JP2008128080A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2008128080A
JP2008128080A JP2006313450A JP2006313450A JP2008128080A JP 2008128080 A JP2008128080 A JP 2008128080A JP 2006313450 A JP2006313450 A JP 2006313450A JP 2006313450 A JP2006313450 A JP 2006313450A JP 2008128080 A JP2008128080 A JP 2008128080A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
sensor
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006313450A
Other languages
Japanese (ja)
Inventor
Masae Nozawa
政衛 野沢
Kazuhiro Nishigaki
和浩 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006313450A priority Critical patent/JP2008128080A/en
Publication of JP2008128080A publication Critical patent/JP2008128080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the drop of estimation accuracy of air fuel ratio for each cylinder due to drop of response of an air fuel ratio sensor in a system estimating air fuel ratio for each cylinder based on a detection value of the air fuel ratio sensor installed on an exhaust gas merging part of an engine. <P>SOLUTION: When response of the air fuel ratio sensor 37 is in a normal range (a condition where response of the air fuel ratio sensor 37 drops very little), a model method is selected as a method for estimating an air fuel ratio for each cylinder and air fuel ratio for each cylinder is estimated by using a model correlating air fuel ratio for each cylinder to detection the value of the air fuel ratio sensor 37. On the other hand, when response of the air fuel ratio sensor 37 drops lower than the normal range, the method for estimating the air fuel ratio for each cylinder is changed over to a dither method which is an estimation method in which influence of drop of response of the air fuel ratio sensor 37 is small and air fuel ratio for each cylinder is estimated based on output of the air fuel ratio sensor 37 when air fuel ratio dither control forcibly changing air fuel ratio for each cylinder is executed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気合流部に設置した空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定を行う内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine that performs cylinder-by-cylinder air-fuel ratio estimation that estimates an air-fuel ratio of each cylinder based on a detection value of an air-fuel ratio sensor installed in an exhaust gas merging portion of the internal combustion engine.

近年、内燃機関の空燃比制御精度を向上させるために、例えば、特許文献1(特許第2684011号公報)や特許文献2(特開2005−207405号公報)に記載されているように、複数の気筒の排出ガスが合流する排気合流部に設置した1つの空燃比センサの検出値(排気合流部の空燃比)と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定する気筒別空燃比推定を実施すると共に、その気筒別空燃比推定の推定結果に基づいて各気筒の空燃比の気筒間ばらつきが小さくなるように気筒毎に空燃比補正量を算出し、この気筒毎の空燃比補正量に基づいて各気筒の空燃比(燃料噴射量)を気筒毎に制御する気筒別空燃比制御を実施するようにしたものがある。   In recent years, in order to improve the air-fuel ratio control accuracy of an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent No. 2684011) and Patent Document 2 (Japanese Patent Laid-Open No. 2005-207405), a plurality of Estimate the air-fuel ratio of each cylinder using a model that correlates the detection value of one air-fuel ratio sensor (air-fuel ratio of the exhaust gas merger) installed in the exhaust gas merger where the exhaust gas from the cylinders merges with the air-fuel ratio of each cylinder The cylinder-by-cylinder air-fuel ratio estimation is performed, and the air-fuel ratio correction amount is calculated for each cylinder based on the estimation result of the cylinder-by-cylinder air-fuel ratio so that the variation in the air-fuel ratio of each cylinder is reduced. Some cylinder-by-cylinder air-fuel ratio control is performed to control the air-fuel ratio (fuel injection amount) of each cylinder based on the air-fuel ratio correction amount for each cylinder.

更に、上記特許文献1(特許第2684011号公報)では、気筒別空燃比推定の推定結果に基づいて算出した気筒毎の空燃比補正量が所定範囲内であるか否かを判定し、気筒毎の空燃比補正量が所定範囲を越えた場合に、その気筒に異常が発生したと判定する気筒別異常診断を実施するようにしている。
特許第2684011号公報 特開2005−207405号公報
Further, in Patent Document 1 (Japanese Patent No. 2684011), it is determined whether or not the air-fuel ratio correction amount for each cylinder calculated based on the estimation result of the cylinder-by-cylinder air-fuel ratio is within a predetermined range. When the air-fuel ratio correction amount of the cylinder exceeds a predetermined range, an abnormality diagnosis for each cylinder is performed to determine that an abnormality has occurred in that cylinder.
Japanese Patent No. 2684011 JP 2005-207405 A

ところで、上記特許文献1や上記特許文献2の技術のように、排気合流部に設置した1つの空燃比センサの検出値と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定する気筒別空燃比推定では、空燃比センサの応答性が経時劣化等によって低下すると、気筒別空燃比推定の推定精度が低下する可能性がある。気筒別空燃比推定の推定精度が低下すると、気筒別空燃比推定の推定結果を用いた気筒別異常診断の診断精度や気筒別空燃比制御の制御精度が低下する可能性がある。   By the way, the air-fuel ratio of each cylinder using a model in which the detection value of one air-fuel ratio sensor installed in the exhaust gas merging portion is associated with the air-fuel ratio of each cylinder, as in the techniques of Patent Document 1 and Patent Document 2. In the cylinder-by-cylinder air-fuel ratio estimation that estimates the air-fuel ratio, if the responsiveness of the air-fuel ratio sensor decreases due to deterioration over time or the like, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio estimation may decrease. When the estimation accuracy of the cylinder-by-cylinder air-fuel ratio estimation decreases, the diagnosis accuracy of the cylinder-by-cylinder abnormality diagnosis using the estimation result of the cylinder-by-cylinder air-fuel ratio estimation and the control accuracy of the cylinder-by-cylinder air-fuel ratio control may decrease.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、空燃比センサの応答性が低下した場合に、気筒別空燃比推定の推定精度の低下を抑制することができ、空燃比センサの応答性の低下による悪影響を低減することができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to suppress a decrease in estimation accuracy of cylinder-by-cylinder air-fuel ratio estimation when the response of the air-fuel ratio sensor is lowered. Another object of the present invention is to provide a control device for an internal combustion engine that can reduce adverse effects caused by a decrease in responsiveness of an air-fuel ratio sensor.

上記目的を達成するために、請求項1に係る発明は、内燃機関の複数の気筒の排出ガスが合流する排気合流部に、該排出ガスの空燃比を検出する空燃比センサを設置し、この空燃比センサの検出値に基づいて各気筒の空燃比(気筒別空燃比)を推定する気筒別空燃比推定手段を備えた内燃機関の制御装置において、空燃比センサの応答性を応答性検出手段により検出し、気筒別空燃比推定手段は、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する複数種類の気筒別空燃比推定方法を持ち、前記応答性検出手段で検出した空燃比センサの応答性に応じて気筒別空燃比推定方法を切り換えるようにしたものである。   In order to achieve the above object, according to the first aspect of the present invention, an air-fuel ratio sensor for detecting an air-fuel ratio of the exhaust gas is installed at an exhaust confluence where the exhaust gases of a plurality of cylinders of the internal combustion engine merge. In a control apparatus for an internal combustion engine having a cylinder-by-cylinder air-fuel ratio estimating means for estimating an air-fuel ratio of each cylinder based on a detection value of an air-fuel ratio sensor, the response of the air-fuel ratio sensor is responsiveness detecting means. The cylinder-by-cylinder air-fuel ratio estimation means has a plurality of types of cylinder-by-cylinder air-fuel ratio estimation methods for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor, and is detected by the responsiveness detection means. The cylinder-by-cylinder air-fuel ratio estimation method is switched according to the response of the air-fuel ratio sensor.

この構成では、空燃比センサの応答性が経時劣化等によって低下した場合に、気筒別空燃比推定推定方法を、空燃比センサの応答性の低下の影響が少ない推定方法に切り換えることができるため、空燃比センサの応答性が低下した場合でも気筒別空燃比の推定精度の低下を少なくすることができ、空燃比センサの応答性の低下による悪影響を低減することができる。   In this configuration, when the responsiveness of the air-fuel ratio sensor decreases due to deterioration over time or the like, the cylinder-by-cylinder air-fuel ratio estimation estimation method can be switched to an estimation method that is less affected by a decrease in the responsiveness of the air-fuel ratio sensor. Even when the responsiveness of the air-fuel ratio sensor is lowered, it is possible to reduce a decrease in the estimation accuracy of the cylinder-by-cylinder air-fuel ratio, and it is possible to reduce an adverse effect due to the lowered responsiveness of the air-fuel ratio sensor.

この場合、請求項2のように、空燃比センサの応答性が所定の通常範囲内の場合には、気筒別空燃比推定方法として、空燃比センサの検出値と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定するモデル法を選択するようにすると良い。このようにすれば、空燃比センサの応答性が通常範囲内(空燃比センサの応答性がほとんど低下していない状態)の場合には、空燃比センサの検出値と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定するモデル法によって、各気筒の空燃比を精度良く推定することができる。しかも、後述するディザ法は、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行するため、ドライバビリティや排気エミッションが低下する可能性があるが、モデル法は、空燃比を強制的に変化させる必要がないため、ドライバビリティや排気エミッションの低下を招くことなく、各気筒の空燃比を推定することができる。   In this case, when the responsiveness of the air-fuel ratio sensor is within a predetermined normal range as in claim 2, the cylinder-by-cylinder air-fuel ratio estimation method associates the detected value of the air-fuel ratio sensor with the air-fuel ratio of each cylinder. It is preferable to select a model method for estimating the air-fuel ratio of each cylinder using the model. In this way, when the responsiveness of the air-fuel ratio sensor is within the normal range (a state in which the responsiveness of the air-fuel ratio sensor has hardly decreased), the detected value of the air-fuel ratio sensor and the air-fuel ratio of each cylinder are The air-fuel ratio of each cylinder can be accurately estimated by a model method that estimates the air-fuel ratio of each cylinder using the associated model. In addition, since the dither method described later executes air-fuel ratio dither control that forcibly changes the air-fuel ratio for each cylinder, drivability and exhaust emission may be reduced. Since it is not necessary to forcibly change, it is possible to estimate the air-fuel ratio of each cylinder without causing deterioration in drivability and exhaust emission.

