JP2007211609A - Device for controlling air-fuel ratio per cylinder of internal combustion engine - Google Patents

Device for controlling air-fuel ratio per cylinder of internal combustion engine Download PDF

Info

Publication number
JP2007211609A
JP2007211609A JP2006029811A JP2006029811A JP2007211609A JP 2007211609 A JP2007211609 A JP 2007211609A JP 2006029811 A JP2006029811 A JP 2006029811A JP 2006029811 A JP2006029811 A JP 2006029811A JP 2007211609 A JP2007211609 A JP 2007211609A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
detection timing
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006029811A
Other languages
Japanese (ja)
Inventor
Akihiro Okamoto
明浩 岡本
Yasuo Hirata
靖雄 平田
Keiji Wakahara
啓二 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006029811A priority Critical patent/JP2007211609A/en
Priority to US11/483,602 priority patent/US7356985B2/en
Priority to DE102006000347A priority patent/DE102006000347B4/en
Publication of JP2007211609A publication Critical patent/JP2007211609A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To properly correct an air-fuel ratio detection timing (sample timing of output from air-fuel ratio sensor) so that the air-fuel ratio of each cylinder can be accurately estimated based on the values detected by an air-fuel ratio sensor installed at the exhaust manifold part of an internal combustion engine. <P>SOLUTION: When the air-fuel ratio is stoichiometric air-fuel ratio (theoretical air-fuel ratio), the deviation of the air-fuel ratio from the appropriate value of an air-fuel ratio detection timing is zero. When the air-fuel ratio is lean, it is deviated in the direction that the appropriate value of the air-fuel ratio detection timing is retarded (response of the air-fuel ratio sensor becomes slow). When the air-fuel ratio is rich, it is deviated in the direction that the appropriate value of the air-fuel ratio detection timing is advanced (response of the air-fuel ratio sensor becomes fast). With these characteristics taken into consideration, when a target air-fuel ratio is lean, the air-fuel ratio detection timing is corrected to be slower than when it is stoichiometric air-fuel ratio. When the target air-fuel ratio is rich, the air-fuel ratio detection timing is corrected to be faster than when it is stoichiometric air-fuel ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気集合部に設置した1つの空燃比センサの検出値に基づいて各気筒の空燃比を推定する機能を備えた内燃機関の気筒別空燃比制御装置に関する発明である。   The present invention relates to a cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine having a function of estimating the air-fuel ratio of each cylinder based on a detection value of one air-fuel ratio sensor installed in an exhaust gas collecting portion of the internal combustion engine.

近年、内燃機関の気筒間の空燃比ばらつきを少なくして空燃比制御精度を向上させるために、特許文献1(特許第3217680号公報)に記載されているように、内燃機関の排気系の挙動を記述するモデルを設定して、排気集合部に設置した1つの空燃比センサの検出値(排気集合部を流れる排出ガスの空燃比)を該モデルに入力し、その内部状態を観測するオブザーバによって各気筒の空燃比を推定すると共に、各気筒の推定空燃比と目標値との偏差に応じて各気筒の燃料噴射量を補正して、各気筒の空燃比を目標値に一致させるようにしたものがある。更に、この特許文献1では、各気筒から排出される排出ガスが空燃比センサ付近に到達してその空燃比が検出されるまでの遅れ(以下「排気系の応答遅れ」という)がエンジン運転状態によって変化することを考慮して、エンジン設計・製造過程で、排気系の応答遅れとエンジン運転状態との関係を規定するマップを作成しておき、エンジン運転中に空燃比センサ出力のサンプルタイミング(各気筒の空燃比検出タイミング)をエンジン運転状態に応じて上記マップにより変化させるようにしている。
特許第3217680号公報(段落[0008]、[0013]、[0162]〜[0170]等参照)
In recent years, in order to reduce air-fuel ratio variation between cylinders of an internal combustion engine and improve air-fuel ratio control accuracy, as described in Patent Document 1 (Japanese Patent No. 3217680), the behavior of the exhaust system of the internal combustion engine is described. By setting the model to describe, the detection value of one air-fuel ratio sensor installed in the exhaust collecting part (the air-fuel ratio of the exhaust gas flowing through the exhaust collecting part) is input to the model, and the observer observes its internal state The air-fuel ratio of each cylinder is estimated, and the fuel injection amount of each cylinder is corrected according to the deviation between the estimated air-fuel ratio of each cylinder and the target value, so that the air-fuel ratio of each cylinder matches the target value. There is something. Further, in Patent Document 1, a delay until the exhaust gas discharged from each cylinder reaches the vicinity of the air-fuel ratio sensor and the air-fuel ratio is detected (hereinafter referred to as “exhaust system response delay”) is an engine operating state. In the engine design and manufacturing process, a map that defines the relationship between the exhaust system response delay and the engine operating state is created, and the sample timing of the air-fuel ratio sensor output ( The air-fuel ratio detection timing of each cylinder) is changed by the map according to the engine operating state.
Japanese Patent No. 3217680 (see paragraphs [0008], [0013], [0162] to [0170], etc.)

ところで、上記特許文献1には、空燃比検出タイミングをエンジン運転状態に応じて変化させる際に、エンジン回転速度、吸気圧、バルブタイミングの他に、空燃比も考慮して、空燃比検出タイミングを変化させる技術が記載されている。この特許文献1の段落[0170]には、空燃比センサの応答性(反応時間)と空燃比との関係に関して、「空燃比センサ(LAFセンサ)の反応時間は検出しようとする空燃比がリーンであると、リッチのときに比し、短くなることから、検出すべき空燃比がリーンのときは、より早期のクランク角度で空燃比を検出する(つまり空燃比検出タイミングを早める)ことが望ましい。」と記載されているが、最近の本発明者の研究結果によれば、図3に示すように、空燃比による空燃比検出タイミングのずれの変化特性が上記特許文献1の記載と全く反対になることが判明した。従って、上記特許文献1のように、空燃比がリーンの時に空燃比検出タイミングを早めると、空燃比検出タイミングを誤った方向に変化させてしまう。これにより、各気筒の空燃比検出タイミングが適正値からずれると、各気筒の空燃比の推定精度が悪化して、気筒別空燃比制御の状態が悪化することになる。   By the way, in Patent Document 1 described above, when changing the air-fuel ratio detection timing according to the engine operating state, the air-fuel ratio detection timing is taken into account in addition to the engine speed, intake pressure, and valve timing. The changing technology is described. In paragraph [0170] of Patent Document 1, regarding the relationship between the responsiveness (reaction time) of the air-fuel ratio sensor and the air-fuel ratio, “the reaction time of the air-fuel ratio sensor (LAF sensor) indicates that the air-fuel ratio to be detected is lean. Therefore, when the air-fuel ratio to be detected is lean, it is desirable to detect the air-fuel ratio at an earlier crank angle (that is, to advance the air-fuel ratio detection timing). However, according to recent research results of the present inventor, as shown in FIG. 3, the change characteristic of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio is completely opposite to the description in Patent Document 1 above. Turned out to be. Therefore, as in Patent Document 1, if the air-fuel ratio detection timing is advanced when the air-fuel ratio is lean, the air-fuel ratio detection timing is changed in the wrong direction. As a result, when the air-fuel ratio detection timing of each cylinder deviates from an appropriate value, the estimation accuracy of the air-fuel ratio of each cylinder deteriorates, and the state of cylinder-by-cylinder air-fuel ratio control deteriorates.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、内燃機関の排気集合部に設置した1つの空燃比センサの検出値に基づいて各気筒の空燃比を推定する機能を備えたものにおいて、各気筒の空燃比検出タイミングを空燃比に応じて適正な方向に補正することができて、各気筒の空燃比推定精度を向上させることができる内燃機関の気筒別空燃比制御装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to estimate the air-fuel ratio of each cylinder based on the detection value of one air-fuel ratio sensor installed in the exhaust collection part of the internal combustion engine. In the engine equipped with the function, the air-fuel ratio detection timing of each cylinder can be corrected in an appropriate direction according to the air-fuel ratio, and the air-fuel ratio estimation accuracy of each cylinder can be improved. An object of the present invention is to provide a fuel ratio control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の各気筒の排出ガスが集合して流れる排気集合部に、該排出ガスの空燃比を検出する空燃比センサを設置し、各気筒の空燃比検出タイミング毎に前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と、各気筒の推定空燃比に基づいて各気筒の空燃比を目標空燃比に一致させるように制御(以下「気筒別空燃比制御」という)する気筒別空燃比制御手段とを備えた内燃機関の気筒別空燃比制御装置において、前記空燃比検出タイミングを目標空燃比又は検出空燃比に応じて補正する空燃比検出タイミング補正手段を備え、前記空燃比検出タイミング補正手段は、目標空燃比又は検出空燃比がリーンの時に前記空燃比検出タイミングをストイキの時よりも遅くするように補正し、目標空燃比又は検出空燃比がリッチの時に前記空燃比検出タイミングをストイキの時よりも早めるように補正することを特徴とするものである。このようにすれば、各気筒の空燃比検出タイミングを空燃比(目標空燃比又は検出空燃比)に応じて適正な方向に補正することができて、各気筒の空燃比推定精度を向上させることができる。   In order to achieve the above object, the invention according to claim 1 is provided with an air-fuel ratio sensor for detecting an air-fuel ratio of the exhaust gas at an exhaust gas collecting portion where the exhaust gas of each cylinder of the internal combustion engine collects and flows. Cylinder air-fuel ratio estimation means for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor at each air-fuel ratio detection timing of each cylinder, and the air-fuel ratio of each cylinder based on the estimated air-fuel ratio of each cylinder In a cylinder-by-cylinder air-fuel ratio control device for an internal combustion engine that includes a cylinder-by-cylinder air-fuel ratio control unit that performs control so as to match a target air-fuel ratio (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio control”). An air-fuel ratio detection timing correction unit that corrects the air-fuel ratio or the detected air-fuel ratio according to the detected air-fuel ratio, and the air-fuel ratio detection timing correction unit corrects the air-fuel ratio detection timing when the target air-fuel ratio or the detected air-fuel ratio is lean. Remote corrected to slow one in which the target air-fuel ratio or a detected air-fuel ratio and correcting to advance than when stoichiometric the air-fuel ratio detecting timing when the rich. In this way, the air-fuel ratio detection timing of each cylinder can be corrected in an appropriate direction according to the air-fuel ratio (target air-fuel ratio or detected air-fuel ratio), and the air-fuel ratio estimation accuracy of each cylinder can be improved. Can do.

この場合、例えば、適合工程で空燃比と空燃比検出タイミングの適正値からのずれ(補正量)との関係を測定して、その測定結果に基づいて空燃比をパラメータとする補正量のテーブルを作成して内燃機関制御コンピュータの不揮発性メモリに記憶させておき、内燃機関の運転中に当該テーブルを参照して目標空燃比又は検出空燃比に応じた補正量を設定するようにしても良い。これにより、空燃比検出タイミングの補正量を空燃比(目標空燃比又は検出空燃比)に応じて適正に設定できる。   In this case, for example, the relationship between the air-fuel ratio and the deviation from the appropriate value of the air-fuel ratio detection timing (correction amount) is measured in the adaptation process, and a correction amount table using the air-fuel ratio as a parameter based on the measurement result is obtained. It may be created and stored in the nonvolatile memory of the internal combustion engine control computer, and the correction amount corresponding to the target air-fuel ratio or the detected air-fuel ratio may be set with reference to the table during operation of the internal combustion engine. Thereby, the correction amount of the air-fuel ratio detection timing can be set appropriately according to the air-fuel ratio (target air-fuel ratio or detected air-fuel ratio).

また、請求項2のように、目標空燃比又は検出空燃比に応じて設定した空燃比検出タイミングの補正量を空燃比センサの応答性に応じて補正するようにしても良い。つまり、空燃比検出タイミングの適正値からのずれ(補正量)は、空燃比センサの応答性に応じて変化し、空燃比センサの応答性は経時変化や製造ばらつきによって変化するため、テーブル等で空燃比(目標空燃比又は検出空燃比)に応じて設定した空燃比検出タイミングの補正量を空燃比センサの応答性に応じて補正すれば、空燃比に応じて設定した空燃比検出タイミングの補正量を空燃比センサの応答性の経時変化や製造ばらつきに応じて適正に補正することができ、空燃比センサの応答性の経時変化や製造ばらつきによる空燃比検出タイミングの補正精度低下を防止することができる。   Further, the correction amount of the air-fuel ratio detection timing set according to the target air-fuel ratio or the detected air-fuel ratio may be corrected according to the responsiveness of the air-fuel ratio sensor. That is, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes according to the response of the air-fuel ratio sensor, and the response of the air-fuel ratio sensor changes due to changes over time and manufacturing variations. If the correction amount of the air-fuel ratio detection timing set according to the air-fuel ratio (target air-fuel ratio or detected air-fuel ratio) is corrected according to the responsiveness of the air-fuel ratio sensor, the correction of the air-fuel ratio detection timing set according to the air-fuel ratio The amount can be corrected appropriately according to changes in the responsiveness of the air-fuel ratio sensor over time and manufacturing variations, and it is possible to prevent deterioration in the correction accuracy of the air-fuel ratio detection timing due to changes in the responsiveness of the air-fuel ratio sensors over time and manufacturing variations Can do.

また、請求項3のように、内燃機関の運転中に空燃比検出タイミングの適正値からのずれ(補正量)を学習してその学習値を書き換え可能な不揮発性メモリに更新記憶する学習手段を設け、この学習手段の学習値に基づいて空燃比検出タイミングを補正するようにしても良い。このようにすれば、内燃機関の運転中に空燃比検出タイミングの適正値からのずれ(補正量)を空燃比によるずれだけでなく空燃比センサの応答性の経時変化や製造ばらつきによるずれも含めて学習することができるため、空燃比センサの応答性の経時変化や製造ばらつきの影響を無視できないシステムでも、空燃比検出タイミングの補正量を空燃比によるずれだけでなく空燃比センサの応答性の経時変化や製造ばらつきによるずれも含めて適正に設定することができる。   According to a third aspect of the present invention, there is provided learning means for learning a deviation (correction amount) from an appropriate value of the air-fuel ratio detection timing during operation of the internal combustion engine and updating and storing the learned value in a rewritable nonvolatile memory. It is also possible to correct the air-fuel ratio detection timing based on the learning value of the learning means. In this way, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing during the operation of the internal combustion engine includes not only the deviation due to the air-fuel ratio but also the aging of the responsiveness of the air-fuel ratio sensor and deviation due to manufacturing variations. Therefore, even in a system that cannot ignore the effects of time-dependent changes in responsiveness of the air-fuel ratio sensor and manufacturing variations, the correction amount of the air-fuel ratio detection timing is determined not only by the deviation due to the air-fuel ratio but also by the responsiveness of the air-fuel ratio sensor. Appropriate settings can be made, including deviations due to changes over time and manufacturing variations.

