JP2008128161A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2008128161A
JP2008128161A JP2006316506A JP2006316506A JP2008128161A JP 2008128161 A JP2008128161 A JP 2008128161A JP 2006316506 A JP2006316506 A JP 2006316506A JP 2006316506 A JP2006316506 A JP 2006316506A JP 2008128161 A JP2008128161 A JP 2008128161A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
ratio sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006316506A
Other languages
Japanese (ja)
Inventor
Masanori Kurosawa
雅徳 黒澤
Masae Nozawa
政衛 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006316506A priority Critical patent/JP2008128161A/en
Priority to US11/984,020 priority patent/US7487035B2/en
Publication of JP2008128161A publication Critical patent/JP2008128161A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To improve estimation accuracy of the each cylinder air-fuel ratio when responsiveness of an air-fuel ratio sensor is deteriorated, in a system for estimating the air-fuel ratio (the each cylinder air-fuel ratio) of respective cylinders based on output of the air-fuel ratio sensor arranged in an exhaust confluent part of an engine. <P>SOLUTION: An estimation error in the each cylinder air-fuel ratio by output reduction in the air-fuel ratio sensor 37, is corrected by correcting an estimate of the each cylinder air-fuel ratio by using correction gain, by learning the correction gain corresponding to an output reduction quantity of the air-fuel ratio sensor 37, by calculating the correction gain corresponding to a deterioration degree of the responsiveness of the air-fuel ratio sensor 37, and by detecting the deterioration degree of the responsiveness of the air-fuel ratio sensor 37 in a high load region of the engine 11. Variations of the air-fuel ratios among cylinders are also calculated, by calculating a deviation between the estimated air-fuel ratio and the reference air-fuel ratio of the respective cylinders after a correction. Thus, the estimation accuracy of the each cylinder air-fuel ratio when the responsiveness of the air-fuel ratio sensor is deteriorated, detecting accuracy of the variations of the air-fuel ratios among the cylinders, is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の複数の気筒の排出ガスが合流する排気合流部に設置した空燃比センサの出力に基づいて各気筒の空燃比を推定する機能を備えた内燃機関の制御装置に関する発明である。   The present invention relates to an internal combustion engine control device having a function of estimating an air-fuel ratio of each cylinder based on an output of an air-fuel ratio sensor installed at an exhaust gas merging portion where exhaust gases of a plurality of cylinders of the internal combustion engine merge. is there.

近年、内燃機関の空燃比制御精度を向上させるために、特許文献1(特許第3357572号公報)に記載されているように、複数の気筒の排出ガスが合流する排気合流部に設置した1つの空燃比センサの出力(排気合流部の空燃比)と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比(気筒別空燃比)を推定し、その推定結果に基づいて各気筒の空燃比の気筒間ばらつきが小さくなるように各気筒の空燃比補正量を算出して各気筒の空燃比(例えば燃料噴射量)を気筒毎に制御する気筒別空燃比制御を実施するようにしたものがある。   In recent years, in order to improve the air-fuel ratio control accuracy of an internal combustion engine, as described in Patent Document 1 (Japanese Patent No. 3357572), one installed in an exhaust merging section where exhaust gases of a plurality of cylinders merge The air-fuel ratio of each cylinder (air-fuel ratio for each cylinder) is estimated using a model that associates the output of the air-fuel ratio sensor (the air-fuel ratio of the exhaust gas merging portion) with the air-fuel ratio of each cylinder. A cylinder-by-cylinder air-fuel ratio control is performed in which the air-fuel ratio correction amount of each cylinder is calculated so as to reduce the variation in the air-fuel ratio of each cylinder and the air-fuel ratio (for example, fuel injection amount) of each cylinder is controlled for each cylinder. There is what I did.

更に、上記特許文献1の技術では、空燃比センサの応答性の劣化よって気筒別空燃比の推定精度が低下することを防止するために、空燃比センサの応答速度を判定し、その判定結果に応じて空燃比センサで空燃比を検出するタイミングを補正するようにしている。
特許第3357572号公報(第1頁等)
Furthermore, in the technique of Patent Document 1, in order to prevent the estimation accuracy of the cylinder-by-cylinder air-fuel ratio from deteriorating due to the deterioration of the response of the air-fuel ratio sensor, the response speed of the air-fuel ratio sensor is determined, Accordingly, the timing at which the air-fuel ratio is detected by the air-fuel ratio sensor is corrected.
Japanese Patent No. 3357572 (first page, etc.)

ところで、空燃比センサの応答性が劣化すると、空燃比センサの出力値も低下することがある。しかし、上記特許文献1の技術では、空燃比センサの応答性が劣化したときの空燃比センサの出力低下の影響が全く考慮されていないため、空燃比センサの応答性が劣化したときの空燃比センサの出力低下によって、空燃比センサの出力に基づいた気筒別空燃比の推定精度が低下する可能性がある。   By the way, when the responsiveness of the air-fuel ratio sensor deteriorates, the output value of the air-fuel ratio sensor may also decrease. However, in the technique of Patent Document 1, since the influence of the output reduction of the air-fuel ratio sensor when the responsiveness of the air-fuel ratio sensor deteriorates is not considered at all, the air-fuel ratio when the responsiveness of the air-fuel ratio sensor deteriorates is not considered. There is a possibility that the estimation accuracy of the cylinder-by-cylinder air-fuel ratio based on the output of the air-fuel ratio sensor may decrease due to the decrease in the output of the sensor.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、空燃比センサの応答性劣化時の気筒別空燃比の推定精度を向上させることができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of such circumstances. Accordingly, the object of the present invention is to provide an internal combustion engine capable of improving the estimation accuracy of the cylinder-by-cylinder air-fuel ratio when the response of the air-fuel ratio sensor is deteriorated. It is to provide a control device.

上記目的を達成するために、請求項1に係る発明は、内燃機関の複数の気筒の排出ガスが合流する排気合流部に空燃比センサを設置し、この空燃比センサの出力に基づいて各気筒の空燃比(以下「気筒別空燃比」という)を推定する内燃機関の制御装置において、内燃機関の高負荷領域で空燃比センサの応答性の劣化度合をセンサ応答性劣化度合検出手段により検出して、検出した空燃比センサの応答性の劣化度合に基づいて該空燃比センサの出力低下分に応じた補正ゲインを補正ゲイン学習手段により学習し、学習した補正ゲインを用いて気筒別空燃比の推定値を補正するようにしたものである。   In order to achieve the above object, according to a first aspect of the present invention, an air-fuel ratio sensor is installed in an exhaust gas merging portion where exhaust gases of a plurality of cylinders of an internal combustion engine merge, and each cylinder is based on the output of the air-fuel ratio sensor. In a control device for an internal combustion engine that estimates the air-fuel ratio of the engine (hereinafter referred to as “cylinder-by-cylinder air-fuel ratio”), the degree of deterioration of the response of the air-fuel ratio sensor is detected by the sensor response deterioration degree detection means in the high load region of the internal combustion engine. Thus, the correction gain learning means learns a correction gain corresponding to the decrease in the output of the air-fuel ratio sensor based on the detected deterioration degree of the responsiveness of the air-fuel ratio sensor, and the cylinder-by-cylinder air-fuel ratio is determined using the learned correction gain. The estimated value is corrected.