また、請求項3のように、空燃比センサの応答性が所定の通常範囲よりも低下した場合には、気筒別空燃比推定方法として、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行したときの空燃比センサの出力に基づいて各気筒の空燃比を推定するディザ法を選択するようにすると良い。ディザ法は、モデル法と比較して空燃比センサの応答性の低下の影響が少ない推定方法であるため、空燃比センサの応答性が通常範囲よりも低下した場合に、ディザ法を選択して各気筒の空燃比を推定するようにすれば、各気筒の空燃比をモデル法よりも精度良く推定することができ、空燃比センサの応答性が低下した場合でも、気筒別空燃比の推定精度の低下を少なくすることができる。   Further, as described in claim 3, when the responsiveness of the air-fuel ratio sensor falls below a predetermined normal range, an air-fuel ratio for forcibly changing the air-fuel ratio for each cylinder is used as a cylinder-by-cylinder air-fuel ratio estimation method. It is preferable to select a dither method for estimating the air-fuel ratio of each cylinder based on the output of the air-fuel ratio sensor when the dither control is executed. Since the dither method is an estimation method that is less affected by a decrease in the response of the air-fuel ratio sensor than the model method, the dither method is selected when the response of the air-fuel ratio sensor falls below the normal range. If the air-fuel ratio of each cylinder is estimated, the air-fuel ratio of each cylinder can be estimated more accurately than the model method, and the estimation accuracy of the cylinder-by-cylinder air-fuel ratio can be estimated even when the responsiveness of the air-fuel ratio sensor is reduced. Can be reduced.

ところで、ディザ法で各気筒の空燃比を推定する場合、空燃比ディザ制御により空燃比を強制的に変化させる際の空燃比変化量を大きくすれば、気筒別空燃比の推定精度が高くなるが、その反面、ドライバビリティや排気エミッションに与える悪影響が大きくなる懸念がある。   By the way, when the air-fuel ratio of each cylinder is estimated by the dither method, if the air-fuel ratio change amount when the air-fuel ratio is forcibly changed by the air-fuel ratio dither control is increased, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio increases. However, on the other hand, there is a concern that the adverse effect on drivability and exhaust emissions will increase.

そこで、請求項4のように、気筒別空燃比推定方法としてディザ法を選択した場合には、空燃比センサの応答性の低下度合に応じて空燃比ディザ制御により空燃比を強制的に変化させる際の空燃比変化量を設定するようにしても良い。このようにすれば、空燃比センサの応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量を変化させて、気筒別空燃比の推定精度を適度に確保しながら、ドライバビリティや排気エミッションに与える悪影響をできるだけ小さくするように、空燃比ディザ制御の空燃比変化量を設定することができる。   Therefore, when the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method as in claim 4, the air-fuel ratio is forcibly changed by the air-fuel ratio dither control according to the degree of decrease in the response of the air-fuel ratio sensor. The air-fuel ratio change amount at that time may be set. In this way, the air-fuel ratio change amount of the air-fuel ratio dither control is changed in accordance with the degree of decrease in the responsiveness of the air-fuel ratio sensor, and the drivability and exhaust gas are exhausted while adequately estimating the cylinder-by-cylinder air-fuel ratio estimation accuracy. The air-fuel ratio change amount of the air-fuel ratio dither control can be set so as to minimize the adverse effect on the emission.

また、本発明は、請求項5のように、気筒別空燃比の推定結果に基づいて各気筒の異常の有無を判定する気筒別異常診断を実施するシステムに適用すると良い。このようにすれば、空燃比センサの応答性が低下した場合でも、気筒別空燃比の推定精度の低下を抑制して、気筒別空燃比の推定結果を用いた気筒別異常診断の診断精度の低下を抑制することができる。   In addition, the present invention is preferably applied to a system for performing an abnormality diagnosis for each cylinder that determines whether or not there is an abnormality in each cylinder based on the estimation result of the air-fuel ratio for each cylinder. In this way, even when the responsiveness of the air-fuel ratio sensor is lowered, the deterioration of the estimation accuracy of the cylinder-by-cylinder air-fuel ratio is suppressed, and the diagnosis accuracy of the cylinder-by-cylinder abnormality diagnosis using the estimation result of the cylinder-by-cylinder air-fuel ratio is improved. The decrease can be suppressed.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 that is an internal combustion engine, for example, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. . On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられていると共に、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the crank of the engine 11. A crank angle sensor 33 that outputs a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the rotation of the shaft is provided.

一方、エンジン11の各気筒の排気マニホールド35が合流する排気合流部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust gas converging portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 joins. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上述した空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 described above are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

また、ECU40は、後述する図3乃至図6の各ルーチンを実行することで、空燃比センサ37の検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定を後述する「モデル法」又は後述する「ディザ法」によって実施し、この気筒別空燃比の推定結果に基づいて各気筒の異常の有無を判定する気筒別異常診断を実施する。   Further, the ECU 40 executes a routine shown in FIGS. 3 to 6 to be described later, thereby performing cylinder-by-cylinder air-fuel ratio estimation for estimating the air-fuel ratio of each cylinder based on the detected value of the air-fuel ratio sensor 37. Or a “dither method” to be described later, and abnormality diagnosis for each cylinder is performed to determine whether each cylinder is abnormal based on the estimation result of the air-fuel ratio for each cylinder.

ここで、モデル法とディザ法について説明する。
モデル法は、空燃比センサ37の検出値(排気合流部36を流れる排出ガスの検出空燃比)と各気筒の空燃比とを関連付けたモデル(以下「気筒別空燃比推定モデル」という)を用いて各気筒の空燃比を推定する方法である。
Here, the model method and the dither method will be described.
The model method uses a model in which the detection value of the air-fuel ratio sensor 37 (detected air-fuel ratio of exhaust gas flowing through the exhaust gas merging portion 36) is associated with the air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-specific air-fuel ratio estimation model”). Thus, the air-fuel ratio of each cylinder is estimated.

具体的には、排気合流部36におけるガス交換に着目して、空燃比センサ37の検出値を、排気合流部36における各気筒の推定空燃比の履歴と空燃比センサ37の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、該モデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Specifically, paying attention to the gas exchange in the exhaust gas merging portion 36, the detected value of the air-fuel ratio sensor 37 is changed to the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 37 in the exhaust gas merging portion 36. Are respectively multiplied by predetermined weights and added, and the air-fuel ratio of each cylinder is estimated using the model. At this time, a Kalman filter is used as an observer.

より具体的には、排気合流部36におけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、ys は空燃比センサ37の検出値、uは排気合流部36に流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust merging portion 36 is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, ys is a detected value of the air-fuel ratio sensor 37, u is an air-fuel ratio of the gas flowing into the exhaust merging section 36, and k1 to k4 are constants.

排気系では、排気合流部36におけるガス流入及び混合の一次遅れ要素と、空燃比センサ37の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a primary delay element of gas inflow and mixing in the exhaust confluence 36 and a primary delay element due to a response delay of the air-fuel ratio sensor 37. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ37の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 37, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。   As described above, the cylinder-by-cylinder air-fuel ratio estimation model is configured by the Kalman filter type observer, whereby the air-fuel ratio of each cylinder can be sequentially estimated as the combustion cycle proceeds.

一方、ディザ法は、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行し、この空燃比ディザ制御を実行したときの空燃比センサ37の出力に基づいて各気筒の空燃比を推定する方法である。   On the other hand, the dither method executes air-fuel ratio dither control for forcibly changing the air-fuel ratio for each cylinder, and the air-fuel ratio of each cylinder is based on the output of the air-fuel ratio sensor 37 when this air-fuel ratio dither control is executed. Is a method of estimating

具体的には、図2(a)に示すように、今回の空燃比推定対象となる第i気筒#i(4気筒エンジンの場合はi=1〜4)において、空燃比ディザ制御の開始前(空燃比を強制的に変化させる前)に空燃比センサ37で検出した第i気筒#iの検出空燃比と基準空燃比との偏差Y1(#i) を算出することで、空燃比ディザ制御の開始前の第i気筒#iの検出空燃比の気筒間偏差Y1(#i) を求める。ここで、基準空燃比は、空燃比ディザ制御の開始前に空燃比センサ37で検出した全気筒の検出空燃比の平均値に設定する。或は、基準空燃比を所定の固定値(例えば14.7)に設定しても良い。   Specifically, as shown in FIG. 2 (a), before the start of the air-fuel ratio dither control in the i-th cylinder #i (i = 1 to 4 in the case of a four-cylinder engine) that is the current air-fuel ratio estimation target. By calculating the deviation Y1 (#i) between the detected air-fuel ratio of the i-th cylinder #i detected by the air-fuel ratio sensor 37 and the reference air-fuel ratio (before forcibly changing the air-fuel ratio), the air-fuel ratio dither control is performed. The inter-cylinder deviation Y1 (#i) of the detected air-fuel ratio of the i-th cylinder #i before the start of is determined. Here, the reference air-fuel ratio is set to the average value of the detected air-fuel ratios of all the cylinders detected by the air-fuel ratio sensor 37 before the start of the air-fuel ratio dither control. Alternatively, the reference air-fuel ratio may be set to a predetermined fixed value (for example, 14.7).