この場合、空燃比検出タイミングの適正値からのずれ(補正量)は、空燃比に応じて変化することを考慮して、請求項4のように、空燃比検出タイミングの適正値からのずれ(補正量)を空燃比毎に学習するようにしても良い。これにより、空燃比検出タイミングの補正量を精度良く学習することができる。   In this case, taking into account that the deviation (correction amount) of the air-fuel ratio detection timing from the appropriate value changes in accordance with the air-fuel ratio, the deviation from the appropriate value of the air-fuel ratio detection timing (see FIG. 4). Correction amount) may be learned for each air-fuel ratio. Thereby, the correction amount of the air-fuel ratio detection timing can be learned with high accuracy.

本発明者は、空燃比と空燃比検出タイミングの適正値からのずれ(補正量)との関係を実験により考察した結果、図3に示すように、空燃比検出タイミングの適正値からのずれは空燃比に応じてZ字型に変化することが判明した。すなわち、空燃比がストイキ(理論空燃比)の時には、空燃比検出タイミングの適正値からのずれが0となり、空燃比がストイキに比較的近い領域では、リーンになるほど空燃比検出タイミングの適正値が遅くなる方向にずれ(空燃比センサの応答性が遅くなり)、リッチになるほど空燃比検出タイミングの適正値が早くなる方向にずれる(空燃比センサの応答性が早くなる)。しかし、空燃比がストイキからある程度離れた領域(図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域)では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングの適正値からのずれ量はほとんど変化しない。   As a result of studying the relationship between the air-fuel ratio and the deviation (correction amount) of the air-fuel ratio detection timing from the appropriate value as a result of experiments, the inventor found that the deviation from the appropriate value of the air-fuel ratio detection timing is as shown in FIG. It turned out that it changes to Z shape according to an air fuel ratio. That is, when the air-fuel ratio is stoichiometric (theoretical air-fuel ratio), the deviation from the appropriate value of the air-fuel ratio detection timing is 0, and in the region where the air-fuel ratio is relatively close to the stoichiometric value, the leaner the appropriate value of the air-fuel ratio detection timing becomes. It shifts in the direction of slowing down (the responsiveness of the air-fuel ratio sensor is slowed down), and the richer the shift is in the direction of increasing the appropriate value of the air-fuel ratio detection timing (the responsiveness of the air-fuel ratio sensor becomes faster). However, in a region where the air-fuel ratio is some distance away from the stoichiometry (the air-fuel ratio region richer than λrich and the air-fuel ratio region leaner than λleen in FIG. 3), the air-fuel ratio further changes to the rich / lean side. However, the amount of deviation from the appropriate value of the air-fuel ratio detection timing hardly changes.

このような空燃比による空燃比検出タイミングのずれのZ字型の変化特性を考慮して、請求項5のように、ストイキを含む所定空燃比範囲(図3のλrich〜λleanの範囲)よりもリッチ側の空燃比領域とリーン側の空燃比領域(つまり空燃比が変化しても空燃比センサの応答性がほとんど変化しない空燃比領域)では、それぞれ空燃比検出タイミングの適正値からのずれ(補正量)を1つずつ学習するようにしても良い。このようにすれば、全ての空燃比領域で補正量を空燃比毎に細かく学習する場合と比較して、学習処理が単純な処理となり、学習処理の演算負荷を軽減することができる利点がある。   In consideration of the Z-shaped change characteristic of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio, as in claim 5, the predetermined air-fuel ratio range including stoichiometric (range of λrich to λlean in FIG. 3) In the rich-side air-fuel ratio region and the lean-side air-fuel ratio region (that is, the air-fuel ratio region in which the response of the air-fuel ratio sensor hardly changes even when the air-fuel ratio changes), the deviation of the air-fuel ratio detection timing from the appropriate value ( The correction amount) may be learned one by one. In this way, the learning process becomes simpler than the case where the correction amount is finely learned for each air-fuel ratio in all air-fuel ratio regions, and there is an advantage that the calculation load of the learning process can be reduced. .

この場合、空燃比に応じて空燃比検出タイミングの適正値からのずれ(補正量)が変化する所定空燃比範囲内(図3のλrich〜λleanの範囲内)については、空燃比検出タイミングの補正量を空燃比毎に細かく学習するようにしても良いが、請求項6のように、目標空燃比又は検出空燃比がストイキを含む所定空燃比範囲内の時に、学習手段で学習されたリッチ側の空燃比領域における学習値とリーン側の空燃比領域における学習値との補間補正により空燃比検出タイミングの補正量を設定するようにしても良い。このようにすれば、ストイキを含む所定空燃比範囲内では、学習しなくても、その両側の空燃比領域で学習した2つの学習値の補間補正により補正量を設定することができるため、全ての空燃比領域で補正量を空燃比毎に細かく学習する場合と比較して、学習処理が単純な処理となり、学習処理の演算負荷を軽減することができる利点がある。ここで、補間補正は、ストイキの時に補正量が0となる直線で近似する線形補間(直線補間)を用いても良いし、∫字状の曲線で近似する曲線補間(スプライン補間)を用いても良い。   In this case, the correction of the air-fuel ratio detection timing is performed within a predetermined air-fuel ratio range (within the range of λrich to λlean in FIG. 3) in which the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes according to the air-fuel ratio. The amount may be finely learned for each air-fuel ratio, but the rich side learned by the learning means when the target air-fuel ratio or the detected air-fuel ratio is within a predetermined air-fuel ratio range including stoichiometry, as in claim 6. The correction amount of the air-fuel ratio detection timing may be set by interpolation correction between the learned value in the air-fuel ratio region and the learned value in the lean air-fuel ratio region. In this way, within the predetermined air-fuel ratio range including stoichiometry, the correction amount can be set by interpolation correction of the two learned values learned in the air-fuel ratio regions on both sides without learning. Compared to the case where the correction amount is finely learned for each air-fuel ratio in the air-fuel ratio region, there is an advantage that the learning process becomes simple and the calculation load of the learning process can be reduced. Here, the interpolation correction may use linear interpolation (linear interpolation) approximating with a straight line whose correction amount is 0 at the time of stoichiometry, or using curve interpolation (spline interpolation) approximating with a cross-shaped curve. Also good.

また、請求項7のように、空燃比検出タイミングのずれの学習中に空燃比を変化させる制御を禁止するようにすると良い。これにより、空燃比を一定に維持した状態で空燃比検出タイミングのずれ(補正量)を精度良く学習することができる。   Further, as in claim 7, it is preferable to prohibit the control for changing the air-fuel ratio during learning of the deviation of the air-fuel ratio detection timing. Thereby, it is possible to accurately learn the deviation (correction amount) in the air-fuel ratio detection timing while maintaining the air-fuel ratio constant.

尚、図3に示すように、空燃比がストイキからある程度離れた領域では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングのずれはほとんど変化しないため、この空燃比領域で空燃比検出タイミングのずれを学習する場合は、この空燃比領域内での空燃比の変化を許容し、この空燃比領域外への空燃比の変化のみを禁止するようにしても良い。   As shown in FIG. 3, in the region where the air-fuel ratio is somewhat away from the stoichiometry, even if the air-fuel ratio further changes to the rich / lean side, the deviation in the air-fuel ratio detection timing hardly changes. When learning the deviation of the air-fuel ratio detection timing in the region, the change of the air-fuel ratio within this air-fuel ratio region may be allowed and only the change of the air-fuel ratio outside this air-fuel ratio region may be prohibited.

また、請求項8のように、空燃比センサの応答性の経時変化に応じて学習値を更新するために所定間隔で学習を実行するようにすると良い。例えば、車載バッテリの取替えで学習値がクリアされた後の最初の走行中に学習し、その後、所定期間経過毎、或は、所定積算走行距離毎、或は、所定走行回数毎、或は、所定給油回数毎に学習を実行するようにすると良い。これにより、空燃比センサの応答性の経時変化に応じて学習値を随時更新することができる。   Further, as in the eighth aspect, it is preferable to perform learning at a predetermined interval in order to update the learning value in accordance with the change with time of the responsiveness of the air-fuel ratio sensor. For example, it is learned during the first run after the learning value is cleared by replacing the in-vehicle battery, and thereafter, every elapse of a predetermined period, every predetermined total travel distance, every predetermined number of travels, or It is preferable to perform learning every predetermined number of times of refueling. As a result, the learning value can be updated at any time according to the change over time in the responsiveness of the air-fuel ratio sensor.

また、内燃機関をリーン空燃比又はリッチ空燃比で運転する時に学習実行条件が成立して空燃比検出タイミングのずれを学習するようにしても良いし、学習時に空燃比を強制的にリーン側又はリッチ側に変化させて空燃比検出タイミングのずれを学習するようにしても良い。この場合、排出ガス浄化用の触媒の酸素ストレージ量(酸素吸蔵量)が飽和レベル近くまで増加している状態では、触媒のNOx等のリーン成分浄化能力が低下しているため、この状態で空燃比を強制的にリーン側に変化させて学習すると、触媒で浄化しきれないNOx等のリーン成分の排出量が増加してしまう。また、触媒の酸素ストレージ量が少なくなっている状態では、触媒のHC,CO等のリッチ成分浄化能力が低下しているため、この状態で空燃比を強制的にリッチ側に変化させて学習すると、触媒で浄化しきれないHC,CO等のリッチ成分の排出量が増加してしまう。   Further, when the internal combustion engine is operated at a lean air-fuel ratio or a rich air-fuel ratio, the learning execution condition may be satisfied to learn the deviation of the air-fuel ratio detection timing. It may be changed to the rich side to learn the deviation of the air-fuel ratio detection timing. In this case, in the state where the oxygen storage amount (oxygen storage amount) of the exhaust gas purification catalyst is increased to near the saturation level, the catalyst's ability to purify lean components such as NOx is reduced. If learning is performed by forcibly changing the fuel ratio to the lean side, the emission amount of lean components such as NOx that cannot be completely purified by the catalyst will increase. In addition, in the state where the amount of oxygen storage of the catalyst is small, the rich component purification ability of the catalyst such as HC, CO, etc. is reduced. In this state, if the learning is performed by forcibly changing the air-fuel ratio to the rich side. In addition, the discharge amount of rich components such as HC and CO that cannot be purified by the catalyst increases.

この対策として、請求項9のように、空燃比をリーン側又はリッチ側に変化させて学習を実行する時期を排出ガス浄化用の触媒の状態に基づいて判断するようにすると良い。このようにすれば、例えば、触媒の状態がHC,CO等のリッチ成分浄化能力が高くなっている時(酸素ストレージ量が多くなっている時)に、空燃比を強制的にリッチ側に変化させて学習することで、リッチ側の空燃比領域でエミッションを悪化させることなく空燃比検出タイミングのずれを学習することができ、また、触媒の状態がNOx等のリーン成分浄化能力が高くなっている時(酸素ストレージ量が少なくなっている時)に、空燃比を強制的にリーン側に変化させて学習することで、リーン側の空燃比領域でエミッションを悪化させることなく空燃比検出タイミングのずれを学習することができ、学習時のエミッション悪化の問題を解消することができる。   As a countermeasure against this, it is preferable to determine the timing for performing learning by changing the air-fuel ratio to the lean side or the rich side based on the state of the exhaust gas purifying catalyst. In this way, for example, the air-fuel ratio is forcibly changed to the rich side when the state of the catalyst is high in the ability to purify rich components such as HC and CO (when the oxygen storage amount is large). Therefore, it is possible to learn the deviation of the air-fuel ratio detection timing without deteriorating the emission in the rich-side air-fuel ratio region, and the state of the catalyst becomes high in the purification of lean components such as NOx. When the air-fuel ratio is low (when the oxygen storage amount is low), the air-fuel ratio is forcibly changed to the lean side and learning is performed. The deviation can be learned, and the problem of emission deterioration during learning can be solved.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図7に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。   A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 that is an internal combustion engine, for example, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. . On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられ、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the rotation of the crank shaft of the engine 11. Is provided with a crank angle sensor 33 for outputting a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A).

一方、エンジン11の各気筒の排気マニホールド35が集合する排気集合部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust collecting portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 gathers. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上記空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

本実施例1では、ECU40は、後述する図4乃至図7に示す気筒別空燃比制御の各ルーチンを実行することで、後述する気筒別空燃比推定モデルを用いて空燃比センサ37の検出値(排気集合部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定し、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定すると共に、各気筒の推定空燃比と基準空燃比との偏差を各気筒毎に算出して、その偏差が小さくなるように各気筒の燃料補正量(燃料噴射量の補正量)を算出し、その算出結果に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する(以下、この制御を「気筒別空燃比制御」という)。   In the first embodiment, the ECU 40 executes the routines for cylinder-by-cylinder air-fuel ratio control shown in FIGS. 4 to 7 described later, thereby detecting values detected by the air-fuel ratio sensor 37 using a cylinder-by-cylinder air-fuel ratio estimation model described later. The air-fuel ratio of each cylinder is estimated based on (the actual air-fuel ratio of the exhaust gas flowing through the exhaust collecting portion 36), the average value of the estimated air-fuel ratio of all cylinders is calculated, and the average value is used as the reference air-fuel ratio (all cylinders). And the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated for each cylinder, and the fuel correction amount (fuel injection amount of each cylinder is set so that the deviation becomes small). Correction amount), and correcting the fuel injection amount of each cylinder based on the calculation result, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder, and the variation in air-fuel ratio among the cylinders is corrected. (Hereinafter, this control is referred to as “air-fuel ratio for each cylinder”). That your ").

ここで、空燃比センサ37の検出値(排気集合部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比を推定するモデル(以下「気筒別空燃比推定モデル」という)の具体例を説明する。   Here, a specific example of a model (hereinafter referred to as “cylinder-specific air-fuel ratio estimation model”) for estimating the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor 37 (the actual air-fuel ratio of the exhaust gas flowing through the exhaust collecting portion 36). An example will be described.