内燃機関の排出ガス量が多くなる高負荷領域では、空燃比の変化に対する空燃比センサの応答性を精度良く検出することができる。更に、空燃比センサの応答性が劣化したときには、その劣化度合に応じて空燃比センサの出力が低下する。従って、高負荷領域で検出した空燃比センサの応答性の劣化度合を用いれば、空燃比センサの出力低下分に応じた補正ゲインを精度良く学習することができ、この補正ゲインを用いて気筒別空燃比の推定値を補正すれば、空燃比センサの出力低下による気筒別空燃比の推定誤差を精度良く補正することができ、空燃比センサの応答性劣化時の気筒別空燃比の推定精度を向上させることができる。   In a high load region where the exhaust gas amount of the internal combustion engine increases, the responsiveness of the air-fuel ratio sensor to the change in air-fuel ratio can be detected with high accuracy. Furthermore, when the responsiveness of the air-fuel ratio sensor deteriorates, the output of the air-fuel ratio sensor decreases according to the degree of deterioration. Therefore, by using the degree of deterioration of the responsiveness of the air-fuel ratio sensor detected in the high load region, it is possible to accurately learn a correction gain corresponding to the output decrease of the air-fuel ratio sensor. By correcting the estimated value of the air-fuel ratio, it is possible to accurately correct the estimation error of the cylinder-by-cylinder air-fuel ratio due to the decrease in the output of the air-fuel ratio sensor. Can be improved.

また、請求項2のように、内燃機関の運転状態に応じて区分された複数の学習領域毎に空燃比センサの応答性の劣化度合を検出して、学習領域毎に空燃比センサの応答性の劣化度合に基づいて該空燃比センサの出力低下分に応じた補正ゲインを学習し、学習領域毎に補正ゲインを用いて気筒別空燃比の推定値を補正するようにしても良い。このようにすれば、内燃機関の運転状態に左右されずに、空燃比センサの出力低下による気筒別空燃比の推定誤差を精度良く補正することができる。   Further, as described in claim 2, the degree of deterioration of the responsiveness of the air-fuel ratio sensor is detected for each of a plurality of learning regions divided according to the operating state of the internal combustion engine, and the responsiveness of the air-fuel ratio sensor is detected for each learning region. A correction gain corresponding to the output decrease of the air-fuel ratio sensor may be learned based on the degree of deterioration of the air-fuel ratio, and the estimated value of the cylinder-by-cylinder air-fuel ratio may be corrected using the correction gain for each learning region. In this way, it is possible to accurately correct the estimation error of the cylinder-by-cylinder air-fuel ratio due to the decrease in the output of the air-fuel ratio sensor without being influenced by the operating state of the internal combustion engine.

更に、請求項3のように、空燃比センサの出力に基づいて気筒別空燃比を推定する際に、空燃比センサの応答性の劣化度合に応じて空燃比センサで空燃比を検出するタイミングを補正するようにしても良い。このようにすれば、空燃比センサで空燃比を検出するタイミングを空燃比センサの応答性の劣化度合に応じて変化させて適正なタイミングに設定することができ、空燃比センサの応答性劣化時の気筒別空燃比の推定精度を更に向上させることができる。   Further, as described in claim 3, when estimating the air-fuel ratio for each cylinder based on the output of the air-fuel ratio sensor, the timing at which the air-fuel ratio sensor detects the air-fuel ratio in accordance with the degree of deterioration of the responsiveness of the air-fuel ratio sensor. You may make it correct | amend. In this way, the timing at which the air-fuel ratio sensor detects the air-fuel ratio can be changed according to the degree of deterioration of the response of the air-fuel ratio sensor and set to an appropriate timing. The estimation accuracy of the cylinder-by-cylinder air-fuel ratio can be further improved.

また、請求項4のように、補正ゲインを用いて補正した後の気筒別空燃比の推定値に基づいて各気筒の空燃比の気筒間ばらつきを検出するようにしても良い。このようにすれば、空燃比センサの応答性劣化時の各気筒の空燃比の気筒間ばらつきの検出精度を向上させることができる。   Further, as described in claim 4, the variation in the air-fuel ratio of each cylinder may be detected based on the estimated value of the air-fuel ratio for each cylinder after correction using the correction gain. In this way, it is possible to improve the detection accuracy of the variation in the air-fuel ratio among the cylinders when the responsiveness of the air-fuel ratio sensor is deteriorated.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図7に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 that is an internal combustion engine, for example, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. . On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられていると共に、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the crank of the engine 11. A crank angle sensor 33 that outputs a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the rotation of the shaft is provided.

一方、エンジン11の各気筒の排気マニホールド35が合流する排気合流部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust gas converging portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 joins. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上述した空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 described above are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

また、ECU40は、後述する図2乃至図5の気筒別空燃比制御用の各ルーチンを実行することで、エンジン運転中に空燃比センサ37の検出値(排気合流部36を流れる排出ガスの空燃比)と各気筒の空燃比とを関連付けたモデル(以下「気筒別空燃比推定モデル」という)を用いて空燃比センサ37の検出値に基づいて各気筒の空燃比(気筒別空燃比)を推定し、各気筒の推定空燃比と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)との偏差を算出することで、各気筒の空燃比の気筒間ばらつきを算出する。そして、各気筒の空燃比の気筒間ばらつきが小さくなるように各気筒の空燃比補正係数(各気筒の燃料噴射量の補正係数)を算出し、その算出結果に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して各気筒の空燃比の気筒間ばらつきを小さくするように制御する気筒別空燃比制御を実施する。   In addition, the ECU 40 executes each routine for cylinder-by-cylinder air-fuel ratio control described later with reference to FIGS. 2 to 5, thereby detecting the detected value of the air-fuel ratio sensor 37 during the engine operation (the exhaust gas flowing through the exhaust gas merging section 36). The air-fuel ratio (cylinder-specific air-fuel ratio) of each cylinder is determined based on the detected value of the air-fuel ratio sensor 37 using a model (hereinafter referred to as “cylinder-specific air-fuel ratio estimation model”) that associates the air-fuel ratio of each cylinder with the air-fuel ratio. By estimating and calculating the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio (the average value or control target value of the estimated air-fuel ratios of all cylinders), the variation in the air-fuel ratio of each cylinder is calculated. Then, the air-fuel ratio correction coefficient (correction coefficient of the fuel injection amount of each cylinder) is calculated so that the variation in the air-fuel ratio of each cylinder is reduced, and the fuel injection amount of each cylinder is calculated based on the calculation result. By correcting the air-fuel ratio, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder, and the cylinder-by-cylinder air-fuel ratio control is performed to control the variation in the air-fuel ratio among the cylinders.