この後、第i気筒#iの空燃比を強制的にリッチ方向又はリーン方向に所定変化量ΔX(#i)だけ変化させる空燃比ディザ制御を実行し、図2(b)に示すように、空燃比ディザ制御の開始後(空燃比を強制的に変化させた後)に空燃比センサ37で検出した第i気筒#iの検出空燃比と基準空燃比との偏差Y2(#i) を算出することで、空燃比ディザ制御の開始後の第i気筒#iの検出空燃比の気筒間偏差Y2(#i) を求める。   Thereafter, air-fuel ratio dither control for forcibly changing the air-fuel ratio of the i-th cylinder #i by a predetermined change amount ΔX (#i) in the rich direction or the lean direction is executed, as shown in FIG. Calculate the deviation Y2 (#i) between the detected air-fuel ratio of the i-th cylinder #i detected by the air-fuel ratio sensor 37 and the reference air-fuel ratio after starting the air-fuel ratio dither control (after forcibly changing the air-fuel ratio) Thus, the inter-cylinder deviation Y2 (#i) of the detected air-fuel ratio of the i-th cylinder #i after the start of the air-fuel ratio dither control is obtained.

この後、空燃比ディザ制御によって第i気筒#iの空燃比(例えば燃料噴射量)を強制的に変化させたときの実際の空燃比の変化量ΔX(#i)と、そのときの空燃比センサ37の検出空燃比の変化量ΔY(#i){=Y2(#i) −Y1(#i) }と、空燃比ディザ制御の開始前の空燃比センサ37の検出空燃比の気筒間偏差Y1(#i) とを用いて、空燃比ディザ制御の開始前の実際の空燃比の気筒間偏差X(#i)を次式により求める。
X(#i)=ΔX(#i)×Y1(#i) /ΔY(#i)
=ΔX(#i)×Y1(#i) /{Y2(#i) −Y1(#i) }
Thereafter, the actual air-fuel ratio change ΔX (#i) when the air-fuel ratio (for example, fuel injection amount) of the i-th cylinder #i is forcibly changed by the air-fuel ratio dither control, and the air-fuel ratio at that time The change amount ΔY (#i) {= Y2 (#i) −Y1 (#i)} of the air-fuel ratio detected by the sensor 37 and the inter-cylinder deviation of the air-fuel ratio detected by the air-fuel ratio sensor 37 before the start of the air-fuel ratio dither control Using Y1 (#i), the actual air-fuel ratio deviation X (#i) before starting the air-fuel ratio dither control is obtained by the following equation.
X (#i) = ΔX (#i) × Y1 (#i) / ΔY (#i)
= ΔX (#i) × Y1 (#i) / {Y2 (#i) −Y1 (#i)}

このようにして求めた第i気筒#iの実際の空燃比の気筒間偏差X(#i)と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)とに基づいて第i気筒#iの空燃比を算出することにより、燃焼サイクルの進行に伴って各気筒の空燃比を順次推定することができる。   Based on the inter-cylinder deviation X (#i) of the actual air-fuel ratio of the i-th cylinder #i obtained in this way and the reference air-fuel ratio (the average value or the control target value of the estimated air-fuel ratio of all the cylinders). By calculating the air-fuel ratio of cylinder #i, the air-fuel ratio of each cylinder can be estimated sequentially as the combustion cycle progresses.

ところで、前述したモデル法による気筒別空燃比推定では、空燃比センサ37の応答性が経時劣化等によって低下すると、気筒別空燃比の推定精度が低下する可能性があり、気筒別空燃比の推定精度が低下すると、気筒別空燃比の推定結果を用いた気筒別異常診断の診断精度が低下する可能性がある。   By the way, in the cylinder-by-cylinder air-fuel ratio estimation based on the above-described model method, if the responsiveness of the air-fuel ratio sensor 37 decreases due to deterioration over time or the like, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio may be lowered. When the accuracy is lowered, there is a possibility that the diagnosis accuracy of the abnormality diagnosis for each cylinder using the estimation result of the air-fuel ratio for each cylinder is lowered.

そこで、本実施例では、空燃比センサ37の応答性を検出し、空燃比センサ37の応答性に応じて気筒別空燃比推定方法をモデル法とディザ法との間で切り換えるようにしている。   Therefore, in this embodiment, the response of the air-fuel ratio sensor 37 is detected, and the cylinder-by-cylinder air-fuel ratio estimation method is switched between the model method and the dither method in accordance with the response of the air-fuel ratio sensor 37.

具体的には、空燃比センサ37の応答性が所定の通常範囲内(空燃比センサ37の応答性がほとんど低下していない状態)の場合には、気筒別空燃比推定方法としてモデル法を選択する。これにより、空燃比センサ37の応答性が通常範囲内の場合には、前記気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するモデル法によって、各気筒の空燃比を精度良く推定する。   Specifically, when the responsiveness of the air-fuel ratio sensor 37 is within a predetermined normal range (a state in which the responsiveness of the air-fuel ratio sensor 37 has hardly decreased), the model method is selected as the cylinder-by-cylinder air-fuel ratio estimation method. To do. Thus, when the responsiveness of the air-fuel ratio sensor 37 is within the normal range, the air-fuel ratio of each cylinder is accurately estimated by the model method that estimates the air-fuel ratio of each cylinder using the cylinder-by-cylinder air-fuel ratio estimation model. To do.

一方、空燃比センサ37の応答性が通常範囲よりも低下した場合には、気筒別空燃比推定方法としてディザ法を選択する。ディザ法は、モデル法と比較して空燃比センサ37の応答性の低下の影響が少ない推定方法であるため、空燃比センサ37の応答性が通常範囲よりも低下した場合に、ディザ法を選択して各気筒の空燃比を推定するようにすれば、各気筒の空燃比をモデル法よりも精度良く推定することができる。   On the other hand, when the responsiveness of the air-fuel ratio sensor 37 falls below the normal range, the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method. Since the dither method is an estimation method that is less affected by a decrease in the response of the air-fuel ratio sensor 37 than the model method, the dither method is selected when the response of the air-fuel ratio sensor 37 is lower than the normal range. If the air-fuel ratio of each cylinder is estimated, the air-fuel ratio of each cylinder can be estimated with higher accuracy than the model method.

このディザ法で各気筒の空燃比を推定する場合、空燃比ディザ制御により空燃比を強制的に変化させる際の空燃比変化量を大きくすれば、気筒別空燃比の推定精度が高くなるが、その反面、ドライバビリティや排気エミッションに与える悪影響が大きくなる懸念がある。   When estimating the air-fuel ratio of each cylinder by this dither method, if the air-fuel ratio change amount when forcibly changing the air-fuel ratio by the air-fuel ratio dither control is increased, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio increases. On the other hand, there is a concern that adverse effects on drivability and exhaust emissions will increase.

そこで、本実施例では、気筒別空燃比推定方法としてディザ法を選択した場合には、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量を変化させて、気筒別空燃比の推定精度を適度に確保しながら、ドライバビリティや排気エミッションに与える悪影響をできるだけ小さくするように、空燃比ディザ制御の空燃比変化量を設定する。   Therefore, in the present embodiment, when the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method, the air-fuel ratio change amount of the air-fuel ratio dither control is changed according to the degree of decrease in the responsiveness of the air-fuel ratio sensor 37, The air-fuel ratio change amount of the air-fuel ratio dither control is set so as to minimize the adverse effect on drivability and exhaust emission while appropriately ensuring the estimation accuracy of the cylinder-by-cylinder air-fuel ratio.

以上説明した気筒別空燃比推定や気筒別異常診断等は、ECU40によって図3乃至図6の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The above-described cylinder-by-cylinder air-fuel ratio estimation, cylinder-by-cylinder abnormality diagnosis, and the like are executed by the ECU 40 according to the routines shown in FIGS. The processing contents of each routine will be described below.

[センサ異常診断ルーチン]
図3に示すセンサ異常診断ルーチンは、ECU40の電源オン中に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、燃料カットが開始されたか否かを判定し、燃料カットが開始されていなければ、ステップ102以降の処理を実行することなく、本ルーチンを終了する。
[Sensor abnormality diagnosis routine]
The sensor abnormality diagnosis routine shown in FIG. 3 is executed at a predetermined cycle while the ECU 40 is turned on. When this routine is started, first, at step 101, it is determined whether or not a fuel cut has been started. If the fuel cut has not been started, this routine is terminated without executing the processing from step 102 onward. To do.

その後、上記ステップ101で、燃料カットが開始されたと判定された時点で、ステップ102に進み、燃料カット開始時の空燃比センサ37の出力I1 を読み込んでECU40のメモリ等に記憶すると共に、タイマを作動させて燃料カット開始からの経過時間を計測する。   Thereafter, when it is determined in step 101 that the fuel cut has been started, the routine proceeds to step 102 where the output I1 of the air-fuel ratio sensor 37 at the start of the fuel cut is read and stored in the memory of the ECU 40 and the timer is set. Operate and measure the elapsed time from the start of fuel cut.

この後、ステップ103に進み、空燃比センサ37の出力が所定値I2 まで変化したか否かを判定し、空燃比センサ37の出力が所定値I2 まで変化したと判定された時点で、ステップ104に進み、タイマのカウント値に基づいて燃料カット開始から空燃比センサ37の出力が所定値I2 に変化するまでに要した応答時間T1 を計測する。   Thereafter, the routine proceeds to step 103, where it is determined whether or not the output of the air-fuel ratio sensor 37 has changed to a predetermined value I2, and when it is determined that the output of the air-fuel ratio sensor 37 has changed to a predetermined value I2, step 104 is performed. Then, based on the count value of the timer, the response time T1 required from the start of the fuel cut until the output of the air-fuel ratio sensor 37 changes to the predetermined value I2 is measured.