排気集合部36におけるガス交換に着目して、空燃比センサ37の検出値を、排気集合部36における各気筒の推定空燃比の履歴と空燃比センサ37の検出値の履歴とにそれぞれ所定の重みを乗じて加算したものとしてモデル化し、該モデルを用いて各気筒の空燃比を推定するようにしている。この際、オブザーバとしてはカルマンフィルタを用いる。   Focusing on the gas exchange in the exhaust collecting section 36, the detected value of the air-fuel ratio sensor 37 is set to a predetermined weight for the estimated air-fuel ratio history of each cylinder and the detected value history of the air-fuel ratio sensor 37 in the exhaust collecting section 36, respectively. The model is obtained by multiplying and adding, and the air-fuel ratio of each cylinder is estimated using the model. At this time, a Kalman filter is used as an observer.

より具体的には、排気集合部36におけるガス交換のモデルを次の(1)式にて近似する。
ys(t)=k1 ×u(t-1) +k2 ×u(t-2) −k3 ×ys(t-1)−k4 ×ys(t-2)
……(1)
ここで、yS は空燃比センサ37の検出値、uは排気集合部36に流入するガスの空燃比、k1 〜k4 は定数である。
More specifically, a gas exchange model in the exhaust collecting portion 36 is approximated by the following equation (1).
ys (t) = k1 * u (t-1) + k2 * u (t-2) -k3 * ys (t-1) -k4 * ys (t-2)
...... (1)
Here, yS is a detected value of the air-fuel ratio sensor 37, u is an air-fuel ratio of the gas flowing into the exhaust collecting portion 36, and k1 to k4 are constants.

排気系では、排気集合部36におけるガス流入及び混合の一次遅れ要素と、空燃比センサ37の応答遅れによる一次遅れ要素とが存在する。そこで、上記(1)式では、これらの一次遅れ要素を考慮して過去2回分の履歴を参照することとしている。   In the exhaust system, there are a primary delay element of gas inflow and mixing in the exhaust collecting portion 36 and a primary delay element due to a response delay of the air-fuel ratio sensor 37. Therefore, in the above equation (1), the history for the past two times is referred to in consideration of these first order lag elements.

上記(1)式を状態空間モデルに変換すると、次の(2a)、(2b)式が導き出される。
X(t+1) =A・X(t) +B・u(t) +W(t) ……(2a)
Y(t) =C・X(t) +D・u(t) ……(2b)
ここで、A,B,C,Dはモデルのパラメータ、Yは空燃比センサ37の検出値、Xは状態変数としての各気筒の推定空燃比、Wはノイズである。
When the above equation (1) is converted into a state space model, the following equations (2a) and (2b) are derived.
X (t + 1) = A.X (t) + B.u (t) + W (t) (2a)
Y (t) = C · X (t) + D · u (t) (2b)
Here, A, B, C, and D are model parameters, Y is a detected value of the air-fuel ratio sensor 37, X is an estimated air-fuel ratio of each cylinder as a state variable, and W is noise.

更に、上記(2a)、(2b)式によりカルマンフィルタを設計すると、次の(3)式が得られる。
X^(k+1|k)=A・X^(k|k-1)+K{Y(k) −C・A・X^(k|k-1)} ……(3) ここで、X^(エックスハット)は各気筒の推定空燃比、Kはカルマンゲインである。X^(k+1|k)の意味は、時間(k) の推定値により次の時間(k+1) の推定値を求めることを表す。
Further, when the Kalman filter is designed by the above equations (2a) and (2b), the following equation (3) is obtained.
X ^ (k + 1 | k) = A.X ^ (k | k-1) + K {Y (k) -C.A.X ^ (k | k-1)} (3) where X ^ (X hat) is the estimated air-fuel ratio of each cylinder, and K is the Kalman gain. The meaning of X ^ (k + 1 | k) represents that the estimated value of the next time (k + 1) is obtained from the estimated value of time (k).

以上のようにして、気筒別空燃比推定モデルをカルマンフィルタ型オブザーバにて構成することにより、燃焼サイクルの進行に伴い各気筒の空燃比を順次推定することができる。   As described above, by configuring the cylinder-by-cylinder air-fuel ratio estimation model using the Kalman filter type observer, it is possible to sequentially estimate the air-fuel ratio of each cylinder as the combustion cycle progresses.

次に、各気筒の空燃比検出タイミング(空燃比センサ37の出力のサンプルタイミング)の設定方法について説明する。本実施例1では、各気筒から排出される排出ガスが空燃比センサ37付近に到達してその空燃比が検出されるまでの遅れ(以下「排気系の応答遅れ」という)がエンジン運転状態によって変化することを考慮して、エンジン運転状態(例えばエンジン負荷、エンジン回転速度等)に応じてマップ等により各気筒の空燃比検出基準タイミングを設定する。一般に、エンジン負荷やエンジン回転速度が低下するほど、排気系の応答遅れが大きくなるため、各気筒の空燃比検出基準タイミングは、エンジン負荷やエンジン回転速度が低下するほど、遅角側にシフトされるように設定されている。この空燃比検出基準タイミングは、目標空燃比がストイキ(空気過剰率λ=1.0)の時の適正な空燃比検出タイミングに相当する。   Next, a method for setting the air-fuel ratio detection timing of each cylinder (sample timing of the output of the air-fuel ratio sensor 37) will be described. In the first embodiment, the delay until exhaust gas discharged from each cylinder reaches the vicinity of the air-fuel ratio sensor 37 and the air-fuel ratio is detected (hereinafter referred to as “response delay of the exhaust system”) depends on the engine operating state. In consideration of the change, the air-fuel ratio detection reference timing of each cylinder is set by a map or the like according to the engine operating state (for example, engine load, engine speed, etc.). In general, as the engine load and the engine speed decrease, the response delay of the exhaust system increases, so the air-fuel ratio detection reference timing of each cylinder is shifted to the retard side as the engine load and the engine speed decrease. Is set to This air-fuel ratio detection reference timing corresponds to an appropriate air-fuel ratio detection timing when the target air-fuel ratio is stoichiometric (the excess air ratio λ = 1.0).

ところで、図2は、1気筒のみがリッチになっている時の空燃比センサ37の出力振幅の挙動例を示すタイムチャートである。この場合、適正な空燃比検出タイミングは、空燃比センサ37の出力振幅がピークとなるタイミングである。空燃比と空燃比検出タイミングの適正値からのずれとの関係を実験により考察した結果、図3に示すように、空燃比検出タイミングの適正値からのずれは空燃比に応じてZ字型に変化することが判明した。すなわち、空燃比がストイキ(λ=1.0)の時には、空燃比検出タイミングの適正値からのずれが0となり、空燃比がストイキに比較的近い領域では、リーンになるほど空燃比検出タイミングの適正値が遅くなる方向にずれ(空燃比センサの応答性が遅くなり)、リッチになるほど空燃比検出タイミングの適正値が早くなる方向にずれる(空燃比センサの応答性が早くなる)。しかし、空燃比がストイキからある程度離れた領域では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングの適正値からのずれ量(空燃比センサの応答性)はほとんど変化しない。   FIG. 2 is a time chart showing an example of the behavior of the output amplitude of the air-fuel ratio sensor 37 when only one cylinder is rich. In this case, an appropriate air-fuel ratio detection timing is a timing at which the output amplitude of the air-fuel ratio sensor 37 reaches a peak. As a result of experimentally examining the relationship between the air-fuel ratio and the deviation from the appropriate value of the air-fuel ratio detection timing, as shown in FIG. 3, the deviation from the appropriate value of the air-fuel ratio detection timing becomes a Z-shape according to the air-fuel ratio. It turns out to change. That is, when the air-fuel ratio is stoichiometric (λ = 1.0), the deviation from the appropriate value of the air-fuel ratio detection timing is 0, and in the region where the air-fuel ratio is relatively close to stoichiometric, the leaner the air-fuel ratio detection timing is, the more appropriate The value deviates in the direction of slowing down (the responsiveness of the air-fuel ratio sensor becomes slow), and the richer the value, the more appropriate the value of the air-fuel ratio detection timing becomes faster (the responsiveness of the air-fuel ratio sensor becomes faster). However, in the region where the air-fuel ratio is far away from the stoichiometry, even if the air-fuel ratio further changes to the rich / lean side, the deviation from the appropriate value of the air-fuel ratio detection timing (responsiveness of the air-fuel ratio sensor) changes almost. do not do.

このような空燃比による空燃比検出タイミングのずれの変化特性を考慮して、本実施例1では、例えば、適合工程で空燃比と空燃比検出タイミングの適正値からのずれ(補正量)との関係を測定して、その測定結果に基づいて空燃比をパラメータとする空燃比検出タイミングの適正値からのずれ(補正量)のテーブルを作成してECU40のROM等の不揮発性メモリに記憶させておき、エンジン運転中に当該テーブルを参照して目標空燃比又は検出空燃比に応じた空燃比検出タイミングの補正量を設定するようにしている。この空燃比検出タイミングの補正量は、リッチ側の空燃比でマイナス値(空燃比検出タイミングを早める方向の補正)となり、リーン側の空燃比でプラス値(空燃比検出タイミングを遅くする方向の補正)となる。   In consideration of the change characteristic of the deviation of the air-fuel ratio detection timing due to such an air-fuel ratio, in the first embodiment, for example, the difference between the air-fuel ratio and the appropriate value of the air-fuel ratio detection timing (correction amount) in the adaptation process is described. Measure the relationship, create a table of deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing using the air-fuel ratio as a parameter based on the measurement result, and store it in a nonvolatile memory such as the ROM of the ECU 40 The correction amount of the air-fuel ratio detection timing corresponding to the target air-fuel ratio or the detected air-fuel ratio is set with reference to the table during engine operation. The correction amount of the air-fuel ratio detection timing becomes a negative value (correction in a direction to advance the air-fuel ratio detection timing) at the rich side air-fuel ratio, and a positive value (correction in a direction to delay the air-fuel ratio detection timing) at the lean side air-fuel ratio. )

この場合、空燃比検出タイミングの補正量のテーブルは、全ての空燃比領域で空燃比毎に細かく補正量を設定したものであっても良いが、図3に示すように、空燃比検出タイミングの適正値からのずれ(補正量)は空燃比に応じてZ字型に変化するため、空燃比がストイキからある程度離れた領域(図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域)では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングの適正値からのずれ量がほとんど変化しない。このような空燃比による空燃比検出タイミングのずれのZ字型の変化特性を考慮して、図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域では、それぞれ1つずつ空燃比検出タイミングの補正量を設定するようにしても良い。   In this case, the correction amount table of the air-fuel ratio detection timing may be a table in which the correction amount is finely set for each air-fuel ratio in all the air-fuel ratio regions. However, as shown in FIG. Since the deviation (correction amount) from the appropriate value changes in a Z-shape according to the air-fuel ratio, the air-fuel ratio is a certain distance from the stoichiometric range (the air-fuel ratio region on the rich side from λrich in FIG. 3 and the leaner than λlean) In the air-fuel ratio region), even if the air-fuel ratio further changes to the rich / lean side, the amount of deviation from the appropriate value of the air-fuel ratio detection timing hardly changes. In consideration of such a Z-shaped change characteristic of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio, each of the air-fuel ratio region richer than λrich and the air-fuel ratio region leaner than λlean in FIG. You may make it set the correction amount of an air fuel ratio detection timing one by one.

また、空燃比に応じて空燃比検出タイミングの適正値からのずれ(補正量)が変化する所定空燃比範囲内(図3のλrich〜λleanの範囲内)については、空燃比検出タイミングの補正量を空燃比毎に細かくテーブルデータとして設定するようにしても良いが、λrichよりもリッチ側の空燃比領域の補正量のテーブルデータとλleanよりもリーン側の空燃比領域の補正量のテーブルデータとの補間補正により空燃比検出タイミングの補正量を設定するようにしても良い。ここで、補間補正は、ストイキ(λ=1.0)の時に空燃比検出タイミングの補正量が0となる直線で近似する線形補間(直線補間)を用いても良いし、∫字状の曲線で近似する曲線補間(スプライン補間)を用いても良い。   Further, within the predetermined air-fuel ratio range (within the range of λrich to λlean in FIG. 3) in which the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes according to the air-fuel ratio, the correction amount of the air-fuel ratio detection timing May be set finely as table data for each air-fuel ratio, but table data for the correction amount in the air-fuel ratio region richer than λrich and table data for the correction amount in the air-fuel ratio region leaner than λlean The correction amount of the air-fuel ratio detection timing may be set by this interpolation correction. Here, the interpolation correction may use linear interpolation (linear interpolation) approximating with a straight line in which the correction amount of the air-fuel ratio detection timing becomes 0 when stoichiometric (λ = 1.0), or a cross-shaped curve Curve interpolation (spline interpolation) approximated by may be used.

以上説明した本実施例1の空燃比検出タイミングの設定と気筒別空燃比制御は、ECU40によって図4乃至図7の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The setting of the air-fuel ratio detection timing and the cylinder-by-cylinder air-fuel ratio control of the first embodiment described above are executed by the ECU 40 according to the routines shown in FIGS. The processing contents of each routine will be described below.

[気筒別空燃比制御メインルーチン]
図4の気筒別空燃比制御メインルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動される。本ルーチンが起動されると、まずステップ101で、後述する図5の気筒別空燃比制御実行条件判定ルーチンを実行して、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この後、ステップ102に進み、図5の気筒別空燃比制御実行条件判定ルーチンでセットされた気筒別空燃比制御実行フラグがONであるか否かで、気筒別空燃比制御の実行条件が成立しているか否かを判定する。その結果、気筒別空燃比制御実行フラグがOFF(実行条件が不成立)と判定された場合は、以降の処理を行うことなく、本ルーチンを終了する。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control main routine of FIG. 4 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33. When this routine is started, first, in step 101, a cylinder-by-cylinder air-fuel ratio control execution condition determination routine of FIG. 5 described later is executed to determine whether or not the execution conditions for cylinder-by-cylinder air-fuel ratio control are satisfied. . Thereafter, the routine proceeds to step 102, where the execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied depending on whether or not the cylinder-by-cylinder air-fuel ratio control execution flag set in the cylinder-by-cylinder air-fuel ratio control execution condition determination routine is ON. It is determined whether or not. As a result, when it is determined that the cylinder-by-cylinder air-fuel ratio control execution flag is OFF (execution condition is not established), this routine is terminated without performing the subsequent processing.