ところで、空燃比センサ37の応答性が劣化すると、空燃比センサ37の出力値も低下することがあり、この空燃比センサ37の出力低下によって、空燃比センサ37の出力に基づいた気筒別空燃比の推定精度が低下する可能性がある。   By the way, when the responsiveness of the air-fuel ratio sensor 37 deteriorates, the output value of the air-fuel ratio sensor 37 may also decrease, and due to the decrease in the output of the air-fuel ratio sensor 37, the cylinder-by-cylinder air-fuel ratio based on the output of the air-fuel ratio sensor 37 The estimation accuracy of may decrease.

この対策として、本実施例1では、エンジン11の高負荷領域で空燃比センサ37の応答性の劣化度合を検出して、この空燃比センサ37の応答性の劣化度合に応じた補正ゲインを算出することで、空燃比センサ37の出力低下分に応じた補正ゲインを求めて学習し、この補正ゲインを用いて気筒別空燃比の推定値を補正するようにしている。   As a countermeasure, in the first embodiment, the deterioration degree of the responsiveness of the air-fuel ratio sensor 37 is detected in the high load region of the engine 11 and the correction gain corresponding to the deterioration degree of the responsiveness of the air-fuel ratio sensor 37 is calculated. Thus, a correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is obtained and learned, and the estimated value of the cylinder-by-cylinder air-fuel ratio is corrected using this correction gain.

エンジン11の排出ガス量が多くなる高負荷領域では、空燃比の変化に対する空燃比センサ37の応答性を精度良く検出することができる。更に、空燃比センサ37の応答性が劣化したときには、その劣化度合に応じて空燃比センサ37の出力が低下する。従って、高負荷領域で検出した空燃比センサ37の応答性の劣化度合に応じた補正ゲインを求めることで、空燃比センサ37の出力低下分に応じた補正ゲインを精度良く学習することができ、この補正ゲインを用いて気筒別空燃比の推定値を補正することで、空燃比センサ37の出力低下による気筒別空燃比の推定誤差を精度良く補正することができる。   In the high load region where the exhaust gas amount of the engine 11 increases, the responsiveness of the air-fuel ratio sensor 37 to the change in the air-fuel ratio can be detected with high accuracy. Furthermore, when the responsiveness of the air-fuel ratio sensor 37 deteriorates, the output of the air-fuel ratio sensor 37 decreases according to the degree of deterioration. Therefore, by obtaining a correction gain according to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 detected in the high load region, the correction gain according to the output decrease of the air-fuel ratio sensor 37 can be learned with high accuracy. By correcting the estimated value of the cylinder-by-cylinder air-fuel ratio using this correction gain, the estimation error of the cylinder-by-cylinder air-fuel ratio due to the decrease in the output of the air-fuel ratio sensor 37 can be accurately corrected.

以下、ECU40が実行する図2乃至図5の気筒別空燃比制御用の各ルーチンの処理内容を説明する。   Hereinafter, processing contents of each routine for cylinder-by-cylinder air-fuel ratio control of FIGS. 2 to 5 executed by the ECU 40 will be described.

[気筒別空燃比制御ルーチン]
図2に示す気筒別空燃比制御ルーチンは、ECU40の電源オン中に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、空燃比センサ37の出力(空燃比検出値)を読み込んだ後、ステップ102に進み、後述する図3の気筒別空燃比推定ルーチンを実行して、空燃比センサ37の検出値に基づいて各気筒の空燃比を推定し、これら各気筒の推定空燃比を補正ゲインを用いて補正する。
[Air-fuel ratio control routine for each cylinder]
The cylinder-by-cylinder air-fuel ratio control routine shown in FIG. 2 is executed at a predetermined cycle while the ECU 40 is powered on. When this routine is started, first, at step 101, the output of the air-fuel ratio sensor 37 (air-fuel ratio detection value) is read, then the routine proceeds to step 102, where a cylinder-by-cylinder air-fuel ratio estimation routine of FIG. Thus, the air-fuel ratio of each cylinder is estimated based on the detected value of the air-fuel ratio sensor 37, and the estimated air-fuel ratio of each cylinder is corrected using the correction gain.

この後、ステップ103に進み、補正ゲインを用いて補正した後の各気筒の推定空燃比と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)との偏差を算出することで、各気筒の空燃比の気筒間ばらつきを算出する。このステップ103の処理が特許請求の範囲でいう気筒間ばらつき検出手段としての役割を果たす。   Thereafter, the process proceeds to step 103, and the deviation between the estimated air-fuel ratio of each cylinder after correction using the correction gain and the reference air-fuel ratio (the average value or control target value of the estimated air-fuel ratios of all cylinders) is calculated. Then, the variation between cylinders in the air-fuel ratio of each cylinder is calculated. The processing in step 103 serves as a cylinder-to-cylinder variation detecting means in the claims.

この後、ステップ104に進み、各気筒の空燃比の気筒ばらつきが小さくなるように各気筒の空燃比補正係数(各気筒の燃料噴射量の補正係数)を算出した後、ステップ105に進み、各気筒の空燃比補正係数に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して各気筒の空燃比の気筒間ばらつきを小さくするように制御する気筒別空燃比制御を実施する。   Thereafter, the process proceeds to step 104, and after calculating the air-fuel ratio correction coefficient (correction coefficient of the fuel injection amount of each cylinder) so that the cylinder variation of the air-fuel ratio of each cylinder is reduced, the process proceeds to step 105. By correcting the fuel injection amount of each cylinder based on the air-fuel ratio correction coefficient of the cylinder, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder, and the variation in the air-fuel ratio of each cylinder is reduced. The cylinder-by-cylinder air-fuel ratio control is performed so that the control is performed.

[気筒別空燃比推定ルーチン]
図3に示す気筒別空燃比推定ルーチンは、前記図2の気筒別空燃比制御ルーチンのステップ102で実行されるサブルーチンである。本ルーチンが起動されると、まず、ステップ201で、空燃比センサ37の応答性が劣化しているか否かを、図示しないセンサ応答性劣化診断ルーチンの診断結果等に基づいて判定する。具体的には、後述する方法で空燃比センサ37の応答時間Tを計測し、この応答時間Tを所定の劣化判定値(又は応答時間Tの前回値)と比較して空燃比センサ37の応答性の劣化の有無を判定する。
[Individual air-fuel ratio estimation routine]
The cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 3 is a subroutine executed in step 102 of the cylinder-by-cylinder air-fuel ratio control routine shown in FIG. When this routine is started, first, at step 201, it is determined whether or not the responsiveness of the air-fuel ratio sensor 37 has deteriorated based on the diagnosis result of a sensor responsiveness deterioration diagnosis routine (not shown). Specifically, the response time T of the air-fuel ratio sensor 37 is measured by a method described later, and the response time T is compared with a predetermined deterioration determination value (or the previous value of the response time T) to determine the response of the air-fuel ratio sensor 37. The presence or absence of sex deterioration is determined.