この後、ステップ105に進み、空燃比センサ37の応答時間T1 を応答性指標Rs に変換する。この場合、例えば、応答時間T1 の逆数を応答性指標Rs とすることで、空燃比センサ37の応答性が高い(つまり応答時間T1 が短い)ほど応答性指標Rs が大きくなるように設定する。この応答性指標Rs は、後述する図4及び図5の気筒別異常診断ルーチンで空燃比センサ37の応答性を判定する際に用いられる。このステップ105の処理が特許請求の範囲でいう応答性検出手段としての役割を果たす。   Thereafter, the routine proceeds to step 105, where the response time T1 of the air-fuel ratio sensor 37 is converted into a responsiveness index Rs. In this case, for example, by setting the reciprocal of the response time T1 as the response index Rs, the response index Rs is set to be larger as the response of the air-fuel ratio sensor 37 is higher (that is, the response time T1 is shorter). This responsiveness index Rs is used when determining the responsiveness of the air-fuel ratio sensor 37 in the cylinder-specific abnormality diagnosis routine of FIGS. The process of step 105 plays a role as responsiveness detecting means in the claims.

この後、ステップ106に進み、空燃比センサ37の出力変化率ΔIを次式より算出する。
ΔI=(I2 −I1 )/T1
尚、この出力変化率ΔIを応答性指標Rs として用いるようにしても良い。
Thereafter, the routine proceeds to step 106, where the output change rate ΔI of the air-fuel ratio sensor 37 is calculated from the following equation.
ΔI = (I2 -I1) / T1
The output change rate ΔI may be used as the response index Rs.

この後、ステップ107に進み、空燃比センサ37の出力変化率ΔIが所定の異常判定値Ifcよりも小さいか否かを判定する。
その結果、空燃比センサ37の出力変化率ΔIが異常判定値Ifcよりも小さいと判定された場合には、空燃比センサ37の異常有りと判定して、ステップ108に進み、空燃比センサ37の異常フラグを「1」にセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU40のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリに記憶して、本ルーチンを終了する。
Thereafter, the routine proceeds to step 107, where it is determined whether or not the output change rate ΔI of the air-fuel ratio sensor 37 is smaller than a predetermined abnormality determination value Ifc.
As a result, when it is determined that the output change rate ΔI of the air-fuel ratio sensor 37 is smaller than the abnormality determination value Ifc, it is determined that there is an abnormality in the air-fuel ratio sensor 37 and the routine proceeds to step 108 where the air-fuel ratio sensor 37 The abnormality flag is set to "1" and a warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or a warning display section (not shown) of the instrument panel of the driver's seat The warning information is displayed to warn the driver, and the abnormality information (abnormality code or the like) is stored in a rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 40, and this routine is terminated.

これに対して、上記ステップ107で、空燃比センサ37の出力変化率ΔIが異常判定値Ifc以上であると判定された場合には、空燃比センサ37の異常無し(正常)と判定して、本ルーチンを終了する。   In contrast, if it is determined in step 107 that the output change rate ΔI of the air-fuel ratio sensor 37 is equal to or greater than the abnormality determination value Ifc, it is determined that the air-fuel ratio sensor 37 is not abnormal (normal), This routine ends.

[気筒別異常診断ルーチン]
図4及び図5に示す気筒別異常診断ルーチンは、ECU40の電源オン中に所定周期で実行され、特許請求の範囲でいう気筒別異常診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ201で、空燃比の応答性に影響を与える他の異常(例えば、燃料噴射弁の異常や燃料ポンプの異常等)が発生しているか否かを判定する。
[Cylinder-specific abnormality diagnosis routine]
The abnormality diagnosis routine for each cylinder shown in FIGS. 4 and 5 is executed at a predetermined cycle while the ECU 40 is turned on, and serves as a cylinder abnormality diagnosis means in the scope of claims. When this routine is started, first, in step 201, it is determined whether or not another abnormality (for example, abnormality of the fuel injection valve or abnormality of the fuel pump) that affects the responsiveness of the air-fuel ratio has occurred. To do.

このステップ201で、空燃比の応答性に影響を与える他の異常が発生していると判定された場合には、気筒別異常診断の診断精度が低下する可能性があると判断して、ステップ202以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 201 that another abnormality that affects the responsiveness of the air-fuel ratio has occurred, it is determined that there is a possibility that the diagnosis accuracy of the cylinder-by-cylinder abnormality diagnosis may be reduced. This routine is terminated without executing the processing from 202 onward.

一方、上記ステップ201で、空燃比の応答性に影響を与える他の異常が発生していないと判定された場合には、ステップ202に進み、エンジン回転速度、エンジン負荷(吸入空気量や吸気管圧力)等のエンジン運転状態を読み込んだ後、ステップ203に進み、現在のエンジン運転状態が所定領域であるか否かを判定する。ここで、所定領域は、空燃比センサ37の検出値に基づいた気筒別空燃比の推定精度が高くなる運転領域であり、例えば、低回転且つ高負荷領域に設定されている。   On the other hand, if it is determined in step 201 that no other abnormality affecting the air-fuel ratio responsiveness has occurred, the process proceeds to step 202, where the engine speed, engine load (intake air amount and intake pipe) are increased. After reading the engine operating state such as (pressure), the process proceeds to step 203 to determine whether or not the current engine operating state is a predetermined region. Here, the predetermined region is an operation region in which the estimation accuracy of the cylinder-by-cylinder air-fuel ratio based on the detection value of the air-fuel ratio sensor 37 is increased, and is set to, for example, a low rotation and high load region.

このステップ203で、現在のエンジン運転状態が所定領域ではないと判定された場合には、気筒別空燃比の推定結果を用いた気筒別異常診断の診断精度が低下する可能性があると判断して、ステップ204以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 203 that the current engine operating state is not in the predetermined region, it is determined that there is a possibility that the diagnosis accuracy of the cylinder-by-cylinder abnormality diagnosis using the estimation result of the cylinder-by-cylinder air-fuel ratio may be lowered. Thus, this routine is terminated without executing the processing from step 204 onward.

一方、上記ステップ203で、現在のエンジン運転状態が所定領域であると判定された場合には、気筒別空燃比の推定結果を用いた気筒別異常診断の診断精度を確保できると判断して、ステップ204以降の処理を次のようにして実行する。   On the other hand, if it is determined in step 203 that the current engine operating state is in the predetermined region, it is determined that the diagnosis accuracy of the cylinder-by-cylinder abnormality diagnosis using the estimation result of the cylinder-by-cylinder air-fuel ratio can be ensured, The processing after step 204 is executed as follows.

まず、ステップ204で、ダイアグ実行フラグを「1」にセットした後、ステップ205に進み、前記図3のセンサ異常診断ルーチンで算出した空燃比センサ37の応答性指標Rs が第1の判定値Rr1よりも大きいか否かによって、空燃比センサ37の応答性が通常範囲内(空燃比センサ37の応答性がほとんど低下していない状態)であるか否かを判定する。   First, in step 204, the diagnosis execution flag is set to "1", and then the process proceeds to step 205, in which the responsiveness index Rs of the air-fuel ratio sensor 37 calculated in the sensor abnormality diagnosis routine of FIG. 3 is the first determination value Rr1. It is determined whether or not the responsiveness of the air-fuel ratio sensor 37 is within the normal range (a state in which the responsiveness of the air-fuel ratio sensor 37 has hardly deteriorated).

このステップ205で、空燃比センサ37の応答性指標Rs が第1の判定値Rr1よりも大きいと判定された場合(空燃比センサ37の応答性が通常範囲内であると判定された場合)には、ステップ206に進み、気筒別空燃比推定方法としてモデル法を選択し、図示しないモデル法の気筒別空燃比推定ルーチンを実行して、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる第i気筒#i気筒の空燃比を推定する。   When it is determined in step 205 that the response index Rs of the air-fuel ratio sensor 37 is larger than the first determination value Rr1 (when the response of the air-fuel ratio sensor 37 is determined to be within the normal range). Advances to step 206, selects a model method as the cylinder-by-cylinder air-fuel ratio estimation method, executes a cylinder-by-cylinder air-fuel ratio estimation routine (not shown), and uses the cylinder-by-cylinder air-fuel ratio estimation model to The air-fuel ratio of the i-th cylinder #i cylinder to be estimated is estimated.

一方、上記ステップ205で、空燃比センサ37の応答性指標Rs が第1の判定値Rr1以下であると判定された場合(空燃比センサ37の応答性が通常範囲よりも低下していると判定された場合)には、気筒別空燃比推定方法としてディザ法を選択する。この場合、次のステップ207,208で、空燃比センサ37の応答性指標Rs を第2の判定値Rr2や第3の判定値Rr3(但し、Rr1>Rr2>Rr3)と比較して空燃比センサ37の応答性の低下度合を判定した後、ステップ209〜211で、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量ΔXを3段階の変化量ΔX1 〜ΔX3 (但し、ΔX1 <ΔX2 <ΔX3 )のうちの1つに設定する。   On the other hand, if it is determined in step 205 that the responsiveness index Rs of the air-fuel ratio sensor 37 is equal to or less than the first determination value Rr1 (determined that the responsiveness of the air-fuel ratio sensor 37 is lower than the normal range). In the case where the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method. In this case, in the next steps 207 and 208, the air-fuel ratio sensor 37 is compared with the second determination value Rr2 or the third determination value Rr3 (where Rr1> Rr2> Rr3). After determining the degree of responsiveness decrease of 37, in steps 209 to 211, the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is changed into three stages of change amounts ΔX1 to ΔX3 in accordance with the degree of responsiveness decrease of the air-fuel ratio sensor 37. (However, one of ΔX1 <ΔX2 <ΔX3) is set.

