiment, the correction amount S1 is calculated according to the ignition timing (for example, the retard amount from the base ignition timing), and the base air-fuel ratio detection timing is corrected using this correction amount S1 to obtain the final empty By obtaining the fuel ratio detection timing, the air fuel ratio detection timing is corrected according to the ignition timing. In this way, the exhaust flow rate changes due to a change in the ignition timing (for example, the ignition timing retardation during the catalyst warm-up control), and the phase of the output waveform of the air-
また、燃料噴射時期が変化すると、燃焼状態が変化して、排気流速が変化するため、空燃比センサ36の出力波形の位相が変化する。例えば、図10に示すように、燃料噴射時期が吸気行程から圧縮行程に変化する(つまり吸気行程噴射から圧縮行程噴射に切り換える)と、排気流速が上昇して、空燃比センサ36の出力波形の位相が進角方向に変化する(図10の破線参照)。
Further, when the fuel injection timing changes, the combustion state changes and the exhaust flow velocity changes, so the phase of the output waveform of the air-
そこで、本実施例では、燃料噴射時期に応じて補正量S2 を算出し、この補正量S2 を用いてベース空燃比検出タイミングを補正して最終的な空燃比検出タイミングを求めることで、燃料噴射時期に応じて空燃比検出タイミングを補正するようにしている。このようにすれば、燃料噴射時期の変化(例えば吸気行程噴射から圧縮行程噴射への切り換え)によって排気流速が変化して、空燃比センサ36の出力波形の位相が変化するのに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングのずれを抑制することができる。
Therefore, in this embodiment, the correction amount S2 is calculated according to the fuel injection timing, the base air-fuel ratio detection timing is corrected using this correction amount S2, and the final air-fuel ratio detection timing is obtained, whereby the fuel injection The air-fuel ratio detection timing is corrected according to the timing. In this way, in response to a change in the fuel injection timing (for example, switching from intake stroke injection to compression stroke injection), the exhaust flow velocity changes, and the phase of the output waveform of the air-
また、負荷変化量が変化すると、排出ガス量の所定期間の変化量が変化して、排気流速が変化するため、空燃比センサ36の出力波形の位相が変化する。そこで、本実施例では、負荷変化量(例えば吸入空気量の変化量)に応じて補正量S3 を算出し、この補正量S3 を用いてベース空燃比検出タイミングを補正して最終的な空燃比検出タイミングを求めることで、負荷変化量に応じて空燃比検出タイミングを補正するようにしている。このようにすれば、エンジン11の過渡時に、負荷変化量に応じて、排気流速が変化して、空燃比センサ36の出力波形の位相が変化するのに対応して、空燃比検出タイミングを補正することができ、各気筒の空燃比検出タイミングのずれを抑制することができる。
Further, when the load change amount changes, the change amount of the exhaust gas amount for a predetermined period changes, and the exhaust flow velocity changes, so the phase of the output waveform of the air-
尚、上記実施例では、排気流速変化要因として、点火時期と燃料噴射時期と負荷変化量を用い、これらの点火時期と燃料噴射時期と負荷変化量の三つに応じて空燃比検出タイミングを補正するようにしている。しかし、これに限定されず、例えば、点火時期と燃料噴射時期と負荷変化量のうちの二つ又は一つに応じて空燃比検出タイミングを補正するようにしても良い。 In the above embodiment, the ignition timing, the fuel injection timing, and the load change amount are used as the exhaust flow velocity change factors, and the air-fuel ratio detection timing is corrected according to these ignition timing, fuel injection timing, and load change amount. Like to do. However, the present invention is not limited to this. For example, the air-fuel ratio detection timing may be corrected according to two or one of the ignition timing, the fuel injection timing, and the load change amount.
また、空燃比検出タイミングのずれ有りと判定されたときに、空燃比検出タイミングを補正する方法は、上記実施例で説明した方法に限定されず、適宜変更しても良い。
また、上記実施例では、本発明を4気筒エンジンに適用したが、これに限定されず、2気筒エンジンや3気筒エンジン或は5気筒以上のエンジンに本発明を適用しても良い。
Further, the method of correcting the air-fuel ratio detection timing when it is determined that there is a deviation in the air-fuel ratio detection timing is not limited to the method described in the above embodiment, and may be changed as appropriate.