このステップ201で、空燃比センサ37の応答性が劣化していないと判定された場合には、ステップ202に進み、補正ゲインを「1.0」に設定する。この場合、各気筒の推定空燃比は実質的には補正されない。   If it is determined in step 201 that the responsiveness of the air-fuel ratio sensor 37 has not deteriorated, the process proceeds to step 202 and the correction gain is set to “1.0”. In this case, the estimated air-fuel ratio of each cylinder is not substantially corrected.

一方、上記ステップ201で、空燃比センサ37の応答性が劣化していると判定された場合には、ステップ203に進み、後述する図4の補正ゲイン学習ルーチンを実行して、エンジン11の高負荷領域で空燃比センサ37の応答性の劣化度合を検出し、空燃比センサ37の応答性の劣化度合に基づいて空燃比センサ37の出力低下分に応じた補正ゲインを学習する。   On the other hand, if it is determined in step 201 that the responsiveness of the air-fuel ratio sensor 37 has deteriorated, the routine proceeds to step 203 where a correction gain learning routine shown in FIG. The degree of responsiveness deterioration of the air-fuel ratio sensor 37 is detected in the load region, and a correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is learned based on the degree of responsiveness deterioration of the air-fuel ratio sensor 37.

この後、ステップ204に進み、気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定した後、ステップ205に進み、各気筒の推定空燃比にそれぞれ補正ゲインを乗算することで、各気筒の推定空燃比を補正して各気筒の最終的な推定空燃比を求める。このステップ205の処理が特許請求の範囲でいう気筒別空燃比補正手段としての役割を果たす。   Thereafter, the process proceeds to step 204, where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detected value of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model, and then the process proceeds to step 205. By multiplying the estimated air-fuel ratio of each cylinder by a correction gain, the estimated air-fuel ratio of each cylinder is corrected to obtain the final estimated air-fuel ratio of each cylinder. The processing in step 205 serves as cylinder-by-cylinder air-fuel ratio correction means in the claims.

[補正ゲイン学習ルーチン]
図4に示す補正ゲイン学習ルーチンは、前記図3の気筒別空燃比推定ルーチンのステップ203で実行されるサブルーチンであり、特許請求の範囲でいう補正ゲイン学習手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ301で、エンジン運転状態が高負荷領域であるか否かを、例えばエンジン負荷K(吸入空気量や吸気管圧力等)が所定値HK以上であるか否かによって判定する。このステップ301で、エンジン運転状態が高負荷領域ではないと判定された場合には、ステップ302以降の補正ゲイン学習に関する処理を行うことなく、本ルーチンを終了する。
[Correction gain learning routine]
The correction gain learning routine shown in FIG. 4 is a subroutine executed in step 203 of the cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 3, and serves as correction gain learning means in the claims. When this routine is started, first, at step 301, it is determined whether or not the engine operating state is in a high load region, for example, whether the engine load K (intake air amount, intake pipe pressure, etc.) is a predetermined value HK or more. Judge by whether or not. If it is determined in step 301 that the engine operating state is not in the high load region, this routine is terminated without performing the processing related to correction gain learning in step 302 and subsequent steps.

その後、上記ステップ301で、エンジン運転状態が高負荷領域であると判定されたときに、ステップ302以降の補正ゲイン学習に関する処理を次のようにして実行する。まず、ステップ302で、後述する図5のセンサ応答性劣化度合検出ルーチンを実行して、エンジン11の高負荷領域で空燃比センサ37の応答性の劣化度合Rを検出する。   Thereafter, when it is determined in step 301 that the engine operating state is in the high load region, the processing related to correction gain learning in step 302 and subsequent steps is executed as follows. First, in step 302, a sensor responsiveness deterioration degree detection routine of FIG. 5 described later is executed to detect the deterioration degree R of the responsiveness of the air-fuel ratio sensor 37 in the high load region of the engine 11.

この後、ステップ303に進み、空燃比センサ37の応答性の劣化度合Rに応じた補正ゲインをマップ又は数式等により算出することで、空燃比センサ37の出力低下分に応じた補正ゲインを求め、この補正ゲインをECU40のバックアップRAM等の書き換え可能な不揮発性メモリに記憶することで、補正ゲインを学習する。   Thereafter, the process proceeds to step 303, and a correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is obtained by calculating a correction gain corresponding to the degree of deterioration R of the responsiveness of the air-fuel ratio sensor 37 using a map or a mathematical expression. The correction gain is learned by storing the correction gain in a rewritable nonvolatile memory such as a backup RAM of the ECU 40.

[センサ応答性劣化度合検出ルーチン]
図5に示すセンサ応答性劣化度合検出ルーチンは、前記図4の補正ゲイン学習ルーチンのステップ302で実行されるサブルーチンであり、特許請求の範囲でいうセンサ応答性劣化度合検出手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ401で、劣化度合検出実行フラグが「1」にセットされているか否かを判定する。この劣化度合検出実行フラグは、エンジン11が始動される毎(例えばECU40の電源がオンされる毎)に「1」にセットされる。或は、空燃比センサ37の応答性劣化度合の前回検出時からの積算走行距離又は積算時間が所定値を越える毎に劣化度合検出実行フラグが「1」にセットされるようにしても良い。
[Sensor responsiveness degradation degree detection routine]
The sensor responsiveness deterioration degree detection routine shown in FIG. 5 is a subroutine executed in step 302 of the correction gain learning routine of FIG. 4, and serves as a sensor responsiveness deterioration degree detection means in the claims. . When this routine is started, first, at step 401, it is determined whether or not the deterioration degree detection execution flag is set to “1”. This deterioration degree detection execution flag is set to “1” every time the engine 11 is started (for example, every time the power of the ECU 40 is turned on). Alternatively, the deterioration degree detection execution flag may be set to “1” every time the accumulated travel distance or the accumulated time from the previous detection of the responsiveness deterioration degree of the air-fuel ratio sensor 37 exceeds a predetermined value.

このステップ401で、劣化度合検出実行フラグが「1」にセットされていると判定された場合には、ステップ402以降の劣化度合検出に関する処理を次のようにして実行する。まず、ステップ402で、燃料カットが開始されたか否かを判定し、燃料カットが開始されたと判定されたときに、ステップ403に進み、タイマを作動させて燃料カット開始からの経過時間を計測する。   If it is determined in step 401 that the deterioration degree detection execution flag is set to “1”, the processing relating to the deterioration degree detection in and after step 402 is executed as follows. First, in step 402, it is determined whether or not the fuel cut has been started. When it is determined that the fuel cut has been started, the process proceeds to step 403 and the timer is activated to measure the elapsed time from the start of the fuel cut. .