一方、気筒別空燃比制御実行フラグがON(実行条件成立)と判定された場合は、ステップ103に進み、後述する図6の空燃比検出タイミング演算ルーチンを実行して、現在のエンジン負荷、エンジン回転速度等のエンジン運転状態と目標空燃比に応じた空燃比検出タイミング(空燃比センサ16の出力のサンプルタイミング)を設定する。この後、ステップ104に進み、現在のクランク角が各気筒の空燃比検出タイミングであるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。   On the other hand, when it is determined that the cylinder-by-cylinder air-fuel ratio control execution flag is ON (execution condition is satisfied), the routine proceeds to step 103, where an air-fuel ratio detection timing calculation routine of FIG. An air-fuel ratio detection timing (sample timing of the output of the air-fuel ratio sensor 16) corresponding to the engine operating state such as the rotational speed and the target air-fuel ratio is set. Thereafter, the routine proceeds to step 104 where it is determined whether or not the current crank angle is the air-fuel ratio detection timing of each cylinder. If it is not the air-fuel ratio detection timing, this routine is terminated without performing the subsequent processing. .

これに対して、現在のクランク角が空燃比検出タイミングであれば、ステップ105に進み、後述する図7の気筒別空燃比制御実行ルーチンを実行して、気筒別空燃比制御を実行する。   On the other hand, if the current crank angle is the air-fuel ratio detection timing, the routine proceeds to step 105, where the cylinder-by-cylinder air-fuel ratio control execution routine of FIG.

[気筒別空燃比制御実行条件判定ルーチン]
図5の気筒別空燃比制御実行条件判定ルーチンは、図4の気筒別空燃比制御メインルーチンのステップ101で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ201で、空燃比センサ37が使用可能な状態であるか否かを判定する。ここで、使用可能な状態とは、例えば、空燃比センサ37が活性状態で、且つ、故障していない状態であることである。空燃比センサ37が使用可能な状態でなければ、気筒別空燃比制御実行条件が不成立となり、ステップ205に進み、気筒別空燃比制御実行フラグをOFFにセットして、本ルーチンを終了する。
[Cylinder-specific air-fuel ratio control execution condition determination routine]
The cylinder-by-cylinder air-fuel ratio control execution condition determination routine of FIG. 5 is a subroutine that is executed in step 101 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, at step 201, it is determined whether or not the air-fuel ratio sensor 37 is in a usable state. Here, the usable state is, for example, a state in which the air-fuel ratio sensor 37 is in an active state and has not failed. If the air-fuel ratio sensor 37 is not in a usable state, the cylinder-by-cylinder air-fuel ratio control execution condition is not satisfied, the routine proceeds to step 205, the cylinder-by-cylinder air-fuel ratio control execution flag is set to OFF, and this routine ends.

一方、空燃比センサ37が使用可能な状態であれば、ステップ202に進み、冷却水温が所定温度以上(エンジン11が暖機状態)であるか否かを判定し、所定温度未満であれば、気筒別空燃比制御実行条件が不成立となり、ステップ205に進み、気筒別空燃比制御実行フラグをOFFにセットして、本ルーチンを終了する。   On the other hand, if the air-fuel ratio sensor 37 is in a usable state, the process proceeds to step 202, where it is determined whether or not the coolant temperature is equal to or higher than a predetermined temperature (the engine 11 is warmed up). The cylinder-by-cylinder air-fuel ratio control execution condition is not satisfied, and the routine proceeds to step 205, where the cylinder-by-cylinder air-fuel ratio control execution flag is set to OFF, and this routine ends.

また、冷却水温が所定温度以上であれば、ステップ203に進み、エンジン回転速度とエンジン負荷(例えば吸気管圧力)とをパラメータとする運転領域マップを参照して、現在のエンジン運転領域が気筒別空燃比制御の実行領域であるか否かを判定する。例えば、高回転域や低負荷域では、気筒別空燃比の推定精度が悪化されるため、気筒別空燃比制御が禁止される。   If the cooling water temperature is equal to or higher than the predetermined temperature, the process proceeds to step 203, and the current engine operation region is classified by cylinder with reference to the operation region map using the engine speed and the engine load (for example, intake pipe pressure) as parameters. It is determined whether or not it is an execution range of air-fuel ratio control. For example, the estimation accuracy of the cylinder-by-cylinder air-fuel ratio is deteriorated in the high rotation range and the low load range, and therefore the cylinder-by-cylinder air-fuel ratio control is prohibited.

現在のエンジン運転領域が気筒別空燃比制御の実行領域でなければ、気筒別空燃比制御実行条件が不成立となり、ステップ205に進み、気筒別空燃比制御実行フラグをOFFにセットして、本ルーチンを終了する。これに対して、現在のエンジン運転領域が気筒別空燃比制御の実行領域であれば、気筒別空燃比制御実行条件が成立して、ステップ204に進み、気筒別空燃比制御実行フラグをONにセットして、本ルーチンを終了する。   If the current engine operating range is not the execution range for cylinder-by-cylinder air-fuel ratio control, the cylinder-by-cylinder air-fuel ratio control execution condition is not satisfied, the process proceeds to step 205, the cylinder-by-cylinder air-fuel ratio control execution flag is set to OFF, and this routine is executed. Exit. On the other hand, if the current engine operation region is the execution region of the cylinder-by-cylinder air-fuel ratio control, the cylinder-by-cylinder air-fuel ratio control execution condition is satisfied, the process proceeds to step 204, and the cylinder-by-cylinder air-fuel ratio control execution flag is turned ON. Set and end this routine.

[空燃比検出タイミング演算ルーチン]
図6の空燃比検出タイミング演算ルーチンは、図4の気筒別空燃比制御メインルーチンのステップ103で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ301で、現在のエンジン運転状態(例えばエンジン負荷、エンジン回転速度等)に応じてマップ等により各気筒の空燃比検出基準タイミングを演算する。この空燃比検出基準タイミングは、目標空燃比がストイキ(空気過剰率λ=1.0)の時の適正な空燃比検出タイミングに相当する。
[Air-fuel ratio detection timing calculation routine]
The air-fuel ratio detection timing calculation routine of FIG. 6 is a subroutine executed in step 103 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, at step 301, the air-fuel ratio detection reference timing of each cylinder is calculated by a map or the like according to the current engine operating state (for example, engine load, engine speed, etc.). This air-fuel ratio detection reference timing corresponds to an appropriate air-fuel ratio detection timing when the target air-fuel ratio is stoichiometric (the excess air ratio λ = 1.0).

この後、ステップ302に進み、空燃比による空燃比検出タイミングのずれのZ字型の変化特性(図3参照)を考慮して設定された空燃比検出タイミングの補正量のテーブルを参照して、現在の目標空燃比(又はその平均値)に応じた空燃比検出タイミングの補正量を演算する。この空燃比検出タイミングの補正量は、リッチ側の空燃比でマイナス値(空燃比検出タイミングを早める方向の補正)となり、リーン側の空燃比でプラス値(空燃比検出タイミングを遅くする方向の補正)となる。   Thereafter, the process proceeds to step 302, and a correction amount table of the air-fuel ratio detection timing set in consideration of the Z-shaped change characteristic (see FIG. 3) of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio is referred to. A correction amount of the air-fuel ratio detection timing according to the current target air-fuel ratio (or its average value) is calculated. The correction amount of the air-fuel ratio detection timing becomes a negative value (correction in a direction to advance the air-fuel ratio detection timing) at the rich side air-fuel ratio, and a positive value (correction in a direction to delay the air-fuel ratio detection timing) at the lean side air-fuel ratio. )

この場合、空燃比検出タイミングの補正量のテーブルは、全ての空燃比領域で空燃比毎に細かく補正量を設定したものであっても良いが、空燃比による空燃比検出タイミングのずれのZ字型の変化特性を考慮して、図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域では、それぞれ空燃比検出タイミングの補正量を1つずつ設定するようにしても良い。   In this case, the correction amount table of the air-fuel ratio detection timing may be a table in which the correction amount is finely set for each air-fuel ratio in all air-fuel ratio regions, but the Z-shaped deviation of the air-fuel ratio detection timing due to the air-fuel ratio. In consideration of the change characteristics of the mold, one correction amount for the air-fuel ratio detection timing is set for each of the air-fuel ratio region richer than λrich and the air-fuel ratio region leaner than λleen in FIG. Also good.

また、空燃比に応じて空燃比センサ37の応答性が変化する所定空燃比範囲内(図3のλrich〜λleanの範囲内)については、空燃比検出タイミングの補正量を空燃比毎に細かくテーブルデータとして設定するようにしても良いが、λrichよりもリッチ側の空燃比領域の補正量のテーブルデータとλleanよりもリーン側の空燃比領域の補正量のテーブルデータとの補間補正により空燃比検出タイミングの補正量を設定するようにしても良い。ここで、補間補正は、ストイキ(λ=1.0)の時に空燃比検出タイミングの補正量が0となる直線又は∫字状の曲線で近似して補間補正すれば良い。   Further, within a predetermined air-fuel ratio range (within the range of λrich to λlean in FIG. 3) in which the responsiveness of the air-fuel ratio sensor 37 changes according to the air-fuel ratio, the correction amount of the air-fuel ratio detection timing is finely set for each air-fuel ratio. Although it may be set as data, the air-fuel ratio detection is performed by interpolating between the correction amount table data of the air-fuel ratio region richer than λrich and the correction amount table data of the air-fuel ratio region leaner than λlean. A timing correction amount may be set. Here, the interpolation correction may be performed by approximating with a straight line or a character-like curve in which the correction amount of the air-fuel ratio detection timing becomes 0 when stoichiometric (λ = 1.0).

尚、空燃比検出タイミングの補正量のデータは、現在の目標空燃比(又はその平均値)の代わりに、現在の検出空燃比(又はその平均値)をパラメータとしてテーブル化しても良い。   The correction amount data of the air-fuel ratio detection timing may be tabulated using the current detected air-fuel ratio (or its average value) as a parameter instead of the current target air-fuel ratio (or its average value).

この後、ステップ303に進み、現在のエンジン運転状態に応じて設定された空燃比検出基準タイミングに、現在の目標空燃比(又はその平均値)に応じて設定された補正量を加算して、最終的な空燃比検出タイミングを求める。
空燃比検出タイミング=空燃比検出基準タイミング+補正量
Thereafter, the process proceeds to step 303, and the correction amount set according to the current target air-fuel ratio (or its average value) is added to the air-fuel ratio detection reference timing set according to the current engine operating state, The final air-fuel ratio detection timing is obtained.
Air-fuel ratio detection timing = Air-fuel ratio detection reference timing + Correction amount

要するに、現在のエンジン運転状態に応じて設定された空燃比検出基準タイミング(ストイキの時の適正な空燃比検出タイミング)を、現在の目標空燃比(又はその平均値)に応じて設定された補正量によって補正して、最終的な空燃比検出タイミングを決定する。この場合、空燃比検出タイミングの補正量は、リッチ側の空燃比でマイナス値(空燃比検出タイミングを早める方向の補正)となり、リーン側の空燃比でプラス値(空燃比検出タイミングを遅くする方向の補正)となるため、現在の目標空燃比(又はその平均値)がリーンの時には、空燃比検出タイミングをストイキの時よりも遅くするように補正し、リッチの時には、空燃比検出タイミングをストイキの時よりも早めるように補正することになる。
尚、上記ステップ302、303の処理は、特許請求の範囲でいう空燃比検出タイミング補正手段に相当する役割を果たす。
In short, the air-fuel ratio detection reference timing (appropriate air-fuel ratio detection timing at the time of stoichiometry) set according to the current engine operating state is corrected according to the current target air-fuel ratio (or its average value). The final air-fuel ratio detection timing is determined by correcting the amount. In this case, the correction amount of the air-fuel ratio detection timing becomes a negative value (correction in a direction for advancing the air-fuel ratio detection timing) at the rich-side air-fuel ratio, and a positive value (a direction for delaying the air-fuel ratio detection timing) at the lean-side air-fuel ratio. Therefore, when the current target air-fuel ratio (or its average value) is lean, the air-fuel ratio detection timing is corrected to be later than that during stoichiometric, and when it is rich, the air-fuel ratio detection timing is stoichiometric. It will be corrected so as to be earlier than the time of.
The processing in steps 302 and 303 plays a role corresponding to air-fuel ratio detection timing correction means in the claims.

[気筒別空燃比制御実行ルーチン]
図7の気筒別空燃比制御実行ルーチンは、図4の気筒別空燃比制御メインルーチンのステップ105で実行されるサブルーチンであり、特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。
[Cylinder-specific air-fuel ratio control execution routine]
The cylinder-by-cylinder air-fuel ratio control execution routine of FIG. 7 is a subroutine executed in step 105 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. 4, and plays a role as cylinder-by-cylinder air-fuel ratio control means in the claims. .

本ルーチンが起動されると、まずステップ401で、空燃比センサ37の出力(空燃比検出値)を読み込み、次のステップ402で、前記気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定する。この際、不等間隔燃焼による各気筒の空燃比の位相ずれを考慮して気筒別空燃比を推定する。このステップ402の処理が特許請求の範囲でいう気筒別空燃比推定手段としての役割を果たす。この後、ステップ403に進み、全気筒の推定空燃比の平均値を算出して、その平均値を基準空燃比(全気筒の目標空燃比)に設定する。   When this routine is started, first, in step 401, the output (air-fuel ratio detection value) of the air-fuel ratio sensor 37 is read, and in the next step 402, the current air-fuel ratio estimation target is calculated using the cylinder-by-cylinder air-fuel ratio estimation model. The air-fuel ratio of the cylinder to be estimated is estimated based on the detection value of the air-fuel ratio sensor 37. At this time, the cylinder-by-cylinder air-fuel ratio is estimated in consideration of the phase shift of the air-fuel ratio of each cylinder due to unequal interval combustion. The processing in step 402 serves as cylinder-by-cylinder air-fuel ratio estimating means in the claims. Thereafter, the process proceeds to step 403, where an average value of estimated air-fuel ratios of all cylinders is calculated, and the average value is set as a reference air-fuel ratio (target air-fuel ratio of all cylinders).