まず、ステップ207で、空燃比センサ37の応答性指標Rs が第2の判定値Rr2よりも大きいか否かを判定し、空燃比センサ37の応答性指標Rs が第2の判定値Rr2よりも大きいと判定された場合には、空燃比センサ37の応答性の低下度合が小さいと判断して、ステップ209に進み、空燃比ディザ制御の空燃比変化量ΔXを3段階の中で最も小さい変化量ΔX1 に設定する。   First, at step 207, it is determined whether or not the responsiveness index Rs of the air-fuel ratio sensor 37 is larger than the second determination value Rr2, and the responsiveness index Rs of the air-fuel ratio sensor 37 is larger than the second determination value Rr2. If it is determined that it is large, it is determined that the degree of decrease in the responsiveness of the air-fuel ratio sensor 37 is small, and the routine proceeds to step 209 where the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is the smallest change among the three stages. Set to the quantity ΔX1.

一方、上記ステップ207で、空燃比センサ37の応答性指標Rs が第2の判定値Rr2以下であると判定された場合には、ステップ208に進み、空燃比センサ37の応答性指標Rs が第3の判定値Rr3よりも大きいか否かを判定し、空燃比センサ37の応答性指標Rs が第3の判定値Rr3よりも大きいと判定された場合には、空燃比センサ37の応答性の低下度合が中程度であると判断して、ステップ210に進み、空燃比ディザ制御の空燃比変化量ΔXを3段階の中で2番目に小さい変化量ΔX2 に設定する。   On the other hand, if it is determined in step 207 that the response index Rs of the air-fuel ratio sensor 37 is equal to or less than the second determination value Rr2, the process proceeds to step 208, where the response index Rs of the air-fuel ratio sensor 37 is the first response index Rs. 3 is determined to be greater than the third determination value Rr3, and if the response index Rs of the air-fuel ratio sensor 37 is determined to be greater than the third determination value Rr3, the response of the air-fuel ratio sensor 37 is determined. It is determined that the degree of decrease is moderate, and the routine proceeds to step 210, where the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is set to the second smallest change amount ΔX2 in the three stages.

また、上記ステップ208で、空燃比センサ37の応答性指標Rs が第3の判定値Rr3以下であると判定された場合には、空燃比センサ37の応答性の低下度合が大きいと判断して、ステップ211に進み、空燃比ディザ制御の空燃比変化量ΔXを3段階の中で最も大きい変化量ΔX3 に設定する。   If it is determined in step 208 that the response index Rs of the air-fuel ratio sensor 37 is equal to or less than the third determination value Rr3, it is determined that the degree of decrease in response of the air-fuel ratio sensor 37 is large. In step 211, the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is set to the largest change amount ΔX3 among the three stages.

尚、上記ステップ207〜211では、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量ΔXを3段階で変化させるようにしたが、2段階或は4段階以上で変化させるようにしても良い。また、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量ΔXを連続的に変化させるようにしても良い。   In steps 207 to 211, the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is changed in three stages according to the degree of decrease in the response of the air-fuel ratio sensor 37. You may make it change with. Further, the air-fuel ratio change amount ΔX of the air-fuel ratio dither control may be continuously changed according to the degree of responsiveness reduction of the air-fuel ratio sensor 37.

このようにして、空燃比ディザ制御の空燃比変化量ΔXを設定した後、ステップ212に進み、後述する図6のディザ法の気筒別空燃比推定ルーチンを実行して、空燃比ディザ制御を実行したときの空燃比センサ37の出力に基づいて今回の空燃比推定対象となる第i気筒#i気筒の空燃比を推定する。これらのステップ205〜212の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。   After the air-fuel ratio change amount ΔX of the air-fuel ratio dither control is set in this way, the routine proceeds to step 212 where a dither method cylinder-by-cylinder air-fuel ratio estimation routine of FIG. 6 described later is executed to execute the air-fuel ratio dither control. Based on the output of the air-fuel ratio sensor 37 at this time, the air-fuel ratio of the i-th cylinder #i cylinder which is the current air-fuel ratio estimation target is estimated. The processing in these steps 205 to 212 serves as cylinder-by-cylinder air-fuel ratio estimation means in the claims.

上記ステップ206又は上記ステップ212で、第i気筒#i気筒の空燃比を推定した後、図5のステップ213に進み、エンジン運転状態(エンジン回転速度やエンジン負荷等)に応じて推定空燃比を補正した後、ステップ214に進み、第i気筒#iの推定空燃比AF(#i)と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)との偏差を算出することで、第i気筒#iの空燃比の気筒間偏差Δaf(#i)を算出した後、ステップ215に進み、第i気筒#iの空燃比の気筒間偏差Δaf(#i)が所定の判定値Fよりも大きいか否かを判定する。   After estimating the air-fuel ratio of the i-th cylinder #i cylinder in step 206 or step 212, the process proceeds to step 213 in FIG. 5, and the estimated air-fuel ratio is set according to the engine operating state (engine speed, engine load, etc.). After the correction, the routine proceeds to step 214 where the deviation between the estimated air-fuel ratio AF (#i) of the i-th cylinder #i and the reference air-fuel ratio (the average value or the control target value of the estimated air-fuel ratio of all cylinders) is calculated. After calculating the inter-cylinder deviation Δaf (#i) of the air-fuel ratio of the i-th cylinder #i, the routine proceeds to step 215, where the inter-cylinder deviation Δaf (#i) of the air-fuel ratio of the i-th cylinder #i is a predetermined determination value. It is determined whether or not it is larger than F.

その結果、第i気筒#iの空燃比の気筒間偏差Δaf(#i)が判定値F以下であると判定された場合には、ステップ221に進み、第i気筒#iの空燃比の異常無し(正常)と判定して、第i気筒#iの正常フラグXafnorm(#i)を「1」にセットした後、本ルーチンを終了する。   As a result, if it is determined that the inter-cylinder deviation Δaf (#i) of the air-fuel ratio of the i-th cylinder #i is equal to or less than the determination value F, the process proceeds to step 221 and the air-fuel ratio abnormality of the i-th cylinder #i is abnormal. After determining that there is no (normal) and setting the normal flag Xafnorm (#i) of the i-th cylinder #i to “1”, this routine is ended.

これに対して、上記ステップ215で、第i気筒#iの空燃比の気筒間偏差Δaf(#i)が判定値Fよりも大きいと判定された場合には、ステップ216に進み、第i気筒#iの空燃比の気筒間偏差Δaf(#i)が判定値Fよりも大きくなってからの経過時間を計測する第i気筒#iのディレイカウンタD(#i)のカウント値を「1」だけインクリメントした後、ステップ217に進み、ディレイカウンタD(#i)のカウント値が所定のディレイ値を越えたか否かを判定することで、気筒間偏差Δaf(#i)が判定値Fよりも大きくなってから所定のディレイ時間が経過したか否かを判定する。   On the other hand, if it is determined in step 215 that the inter-cylinder deviation Δaf (#i) of the air-fuel ratio of the i-th cylinder #i is larger than the determination value F, the process proceeds to step 216 and the i-th cylinder The count value of the delay counter D (#i) of the i-th cylinder #i that measures the elapsed time after the inter-cylinder deviation Δaf (#i) of the air-fuel ratio of #i becomes larger than the determination value F is “1”. Then, the process proceeds to step 217, where it is determined whether the count value of the delay counter D (#i) has exceeded a predetermined delay value, so that the inter-cylinder deviation Δaf (#i) is greater than the determination value F. It is determined whether or not a predetermined delay time has elapsed since the increase.

このステップ217で、ディレイカウンタD(#i)のカウント値が所定のディレイ値を越えた(気筒間偏差Δaf(#i)が判定値Fよりも大きくなってから所定のディレイ時間が経過した)と判定された時点で、ステップ218に進み、第i気筒#iの異常カウンタT(#i)のカウント値を「1」だけインクリメントする処理を開始した後、ステップ219に進み、異常カウンタT(#i)のカウント値が所定の異常判定値を越えたか否かを判定する。   In this step 217, the count value of the delay counter D (#i) exceeds a predetermined delay value (a predetermined delay time has elapsed since the inter-cylinder deviation Δaf (#i) is larger than the determination value F). When it is determined that the process proceeds to step 218, the process of incrementing the count value of the abnormality counter T (#i) of the i-th cylinder #i by “1” is started, and then the process proceeds to step 219, where the abnormality counter T ( It is determined whether the count value of #i) exceeds a predetermined abnormality determination value.

このステップ219で、異常カウンタT(#i)のカウント値が異常判定値よりも小さいと判定された場合には、そのまま本ルーチンを終了して、エンジン運転状態が所定運転領域であり、且つ、気筒間偏差Δaf(#i)が判定値Fよりも大きいときに、異常カウンタT(#i)のカウント値をインクリメントする処理(ステップ201〜218)を繰り返す。尚、エンジン運転状態が所定運転領域ではないときや、気筒間偏差Δaf(#i)が判定値F以下のときには、異常カウンタT(#i)のカウント値をインクリメントせずに現在のカウント値で保持(ホールド)する。   In this step 219, when it is determined that the count value of the abnormality counter T (#i) is smaller than the abnormality determination value, this routine is ended as it is, the engine operating state is in the predetermined operating region, and When the inter-cylinder deviation Δaf (#i) is larger than the determination value F, the process of incrementing the count value of the abnormality counter T (#i) (steps 201 to 218) is repeated. When the engine operating state is not in the predetermined operating range, or when the inter-cylinder deviation Δaf (#i) is less than or equal to the determination value F, the current count value is not incremented without incrementing the count value of the abnormality counter T (#i). Hold.

