JP2006138280A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2006138280A
JP2006138280A JP2004330205A JP2004330205A JP2006138280A JP 2006138280 A JP2006138280 A JP 2006138280A JP 2004330205 A JP2004330205 A JP 2004330205A JP 2004330205 A JP2004330205 A JP 2004330205A JP 2006138280 A JP2006138280 A JP 2006138280A
Authority
JP
Japan
Prior art keywords
cylinder
fuel ratio
air
cylinders
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330205A
Other languages
Japanese (ja)
Inventor
Masahiko Yamaguchi
正彦 山口
Keiji Wakahara
啓二 若原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004330205A priority Critical patent/JP2006138280A/en
Publication of JP2006138280A publication Critical patent/JP2006138280A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately diagnose the presence of abnormality of each cylinder without being affected by an abnormal cylinder during air-fuel ratio control according to cylinders. <P>SOLUTION: The air-fuel ratio control according to the cylinders is performed by estimating the air-fuel ratio of each cylinder based on a detection value of an air-fuel ratio sensor 37, and controlling the air-fuel ratio of each cylinder to reduce air-fuel ratio dispersion among the cylinders based on the estimated air-fuel ratio of each cylinder. During this air-fuel ratio control according to the cylinders, the estimated air-fuel ratios of the i-th cylinder (i=1, 2, ...) and the average value of the remaining estimated air-fuel ratios excluding the minimum value and the maximum value out of the estimated air-fuel ratios of the cylinders other than the i-th cylinder, are compared for every cylinder to determine whether the i-th cylinder is abnormal. Consequently, even if the abnormal cylinder exists among the cylinders other than the i-th cylinder, whether the i-th cylinder is abnormal is accurately diagnosed by comparing the estimated air-fuel ratio of the i-th cylinder with the average value of the remaining estimated air-fuel ratio excluding the estimated air-fuel ratio of the abnormal cylinder from the estimated air-fuel ratios of the cylinders other than the i-th cylinder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の気筒別に異常の有無を診断する機能を備えた内燃機関の制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine having a function of diagnosing the presence or absence of abnormality for each cylinder of the internal combustion engine.

近年、内燃機関の気筒間の空燃比ばらつきを少なくして空燃比制御精度を向上させるために、各気筒の排出ガスが集合して流れる排気集合部に設置した空燃比センサの出力に基づいて各気筒の空燃比を推定し、各気筒の推定空燃比に基づいて気筒間の空燃比ばらつきが小さくなるように各気筒の空燃比補正量(例えば燃料噴射補正量)を設定して気筒別に空燃比を制御する“気筒別空燃比制御”を行うようにしたものがある。   In recent years, in order to reduce the air-fuel ratio variation between cylinders of an internal combustion engine and improve the air-fuel ratio control accuracy, each of the cylinders is based on the output of an air-fuel ratio sensor installed in an exhaust gas collecting portion where the exhaust gas of each cylinder collects and flows. Estimate the air-fuel ratio of each cylinder, and set the air-fuel ratio correction amount (for example, fuel injection correction amount) for each cylinder so that the variation in air-fuel ratio among the cylinders is reduced based on the estimated air-fuel ratio for each cylinder. There is one that performs “cylinder-by-cylinder air-fuel ratio control” for controlling the cylinder.

このような気筒別空燃比制御を行うシステムにおいては、例えば、特許文献1(実公平6−45644号公報)に記載されているように、いずれか1つの気筒の空燃比補正量を、それ以外の気筒の空燃比補正量の平均値と比較することで、当該気筒の異常の有無を診断するようにしたものがある。   In such a system that performs cylinder-by-cylinder air-fuel ratio control, for example, as described in Patent Document 1 (Japanese Utility Model Publication No. 6-45644), the air-fuel ratio correction amount of any one of the cylinders is set to other values. In some cases, the presence or absence of abnormality of the cylinder is diagnosed by comparing with the average value of the air-fuel ratio correction amount of the cylinder.

また、特許第2684011号公報に記載されているように、各気筒の空燃比補正量が所定範囲内であるか否かを各気筒毎に判定して、各気筒の異常の有無を診断するようにしたものもある。
実公平6−45644号公報(第3頁等) 特許第2684011号公報(第1頁等)
Further, as described in Japanese Patent No. 2684011, it is determined for each cylinder whether or not the air-fuel ratio correction amount of each cylinder is within a predetermined range, and the presence or absence of abnormality in each cylinder is diagnosed. Some of them are
Japanese Utility Model Publication No. 6-45644 (page 3, etc.) Japanese Patent No. 2684011 (first page, etc.)