この後、ステップ404に進み、各気筒の推定空燃比と基準空燃比との偏差を算出して、その偏差が小さくなるように気筒別補正量を算出した後、ステップ405に進み、気筒別補正量に基づいて気筒別燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する。   Thereafter, the process proceeds to step 404, where the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio is calculated, and the cylinder-specific correction amount is calculated so that the deviation becomes small, and then the process proceeds to step 405, where the cylinder-specific correction is performed. By correcting the fuel injection amount for each cylinder based on the amount, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder so as to reduce the variation in air-fuel ratio among the cylinders.

以上説明した本実施例1によれば、目標空燃比がリーンの時に空燃比検出タイミングをストイキの時よりも遅くするように補正し、目標空燃比がリッチの時に空燃比検出タイミングをストイキの時よりも早めるように補正するようにしたので、各気筒の空燃比検出タイミングを空燃比に応じて適正な方向に補正することができて、各気筒の空燃比推定精度を向上させることができる。   According to the first embodiment described above, when the target air-fuel ratio is lean, the air-fuel ratio detection timing is corrected so as to be later than when the target air-fuel ratio is rich, and when the target air-fuel ratio is rich, the air-fuel ratio detection timing is corrected. Therefore, the air-fuel ratio detection timing of each cylinder can be corrected in an appropriate direction according to the air-fuel ratio, and the air-fuel ratio estimation accuracy of each cylinder can be improved.

ところで、空燃比検出タイミングの適正値からのずれ(補正量)は、空燃比センサ37の応答性に応じて変化し、空燃比センサ37の応答性は経時変化や製造ばらつきによって変化する。図8に示すように、空燃比センサ37の応答性が遅くなるほど、空燃比検出タイミングの適正値からのずれ(補正量)が大きくなる傾向がある。従って、空燃比センサ37の応答性の経時変化や製造ばらつきを無視した上記実施例1の空燃比検出タイミングの補正方法では、空燃比センサ37の応答性の経時変化や製造ばらつきが大きくなると、空燃比検出タイミングの補正精度の低下ひいては各気筒の空燃比推定精度の低下は避けられない。   Incidentally, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes according to the responsiveness of the air-fuel ratio sensor 37, and the responsiveness of the air-fuel ratio sensor 37 changes due to changes over time and manufacturing variations. As shown in FIG. 8, the slower the responsiveness of the air-fuel ratio sensor 37, the greater the deviation (correction amount) of the air-fuel ratio detection timing from the appropriate value. Therefore, in the correction method of the air-fuel ratio detection timing of the first embodiment ignoring the time-dependent change and the manufacturing variation of the air-fuel ratio sensor 37, if the time-dependent change of the air-fuel ratio sensor 37 and the manufacturing variation increase, A decrease in the correction accuracy of the fuel ratio detection timing, and thus a decrease in the air-fuel ratio estimation accuracy of each cylinder is inevitable.

この対策として、本発明の実施例2では、図9の空燃比検出タイミング演算ルーチンを実行することで、目標空燃比(又は検出空燃比)に応じて設定した空燃比検出タイミングの補正量を空燃比センサ37の応答性に応じて補正する(ステップ302a)。   As a countermeasure against this, in the second embodiment of the present invention, the air-fuel ratio detection timing correction routine set in accordance with the target air-fuel ratio (or detected air-fuel ratio) is executed by executing the air-fuel ratio detection timing calculation routine of FIG. Correction is made according to the response of the fuel ratio sensor 37 (step 302a).

この場合、空燃比センサ37の応答性の経時変化を例えば積算走行距離、走行回数等で推定して、目標空燃比(又は検出空燃比)に応じて設定した空燃比検出タイミングの補正量を空燃比センサ37の応答性の経時変化に応じて補正するようにしても良い。   In this case, the time-dependent change in the responsiveness of the air-fuel ratio sensor 37 is estimated by, for example, the integrated travel distance, the number of travels, etc., and the correction amount of the air-fuel ratio detection timing set according to the target air-fuel ratio (or the detected air-fuel ratio) is empty. You may make it correct | amend according to the time-dependent change of the responsiveness of the fuel ratio sensor 37. FIG.

また、空燃比センサ37の応答性の経時変化や製造ばらつきによって生じる空燃比検出タイミングのずれが大きくなるほど、気筒別空燃比制御中の気筒間の推定空燃比のばらつき度合いが大きくなるという関係を考慮して、気筒別空燃比制御中に気筒間の推定空燃比のばらつき度合いを空燃比検出タイミングのずれの情報として検出して、目標空燃比(又は検出空燃比)に応じて設定した空燃比検出タイミングの補正量を気筒間の推定空燃比のばらつき度合いに応じて補正するようにしても良い。   In addition, the relationship that the degree of variation in the estimated air-fuel ratio between the cylinders during the cylinder-by-cylinder air-fuel ratio control increases as the deviation in the air-fuel ratio detection timing caused by the time-dependent change in the responsiveness of the air-fuel ratio sensor 37 or manufacturing variations increases. Then, during the air-fuel ratio control for each cylinder, the degree of variation in the estimated air-fuel ratio between the cylinders is detected as information on the deviation in the air-fuel ratio detection timing, and the air-fuel ratio detection set according to the target air-fuel ratio (or detected air-fuel ratio) The timing correction amount may be corrected according to the degree of variation in the estimated air-fuel ratio between the cylinders.

このようにすれば、空燃比センサ37の応答性の経時変化や製造ばらつきによって空燃比検出タイミングのずれが生じる場合でも、目標空燃比(又は検出空燃比)に応じて設定した空燃比検出タイミングの補正量を空燃比センサ37の応答性の経時変化や製造ばらつきに応じて適正に補正することができ、空燃比センサ37の応答性の経時変化や製造ばらつきによる空燃比検出タイミングの補正精度低下を防止することができる。   In this way, even when the deviation of the air-fuel ratio detection timing occurs due to a change in the responsiveness of the air-fuel ratio sensor 37 over time or manufacturing variations, the air-fuel ratio detection timing set according to the target air-fuel ratio (or detected air-fuel ratio) is increased. The correction amount can be appropriately corrected according to the time-dependent change of the response of the air-fuel ratio sensor 37 and manufacturing variations, and the correction accuracy of the air-fuel ratio detection timing is reduced due to the time-dependent change of the response of the air-fuel ratio sensor 37 and manufacturing variations. Can be prevented.

上記実施例1,2では、予め設定された空燃比検出タイミングの補正量のテーブルを参照して、目標空燃比(又は検出空燃比)に応じて空燃比検出タイミングの補正量を設定するようにしたが、本発明の実施例3では、図10乃至図14の各ルーチンを実行することで、エンジン運転中に空燃比検出タイミングの適正値からのずれ(補正量)を学習し、この学習値をECU40のバックアップRAM等の書き換え可能な不揮発メモリに更新記憶するようにしている。   In the first and second embodiments, the correction amount of the air-fuel ratio detection timing is set according to the target air-fuel ratio (or the detected air-fuel ratio) with reference to the table of preset correction amounts of the air-fuel ratio detection timing. However, in the third embodiment of the present invention, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing is learned during engine operation by executing the routines of FIGS. Is updated and stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 40.

この場合、全ての空燃比領域で空燃比検出タイミングの適正値からのずれ(補正量)を空燃比毎に細かく学習するようにしても良いが、空燃比と空燃比検出タイミングの適正値からのずれ(補正量)との関係は、図3に示すように、空燃比検出タイミングの適正値からのずれ(補正量)が空燃比に応じてZ字型に変化する特性を有するため、空燃比がストイキからある程度離れた領域(図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域)では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングの適正値からのずれ量がほとんど変化しない。このような空燃比による空燃比検出タイミングのずれのZ字型の変化特性を考慮して、図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域では、それぞれ空燃比検出タイミングの補正量を1つずつ学習するようにしても良い。このようにすれば、全ての空燃比領域で補正量を空燃比毎に細かく学習する場合と比較して、学習処理が単純な処理となり、学習処理の演算負荷を軽減することができる利点がある。   In this case, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing in all the air-fuel ratio regions may be learned in detail for each air-fuel ratio, but from the appropriate values of the air-fuel ratio and the air-fuel ratio detection timing. As shown in FIG. 3, the relationship with the deviation (correction amount) has a characteristic that the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes in a Z shape according to the air-fuel ratio. In a region that is somewhat distant from the stoichiometric range (an air-fuel ratio region richer than λrich and an air-fuel ratio region leaner than λlean in FIG. 3), even if the air-fuel ratio further changes to the rich / lean side, the air-fuel ratio The amount of deviation of the detection timing from the appropriate value hardly changes. In consideration of such a Z-shaped change characteristic of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio, the air-fuel ratio region richer than λrich and the air-fuel ratio region leaner than λlean in FIG. The correction amount of the fuel ratio detection timing may be learned one by one. In this way, the learning process becomes simpler than the case where the correction amount is finely learned for each air-fuel ratio in all air-fuel ratio regions, and there is an advantage that the calculation load of the learning process can be reduced. .

この場合、空燃比に応じて空燃比検出タイミングの適正値からのずれ(補正量)が変化する所定空燃比範囲内(図3のλrich〜λleanの範囲内)については、空燃比検出タイミングの補正量を空燃比毎に細かく学習するようにしても良いが、目標空燃比(又は検出空燃比)がストイキを含む所定空燃比範囲内の時に、リッチ側の空燃比領域における学習値とリーン側の空燃比領域における学習値との補間補正により空燃比検出タイミングの補正量を設定するようにしても良い。このようにすれば、ストイキを含む所定空燃比範囲内では、学習しなくても、その両側の空燃比領域で学習した2つの学習値の補間補正により補正量を設定することができるため、全ての空燃比領域で補正量を空燃比毎に細かく学習する場合と比較して、学習処理が単純な処理となり、学習処理の演算負荷を軽減することができる利点がある。ここで、補間補正は、ストイキの時に補正量が0となる直線で近似する線形補間(直線補間)を用いても良いし、∫字状の曲線で近似する曲線補間(スプライン補間)を用いても良い。   In this case, the correction of the air-fuel ratio detection timing is performed within a predetermined air-fuel ratio range (within the range of λrich to λlean in FIG. 3) in which the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing changes according to the air-fuel ratio. The amount may be finely learned for each air-fuel ratio, but when the target air-fuel ratio (or detected air-fuel ratio) is within a predetermined air-fuel ratio range including stoichiometry, the learned value in the rich air-fuel ratio region and the lean side The correction amount of the air-fuel ratio detection timing may be set by interpolation correction with the learning value in the air-fuel ratio region. In this way, within the predetermined air-fuel ratio range including stoichiometry, the correction amount can be set by interpolation correction of the two learned values learned in the air-fuel ratio regions on both sides without learning. Compared to the case where the correction amount is finely learned for each air-fuel ratio in the air-fuel ratio region, there is an advantage that the learning process becomes simple and the calculation load of the learning process can be reduced. Here, the interpolation correction may use linear interpolation (linear interpolation) approximating with a straight line whose correction amount is 0 at the time of stoichiometry, or using curve interpolation (spline interpolation) approximating with a cross-shaped curve. Also good.

また、空燃比検出タイミングのずれ(補正量)の学習中には、空燃比を変化させる制御(例えばサブフィードバック制御、触媒中立化制御等)を禁止するようにすると良い。これにより、空燃比を一定に維持した状態で空燃比検出タイミングのずれ(補正量)を精度良く学習することができる。   Further, during the learning of the deviation (correction amount) in the air-fuel ratio detection timing, it is preferable to prohibit the control for changing the air-fuel ratio (for example, sub feedback control, catalyst neutralization control, etc.). Thereby, it is possible to accurately learn the deviation (correction amount) in the air-fuel ratio detection timing while maintaining the air-fuel ratio constant.

尚、図3に示すように、空燃比がストイキからある程度離れた領域では、空燃比がそれ以上リッチ/リーン側に変化しても、空燃比検出タイミングのずれはほとんど変化しないため、この空燃比領域で空燃比検出タイミングのずれを学習する場合は、この空燃比領域内での空燃比の変化を許容し、この空燃比領域外への空燃比の変化のみを禁止するようにしても良い。   As shown in FIG. 3, in the region where the air-fuel ratio is somewhat away from the stoichiometry, even if the air-fuel ratio further changes to the rich / lean side, the deviation in the air-fuel ratio detection timing hardly changes. When learning the deviation of the air-fuel ratio detection timing in the region, the change of the air-fuel ratio within this air-fuel ratio region may be allowed and only the change of the air-fuel ratio outside this air-fuel ratio region may be prohibited.

また、空燃比センサ37の応答性の経時変化に応じて学習値を更新するために所定間隔で学習を実行するようにすると良い。例えば、車載バッテリの取替えで学習値がクリアされた後の最初の走行中に学習し、その後、所定期間経過毎、或は、所定積算走行距離毎、或は、所定走行回数毎、或は、所定給油回数毎に学習を実行するようにすると良い。これにより、空燃比センサ37の応答性の経時変化に応じて学習値を随時更新することができる。   Further, it is preferable to perform learning at a predetermined interval in order to update the learning value in accordance with a change in the responsiveness of the air-fuel ratio sensor 37 with time. For example, it is learned during the first run after the learning value is cleared by replacing the in-vehicle battery, and thereafter, every elapse of a predetermined period, every predetermined total travel distance, every predetermined number of travels, or It is preferable to perform learning every predetermined number of times of refueling. Thereby, the learning value can be updated at any time according to the temporal change of the responsiveness of the air-fuel ratio sensor 37.