その後、ステップ219で、異常カウンタT(#i)のカウント値が異常判定値を越えたと判定された場合には、ステップ220に進み、第i気筒#iの空燃比に異常有りと判定して、第i気筒#iの異常フラグXaffail(#i)を「1」にセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU40のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリに記憶して、本ルーチンを終了する。   Thereafter, if it is determined in step 219 that the count value of the abnormality counter T (#i) has exceeded the abnormality determination value, the process proceeds to step 220 and it is determined that the air-fuel ratio of the i-th cylinder #i is abnormal. The abnormality flag Xaffail (#i) of the i-th cylinder #i is set to “1” and a warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or the driver's seat A warning is displayed on a warning display section (not shown) of the instrument panel to warn the driver, and the abnormality information (abnormal code, etc.) is rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 40. And the routine is terminated.

一方、上記ステップ219で異常カウンタT(#i)のカウント値が異常判定値を越えたと判定される前に、上記ステップ215で気筒間偏差Δaf(#i)が判定値F以下であると判定された場合には、ステップ221に進み、第i気筒#iの空燃比の異常無し(正常)と判定して、第i気筒#iの正常フラグXafnorm(#i)を「1」にセットした後、本ルーチンを終了する。   On the other hand, before it is determined in step 219 that the count value of the abnormality counter T (#i) has exceeded the abnormality determination value, it is determined in step 215 that the inter-cylinder deviation Δaf (#i) is equal to or less than the determination value F. If YES, the routine proceeds to step 221 where it is determined that the air-fuel ratio of the i-th cylinder #i is not abnormal (normal), and the normal flag Xafnorm (#i) of the i-th cylinder #i is set to “1”. Then, this routine is terminated.

[ディザ法の気筒別空燃比推定ルーチン]
図6に示すディザ法の気筒別空燃比推定ルーチンは、前記図4の気筒別異常診断ルーチンのステップ212で実行されるサブルーチンである。本ルーチンが起動されると、まず、ステップ301で、空燃比ディザ制御フラグが、今回の空燃比推定対象となる第i気筒#iの空燃比を強制的に変化させる空燃比ディザ制御が実行されていることを意味する「オン」にセットされているか否かを判定する。
[Dither method cylinder-by-cylinder air-fuel ratio estimation routine]
The dither method cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 6 is a subroutine executed in step 212 of the cylinder-by-cylinder abnormality diagnosis routine in FIG. When this routine is started, first, in step 301, air-fuel ratio dither control is executed in which the air-fuel ratio dither control flag forcibly changes the air-fuel ratio of the i-th cylinder #i that is the current air-fuel ratio estimation target. It is determined whether or not it is set to “ON”, which means

このステップ301で、空燃比ディザ制御フラグがオフ(つまり空燃比ディザ制御の開始前)であると判定された場合には、ステップ302に進み、空燃比ディザ制御の開始前(空燃比を強制的に変化させる前)に空燃比センサ37で検出した第i気筒#iの検出空燃比と基準空燃比との偏差Y1(#i) を算出することで、空燃比ディザ制御の開始前の第i気筒#iの検出空燃比の気筒間偏差Y1(#i) を求める。   If it is determined in step 301 that the air-fuel ratio dither control flag is off (that is, before the start of air-fuel ratio dither control), the routine proceeds to step 302, where air-fuel ratio dither control is started Is calculated by calculating a deviation Y1 (#i) between the detected air-fuel ratio of the i-th cylinder #i detected by the air-fuel ratio sensor 37 and the reference air-fuel ratio before the air-fuel ratio dither control is started. An inter-cylinder deviation Y1 (#i) of the detected air-fuel ratio of cylinder #i is obtained.

この後、ステップ303に進み、第i気筒#iの空燃比を強制的にリッチ方向又はリーン方向に所定変化量ΔX(#i)だけ変化させる空燃比ディザ制御を実行する。この空燃比ディザ制御は、例えば、第i気筒#iの燃料噴射弁20の燃料噴射量を所定量だけ増量又は減量することで第i気筒#iの空燃比を強制的に所定変化量ΔX(前記図4のステップ209〜211で設定した空燃比変化量ΔX)だけ変化させる。この場合、吸入空気量が変化しない一定の運転状態で燃料噴射量を増量又は減量するようにしても良く、これにより空燃比を精度良く所定変化量ΔXだけ変化させることができる。   Thereafter, the routine proceeds to step 303, where air-fuel ratio dither control is executed in which the air-fuel ratio of the i-th cylinder #i is forcibly changed by a predetermined change amount ΔX (#i) in the rich or lean direction. In this air-fuel ratio dither control, for example, by increasing or decreasing the fuel injection amount of the fuel injection valve 20 of the i-th cylinder #i by a predetermined amount, the air-fuel ratio of the i-th cylinder #i is forcibly changed by a predetermined change amount ΔX ( The air-fuel ratio change amount ΔX) set in steps 209 to 211 in FIG. 4 is changed. In this case, the fuel injection amount may be increased or decreased in a constant operation state in which the intake air amount does not change, whereby the air-fuel ratio can be accurately changed by the predetermined change amount ΔX.

尚、各気筒毎にスロットルバルブを設けたシステムの場合には、第i気筒#iのスロットルバルブの開度を調整して第i気筒#iの吸入空気量を所定量だけ増量又は減量することで第i気筒#iの空燃比を強制的に所定変化量ΔXだけ変化させるようにしても良い。この場合、各気筒の燃料噴射量が変化しない一定の運転状態で吸入空気量を増量又は減量するようにしても良く、これにより空燃比を精度良く所定変化量ΔXだけ変化させることができる。
この後、ステップ304に進み、空燃比ディザ制御フラグをオンにセットした後、ステップ305に進む。
In the case of a system in which a throttle valve is provided for each cylinder, the throttle valve opening of the i-th cylinder #i is adjusted to increase or decrease the intake air amount of the i-th cylinder #i by a predetermined amount. Thus, the air-fuel ratio of the i-th cylinder #i may be forcibly changed by a predetermined change amount ΔX. In this case, the intake air amount may be increased or decreased in a constant operating state in which the fuel injection amount of each cylinder does not change, whereby the air-fuel ratio can be accurately changed by the predetermined change amount ΔX.
Thereafter, the process proceeds to step 304, the air-fuel ratio dither control flag is set on, and then the process proceeds to step 305.

一方、空燃比ディザ制御フラグをオンにセットした後は、上記ステップ301で、空燃比ディザ制御フラグがオンであると判定されるため、ステップ302〜304の処理を飛ばして、ステップ305に進む。   On the other hand, after the air-fuel ratio dither control flag is set on, it is determined in step 301 that the air-fuel ratio dither control flag is on. Therefore, the processing in steps 302 to 304 is skipped and the process proceeds to step 305.

このステップ305では、空燃比ディザ制御を開始してから所定期間(空燃比を強制的に変化させた後の第i気筒#iの排出ガスの空燃比が空燃比センサ37で検出されるまでに要する時間)が経過したか否かを判定し、所定期間が経過したと判定されたときに、ステップ306に進み、空燃比ディザ制御の開始後(空燃比を強制的に変化させた後)に空燃比センサ37で検出した第i気筒#iの検出空燃比と基準空燃比との偏差Y2(#i) を算出することで、空燃比ディザ制御の開始後の第i気筒#iの検出空燃比の気筒間偏差Y2(#i) を求める。   In this step 305, the air-fuel ratio sensor 37 detects the air-fuel ratio of the exhaust gas of the i-th cylinder #i after the air-fuel ratio dither control is started for a predetermined period (after the air-fuel ratio is forcibly changed). When it is determined that the predetermined period has elapsed, the process proceeds to step 306 and after the start of the air-fuel ratio dither control (after the air-fuel ratio is forcibly changed). By calculating the deviation Y2 (#i) between the detected air-fuel ratio of the i-th cylinder #i detected by the air-fuel ratio sensor 37 and the reference air-fuel ratio, the detected sky of the i-th cylinder #i after the start of the air-fuel ratio dither control is calculated. An inter-cylinder deviation Y2 (#i) of the fuel ratio is obtained.

この後、ステップ307に進み、空燃比ディザ制御によって第i気筒#iの空燃比を強制的に変化させたときの実際の空燃比の変化量ΔX(#i)と、そのときの空燃比センサ37の検出空燃比の変化量ΔY(#i){=Y2(#i) −Y1(#i) }と、空燃比ディザ制御の開始前の空燃比センサ37の検出空燃比の気筒間偏差Y1(#i) とを用いて、空燃比ディザ制御の開始前の第i気筒#iの実際の空燃比の気筒間偏差X(#i)を次式により求める。
X(#i)=ΔX(#i)×Y1(#i) /ΔY(#i)
=ΔX(#i)×Y1(#i) /{Y2(#i) −Y1(#i) }
Thereafter, the process proceeds to step 307, where the actual air-fuel ratio change ΔX (#i) when the air-fuel ratio of the i-th cylinder #i is forcibly changed by the air-fuel ratio dither control, and the air-fuel ratio sensor at that time 37, the change amount ΔY (#i) of detected air-fuel ratio {= Y2 (#i) −Y1 (#i)}, and the inter-cylinder deviation Y1 of the detected air-fuel ratio of the air-fuel ratio sensor 37 before the start of the air-fuel ratio dither control (#i) is used to determine the inter-cylinder deviation X (#i) of the actual air-fuel ratio of the i-th cylinder #i before the start of the air-fuel ratio dither control by the following equation.
X (#i) = ΔX (#i) × Y1 (#i) / ΔY (#i)
= ΔX (#i) × Y1 (#i) / {Y2 (#i) −Y1 (#i)}

この後、ステップ308に進み、第i気筒#iの実際の空燃比の気筒間偏差X(#i)と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)とに基づいて第i気筒#iの空燃比を算出した後、ステップ309に進み、空燃比ディザ制御を終了すると共に、空燃比ディザ制御フラグをオフにリセットした後、本ルーチンを終了する。   Thereafter, the routine proceeds to step 308, where the actual air-fuel ratio deviation X (#i) of the i-th cylinder #i and the reference air-fuel ratio (the average value or control target value of the estimated air-fuel ratios of all cylinders) are determined. After calculating the air-fuel ratio of the i-th cylinder #i, the routine proceeds to step 309, where the air-fuel ratio dither control is terminated and the air-fuel ratio dither control flag is reset to OFF, and then this routine is terminated.