しかし、上記特許文献1の異常診断では、所定気筒の空燃比補正量と、その所定気筒以外の気筒の空燃比補正量の平均値とを比較する際に、所定気筒以外の気筒の中に異常な気筒(例えば空燃比がリッチ又はリーン方向に大きくずれた気筒)が存在する場合、その異常気筒の情報が、所定気筒以外の気筒の空燃比補正量の平均値に含まれてしまうため、この平均値を用いる異常診断の精度が低下して、最悪の場合、正常な気筒を異常有りと誤診断してしまう可能性がある。   However, in the abnormality diagnosis of Patent Document 1, when comparing the air-fuel ratio correction amount of a predetermined cylinder with the average value of the air-fuel ratio correction amounts of cylinders other than the predetermined cylinder, there is an abnormality in the cylinders other than the predetermined cylinder. If there is a certain cylinder (for example, a cylinder in which the air-fuel ratio is rich or greatly deviated in the lean direction), the information on the abnormal cylinder is included in the average value of the air-fuel ratio correction amounts of the cylinders other than the predetermined cylinder. The accuracy of abnormality diagnosis using the average value is lowered, and in the worst case, a normal cylinder may be erroneously diagnosed as having an abnormality.

また、一般に、気筒別空燃比制御では、ある気筒の空燃比のずれが大きいと、それを解消するように他の気筒の空燃比も補正するように制御される。しかし、上記特許文献2の異常診断では、診断しようとする気筒の空燃比補正量と他の気筒の空燃比補正量との比較を行わずに、単に、1つの気筒の空燃比補正量が所定範囲内であるか否かだけで、その気筒の異常の有無を診断するため、他の異常な気筒の空燃比のずれの影響で正常な気筒の空燃比補正量が大きく変化した場合に、その正常な気筒を異常と誤診断してしまう可能性がある。   In general, in the cylinder-by-cylinder air-fuel ratio control, when the deviation of the air-fuel ratio of a certain cylinder is large, control is performed so as to correct the air-fuel ratio of other cylinders so as to eliminate it. However, in the abnormality diagnosis of Patent Document 2, the air-fuel ratio correction amount of one cylinder is simply set to a predetermined value without comparing the air-fuel ratio correction amount of the cylinder to be diagnosed with the air-fuel ratio correction amount of other cylinders. In order to diagnose the presence or absence of abnormality of the cylinder only by whether or not it is within the range, when the air-fuel ratio correction amount of the normal cylinder greatly changes due to the influence of the deviation of the air-fuel ratio of the other abnormal cylinder, There is a possibility that a normal cylinder is erroneously diagnosed as abnormal.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、異常気筒の影響を受けずに、各気筒の異常の有無を精度良く診断することができる内燃機関の制御装置を提供することにある。   The present invention has been made in consideration of these circumstances, and therefore the object of the present invention is an internal combustion engine that can accurately diagnose the presence or absence of abnormality in each cylinder without being affected by the abnormal cylinder. It is to provide a control device.

上記目的を達成するために、本発明の請求項1に記載の内燃機関の制御装置は、気筒別空燃比検出手段によって内燃機関の各気筒の空燃比を検出し、気筒別空燃比制御手段によって各気筒の検出空燃比に基づいて気筒別に空燃比を制御する気筒別空燃比制御を行うシステムにおいて、気筒別空燃比制御中に、気筒別異常診断手段によって、所定気筒の検出空燃比又はそれに相関する情報(以下「検出空燃比情報」という)を、その他の気筒の検出空燃比情報のうち最大値及び最小値を除外した残りの検出空燃比情報の平均値と比較して、所定気筒の異常の有無を診断するようにしたものである。   In order to achieve the above object, an internal combustion engine control apparatus according to claim 1 of the present invention detects an air-fuel ratio of each cylinder of an internal combustion engine by a cylinder-by-cylinder air-fuel ratio detection means, and the cylinder-by-cylinder air-fuel ratio control means. In a system that performs cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio for each cylinder based on the detected air-fuel ratio of each cylinder, during cylinder-by-cylinder air-fuel ratio control, the cylinder-by-cylinder abnormality diagnosis means detects the detected air-fuel ratio of a predetermined cylinder or correlates with it. Information (hereinafter referred to as “detected air-fuel ratio information”) is compared with the average value of the remaining detected air-fuel ratio information excluding the maximum value and the minimum value of the detected air-fuel ratio information of the other cylinders. It is intended to diagnose the presence or absence of.