In the above embodiment, the present invention is applied to a four-cylinder engine. However, the present invention is not limited to this, and the present invention may be applied to a two-cylinder engine, a three-cylinder engine, or an engine having five or more cylinders.
11…エンジン(内燃機関)、12…吸気管、34…排気管、34a…排気集合部、36…空燃比センサ、39…ECU(空燃比検出タイミング設定手段,気筒別空燃比推定手段,気筒別空燃比制御手段)
DESCRIPTION OF
Claims (4)
前記空燃比検出タイミング設定手段(39)は、前記内燃機関(11)の排気流速が変化する要因となる運転条件(以下「排気流速変化要因」という)に応じて前記空燃比検出タイミングを補正することを特徴とする内燃機関の気筒別空燃比制御装置。 An air-fuel ratio sensor (36) for detecting an air-fuel ratio of the exhaust gas is installed in an exhaust collecting portion (34a) where exhaust gases of the cylinders of the internal combustion engine (11) flow and merge to load the internal combustion engine (11). And an air-fuel ratio detection timing setting means (39) for setting an air-fuel ratio detection timing of each cylinder according to at least one of the rotation speed and the air-fuel ratio sensor detected at each air-fuel ratio detection timing of each cylinder Cylinder air-fuel ratio estimating means (39) for estimating the air-fuel ratio of each cylinder based on the detected value of (36), and cylinder-by-cylinder for controlling the air-fuel ratio of each cylinder based on the estimated air-fuel ratio of each cylinder In the air-fuel ratio control apparatus for each cylinder of the internal combustion engine provided with the air-fuel ratio control means (39),
The air-fuel ratio detection timing setting means (39) corrects the air-fuel ratio detection timing in accordance with an operating condition (hereinafter referred to as “exhaust flow rate change factor”) that causes a change in the exhaust flow rate of the internal combustion engine (11). A cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014167999A JP2016044575A (en) | 2014-08-20 | 2014-08-20 | Cylinder air-fuel ratio control device for internal combustion engine |
US14/825,455 US9890726B2 (en) | 2014-08-19 | 2015-08-13 | Individual cylinder air-fuel ratio control device of internal combustion engine |
US15/585,227 US9790882B2 (en) | 2014-08-19 | 2017-05-03 | Individual cylinder air-fuel ratio control device of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014167999A JP2016044575A (en) | 2014-08-20 | 2014-08-20 | Cylinder air-fuel ratio control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016044575A true JP2016044575A (en) | 2016-04-04 |
Family
ID=55635378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014167999A Pending JP2016044575A (en) | 2014-08-19 | 2014-08-20 | Cylinder air-fuel ratio control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016044575A (en) |
-
2014
- 2014-08-20 JP JP2014167999A patent/JP2016044575A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4420288B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
JP4321411B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
US7487035B2 (en) | Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine | |
JP5107392B2 (en) | Device for determining an air-fuel ratio imbalance between cylinders | |
JP4700079B2 (en) | Device for determining an air-fuel ratio imbalance between cylinders | |
US7707822B2 (en) | Cylinder air-fuel ratio controller for internal combustion engine | |
JP4706590B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
JP2005163696A (en) | Misfire detection device of internal combustion engine | |
JP2008121534A (en) | Abnormality diagnostic device of internal combustion engine | |
JP2008144639A (en) | Control device for internal combustion engine | |
JP5335704B2 (en) | Device for determining an air-fuel ratio imbalance between cylinders | |
JP6213085B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
JP2008128080A (en) | Control device for internal combustion engine | |
JP2007315193A (en) | Air-fuel ratio detecting device of internal combustion engine | |
JP2012219683A (en) | Controller for internal combustion engine | |
JP2008128160A (en) | Control device of internal combustion engine | |
JP6213078B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
JP2013253593A (en) | Cylinder-by-cylinder air fuel ratio control device for internal combustion engine | |
JP2008064078A (en) | Control device of internal combustion engine | |
JP2007211609A (en) | Device for controlling air-fuel ratio per cylinder of internal combustion engine | |
JP5553928B2 (en) | Device for determining an air-fuel ratio imbalance between cylinders | |
JP4600699B2 (en) | Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine | |
JP2008014178A (en) | Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine | |
JP2008128161A (en) | Control device of internal combustion engine | |
JP2008038784A (en) | Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160307 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20160309 |