この後、ステップ404に進み、空燃比センサ37の出力が所定のリーン判定値を越えたか否かを判定し、空燃比センサ37の出力がリーン判定値を越えたと判定されたときに、ステップ405に進み、図6に示すように、タイマのカウント値に基づいて燃料カット開始から空燃比センサ37の出力がリーン判定値を越えるまでに要した応答時間Tを計測する。   Thereafter, the routine proceeds to step 404, where it is determined whether the output of the air-fuel ratio sensor 37 has exceeded a predetermined lean determination value, and when it is determined that the output of the air-fuel ratio sensor 37 has exceeded the lean determination value, step 405 is performed. Then, as shown in FIG. 6, the response time T required from the start of fuel cut until the output of the air-fuel ratio sensor 37 exceeds the lean determination value is measured based on the count value of the timer.

この後、ステップ406に進み、空燃比センサ37の今回の応答時間T(i) と前回の応答時間T(i-1) との差に基づいて今回の応答性劣化分ΔRを求め、前回の空燃比センサ37の応答性劣化度合R(i-1) に今回の応答性劣化分ΔRを積算して、今回の空燃比センサ37の応答性劣化度合R(i) を求める。
R(i) =R(i-1) +ΔR
Thereafter, the process proceeds to step 406, where the current response deterioration ΔR is obtained based on the difference between the current response time T (i) of the air-fuel ratio sensor 37 and the previous response time T (i-1). The responsiveness deterioration degree R (i) of the current air-fuel ratio sensor 37 is obtained by adding the current responsiveness deterioration amount ΔR to the responsiveness deterioration degree R (i-1) of the air-fuel ratio sensor 37.
R (i) = R (i-1) + ΔR

尚、空燃比センサ37の今回の応答時間T(i) と初期の応答時間T0 (応答性が劣化していないときの応答時間)との差に基づいて今回の空燃比センサ37の応答性劣化度合R(i) を求めるようにしても良い。   The response deterioration of the current air-fuel ratio sensor 37 is based on the difference between the current response time T (i) of the air-fuel ratio sensor 37 and the initial response time T0 (response time when the response is not deteriorated). The degree R (i) may be obtained.

このようにして求めた空燃比センサ37の応答性劣化度合R(i) は、ECU40のバックアップRAM等の書き換え可能な不揮発性メモリに記憶する。
この後、ステップ407に進み、劣化度合検出実行フラグを「0」にリセットして、本ルーチンを終了する。
The responsiveness deterioration degree R (i) of the air-fuel ratio sensor 37 thus obtained is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 40.
Thereafter, the process proceeds to step 407, the deterioration degree detection execution flag is reset to “0”, and this routine is terminated.

一方、上記ステップ401で、劣化度合検出実行フラグが「0」にリセットされていると判定された場合には、ステップ402以降の劣化度合検出に関する処理を実行することなく、本ルーチンを終了する。   On the other hand, if it is determined in step 401 that the deterioration degree detection execution flag has been reset to “0”, this routine is terminated without executing the processing relating to the deterioration degree detection in and after step 402.

尚、本ルーチンでは、図6に示すように、燃料カット開始から空燃比センサ37の出力が所定のリーン判定値を越えるまでに要した応答時間Tを求めるようにしたが、燃料カット終了から空燃比センサ37の出力が所定のリッチ判定値を越えるまでに要した応答時間Tを求めるようにしても良い。   In this routine, as shown in FIG. 6, the response time T required from the start of the fuel cut until the output of the air-fuel ratio sensor 37 exceeds the predetermined lean determination value is obtained. The response time T required until the output of the fuel ratio sensor 37 exceeds a predetermined rich determination value may be obtained.

或は、図7に示すように、エンジン11の運転状態が定常状態のときに、燃料噴射量を強制的に増量補正(又は減量補正)して空燃比を強制的にリッチ方向(又はリーン方向)に変化させてから空燃比センサ37の出力が所定のリッチ判定値(又はリーン判定値)を越えるまでに要した応答時間Tを求めるようにしても良い。   Alternatively, as shown in FIG. 7, when the operating state of the engine 11 is in a steady state, the fuel injection amount is forcibly increased (or decreased) and the air-fuel ratio is forcibly made rich (or lean). ), The response time T required until the output of the air-fuel ratio sensor 37 exceeds a predetermined rich determination value (or lean determination value) may be obtained.

以上説明した本実施例1では、エンジン11の高負荷領域で空燃比センサ37の応答性の劣化度合を検出して、この空燃比センサ37の応答性の劣化度合に応じた補正ゲインを算出することで、空燃比センサ37の出力低下分に応じた補正ゲインを求めて学習し、この補正ゲインを用いて気筒別空燃比の推定値を補正するようにしたので、空燃比センサ37の出力低下による気筒別空燃比の推定誤差を精度良く補正することができ、空燃比センサの応答性劣化時の気筒別空燃比の推定精度、ひいては各気筒の空燃比の気筒間ばらつきの検出精度を向上させることができる。   In the first embodiment described above, the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 is detected in the high load region of the engine 11 and the correction gain corresponding to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 is calculated. Thus, the correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is obtained and learned, and the estimated value of the cylinder-by-cylinder air-fuel ratio is corrected using this correction gain. It is possible to accurately correct the estimation error of the cylinder-by-cylinder air-fuel ratio, and to improve the estimation accuracy of the cylinder-by-cylinder air-fuel ratio when the response of the air-fuel ratio sensor is deteriorated, and hence the detection accuracy of the variation in the air-fuel ratio of each cylinder be able to.

次に、図8を用いて本発明の実施例2を説明する。
本実施例2では、後述する図8の気筒別空燃比推定ルーチンを実行することで、空燃比センサ37の出力に基づいて気筒別空燃比を推定する際に、空燃比センサ37の応答性の劣化度合に応じて空燃比センサ37で空燃比を検出するタイミングを補正するようにしている。
Next, Embodiment 2 of the present invention will be described with reference to FIG.
In the second embodiment, when the cylinder-by-cylinder air-fuel ratio is estimated based on the output of the air-fuel ratio sensor 37 by executing a cylinder-by-cylinder air-fuel ratio estimation routine of FIG. The timing at which the air-fuel ratio sensor 37 detects the air-fuel ratio is corrected according to the degree of deterioration.