所定気筒の異常診断の際に、もし、その他の気筒の中に異常気筒(例えば空燃比がリッチ又はリーン方向に大きくずれた気筒)が存在すると、その異常気筒の検出空燃比情報(例えば検出空燃比や空燃比補正量等)が、その他の気筒の中で最大値又は最小値となる。この点に着目して、請求項1のように、所定気筒の検出空燃比情報を、その他の気筒の検出空燃比情報のうち最大値及び最小値を除外した残りの気筒の検出空燃比情報の平均値と比較すれば、もし、その他の気筒の中に異常気筒が存在していても、所定気筒の検出空燃比情報を、その他の気筒の検出空燃比情報から異常気筒の検出空燃比情報を除外した残りの気筒の検出空燃比情報の平均値と比較することができて、所定気筒の異常の有無を精度良く診断することができる。このようにして、各気筒毎に異常診断を実施すれば、異常気筒の検出空燃比情報の影響を受けずに、各気筒の異常の有無を精度良く診断することができる。   When an abnormality diagnosis of a predetermined cylinder is performed, if there is an abnormal cylinder (for example, a cylinder in which the air-fuel ratio is rich or greatly deviated in the lean direction) among the other cylinders, detected air-fuel ratio information (for example, a detected air-fuel ratio) of the abnormal cylinder is present. The fuel ratio, the air-fuel ratio correction amount, etc.) are the maximum value or the minimum value among the other cylinders. Focusing on this point, as in claim 1, the detected air-fuel ratio information of the predetermined cylinder is the detected air-fuel ratio information of the remaining cylinders excluding the maximum value and the minimum value of the detected air-fuel ratio information of the other cylinders. Compared with the average value, even if an abnormal cylinder exists among the other cylinders, the detected air-fuel ratio information of the predetermined cylinder is obtained, and the detected air-fuel ratio information of the abnormal cylinder is obtained from the detected air-fuel ratio information of the other cylinders. It can be compared with the average value of the detected air-fuel ratio information of the remaining cylinders excluded, and the presence / absence of abnormality of the predetermined cylinder can be diagnosed with high accuracy. In this way, if abnormality diagnosis is performed for each cylinder, the presence or absence of abnormality in each cylinder can be accurately diagnosed without being affected by the detected air-fuel ratio information of the abnormal cylinder.

また、請求項2のように、気筒別空燃比制御中に、所定気筒の検出空燃比情報を、その他の気筒の検出空燃比情報のメジアン(中央値)と比較して、所定気筒の異常の有無を診断するようにしても良い。このようにすれば、その他の気筒の中に異常気筒が存在していても、所定気筒の検出空燃比情報を、その他の気筒の検出空燃比情報のうち異常気筒の検出空燃比情報(最大値又は最小値)以外の検出空燃比情報(メジアン)と比較することができて、所定気筒の異常の有無を精度良く診断することができ、異常気筒の検出空燃比情報の影響を受けずに、各気筒の異常の有無を精度良く診断することができる。   Further, as in claim 2, during the air-fuel ratio control for each cylinder, the detected air-fuel ratio information of the predetermined cylinder is compared with the median (median value) of the detected air-fuel ratio information of the other cylinders, and the abnormality of the predetermined cylinder is detected. The presence or absence may be diagnosed. In this way, even if there is an abnormal cylinder among the other cylinders, the detected air-fuel ratio information of the predetermined cylinder is used as the detected air-fuel ratio information (maximum value) of the abnormal cylinder among the detected air-fuel ratio information of the other cylinders. Or the detected air-fuel ratio information (median) other than the minimum value), it is possible to accurately diagnose the presence / absence of abnormality of the predetermined cylinder, without being affected by the detected air-fuel ratio information of the abnormal cylinder, The presence or absence of abnormality in each cylinder can be diagnosed with high accuracy.

ところで、気筒別空燃比制御中に失火が発生すると、各気筒の検出空燃比の検出精度が低下するため、検出空燃比情報を用いた異常診断の診断精度が低下して、異常の有無を誤診断する可能性がある。   By the way, if a misfire occurs during air-fuel ratio control for each cylinder, the detection accuracy of the detected air-fuel ratio of each cylinder decreases, so the diagnosis accuracy of abnormality diagnosis using the detected air-fuel ratio information decreases, and the presence or absence of an abnormality is erroneously detected. There is a possibility of diagnosis.

そこで、請求項3のように、内燃機関の失火発生時及びその後所定期間が経過するまで気筒別異常診断手段による異常診断を禁止するようにすると良い。このようにすれば、失火の影響で各気筒の検出空燃比の検出精度が低下する期間に、検出空燃比情報を用いた異常診断を禁止して、異常の有無の誤診断を未然に防止することができる。   Therefore, as described in claim 3, it is preferable to prohibit the abnormality diagnosis by the cylinder-specific abnormality diagnosis means at the time of misfire of the internal combustion engine and until a predetermined period thereafter. In this way, during the period when the detection accuracy of the detected air-fuel ratio of each cylinder decreases due to the effect of misfire, the abnormality diagnosis using the detected air-fuel ratio information is prohibited to prevent the erroneous diagnosis of the presence or absence of abnormality. be able to.