以上説明した本実施例では、空燃比センサ37の応答性が経時劣化等によって低下した場合に、気筒別空燃比推定方法を、空燃比センサ37の応答性の低下の影響が少ない推定方法(例えばディザ法)に切り換えることができるため、空燃比センサ37の応答性が低下した場合でも、気筒別空燃比の推定精度の低下を少なくすることができ、気筒別空燃比の推定結果を用いた気筒別異常診断の診断精度の低下を少なくすることができる。   In the present embodiment described above, when the responsiveness of the air-fuel ratio sensor 37 is lowered due to deterioration over time or the like, the cylinder-by-cylinder air-fuel ratio estimation method is an estimation method that is less affected by the decrease in responsiveness of the air-fuel ratio sensor 37 (for example, Dither method), even when the responsiveness of the air-fuel ratio sensor 37 is lowered, it is possible to reduce a decrease in the estimation accuracy of the cylinder-by-cylinder air-fuel ratio, and the cylinder using the estimation result of the cylinder-by-cylinder air-fuel ratio. It is possible to reduce a decrease in diagnosis accuracy of another abnormality diagnosis.

また、本実施例では、空燃比センサ37の応答性が通常範囲内(空燃比センサ37の応答性がほとんど低下していない状態)の場合に、気筒別空燃比推定方法として、気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するモデル法を選択するようにしたので、空燃比センサ37の応答性が通常範囲内の場合には、モデル法によって各気筒の空燃比を精度良く推定することができる。しかも、ディザ法は、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行するため、ドライバビリティや排気エミッションが低下する可能性があるが、モデル法は、空燃比を強制的に変化させる必要がないため、ドライバビリティや排気エミッションの低下を招くことなく、各気筒の空燃比を精度良く推定することができる。   In the present embodiment, when the responsiveness of the air-fuel ratio sensor 37 is within the normal range (a state in which the responsiveness of the air-fuel ratio sensor 37 has hardly decreased), the cylinder-by-cylinder air-fuel ratio estimation method is used as the cylinder-by-cylinder air-fuel ratio estimation method. Since the model method for estimating the air-fuel ratio of each cylinder using the estimation model is selected, when the responsiveness of the air-fuel ratio sensor 37 is within the normal range, the air-fuel ratio of each cylinder is accurately determined by the model method. Can be estimated. Moreover, since the dither method performs air-fuel ratio dither control that forcibly changes the air-fuel ratio for each cylinder, there is a possibility that drivability and exhaust emission may be reduced, but the model method forcibly sets the air-fuel ratio. Therefore, it is possible to accurately estimate the air-fuel ratio of each cylinder without deteriorating drivability and exhaust emission.

一方、空燃比センサ37の応答性が通常範囲よりも低下した場合に、気筒別空燃比推定方法として、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行したときの空燃比センサ37の出力に基づいて各気筒の空燃比を推定するディザ法を選択するようにしたので、各気筒の空燃比をモデル法よりも精度良く推定することができ、空燃比センサ37の応答性が低下した場合でも気筒別空燃比の推定精度の低下を少なくすることができる。   On the other hand, when the responsiveness of the air-fuel ratio sensor 37 falls below the normal range, the air-fuel ratio when the air-fuel ratio dither control for forcibly changing the air-fuel ratio for each cylinder is executed as the cylinder-by-cylinder air-fuel ratio estimation method. Since the dither method for estimating the air-fuel ratio of each cylinder is selected based on the output of the sensor 37, the air-fuel ratio of each cylinder can be estimated with higher accuracy than the model method, and the responsiveness of the air-fuel ratio sensor 37 can be estimated. Even when the air pressure decreases, it is possible to reduce the decrease in the estimation accuracy of the cylinder-by-cylinder air-fuel ratio.

また、本実施例では、気筒別空燃比推定方法としてディザ法を選択した場合には、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量を設定するようにしたので、空燃比センサ37の応答性の低下度合に応じて空燃比ディザ制御の空燃比変化量を変化させて、気筒別空燃比の推定精度を適度に確保しながら、ドライバビリティや排気エミッションに与える悪影響をできるだけ小さくするように、空燃比ディザ制御の空燃比変化量を設定することができる。   In this embodiment, when the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method, the air-fuel ratio change amount of the air-fuel ratio dither control is set according to the degree of decrease in the response of the air-fuel ratio sensor 37. Therefore, the air-fuel ratio change amount of the air-fuel ratio dither control is changed according to the degree of decrease in the responsiveness of the air-fuel ratio sensor 37, so that the estimation accuracy of the cylinder-by-cylinder air-fuel ratio is appropriately secured, and drivability and exhaust emission are achieved. The air-fuel ratio change amount of the air-fuel ratio dither control can be set so as to minimize the adverse effect exerted.

尚、気筒別空燃比推定方法や気筒別異常診断の診断方法は、上記実施例で説明した方法に限定されず、適宜変更しても良い。例えば、吸気バルブ25と排気バルブ26のいずれか一方又は両方を電磁駆動バルブ(気筒毎に独立して開閉動作可能なバルブ装置)としたシステムでは、空燃比センサ37の応答性が通常範囲よりも低下した場合に、特定気筒休止法で各気筒の空燃比を推定するようにしても良い。   Note that the cylinder-by-cylinder air-fuel ratio estimation method and the cylinder-by-cylinder abnormality diagnosis method are not limited to the methods described in the above embodiments, and may be changed as appropriate. For example, in a system in which one or both of the intake valve 25 and the exhaust valve 26 are electromagnetically driven valves (valve devices that can be opened and closed independently for each cylinder), the responsiveness of the air-fuel ratio sensor 37 is higher than the normal range. In the case of a decrease, the air-fuel ratio of each cylinder may be estimated by the specific cylinder deactivation method.

この特定気筒休止方法は、減速時燃料カット期間中に、エンジン11の4つの気筒のうちの1つの気筒を除いて燃料噴射及び吸気/排気バルブ25,26の開閉動作を休止してそれらの気筒の吸気/排気ポートを閉じた状態で、残りの1つの気筒についてのみ燃料噴射及び吸気/排気バルブ25,26の開閉動作を実行する。以下の説明では、燃料噴射及び吸気/排気バルブ25,26の開閉動作を休止する気筒を「休止気筒」と呼び、燃料噴射及び吸気/排気バルブ25,26の開閉動作を実行する気筒を「運転気筒」と呼ぶ。減速時燃料カット期間中に、所定時間毎に運転気筒を1気筒ずつ順番に切り替え、その都度、空燃比センサ37の出力に基づいて運転気筒の空燃比を検出する。この場合、1つの気筒を除いて残り全ての気筒を休止気筒としてそれらの休止気筒の吸気/排気ポートを閉じた状態で、1つの運転気筒についてのみ燃料噴射及び吸気/排気バルブ25,26の開閉動作を実行するため、当該運転気筒の空燃比を空燃比センサ37の出力に基づいて精度良く検出することができる。   In this specific cylinder deactivation method, during the fuel cut period at the time of deceleration, except for one of the four cylinders of the engine 11, the fuel injection and intake / exhaust valves 25 and 26 are deactivated and the cylinders are deactivated. With the intake / exhaust port closed, fuel injection and intake / exhaust valves 25 and 26 are opened / closed only for the remaining one cylinder. In the following description, a cylinder that pauses the opening / closing operation of the fuel injection and intake / exhaust valves 25, 26 is referred to as a “pause cylinder”, and a cylinder that performs the opening / closing operation of the fuel injection / intake / exhaust valves 25, 26 is “operated”. Called "cylinder". During the fuel cut period during deceleration, the operating cylinders are sequentially switched one by one every predetermined time, and the air-fuel ratio of the operating cylinders is detected based on the output of the air-fuel ratio sensor 37 each time. In this case, all the remaining cylinders except for one cylinder are set as idle cylinders, and the intake / exhaust ports of these idle cylinders are closed, and the fuel injection and intake / exhaust valves 25 and 26 are opened and closed only for one operating cylinder. Since the operation is executed, the air-fuel ratio of the operating cylinder can be accurately detected based on the output of the air-fuel ratio sensor 37.

また、上記実施例では、気筒別空燃比の推定結果に基づいて各気筒の異常の有無を判定する気筒別異常診断を実施するシステムにおいて、空燃比センサ37の応答性に応じて気筒別空燃比推定方法を切り換えるようにしたが、気筒別空燃比の推定結果に基づいて各気筒の空燃比の気筒間ばらつきを小さくするように各気筒の空燃比を制御する気筒別空燃比制御を実施するシステムにおいて、空燃比センサ37の応答性に応じて気筒別空燃比推定方法を切り換えるようにしても良い。   Further, in the above embodiment, in the system that performs the abnormality diagnosis for each cylinder that determines the presence / absence of abnormality in each cylinder based on the estimation result of the air-fuel ratio for each cylinder, the air-fuel ratio for each cylinder is determined according to the responsiveness of the air-fuel ratio sensor 37. Although the estimation method is switched, a system for performing cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio of each cylinder so as to reduce the variation between cylinders in the air-fuel ratio of each cylinder based on the estimation result of the cylinder-by-cylinder air-fuel ratio The cylinder-by-cylinder air-fuel ratio estimation method may be switched in accordance with the responsiveness of the air-fuel ratio sensor 37.