図8に示す気筒別空燃比推定ルーチンでは、ステップ201で、空燃比センサ37の応答性が劣化していると判定された場合には、ステップ203に進み、前述した図4の補正ゲイン学習ルーチンを実行して、エンジン11の高負荷領域で空燃比センサ37の応答性の劣化度合を検出し、空燃比センサ37の応答性の劣化度合に基づいて空燃比センサ37の出力低下分に応じた補正ゲインを学習する。   In the cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 8, if it is determined in step 201 that the responsiveness of the air-fuel ratio sensor 37 has deteriorated, the routine proceeds to step 203, and the above-described correction gain learning routine of FIG. Is executed to detect the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 in the high load region of the engine 11, and according to the output decrease of the air-fuel ratio sensor 37 based on the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37. Learn correction gain.

この後、ステップ203aに進み、空燃比センサ37の応答性の劣化度合に応じて空燃比センサ37で空燃比を検出するタイミングを補正する。これにより、空燃比センサ37で空燃比を検出するタイミングを空燃比センサ37の応答性の劣化度合に応じて変化させて適正なタイミングに設定する。このステップ203aの処理が特許請求の範囲でいう空燃比検出タイミング補正手段としての役割を果たす。   Thereafter, the process proceeds to step 203a, and the timing at which the air-fuel ratio sensor 37 detects the air-fuel ratio is corrected according to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37. As a result, the timing at which the air-fuel ratio sensor 37 detects the air-fuel ratio is changed according to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 and set to an appropriate timing. The processing in step 203a serves as air-fuel ratio detection timing correction means in the claims.

この後、気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定した後、各気筒の推定空燃比にそれぞれ補正ゲインを乗算することで、各気筒の推定空燃比を補正して各気筒の最終的な推定空燃比を求める(ステップ204,205)。   After that, after estimating the air-fuel ratio of the cylinder that is the target of air-fuel ratio estimation this time based on the detection value of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model, a correction gain is respectively applied to the estimated air-fuel ratio of each cylinder. By multiplying, the estimated air-fuel ratio of each cylinder is corrected to obtain the final estimated air-fuel ratio of each cylinder (steps 204 and 205).

以上説明した本実施例2では、空燃比センサ37の出力に基づいて気筒別空燃比を推定する際に、空燃比センサ37の応答性の劣化度合に応じて空燃比センサ37で空燃比を検出するタイミングを補正するようにしたので、空燃比センサ37で空燃比を検出するタイミングを空燃比センサ37の応答性の劣化度合に応じて変化させて適正なタイミングに設定することができ、空燃比センサ37の応答性劣化時の気筒別空燃比の推定精度を更に向上させることができる。   In the second embodiment described above, when the air-fuel ratio for each cylinder is estimated based on the output of the air-fuel ratio sensor 37, the air-fuel ratio sensor 37 detects the air-fuel ratio according to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37. The timing at which the air-fuel ratio sensor 37 detects the air-fuel ratio can be changed according to the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 and set to an appropriate timing. The estimation accuracy of the cylinder-by-cylinder air-fuel ratio when the response of the sensor 37 is deteriorated can be further improved.

尚、上記各実施例1,2では、常に高負荷領域で学習した補正ゲインを用いて気筒別空燃比の推定値を補正するようにしたが、気筒別空燃比の推定値を補正する際に、そのときのエンジン運転状態(例えばエンジン負荷)に応じて、高負荷領域で学習した補正ゲインを補正し、その補正ゲインを用いて気筒別空燃比の推定値を補正するようにしても良い。   In each of the first and second embodiments, the estimated value of the cylinder-by-cylinder air-fuel ratio is always corrected using the correction gain learned in the high load region. However, when correcting the estimated value of the cylinder-by-cylinder air-fuel ratio, The correction gain learned in the high load region may be corrected according to the engine operating state (for example, engine load) at that time, and the estimated value of the air-fuel ratio for each cylinder may be corrected using the correction gain.

次に、図9及び10を用いて本発明の実施例3を説明する。
本実施例3では、後述する図9及び図10の各ルーチンを実行することで、エンジン11の運転状態に応じて区分された複数の学習領域毎に空燃比センサ37の応答性の劣化度合を検出して、学習領域毎に空燃比センサ37の応答性の劣化度合に基づいて該空燃比センサ37の出力低下分に応じた補正ゲインを学習し、学習領域毎に補正ゲインを用いて気筒別空燃比の推定値を補正するようにしている。
Next, Embodiment 3 of the present invention will be described with reference to FIGS.
In the third embodiment, the degree of responsiveness deterioration of the air-fuel ratio sensor 37 is set for each of a plurality of learning regions divided according to the operating state of the engine 11 by executing routines shown in FIGS. Detecting a correction gain corresponding to a decrease in the output of the air-fuel ratio sensor 37 based on the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 for each learning region, and for each cylinder using the correction gain for each learning region The estimated value of the air-fuel ratio is corrected.

図9に示す気筒別空燃比推定ルーチンでは、ステップ501で、空燃比センサ37の応答性が劣化していると判定された場合に、ステップ503に進み、後述する図10の補正ゲイン学習ルーチンを実行して、エンジン11の運転状態(例えばエンジン負荷)に応じて区分された複数の学習領域毎に空燃比センサ37の応答性の劣化度合を検出し、学習領域毎に空燃比センサ37の応答性の劣化度合に基づいて空燃比センサ37の出力低下分に応じた補正ゲインを学習する。   In the cylinder-by-cylinder air-fuel ratio estimation routine shown in FIG. 9, if it is determined in step 501 that the responsiveness of the air-fuel ratio sensor 37 has deteriorated, the routine proceeds to step 503, and the correction gain learning routine in FIG. The degree of responsiveness deterioration of the air-fuel ratio sensor 37 is detected for each of the plurality of learning regions divided according to the operating state (for example, engine load) of the engine 11, and the response of the air-fuel ratio sensor 37 is detected for each learning region. The correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is learned based on the degree of deterioration of the property.

この後、ステップ504に進み、気筒別空燃比推定モデルを用いて今回の空燃比推定対象となる気筒の空燃比を空燃比センサ37の検出値に基づいて推定した後、ステップ505に進み、現在のエンジン運転領域がエンジン運転状態(例えばエンジン負荷)に応じて区分された複数の学習領域のうちのいずであるかを判定する。   Thereafter, the process proceeds to step 504, where the air-fuel ratio of the cylinder that is the current air-fuel ratio estimation target is estimated based on the detection value of the air-fuel ratio sensor 37 using the cylinder-by-cylinder air-fuel ratio estimation model, and then the process proceeds to step 505. It is determined whether the engine operating area is one of a plurality of learning areas divided according to the engine operating state (for example, engine load).

ステップ506に進み、現在のエンジン運転領域に対応した学習領域の補正ゲインを各気筒の推定空燃比に乗算することで、各気筒の推定空燃比を補正して各気筒の最終的な推定空燃比を求める。   Proceeding to step 506, the estimated air-fuel ratio of each cylinder is corrected by multiplying the estimated air-fuel ratio of each cylinder by the correction gain of the learning region corresponding to the current engine operation region, so that the final estimated air-fuel ratio of each cylinder is corrected. Ask for.