また、エンジン11をリーン空燃比又はリッチ空燃比で運転する時に学習実行条件が成立して空燃比検出タイミングのずれを学習するようにしても良いし、学習時に目標空燃比を強制的にリーン側又はリッチ側に変化させて空燃比検出タイミングのずれを学習するようにしても良い。この場合、排出ガス浄化用の触媒38の酸素ストレージ量(酸素吸蔵量)が飽和レベル近くまで増加している状態では、触媒38のNOx等のリーン成分浄化能力が低下しているため、この状態で空燃比を強制的にリーン側に変化させて学習すると、触媒38で浄化しきれないNOx等のリーン成分の排出量が増加してしまう。また、触媒38の酸素ストレージ量が少なくなっている状態では、触媒38のHC,CO等のリッチ成分浄化能力が低下しているため、この状態で目標空燃比を強制的にリッチ側に変化させて学習すると、触媒38で浄化しきれないHC,CO等のリッチ成分の排出量が増加してしまう。   Further, when the engine 11 is operated at a lean air-fuel ratio or a rich air-fuel ratio, the learning execution condition may be satisfied to learn the deviation in the air-fuel ratio detection timing, or the target air-fuel ratio may be forcibly set to the lean side during learning. Alternatively, it may be changed to the rich side to learn the deviation of the air-fuel ratio detection timing. In this case, in the state where the oxygen storage amount (oxygen storage amount) of the exhaust gas purifying catalyst 38 is increased to near the saturation level, the lean component purifying ability of the catalyst 38 such as NOx is lowered. If the learning is performed by forcibly changing the air-fuel ratio to the lean side, the discharge amount of lean components such as NOx that cannot be purified by the catalyst 38 will increase. Further, in the state where the oxygen storage amount of the catalyst 38 is small, the capability of purifying rich components such as HC and CO of the catalyst 38 is lowered. In this state, the target air-fuel ratio is forcibly changed to the rich side. As a result, the discharge amount of rich components such as HC and CO that cannot be purified by the catalyst 38 increases.

この対策として、目標空燃比をリーン側又はリッチ側に変化させて学習を実行する時期を触媒38の状態に基づいて判断するようにすると良い。このようにすれば、例えば、触媒38の状態がHC,CO等のリッチ成分浄化能力が高くなっている時(酸素ストレージ量が多くなっている時)に、目標空燃比を強制的にリッチ側に変化させて学習することで、リッチ側の空燃比領域でエミッションを悪化させることなく空燃比検出タイミングのずれを学習することができ、また、触媒38の状態がNOx等のリーン成分浄化能力が高くなっている時(酸素ストレージ量が少なくなっている時)に、目標空燃比を強制的にリーン側に変化させて学習することで、リーン側の空燃比領域でエミッションを悪化させることなく空燃比検出タイミングのずれを学習することができ、学習時のエミッション悪化の問題を解消することができる。   As a countermeasure, it is preferable to determine the timing for executing learning by changing the target air-fuel ratio to the lean side or the rich side based on the state of the catalyst 38. In this way, for example, when the state of the catalyst 38 is high in the ability to purify rich components such as HC and CO (when the oxygen storage amount is large), the target air-fuel ratio is forcibly set to the rich side. Therefore, it is possible to learn the deviation of the air-fuel ratio detection timing without deteriorating the emission in the rich-side air-fuel ratio region, and the state of the catalyst 38 has the ability to purify the lean component such as NOx. When the air-fuel ratio is high (when the oxygen storage amount is low), the target air-fuel ratio is forcibly changed to the lean side and learning is performed. It is possible to learn the deviation in the fuel ratio detection timing, and to solve the problem of emission deterioration during learning.

以上説明した本実施例3の空燃比検出タイミングの学習補正と気筒別空燃比制御は、ECU40によって図10乃至図14の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。   The learning correction of the air-fuel ratio detection timing and the cylinder-by-cylinder air-fuel ratio control according to the third embodiment described above are executed by the ECU 40 according to the routines shown in FIGS. The processing contents of each routine will be described below.

[気筒別空燃比制御メインルーチン]
図10の気筒別空燃比制御メインルーチンは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動される。本ルーチンが起動されると、まず、ステップ501で、前記実施例1で説明した図5の気筒別空燃比制御実行条件判定ルーチンを実行して、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この後、ステップ502に進み、図5の気筒別空燃比制御実行条件判定ルーチンでセットされた気筒別空燃比制御実行フラグがONであるか否かで、気筒別空燃比制御の実行条件が成立しているか否かを判定する。その結果、気筒別空燃比制御実行フラグがOFF(実行条件が不成立)と判定された場合は、以降の処理を行うことなく、本ルーチンを終了する。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control main routine of FIG. 10 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33. When this routine is started, first, in step 501, the cylinder-by-cylinder air-fuel ratio control execution condition determination routine of FIG. 5 described in the first embodiment is executed, and the execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied. It is determined whether or not. Thereafter, the routine proceeds to step 502, where the execution condition of the cylinder-by-cylinder air-fuel ratio control is satisfied depending on whether or not the cylinder-by-cylinder air-fuel ratio control execution flag set in the cylinder-by-cylinder air-fuel ratio control execution condition determination routine is ON. It is determined whether or not. As a result, when it is determined that the cylinder-by-cylinder air-fuel ratio control execution flag is OFF (execution condition is not established), this routine is terminated without performing the subsequent processing.

一方、気筒別空燃比制御実行フラグがON(実行条件成立)と判定された場合は、ステップ503に進み、後述する図11の空燃比検出タイミング演算ルーチンを実行して、現在のエンジン負荷、エンジン回転速度等のエンジン運転状態と目標空燃比に応じた空燃比検出タイミングを設定する。この後、ステップ504に進み、後述する図12の補正量学習実行条件判定ルーチンを実行して、目標空燃比に応じた空燃比検出タイミングの補正量の学習実行条件が成立しているか否かを判定する。   On the other hand, if it is determined that the cylinder-by-cylinder air-fuel ratio control execution flag is ON (execution condition is satisfied), the routine proceeds to step 503, where an air-fuel ratio detection timing calculation routine of FIG. The air-fuel ratio detection timing is set according to the engine operating state such as the rotational speed and the target air-fuel ratio. Thereafter, the routine proceeds to step 504, where a correction amount learning execution condition determination routine of FIG. 12 described later is executed to determine whether or not a learning execution condition for the correction amount of the air-fuel ratio detection timing according to the target air-fuel ratio is satisfied. judge.

この後、ステップ505に進み、図12の補正量学習実行条件判定ルーチンでセットされた補正量学習実行フラグがONであるか否かで、補正量学習の実行条件が成立しているか否かを判定する。その結果、補正量学習実行フラグがOFF(実行条件が不成立)と判定された場合は、ステップ506に進み、現在のクランク角が各気筒の空燃比検出タイミングであるか否かを判定し、空燃比検出タイミングでなければ、以降の処理を行うことなく、本ルーチンを終了する。   Thereafter, the process proceeds to step 505, where whether or not the correction amount learning execution condition is satisfied is determined by whether or not the correction amount learning execution flag set in the correction amount learning execution condition determination routine of FIG. judge. As a result, when it is determined that the correction amount learning execution flag is OFF (execution condition is not satisfied), the process proceeds to step 506 to determine whether or not the current crank angle is the air-fuel ratio detection timing of each cylinder. If it is not the fuel ratio detection timing, this routine is terminated without performing the subsequent processing.

これに対して、現在のクランク角が空燃比検出タイミングであれば、ステップ507に進み、前記実施例1で説明した図7の気筒別空燃比制御実行ルーチンを実行して、気筒別空燃比制御を実行する。   On the other hand, if the current crank angle is the air-fuel ratio detection timing, the routine proceeds to step 507, where the cylinder-by-cylinder air-fuel ratio control execution routine of FIG. Execute.

一方、前記ステップ505で、補正量学習実行フラグがON(実行条件が成立)と判定された場合は、ステップ508に進み、後述する図13及び図14の補正量学習ルーチンを実行して、目標空燃比に応じた空燃比検出タイミングの補正量を学習する。   On the other hand, if it is determined in step 505 that the correction amount learning execution flag is ON (execution condition is satisfied), the process proceeds to step 508 to execute a correction amount learning routine shown in FIGS. The correction amount of the air-fuel ratio detection timing according to the air-fuel ratio is learned.

[空燃比検出タイミング演算ルーチン]
図11の空燃比検出タイミング演算ルーチンは、図10の気筒別空燃比制御メインルーチンのステップ503で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ601で、現在のエンジン運転状態(例えばエンジン負荷、エンジン回転速度等)に応じてマップ等により各気筒の空燃比検出基準タイミングを演算する。この空燃比検出基準タイミングは、目標空燃比がストイキ(空気過剰率λ=1.0)の時の適正な空燃比検出タイミングに相当する。
[Air-fuel ratio detection timing calculation routine]
The air-fuel ratio detection timing calculation routine of FIG. 11 is a subroutine executed in step 503 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, in step 601, the air-fuel ratio detection reference timing of each cylinder is calculated from a map or the like according to the current engine operating state (for example, engine load, engine speed, etc.). This air-fuel ratio detection reference timing corresponds to an appropriate air-fuel ratio detection timing when the target air-fuel ratio is stoichiometric (the excess air ratio λ = 1.0).

この後、ステップ302に進み、後述する図13及び図14の補正量学習ルーチンで学習された空燃比検出タイミングの補正量学習値のテーブルを参照して、現在の目標空燃比(又は検出空燃比)に応じた空燃比検出タイミングの補正量学習値を読み込む(又は補間補正する)。この空燃比検出タイミングの補正量学習値は、リッチ側の空燃比でマイナス値(空燃比検出タイミングを早める方向の補正)となり、リーン側の空燃比でプラス値(空燃比検出タイミングを遅くする方向の補正)となる。   Thereafter, the routine proceeds to step 302, where the current target air-fuel ratio (or detected air-fuel ratio) is determined with reference to the correction amount learning value table of the air-fuel ratio detection timing learned in the later-described correction amount learning routine of FIGS. ) Is read (or interpolated). The correction amount learning value of the air-fuel ratio detection timing becomes a negative value (correction in a direction that accelerates the air-fuel ratio detection timing) at the rich-side air-fuel ratio, and a positive value (a direction that delays the air-fuel ratio detection timing) at the lean-side air-fuel ratio. Correction).

この後、ステップ603に進み、現在のエンジン運転状態に応じて設定された空燃比検出基準タイミングに、現在の目標空燃比(又は検出空燃比)に応じた補正量学習値を加算して、最終的な空燃比検出タイミングを求める。   Thereafter, the process proceeds to step 603, where the correction amount learning value according to the current target air-fuel ratio (or detected air-fuel ratio) is added to the air-fuel ratio detection reference timing set according to the current engine operating state, A typical air-fuel ratio detection timing is obtained.

空燃比検出タイミング=空燃比検出基準タイミング+補正量学習値
要するに、現在のエンジン運転状態に応じて設定された空燃比検出基準タイミング(ストイキの時の適正な空燃比検出タイミング)を、現在の目標空燃比(又は検出空燃比)に応じた補正量学習値によって補正して、最終的な空燃比検出タイミングを決定する。
Air-fuel ratio detection timing = Air-fuel ratio detection reference timing + correction amount learned value In short, the air-fuel ratio detection reference timing (appropriate air-fuel ratio detection timing at the time of stoichiometry) set according to the current engine operating state is set to the current target. The final air-fuel ratio detection timing is determined by correcting with a correction amount learning value corresponding to the air-fuel ratio (or detected air-fuel ratio).

[補正量学習実行条件判定ルーチン]
図12の補正量学習実行条件判定ルーチンは、図10の気筒別空燃比制御メインルーチンのステップ504で実行されるサブルーチンである。本ルーチンが起動されると、まずステップ701で、車載バッテリの取替えで補正量の学習値がクリアされた後の最初の走行であるか否か、又は前回の学習から所定期間(所定積算走行距離、或は、所定走行回数等)が経過しているか否かを判定し、その判定結果が「No」であれば、補正量学習実行条件が不成立となり、ステップ705に進み、補正量学習実行フラグをOFFにセットして、本ルーチンを終了する。
[Correction amount learning execution condition judgment routine]
The correction amount learning execution condition determination routine of FIG. 12 is a subroutine executed in step 504 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. When this routine is started, first, in step 701, whether or not it is the first travel after the learning value of the correction amount is cleared by replacing the vehicle-mounted battery, or a predetermined period (predetermined accumulated travel distance) from the previous learning. Or the predetermined number of times of travel) has elapsed, and if the determination result is “No”, the correction amount learning execution condition is not satisfied, the process proceeds to step 705, and the correction amount learning execution flag is set. Is set to OFF and this routine is terminated.

これに対して、上記ステップ701で、「Yes」と判定されれば、ステップ702に進み、気筒別空燃比制御の他に、空燃比を変化させる制御(例えばサブフィードバック制御、触媒中立化制御等)が停止(禁止)されているか否かを判定し、空燃比を変化させる制御が停止されていなければ、補正量学習実行条件が不成立となり、ステップ705に進み、補正量学習実行フラグをOFFにセットして、本ルーチンを終了する。   On the other hand, if “Yes” is determined in step 701, the process proceeds to step 702, and in addition to the air-fuel ratio control for each cylinder, control for changing the air-fuel ratio (for example, sub-feedback control, catalyst neutralization control, etc.) ) Is stopped (prohibited), and if the control for changing the air-fuel ratio is not stopped, the correction amount learning execution condition is not satisfied, the process proceeds to step 705, and the correction amount learning execution flag is turned OFF. Set and end this routine.

そして、上記ステップ702で、空燃比を変化させる制御が停止されていれば、ステップ703に進み、補正量の学習を実行しても(つまり補正量の学習のために目標空燃比を変化させても)、エミッションが悪化しないような触媒38の状態であるか否かを判定する。もし、補正量の学習を実行すると、エミッションが悪化するような触媒38の状態であれば、補正量学習実行条件が不成立となり、ステップ705に進み、補正量学習実行フラグをOFFにセットして、本ルーチンを終了する。これに対して、補正量の学習を実行しても、エミッションが悪化しないような触媒38の状態であれば、補正量学習実行条件が成立して、ステップ704に進み、補正量学習実行フラグをONにセットして、本ルーチンを終了する。   If the control for changing the air-fuel ratio is stopped in step 702, the process proceeds to step 703, and even if the correction amount learning is executed (that is, the target air-fuel ratio is changed for learning the correction amount). Also, it is determined whether or not the state of the catalyst 38 is such that the emission does not deteriorate. If the correction amount learning is executed and the catalyst 38 is in such a state that the emission deteriorates, the correction amount learning execution condition is not satisfied, and the routine proceeds to step 705, where the correction amount learning execution flag is set to OFF, This routine ends. On the other hand, if the state of the catalyst 38 is such that the emission does not deteriorate even if the correction amount learning is executed, the correction amount learning execution condition is satisfied, and the routine proceeds to step 704, where the correction amount learning execution flag is set. Set to ON and end this routine.