また、上記実施例では、本発明を4気筒エンジンに適用したが、2気筒エンジンや3気筒エンジン或は5気筒以上のエンジンに本発明を適用しても良い。
その他、本発明は、3種類以上の気筒別空燃比推定方法の中から空燃比センサ37の応答性に応じて気筒別空燃比推定方法を切り換えるようにしても良い。
In the above embodiment, the present invention is applied to a four-cylinder engine. However, the present invention may be applied to a two-cylinder engine, a three-cylinder engine, or an engine having five or more cylinders.
In addition, according to the present invention, the cylinder-by-cylinder air-fuel ratio estimation method may be switched according to the responsiveness of the air-fuel ratio sensor 37 from among three or more types of cylinder-by-cylinder air-fuel ratio estimation methods.

本発明の一実施例におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in one Example of this invention. (a)と(b)はディザ法による気筒別空燃比推定方法を説明するための図である。(A) And (b) is a figure for demonstrating the air-fuel ratio estimation method according to cylinder by the dither method. センサ異常診断ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a sensor abnormality diagnosis routine. 気筒別異常診断ルーチンの処理の流れを説明するフローチャート(その1)である。It is a flowchart (the 1) explaining the flow of a process of the abnormality diagnosis routine according to cylinder. 気筒別異常診断ルーチンの処理の流れを説明するフローチャート(その2)である。It is a flowchart (the 2) explaining the flow of a process of the abnormality diagnosis routine classified by cylinder. ディザ法の気筒別空燃比推定ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of the air-fuel ratio estimation routine according to cylinder of a dither method.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、35…排気マニホールド、36…排気合流部、37…空燃比センサ、40…ECU(気筒別空燃比推定手段,応答性検出手段,気筒別異常診断手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 35 ... Exhaust manifold, 36 ... Exhaust junction, 37 ... Air-fuel ratio sensor, 40 ... ECU (air-fuel ratio estimation for each cylinder) Means, response detection means, cylinder-specific abnormality diagnosis means)

Claims (5)

内燃機関の複数の気筒の排出ガスが合流する排気合流部に、該排出ガスの空燃比を検出する空燃比センサを設置し、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段を備えた内燃機関の制御装置において、
前記空燃比センサの応答性を検出する応答性検出手段を備え、
前記気筒別空燃比推定手段は、前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する複数種類の気筒別空燃比推定方法を持ち、前記応答性検出手段で検出した前記空燃比センサの応答性に応じて気筒別空燃比推定方法を切り換えることを特徴とする内燃機関の制御装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas is installed at an exhaust gas merging portion where the exhaust gases of a plurality of cylinders of the internal combustion engine merge, and the air-fuel ratio of each cylinder is estimated based on the detection value of the air-fuel ratio sensor In the control device for an internal combustion engine provided with the cylinder-by-cylinder air-fuel ratio estimating means,
Responsiveness detecting means for detecting the responsiveness of the air-fuel ratio sensor,
The cylinder-by-cylinder air-fuel ratio estimation means has a plurality of types of cylinder-by-cylinder air-fuel ratio estimation methods for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor, and the air-fuel ratio detected by the responsiveness detection means A control apparatus for an internal combustion engine, wherein the cylinder-by-cylinder air-fuel ratio estimation method is switched according to the response of the sensor.
前記気筒別空燃比推定手段は、前記空燃比センサの応答性が所定の通常範囲内の場合に、前記気筒別空燃比推定方法として、前記空燃比センサの検出値と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定するモデル法を選択することを特徴とする請求項1に記載の内燃機関の制御装置。   The cylinder-by-cylinder air-fuel ratio estimation means uses the detected value of the air-fuel ratio sensor and the air-fuel ratio of each cylinder as the cylinder-by-cylinder air-fuel ratio estimation method when the responsiveness of the air-fuel ratio sensor is within a predetermined normal range. 2. The control apparatus for an internal combustion engine according to claim 1, wherein a model method for estimating an air-fuel ratio of each cylinder is selected using an associated model. 前記気筒別空燃比推定手段は、前記空燃比センサの応答性が所定の通常範囲よりも低下した場合に、前記気筒別空燃比推定方法として、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行したときの前記空燃比センサの出力に基づいて各気筒の空燃比を推定するディザ法を選択することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   The cylinder-by-cylinder air-fuel ratio estimating means is an air-fuel ratio estimating method for forcibly changing the air-fuel ratio for each cylinder when the responsiveness of the air-fuel ratio sensor falls below a predetermined normal range. 3. The control device for an internal combustion engine according to claim 1, wherein a dither method for estimating an air-fuel ratio of each cylinder is selected based on an output of the air-fuel ratio sensor when fuel ratio dither control is executed. 前記気筒別空燃比推定手段は、前記気筒別空燃比推定方法として前記ディザ法を選択した場合に、前記空燃比センサの応答性の低下度合に応じて前記空燃比ディザ制御により空燃比を強制的に変化させる際の空燃比変化量を設定することを特徴とする請求項3に記載の内燃機関の制御装置。   When the dither method is selected as the cylinder-by-cylinder air-fuel ratio estimation method, the cylinder-by-cylinder air-fuel ratio estimation means forcibly sets the air-fuel ratio by the air-fuel ratio dither control according to the degree of decrease in the response of the air-fuel ratio sensor. 4. The control apparatus for an internal combustion engine according to claim 3, wherein an air-fuel ratio change amount at the time of changing to is set. 前記気筒別空燃比の推定結果に基づいて各気筒の異常の有無を判定する気筒別異常診断を実施する気筒別異常診断手段を備えていることを特徴とする請求項1乃至4のいずれかに記載の内燃機関の制御装置。   5. A cylinder-specific abnormality diagnosis unit that performs cylinder-specific abnormality diagnosis for determining whether or not each cylinder is abnormal based on the estimation result of the cylinder-by-cylinder air-fuel ratio. The internal combustion engine control device described.
JP2006313450A 2006-11-20 2006-11-20 Control device for internal combustion engine Pending JP2008128080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313450A JP2008128080A (en) 2006-11-20 2006-11-20 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313450A JP2008128080A (en) 2006-11-20 2006-11-20 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008128080A true JP2008128080A (en) 2008-06-05

Family

ID=39554187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313450A Pending JP2008128080A (en) 2006-11-20 2006-11-20 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008128080A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255618A (en) * 2009-04-02 2010-11-11 Ngk Spark Plug Co Ltd Energization control apparatus for control component for vehicle
JP2011247148A (en) * 2010-05-26 2011-12-08 Mazda Motor Corp Method and device for measuring output characteristic of air-fuel ratio detecting means
JP2012237252A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Abnormality determination apparatus for internal combustion engine
JP2014047767A (en) * 2012-09-04 2014-03-17 Toyota Motor Corp Vehicle
JP2014148965A (en) * 2013-02-04 2014-08-21 Toyota Motor Corp Device for detecting imbalance of air fuel ratio between cylinders in multi-cylinder internal combustion engine
CN104343560A (en) * 2013-07-29 2015-02-11 通用汽车环球科技运作有限责任公司 Method of correcting operating set points of internal combustion engine
WO2017110847A1 (en) * 2015-12-22 2017-06-29 いすゞ自動車株式会社 Internal combustion engine and method for controlling same
US9805522B2 (en) 2012-06-27 2017-10-31 Robert Bosch Gmbh Method for planning a vehicle diagnosis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255618A (en) * 2009-04-02 2010-11-11 Ngk Spark Plug Co Ltd Energization control apparatus for control component for vehicle
JP2011247148A (en) * 2010-05-26 2011-12-08 Mazda Motor Corp Method and device for measuring output characteristic of air-fuel ratio detecting means
JP2012237252A (en) * 2011-05-12 2012-12-06 Toyota Motor Corp Abnormality determination apparatus for internal combustion engine
US9805522B2 (en) 2012-06-27 2017-10-31 Robert Bosch Gmbh Method for planning a vehicle diagnosis
JP2014047767A (en) * 2012-09-04 2014-03-17 Toyota Motor Corp Vehicle
JP2014148965A (en) * 2013-02-04 2014-08-21 Toyota Motor Corp Device for detecting imbalance of air fuel ratio between cylinders in multi-cylinder internal combustion engine
CN104343560A (en) * 2013-07-29 2015-02-11 通用汽车环球科技运作有限责任公司 Method of correcting operating set points of internal combustion engine
WO2017110847A1 (en) * 2015-12-22 2017-06-29 いすゞ自動車株式会社 Internal combustion engine and method for controlling same
JP2017115612A (en) * 2015-12-22 2017-06-29 いすゞ自動車株式会社 Internal combustion engine and its control method
CN108431388A (en) * 2015-12-22 2018-08-21 五十铃自动车株式会社 Internal combustion engine and its control method
US10683819B2 (en) 2015-12-22 2020-06-16 Isuzu Motors Limited Internal combustion engine and method for controlling same
CN108431388B (en) * 2015-12-22 2021-05-25 五十铃自动车株式会社 Internal combustion engine and control method thereof

Similar Documents

Publication Publication Date Title
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US7487035B2 (en) Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
US10247114B2 (en) Exhaust gas control system for internal combustion engine and control method for internal combustion engine
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2007154840A (en) Air-fuel ratio control device of internal combustion engine
JP2005188503A (en) Air-fuel ratio control system by cylinder for internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008248769A (en) Air fuel ratio control device for internal combustion engine
JP2007332914A (en) Catalyst deterioration detecting device
JP2001115879A (en) Catalyst deterioration state detecting device
US9109524B2 (en) Controller for internal combustion engine
JP2007315193A (en) Air-fuel ratio detecting device of internal combustion engine
JP2008128160A (en) Control device of internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2008064078A (en) Control device of internal combustion engine
JP2009092002A (en) Air-fuel ratio control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2008128161A (en) Control device of internal combustion engine
JP2008121632A (en) Each cylinder abnormal diagnosis device of internal combustion engine