図10に示す補正ゲイン学習ルーチンでは、まず、ステップ601で、現在のエンジン運転領域がエンジン運転状態(例えばエンジン負荷)に応じて区分された複数の学習領域のうちのいずであるかを判定する。   In the correction gain learning routine shown in FIG. 10, first, in step 601, it is determined whether the current engine operation area is one of a plurality of learning areas divided according to the engine operation state (for example, engine load). To do.

この後、ステップ602に進み、前述した図5のセンサ応答性劣化度合検出ルーチンを実行して、現在のエンジン運転領域に対応した学習領域における空燃比センサ37の応答性の劣化度合Rを検出する。   Thereafter, the routine proceeds to step 602, where the aforementioned sensor responsiveness deterioration degree detection routine of FIG. 5 is executed to detect the responsiveness deterioration degree R of the air-fuel ratio sensor 37 in the learning region corresponding to the current engine operation region. .

この後、ステップ603に進み、現在のエンジン運転領域に対応した学習領域における空燃比センサ37の応答性の劣化度合Rに応じた補正ゲインをマップ又は数式等により算出することで、空燃比センサ37の出力低下分に応じた補正ゲインを求め、この補正ゲインをECU40のバックアップRAM等の書き換え可能な不揮発性メモリに記憶することで、補正ゲインを学習する。この際、現在のエンジン運転領域に対応した学習領域の補正ゲインの学習値が更新される。   Thereafter, the process proceeds to step 603, and the correction gain corresponding to the deterioration degree R of the responsiveness of the air-fuel ratio sensor 37 in the learning region corresponding to the current engine operation region is calculated by a map or a mathematical formula, whereby the air-fuel ratio sensor 37. The correction gain corresponding to the output decrease is obtained, and the correction gain is learned by storing the correction gain in a rewritable nonvolatile memory such as a backup RAM of the ECU 40. At this time, the learning value of the correction gain in the learning region corresponding to the current engine operation region is updated.

以上説明した本実施例3では、エンジン11の運転状態に応じて区分された複数の学習領域毎に空燃比センサ37の応答性の劣化度合を検出して、学習領域毎に空燃比センサ37の応答性の劣化度合に基づいて該空燃比センサ37の出力低下分に応じた補正ゲインを学習し、学習領域毎に補正ゲインを用いて気筒別空燃比の推定値を補正するようにしたので、エンジン運転状態に左右されずに、空燃比センサ37の出力低下による気筒別空燃比の推定誤差を精度良く補正することができる。   In the third embodiment described above, the degree of deterioration of the responsiveness of the air-fuel ratio sensor 37 is detected for each of the plurality of learning regions divided according to the operating state of the engine 11, and the air-fuel ratio sensor 37 is detected for each learning region. Since the correction gain corresponding to the output decrease of the air-fuel ratio sensor 37 is learned based on the deterioration degree of the responsiveness, the estimated value of the cylinder-by-cylinder air-fuel ratio is corrected using the correction gain for each learning region. The estimation error of the cylinder-by-cylinder air-fuel ratio due to the decrease in the output of the air-fuel ratio sensor 37 can be accurately corrected regardless of the engine operating state.

尚、上記各実施例1〜3では、空燃比センサ37の検出値と各気筒の空燃比とを関連付けた気筒別空燃比推定モデルを用いて各気筒の空燃比を推定するようにしたが、気筒別空燃比の推定方法は、気筒別空燃比推定モデルを用いた方法に限定されず、適宜変更しても良く、例えば、各気筒毎に空燃比を強制的に変化させる空燃比ディザ制御を実行したときの空燃比センサ37の出力に基づいて各気筒の空燃比を推定するようにしても良い。   In the first to third embodiments, the air-fuel ratio of each cylinder is estimated using the cylinder-by-cylinder air-fuel ratio estimation model that associates the detected value of the air-fuel ratio sensor 37 with the air-fuel ratio of each cylinder. The cylinder-by-cylinder air-fuel ratio estimation method is not limited to the method using the cylinder-by-cylinder air-fuel ratio estimation model, and may be changed as appropriate. For example, air-fuel ratio dither control for forcibly changing the air-fuel ratio for each cylinder is performed. The air-fuel ratio of each cylinder may be estimated based on the output of the air-fuel ratio sensor 37 when executed.

また、上記各実施例1〜3では、本発明を4気筒エンジンに適用したが、2気筒エンジンや3気筒エンジン或は5気筒以上のエンジンに本発明を適用しても良い。   In the first to third embodiments, the present invention is applied to a four-cylinder engine. However, the present invention may be applied to a two-cylinder engine, a three-cylinder engine, or an engine having five or more cylinders.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の気筒別空燃比制御ルーチンの処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio control routine according to the first embodiment. 実施例1の気筒別空燃比推定ルーチンの処理の流れを示すフローチャートである。3 is a flowchart showing a process flow of a cylinder-by-cylinder air-fuel ratio estimation routine according to the first embodiment. 実施例1の補正ゲイン学習ルーチンの処理の流れを示すフローチャートである。5 is a flowchart illustrating a processing flow of a correction gain learning routine according to the first embodiment. 実施例1のセンサ応答性劣化度合検出ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a sensor responsiveness deterioration degree detection routine according to the first embodiment. 実施例1の空燃比センサの応答時間の検出方法を説明するためのタイムチャートである。6 is a time chart for explaining a method for detecting a response time of the air-fuel ratio sensor according to the first embodiment. 実施例1の空燃比センサの応答時間の他の検出方法を説明するためのタイムチャートである。It is a time chart for demonstrating the other detection method of the response time of the air fuel ratio sensor of Example 1. FIG. 実施例2の気筒別空燃比推定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a processing flow of a cylinder-by-cylinder air-fuel ratio estimation routine according to a second embodiment. 実施例3の気筒別空燃比推定ルーチンの処理の流れを示すフローチャートである。12 is a flowchart showing a flow of processing of a cylinder-by-cylinder air-fuel ratio estimation routine according to a third embodiment. 実施例3の補正ゲイン学習ルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a processing flow of a correction gain learning routine according to the third embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、35…排気マニホールド、36…排気合流部、37…空燃比センサ、40…ECU(センサ応答性劣化度合検出手段,補正ゲイン学習手段,気筒別空燃比補正手段,気筒間ばらつき検出手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 35 ... Exhaust manifold, 36 ... Exhaust junction, 37 ... Air-fuel ratio sensor, 40 ... ECU (sensor response deterioration degree) Detecting means, correction gain learning means, cylinder-by-cylinder air-fuel ratio correcting means, inter-cylinder variation detecting means)

Claims (4)