[補正量学習ルーチン]
まず、空燃比検出タイミングの補正量の学習方法を図15及び図16を用いて説明する。図15及び図16は、空燃比検出タイミングが適正な場合とずれている場合の燃料噴射量の補正(燃料補正)の効果を説明する図である。空燃比検出タイミングが適正な場合は、各気筒の空燃比を精度良く推定できるため、所定の気筒の燃料噴射量を所定量補正すると、その気筒の空燃比は、燃料補正量相当分だけ変化するはずである。この特性に着目して、本実施例3では、図13及び図14の補正量学習ルーチンを実行することで、各気筒の空燃比検出タイミングを変化させて、当該空燃比検出タイミングにおける各気筒の燃料補正前後の空燃比を推定し、燃料補正前後の推定空燃比の変化量が燃料補正量相当分になる空燃比検出タイミングを適正な空燃比検出タイミングと判断して、空燃比検出タイミングの適正値からのずれ(補正量)を学習するようにしている。
[Correction amount learning routine]
First, a method for learning the correction amount of the air-fuel ratio detection timing will be described with reference to FIGS. FIGS. 15 and 16 are diagrams for explaining the effect of fuel injection amount correction (fuel correction) when the air-fuel ratio detection timing is different from the proper timing. When the air-fuel ratio detection timing is appropriate, the air-fuel ratio of each cylinder can be accurately estimated. Therefore, when the fuel injection amount of a predetermined cylinder is corrected by a predetermined amount, the air-fuel ratio of that cylinder changes by an amount corresponding to the fuel correction amount. It should be. Focusing on this characteristic, in the third embodiment, by executing the correction amount learning routine of FIGS. 13 and 14, the air-fuel ratio detection timing of each cylinder is changed, and each cylinder at the air-fuel ratio detection timing is changed. The air-fuel ratio before and after fuel correction is estimated, and the air-fuel ratio detection timing at which the amount of change in the estimated air-fuel ratio before and after fuel correction is equivalent to the fuel correction amount is determined as the appropriate air-fuel ratio detection timing. The deviation (correction amount) from the value is learned.

図13及び図14の補正量学習ルーチンは、図10の気筒別空燃比制御メインルーチンのステップ508で実行されるサブルーチンであり、特許請求の範囲でいう学習手段としての役割を果たす。本ルーチンが起動されると、まずステップ801で、空燃比検出タイミングがずれているか否かを、気筒別空燃比制御中の気筒間の推定空燃比のばらつき度合いに基づいて判定する。この際、例えば、下記の条件(A1),(A2)のいずれか一方又は両方によって判定する。   The correction amount learning routine of FIGS. 13 and 14 is a subroutine executed in step 508 of the cylinder-by-cylinder air-fuel ratio control main routine of FIG. 10, and serves as learning means in the claims. When this routine is started, first, in step 801, it is determined whether or not the air-fuel ratio detection timing is shifted based on the degree of variation in estimated air-fuel ratio among cylinders during cylinder-by-cylinder air-fuel ratio control. In this case, for example, the determination is made based on one or both of the following conditions (A1) and (A2).

(A1)各気筒の推定空燃比のうちの最大の推定空燃比と最小の推定空燃比との偏差が所定値以上であるか否かで、気筒間の推定空燃比のばらつき度合いが大きいか否かを判定する。
(A2)全気筒の推定空燃比の標準偏差が所定値以上であるか否かで、気筒間の推定空燃比のばらつき度合いが大きいか否かを判定する。
もし、気筒間の推定空燃比のばらつき度合いが大きければ、空燃比検出タイミングがずれていると判定し、気筒間の推定空燃比のばらつき度合いが小さければ、空燃比検出タイミングがずれていないと判定する。
(A1) Whether the variation in estimated air-fuel ratio between cylinders is large depending on whether the deviation between the maximum estimated air-fuel ratio and the minimum estimated air-fuel ratio among the estimated air-fuel ratios of each cylinder is a predetermined value or more Determine whether.
(A2) It is determined whether or not the degree of variation in the estimated air-fuel ratio among the cylinders is large depending on whether the standard deviation of the estimated air-fuel ratio of all the cylinders is equal to or greater than a predetermined value.
If the degree of variation in estimated air-fuel ratio between cylinders is large, it is determined that the air-fuel ratio detection timing has shifted. If the degree of variation in estimated air-fuel ratio between cylinders is small, it is determined that the air-fuel ratio detection timing has not shifted. To do.

空燃比検出タイミングがずれていないと判定されれば、補正量を学習する必要がないため、以降の学習処理を行うことなく、本ルーチンを終了する。
一方、空燃比検出タイミングがずれていると判定されれば、ステップ802に進み、遅角補正回数(空燃比検出タイミングを遅角側に補正した回数)が規定回数未満であるか否かを判定し、遅角補正回数が規定回数未満であれば、ステップ803に進み、空燃比検出タイミングを遅角側に所定クランク角だけ補正する。この後、ステップ804に進み、遅角補正後の空燃比検出タイミングにおける当該気筒の燃料補正前後の空燃比を推定し、燃料補正前後の推定空燃比の変化量を算出する。
If it is determined that the air-fuel ratio detection timing is not deviated, it is not necessary to learn the correction amount, and thus this routine is terminated without performing the subsequent learning process.
On the other hand, if it is determined that the air-fuel ratio detection timing has deviated, the process proceeds to step 802, where it is determined whether or not the number of times of retard correction (the number of times the air-fuel ratio detection timing has been corrected to the retard side) is less than the specified number. If the number of retard corrections is less than the specified number, the process proceeds to step 803 to correct the air-fuel ratio detection timing to the retard side by a predetermined crank angle. Thereafter, the process proceeds to step 804, where the air-fuel ratio before and after fuel correction of the cylinder at the air-fuel ratio detection timing after retardation correction is estimated, and the change amount of the estimated air-fuel ratio before and after fuel correction is calculated.

この後、ステップ805に進み、推定空燃比の変化量が燃料補正量相当分にほぼ一致するか否かを判定することで、現在の空燃比検出タイミングが適正な空燃比検出タイミングであるか否かを判定する。その結果、現在の空燃比検出タイミングが適正な空燃比検出タイミングでないと判定された場合には、ステップ802に戻り、上述した空燃比検出タイミングの遅角補正を繰り返す。   Thereafter, the process proceeds to step 805, and it is determined whether or not the change amount of the estimated air-fuel ratio substantially matches the fuel correction amount equivalent, thereby determining whether or not the current air-fuel ratio detection timing is an appropriate air-fuel ratio detection timing. Determine whether. As a result, when it is determined that the current air-fuel ratio detection timing is not an appropriate air-fuel ratio detection timing, the process returns to step 802 to repeat the above-described retardation correction of the air-fuel ratio detection timing.

この遅角補正回数が規定回数に達する前に、推定空燃比の変化量が燃料補正量相当分にほぼ一致して空燃比検出タイミングが適正な空燃比検出タイミングになったと判定されれば、ステップ806に進み、その時点の空燃比検出タイミングを適正な空燃比検出タイミングと判断して、この適正な空燃比検出タイミングと遅角補正前の空燃比検出タイミングとの偏差(ずれ)を空燃比検出タイミングの補正量として学習し、その学習値をECU40のバックアップRAM等の書き換え可能な不揮発性メモリの学習値記憶領域に更新記憶する。この際、空燃比に応じて空燃比検出タイミングの補正量が変化することを考慮して、補正量学習値を空燃比毎に更新記憶する。或は、空燃比による空燃比検出タイミングのずれのZ字型の変化特性を考慮して、図3のλrichよりもリッチ側の空燃比領域とλleanよりもリーン側の空燃比領域では、それぞれ空燃比検出タイミングの補正量を1つずつ学習するようにしても良い。
この後、ステップ807に進み、遅角補正回数のカウント値をリセットして本ルーチンを終了する。
If it is determined that the amount of change in the estimated air-fuel ratio substantially coincides with the fuel correction amount equivalent and the air-fuel ratio detection timing has reached an appropriate air-fuel ratio detection timing before the number of retardation corrections reaches the specified number, Proceeding to step 806, the air-fuel ratio detection timing at that time is determined as an appropriate air-fuel ratio detection timing, and the deviation (deviation) between the appropriate air-fuel ratio detection timing and the air-fuel ratio detection timing before delay correction is detected. Learning is performed as a timing correction amount, and the learning value is updated and stored in a learning value storage area of a rewritable nonvolatile memory such as a backup RAM of the ECU 40. At this time, the correction amount learning value is updated and stored for each air-fuel ratio in consideration that the correction amount of the air-fuel ratio detection timing changes according to the air-fuel ratio. Alternatively, in consideration of the Z-shaped change characteristic of the deviation of the air-fuel ratio detection timing due to the air-fuel ratio, the air-fuel ratio region richer than λrich and the air-fuel ratio region leaner than λlean in FIG. The correction amount of the fuel ratio detection timing may be learned one by one.
Thereafter, the process proceeds to step 807, the count value of the number of retard corrections is reset, and this routine is terminated.

これに対して、空燃比検出タイミングの遅角補正を規定回数繰り返しても、空燃比検出タイミングが適正な空燃比検出タイミングにならなかった場合には、図14のステップ808に進み、進角補正回数(空燃比検出タイミングを進角側に補正した回数)が規定回数未満であるか否かを判定し、進角補正回数が規定回数未満であれば、ステップ809に進み、空燃比検出タイミングを遅角補正前の最初の位置から進角側に所定クランク角だけ補正する。この後、ステップ310に進み、進角補正後の空燃比検出タイミングにおける当該気筒の燃料補正前後の空燃比を推定し、燃料補正前後の推定空燃比の変化量を算出する。   On the other hand, if the air-fuel ratio detection timing does not reach an appropriate air-fuel ratio detection timing even if the retardation correction of the air-fuel ratio detection timing is repeated a specified number of times, the process proceeds to step 808 in FIG. It is determined whether or not the number of times (the number of times the air-fuel ratio detection timing has been corrected to the advance side) is less than the specified number. If the number of advance angle corrections is less than the specified number, the process proceeds to step 809 to set the air-fuel ratio detection timing. A predetermined crank angle is corrected from the initial position before the retard correction to the advance side. Thereafter, the routine proceeds to step 310, where the air-fuel ratio before and after fuel correction of the cylinder at the air-fuel ratio detection timing after advance angle correction is estimated, and the change amount of the estimated air-fuel ratio before and after fuel correction is calculated.

この後、ステップ311に進み、推定空燃比の変化量が燃料補正量相当分にほぼ一致するか否かを判定することで、現在の空燃比検出タイミングが適正な空燃比検出タイミングであるか否かを判定する。その結果、現在の空燃比検出タイミングが適正な空燃比検出タイミングでないと判定された場合には、ステップ808に戻り、上述した空燃比検出タイミングの進角補正を繰り返す。   Thereafter, the process proceeds to step 311 to determine whether or not the current air-fuel ratio detection timing is an appropriate air-fuel ratio detection timing by determining whether or not the amount of change in the estimated air-fuel ratio substantially matches the fuel correction amount equivalent. Determine whether. As a result, when it is determined that the current air-fuel ratio detection timing is not an appropriate air-fuel ratio detection timing, the process returns to step 808, and the advance correction of the air-fuel ratio detection timing described above is repeated.

この進角補正回数が規定回数に達する前に、推定空燃比の変化量が燃料補正量相当分にほぼ一致して空燃比検出タイミングが適正な空燃比検出タイミングになったと判定されれば、ステップ312に進み、その時点の空燃比検出タイミングを適正な空燃比検出タイミングと判断して、この適正な空燃比検出タイミングと進角補正前の空燃比検出タイミングとの偏差(ずれ)を空燃比検出タイミングの補正量として学習し、その補正量学習値をECU40のバックアップRAM等の書き換え可能な不揮発性メモリの学習値記憶領域に更新記憶する。この後、ステップ313に進み、進角補正回数のカウント値をリセットして本ルーチンを終了する。   If it is determined that the amount of change in the estimated air-fuel ratio substantially matches the fuel correction amount and the air-fuel ratio detection timing has reached an appropriate air-fuel ratio detection timing before the advance angle correction count reaches the specified number of times, The flow proceeds to 312, and the air-fuel ratio detection timing at that time is determined as an appropriate air-fuel ratio detection timing, and the deviation (deviation) between the appropriate air-fuel ratio detection timing and the air-fuel ratio detection timing before the advance angle correction is detected. Learning is performed as a timing correction amount, and the correction amount learning value is updated and stored in a learning value storage area of a rewritable nonvolatile memory such as a backup RAM of the ECU 40. Thereafter, the process proceeds to step 313, the count value of the advance angle correction count is reset, and this routine is terminated.

本ルーチンにより作成される補正量の学習マップは、前記図11の空燃比検出タイミング演算ルーチンのステップ602で、空燃比検出タイミングの補正量学習値を読み込むためのマップとして使用される。   The correction amount learning map created by this routine is used as a map for reading the correction amount learning value of the air-fuel ratio detection timing in step 602 of the air-fuel ratio detection timing calculation routine of FIG.

尚、空燃比検出タイミングの進角補正を規定回数繰り返しても、空燃比検出タイミングが適正な空燃比検出タイミングにならなかった場合(つまり適正な空燃比検出タイミングを学習できなかった場合)には、ステップ808で「No」と判定され、本ルーチンを終了する。   If the advance correction of the air-fuel ratio detection timing is repeated a specified number of times, but the air-fuel ratio detection timing does not reach the proper air-fuel ratio detection timing (that is, the proper air-fuel ratio detection timing cannot be learned) In Step 808, “No” is determined, and this routine is finished.

以上説明した本実施例3では、エンジン運転中に空燃比検出タイミングの適正値からのずれを空燃比検出タイミングの補正量として学習して、その補正量学習値を書き換え可能な不揮発性メモリに更新記憶するようにしたので、エンジン運転中に空燃比検出タイミングの適正値からのずれ(補正量)を空燃比によるずれだけでなく空燃比センサ37の応答性の経時変化や製造ばらつきによるずれも含めて学習することができる。このため、空燃比センサ37の応答性の経時変化や製造ばらつきの影響が無視できないシステムでも、空燃比検出タイミングの補正量を空燃比によるずれだけでなく空燃比センサの応答性の経時変化や製造ばらつきによるずれも含めて適正に設定することができ、各気筒の空燃比推定精度を向上させることができる。   In the third embodiment described above, the deviation from the appropriate value of the air-fuel ratio detection timing is learned as the correction amount of the air-fuel ratio detection timing during engine operation, and the correction amount learning value is updated to a rewritable nonvolatile memory. Since it is stored, the deviation (correction amount) from the appropriate value of the air-fuel ratio detection timing during engine operation includes not only the deviation due to the air-fuel ratio but also the time-dependent change in response of the air-fuel ratio sensor 37 and deviation due to manufacturing variations. Can learn. For this reason, even in a system in which the influence of the responsiveness of the air-fuel ratio sensor 37 over time and manufacturing variations cannot be ignored, the correction amount of the air-fuel ratio detection timing is not limited to the deviation due to the air-fuel ratio, It is possible to set appropriately including deviation due to variation, and it is possible to improve the air-fuel ratio estimation accuracy of each cylinder.

尚、本発明は、図1に例示するような吸気ポート噴射エンジンに限定されず、筒内噴射エンジンにも適用して実施できる等、要旨を逸脱しない範囲で種々変更して実施できることは言うまでもない。   Needless to say, the present invention is not limited to the intake port injection engine illustrated in FIG. 1 and can be implemented by being applied to an in-cylinder injection engine without departing from the scope of the invention. .

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 1気筒のみリッチ時の空燃比センサの出力振幅挙動の一例を示すタイムチャートである。It is a time chart which shows an example of the output amplitude behavior of the air fuel ratio sensor when only one cylinder is rich. 目標空燃比(目標λ)と空燃比検出タイミングの適正値からのずれとの関係を測定して求めた空燃比センサ特性図である。FIG. 5 is an air-fuel ratio sensor characteristic diagram obtained by measuring a relationship between a target air-fuel ratio (target λ) and a deviation from an appropriate value of air-fuel ratio detection timing. 実施例1の気筒別空燃比制御メインルーチンの処理の流れを示すフローチャートである。4 is a flowchart showing a process flow of a cylinder-by-cylinder air-fuel ratio control main routine according to the first embodiment. 実施例1の気筒別空燃比制御実行条件判定ルーチンの処理の流れを示すフローチャートである。4 is a flowchart showing a process flow of a cylinder-by-cylinder air-fuel ratio control execution condition determination routine according to the first embodiment. 実施例1の空燃比検出タイミング演算ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of an air-fuel ratio detection timing calculation routine according to the first embodiment. 実施例1の気筒別空燃比制御実行ルーチンの処理の流れを示すフローチャートである。4 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio control execution routine according to the first embodiment. 空燃比検出タイミングの適正値からのずれと空燃比センサの応答性と目標空燃比(目標λ)との関係を測定して求めた空燃比センサ特性図である。FIG. 6 is an air-fuel ratio sensor characteristic diagram obtained by measuring the relationship between a deviation from an appropriate value of the air-fuel ratio detection timing, the response of the air-fuel ratio sensor, and the target air-fuel ratio (target λ). 実施例2の空燃比検出タイミング演算ルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a process flow of an air-fuel ratio detection timing calculation routine according to a second embodiment. 実施例3の気筒別空燃比制御メインルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart showing a process flow of a cylinder-by-cylinder air-fuel ratio control main routine according to a third embodiment. 実施例3の空燃比検出タイミング演算ルーチンの処理の流れを示すフローチャートである。12 is a flowchart showing a flow of processing of an air-fuel ratio detection timing calculation routine of Embodiment 3. 実施例3の補正量学習実行条件判定ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of processing of a correction amount learning execution condition determination routine according to a third embodiment. 実施例3の補正量学習ルーチンの処理の流れを示すフローチャートである(その1)。It is a flowchart which shows the flow of a process of the corrected amount learning routine of Example 3 (the 1). 実施例3の補正量学習ルーチンの処理の流れを示すフローチャートである(その2)。It is a flowchart which shows the flow of a process of the corrected amount learning routine of Example 3 (the 2). 実施例3の空燃比検出タイミングの適正値からのずれの検出方法を説明するタイムチャートである。10 is a time chart illustrating a method for detecting a deviation from an appropriate value of the air-fuel ratio detection timing according to the third embodiment. 実施例3の空燃比検出タイミングの補正量の学習方法を説明するタイムチャートである。12 is a time chart for explaining a learning method of the correction amount of the air-fuel ratio detection timing according to the third embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、19…吸気マニホールド、20…燃料噴射弁、22…燃料ポンプ、24…燃圧センサ、27,28…可変バルブタイミング機構、35…排気マニホールド、36…排気集合部、37…空燃比センサ、38…触媒、40…ECU(気筒別空燃比推定手段,気筒別空燃比制御手段,空燃比検出タイミング補正手段,学習手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 19 ... Intake manifold, 20 ... Fuel injection valve, 22 ... Fuel pump, 24 ... Fuel pressure sensor, 27, 28 ... Variable valve Timing mechanism 35 ... Exhaust manifold 36 ... Exhaust collecting part 37 ... Air-fuel ratio sensor 38 ... Catalyst 40 ... ECU (Each cylinder air-fuel ratio estimation means, Cylinder air-fuel ratio control means, Air-fuel ratio detection timing correction means, learning means)

Claims (9)

内燃機関の各気筒の排出ガスが集合して流れる排気集合部に、該排出ガスの空燃比を検出する空燃比センサを設置し、各気筒の空燃比検出タイミング毎に前記空燃比センサの検出値に基づいて各気筒の空燃比を推定する気筒別空燃比推定手段と、各気筒の推定空燃比に基づいて各気筒の空燃比を目標空燃比に一致させるように制御(以下「気筒別空燃比制御」という)する気筒別空燃比制御手段とを備えた内燃機関の気筒別空燃比制御装置において、
前記空燃比検出タイミングを目標空燃比又は検出空燃比に応じて補正する空燃比検出タイミング補正手段を備え、
前記空燃比検出タイミング補正手段は、目標空燃比又は検出空燃比がリーンの時に前記空燃比検出タイミングをストイキの時よりも遅くするように補正し、目標空燃比又は検出空燃比がリッチの時に前記空燃比検出タイミングをストイキの時よりも早めるように補正することを特徴とする内燃機関の気筒別空燃比制御装置。
An air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas is installed in an exhaust gas collecting portion where the exhaust gas of each cylinder of the internal combustion engine collects and flows, and the detected value of the air-fuel ratio sensor at each air-fuel ratio detection timing of each cylinder The cylinder-by-cylinder air-fuel ratio estimating means that estimates the air-fuel ratio of each cylinder based on In a cylinder-by-cylinder air-fuel ratio control device having an air-fuel ratio control unit by cylinder)
Air-fuel ratio detection timing correction means for correcting the air-fuel ratio detection timing according to a target air-fuel ratio or a detected air-fuel ratio,
The air-fuel ratio detection timing correction means corrects the air-fuel ratio detection timing so as to be later than that at the time of stoichiometry when the target air-fuel ratio or the detected air-fuel ratio is lean, and when the target air-fuel ratio or the detected air-fuel ratio is rich A cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine, wherein the air-fuel ratio detection timing is corrected so as to be earlier than when stoichiometric.
前記空燃比検出タイミング補正手段は、前記目標空燃比又は検出空燃比に応じて設定した空燃比検出タイミングの補正量を前記空燃比センサの応答性に応じて補正することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。   2. The air-fuel ratio detection timing correction unit corrects the correction amount of the air-fuel ratio detection timing set according to the target air-fuel ratio or the detected air-fuel ratio according to the responsiveness of the air-fuel ratio sensor. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim 1. 内燃機関の運転中に前記空燃比検出タイミングの適正値からのずれを学習してその学習値を書き換え可能な不揮発性メモリに更新記憶する学習手段を備え、
前記空燃比検出タイミング補正手段は、前記学習手段の学習値に基づいて前記空燃比検出タイミングを補正することを特徴とする請求項1に記載の内燃機関の気筒別空燃比制御装置。
Learning means for learning a deviation from an appropriate value of the air-fuel ratio detection timing during operation of the internal combustion engine and updating and storing the learned value in a rewritable nonvolatile memory;
2. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio detection timing correction means corrects the air-fuel ratio detection timing based on a learning value of the learning means.
前記学習手段は、前記空燃比検出タイミングの適正値からのずれを空燃比毎に学習することを特徴とする請求項3に記載の内燃機関の気筒別空燃比制御装置。   The said learning means learns the deviation from the appropriate value of the said air-fuel ratio detection timing for every air-fuel ratio, The cylinder-by-cylinder air-fuel ratio control apparatus of the internal combustion engine of Claim 3 characterized by the above-mentioned. 前記学習手段は、ストイキを含む所定空燃比範囲よりもリッチ側の空燃比領域とリーン側の空燃比領域では、それぞれ前記空燃比検出タイミングの適正値からのずれを1つずつ学習することを特徴とする請求項3に記載の内燃機関の気筒別空燃比制御装置。   The learning means learns a deviation from an appropriate value of the air-fuel ratio detection timing one by one in an air-fuel ratio region richer than a predetermined air-fuel ratio range including stoichiometry and an air-fuel ratio region lean. The air-fuel ratio control apparatus for each cylinder of the internal combustion engine according to claim 3. 前記空燃比検出タイミング補正手段は、目標空燃比又は検出空燃比が前記ストイキを含む所定空燃比範囲内の時に、前記学習手段で学習された前記リッチ側の空燃比領域における学習値と前記リーン側の空燃比領域における学習値との補間補正により前記空燃比検出タイミングの補正量を設定することを特徴とする請求項5に記載の内燃機関の気筒別空燃比制御装置。   The air-fuel ratio detection timing correction unit is configured to detect the learning value in the rich-side air-fuel ratio region learned by the learning unit and the lean side when the target air-fuel ratio or the detected air-fuel ratio is within a predetermined air-fuel ratio range including the stoichiometry. 6. The cylinder-by-cylinder air-fuel ratio control apparatus for an internal combustion engine according to claim 5, wherein a correction amount of the air-fuel ratio detection timing is set by interpolation correction with a learned value in the air-fuel ratio region. 前記学習手段は、前記空燃比検出タイミングの適正値からのずれの学習中に空燃比を変化させる制御を禁止する手段を備えていることを特徴とする請求項3乃至6のいずれかに記載の内燃機関の気筒別空燃比制御装置。   The said learning means is provided with a means to prohibit the control which changes an air fuel ratio during the learning of the deviation | shift from the appropriate value of the said air fuel ratio detection timing. An air-fuel ratio control device for each cylinder of an internal combustion engine. 前記学習手段は、前記空燃比センサの応答性の経時変化に応じて学習値を更新するために所定間隔で学習を実行することを特徴とする請求項3乃至7のいずれかに記載の内燃機関の気筒別空燃比制御装置。   The internal combustion engine according to any one of claims 3 to 7, wherein the learning means performs learning at a predetermined interval in order to update a learning value in accordance with a change with time of the responsiveness of the air-fuel ratio sensor. Air-fuel ratio control device for each cylinder. 前記学習手段は、空燃比をリーン側又はリッチ側に変化させて学習を実行する時期を排出ガス浄化用の触媒の状態に基づいて判断することを特徴とする請求項3乃至8のいずれかに記載の内燃機関の気筒別空燃比制御装置。   9. The learning unit according to claim 3, wherein the learning unit determines a timing for performing learning by changing the air-fuel ratio to a lean side or a rich side based on a state of a catalyst for exhaust gas purification. The cylinder-by-cylinder air-fuel ratio control apparatus according to claim.
JP2006029811A 2005-07-19 2006-02-07 Device for controlling air-fuel ratio per cylinder of internal combustion engine Pending JP2007211609A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006029811A JP2007211609A (en) 2006-02-07 2006-02-07 Device for controlling air-fuel ratio per cylinder of internal combustion engine
US11/483,602 US7356985B2 (en) 2005-07-19 2006-07-11 Air-fuel ratio controller for internal combustion engine
DE102006000347A DE102006000347B4 (en) 2005-07-19 2006-07-18 Air-fuel ratio control for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029811A JP2007211609A (en) 2006-02-07 2006-02-07 Device for controlling air-fuel ratio per cylinder of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007211609A true JP2007211609A (en) 2007-08-23

Family

ID=38490281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029811A Pending JP2007211609A (en) 2005-07-19 2006-02-07 Device for controlling air-fuel ratio per cylinder of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007211609A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069624A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio sensor and internal combustion engine control device
JP2009127594A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Abnormality diagnostic system of air-fuel ratio sensor
JP2009287532A (en) * 2008-05-30 2009-12-10 Denso Corp Fuel injection control device for internal combustion engine
JP5093408B1 (en) * 2011-07-11 2012-12-12 トヨタ自動車株式会社 Control device for internal combustion engine
JP2019194451A (en) * 2018-05-02 2019-11-07 株式会社デンソー Air-fuel ratio estimation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069624A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio sensor and internal combustion engine control device
JP2009127594A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Abnormality diagnostic system of air-fuel ratio sensor
JP2009128273A (en) * 2007-11-27 2009-06-11 Toyota Motor Corp Air/fuel ratio sensor and internal combustion engine control device
US8131451B2 (en) 2007-11-27 2012-03-06 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio sensor and control apparatus for internal combustion engine
JP2009287532A (en) * 2008-05-30 2009-12-10 Denso Corp Fuel injection control device for internal combustion engine
JP5093408B1 (en) * 2011-07-11 2012-12-12 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013008295A1 (en) * 2011-07-11 2013-01-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP2019194451A (en) * 2018-05-02 2019-11-07 株式会社デンソー Air-fuel ratio estimation device
JP7091814B2 (en) 2018-05-02 2022-06-28 株式会社デンソー Air-fuel ratio estimator

Similar Documents

Publication Publication Date Title
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US7356985B2 (en) Air-fuel ratio controller for internal combustion engine
US7487035B2 (en) Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP4321411B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4835692B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
US7742870B2 (en) Air-fuel ratio control device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP4193869B2 (en) Exhaust gas purification catalyst deterioration diagnosis device
JP2008128080A (en) Control device for internal combustion engine
US20130184973A1 (en) Fuel injection amount control apparatus for an internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2013253593A (en) Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP4600699B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2009092002A (en) Air-fuel ratio control device for internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP2001304018A (en) Air/fuel ratio control device for internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP4419952B2 (en) Air-fuel ratio control device for internal combustion engine
JP6361534B2 (en) Control device for internal combustion engine