内燃機関の複数の気筒の排出ガスが合流する排気合流部に空燃比センサを設置し、この空燃比センサの出力に基づいて各気筒の空燃比(以下「気筒別空燃比」という)を推定する内燃機関の制御装置において、
内燃機関の高負荷領域で前記空燃比センサの応答性の劣化度合を検出するセンサ応答性劣化度合検出手段と、
前記センサ応答性劣化度合検出手段で検出した前記空燃比センサの応答性の劣化度合に基づいて該空燃比センサの出力低下分に応じた補正ゲインを学習する補正ゲイン学習手段と、
前記補正ゲイン学習手段で学習した補正ゲインを用いて前記気筒別空燃比の推定値を補正する気筒別空燃比補正手段と
を備えていることを特徴とする内燃機関の制御装置。
An air-fuel ratio sensor is installed at an exhaust gas merging portion where exhaust gases from a plurality of cylinders of an internal combustion engine merge, and the air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-specific air-fuel ratio”) is estimated based on the output of the air-fuel ratio sensor. In a control device for an internal combustion engine,
Sensor responsiveness deterioration degree detecting means for detecting the deterioration degree of the responsiveness of the air-fuel ratio sensor in a high load region of the internal combustion engine;
Correction gain learning means for learning a correction gain according to the output decrease of the air-fuel ratio sensor based on the deterioration degree of the response of the air-fuel ratio sensor detected by the sensor responsiveness deterioration degree detection means;
A control apparatus for an internal combustion engine, comprising: a cylinder-by-cylinder air-fuel ratio correction unit that corrects the estimated value of the cylinder-by-cylinder air-fuel ratio using the correction gain learned by the correction gain learning unit.
内燃機関の複数の気筒の排出ガスが合流する排気合流部に空燃比センサを設置し、この空燃比センサの出力に基づいて各気筒の空燃比(以下「気筒別空燃比」という)を推定する内燃機関の制御装置において、
内燃機関の運転状態に応じて区分された複数の学習領域毎に前記空燃比センサの応答性の劣化度合を検出するセンサ応答性劣化度合検出手段と、
前記学習領域毎に前記センサ応答性劣化度合検出手段で検出した前記空燃比センサの応答性の劣化度合に基づいて該空燃比センサの出力低下分に応じた補正ゲインを学習する補正ゲイン学習手段と、
前記学習領域毎に前記補正ゲイン学習手段で学習した補正ゲインを用いて前記気筒別空燃比の推定値を補正する気筒別空燃比補正手段と
を備えていることを特徴とする内燃機関の制御装置。
An air-fuel ratio sensor is installed at an exhaust gas merging portion where exhaust gases from a plurality of cylinders of an internal combustion engine merge, and the air-fuel ratio of each cylinder (hereinafter referred to as “cylinder-specific air-fuel ratio”) is estimated based on the output of the air-fuel ratio sensor. In a control device for an internal combustion engine,
Sensor responsiveness deterioration degree detection means for detecting the deterioration degree of the responsiveness of the air-fuel ratio sensor for each of a plurality of learning regions divided according to the operating state of the internal combustion engine;
Correction gain learning means for learning a correction gain corresponding to the output decrease of the air-fuel ratio sensor based on the degree of deterioration of the responsiveness of the air-fuel ratio sensor detected by the sensor responsiveness deterioration degree detection means for each learning region; ,
A control apparatus for an internal combustion engine, comprising: a cylinder-by-cylinder air-fuel ratio correction unit that corrects an estimated value of the cylinder-by-cylinder air-fuel ratio using a correction gain learned by the correction gain learning unit for each learning region. .
前記空燃比センサの出力に基づいて前記気筒別空燃比を推定する際に、前記センサ応答性劣化度合検出手段で検出した前記空燃比センサの応答性の劣化度合に応じて前記空燃比センサで空燃比を検出するタイミングを補正する空燃比検出タイミング補正手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の制御装置。   When estimating the cylinder-by-cylinder air-fuel ratio based on the output of the air-fuel ratio sensor, the air-fuel ratio sensor detects the air-fuel ratio sensor according to the deterioration degree of the response of the air-fuel ratio sensor detected by the sensor responsiveness deterioration degree detection means. 3. The control apparatus for an internal combustion engine according to claim 1, further comprising air-fuel ratio detection timing correction means for correcting timing for detecting the fuel ratio. 前記気筒別空燃比補正手段により前記補正ゲインを用いて補正した後の気筒別空燃比の推定値に基づいて各気筒の空燃比の気筒間ばらつきを検出する気筒間ばらつき検出手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   Inter-cylinder variation detecting means for detecting inter-cylinder variation in the air-fuel ratio of each cylinder based on the estimated value of the cylinder-by-cylinder air-fuel ratio after being corrected by the cylinder-by-cylinder air-fuel ratio correcting unit. The control apparatus for an internal combustion engine according to any one of claims 1 to 3.
JP2006316506A 2006-11-15 2006-11-24 Control device of internal combustion engine Pending JP2008128161A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006316506A JP2008128161A (en) 2006-11-24 2006-11-24 Control device of internal combustion engine
US11/984,020 US7487035B2 (en) 2006-11-15 2007-11-13 Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316506A JP2008128161A (en) 2006-11-24 2006-11-24 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008128161A true JP2008128161A (en) 2008-06-05

Family

ID=39554250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316506A Pending JP2008128161A (en) 2006-11-15 2006-11-24 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008128161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144779A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Device for determining imbalance between air-fuel ratio cylinders of internal combustion engine
JP2013169859A (en) * 2012-02-20 2013-09-02 Toyota Motor Corp Control device of hybrid vehicle
JP2017180116A (en) * 2016-03-28 2017-10-05 三菱自動車工業株式会社 Failure determination device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144779A (en) * 2010-01-18 2011-07-28 Toyota Motor Corp Device for determining imbalance between air-fuel ratio cylinders of internal combustion engine
JP2013169859A (en) * 2012-02-20 2013-09-02 Toyota Motor Corp Control device of hybrid vehicle
JP2017180116A (en) * 2016-03-28 2017-10-05 三菱自動車工業株式会社 Failure determination device for internal combustion engine

Similar Documents

Publication Publication Date Title
US7487035B2 (en) Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP4363398B2 (en) Air-fuel ratio control device for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2008128080A (en) Control device for internal combustion engine
JP2007315193A (en) Air-fuel ratio detecting device of internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008128160A (en) Control device of internal combustion engine
JP2009024531A (en) Abnormality diagnosis device of cylinder-by-cylinder air-fuel ratio control system for internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2008128161A (en) Control device of internal combustion engine
JP2008138579A (en) Variable valve timing control device for internal combustion engine
JP2008064078A (en) Control device of internal combustion engine
JP2006138280A (en) Control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2012007566A (en) Fuel injection control device of internal combustion engine
JP2008038784A (en) Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2008297933A (en) Fuel injection quantity control device and fuel injection quantity control system