また、気筒別空燃比制御中に失火が発生すると、各気筒の検出空燃比の検出精度が低下するため、検出空燃比情報を用いた気筒別空燃比制御の制御精度が低下して、気筒間の空燃比ばらつきが悪化する可能性がある。   Also, if misfire occurs during cylinder-by-cylinder air-fuel ratio control, the detection accuracy of the detected air-fuel ratio of each cylinder decreases, so that the control accuracy of cylinder-by-cylinder air-fuel ratio control using the detected air-fuel ratio information decreases, so that There is a possibility that the air-fuel ratio variation of the engine will deteriorate.

そこで、請求項4のように、内燃機関の失火発生時及びその後所定期間が経過するまで気筒別空燃比制御を禁止するようにしても良い。このようにすれば、失火の影響で各気筒の検出空燃比の検出精度が低下する期間に、検出空燃比情報を用いた気筒別空燃比制御を禁止して、気筒別空燃比制御精度低下による気筒間の空燃比ばらつきの悪化を未然に防止することができる。   Therefore, as described in claim 4, the cylinder-by-cylinder air-fuel ratio control may be prohibited when a misfire occurs in the internal combustion engine and until a predetermined period thereafter. In this way, the cylinder-by-cylinder air-fuel ratio control using the detected air-fuel ratio information is prohibited during the period when the detection accuracy of the detected air-fuel ratio of each cylinder is lowered due to the effect of misfire, and the cylinder-by-cylinder air-fuel ratio control accuracy is reduced. It is possible to prevent deterioration in air-fuel ratio variation between cylinders.

ところで、各気筒の排気マニホールドにそれぞれ空燃比センサを設置して、各気筒の排出ガスの空燃比を各気筒の空燃比センサによって直接検出するようにしても良いが、この構成では、気筒数と同数の空燃比センサが必要となり、コスト増を招くという問題が発生する。   By the way, an air-fuel ratio sensor may be installed in each exhaust manifold of each cylinder so that the air-fuel ratio of the exhaust gas of each cylinder is directly detected by the air-fuel ratio sensor of each cylinder. The same number of air-fuel ratio sensors are required, causing a problem of increasing costs.

そこで、請求項5のように、各気筒の排出ガスが集合して流れる排気集合部に設置された空燃比センサの検出値に基づいて各気筒の空燃比を推定するようにすると良い。このようにすれば、1個の空燃比センサで全気筒の空燃比を推定することができ、低コスト化の要求を満たすことができる。   Therefore, as described in claim 5, it is preferable to estimate the air-fuel ratio of each cylinder based on the detection value of the air-fuel ratio sensor installed in the exhaust collecting portion where the exhaust gas of each cylinder collects and flows. In this way, the air-fuel ratio of all the cylinders can be estimated with one air-fuel ratio sensor, and the demand for cost reduction can be satisfied.

以下、本発明を実施するための最良の形態を2つの実施例1,2を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described using two Examples 1 and 2.

本発明の実施例1を図1乃至図4に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関である例えば直列6気筒のエンジン11は、第1気筒#1〜第6気筒#6の6つの気筒を有し、このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15と、スロットル開度を検出するスロットル開度センサ16とが設けられている。   A first embodiment of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An in-line six-cylinder engine 11 that is an internal combustion engine, for example, has six cylinders, a first cylinder # 1 to a sixth cylinder # 6, and an air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11. An air flow meter 14 for detecting the intake air amount is provided on the downstream side of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like and a throttle opening sensor 16 for detecting the throttle opening are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料圧力(燃圧)を検出する燃圧センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel pressure sensor 24 that detects fuel pressure (fuel pressure) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26の開閉タイミングをそれぞれ可変する可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられ、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the opening and closing timings of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the rotation of the crank shaft of the engine 11. Is provided with a crank angle sensor 33 for outputting a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A).

一方、エンジン11の各気筒の排気マニホールド35が集合する排気集合部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust collecting portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 gathers. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx and the like is provided.

上記空燃比センサ37等の各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of various sensors such as the air-fuel ratio sensor 37 are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 20 can be changed according to the engine operating state. Control ignition timing.

また、ECU40は、後述する図2の気筒別空燃比制御プログラムを実行することで、まず、例えば気筒別空燃比推定モデルを用いて空燃比センサ37の検出値(排気集合部36を流れる排出ガスの実空燃比)に基づいて各気筒の空燃比α(#i)を推定する。ここで、(#i)は気筒番号であり、(#1)〜(#6)のいずれかを意味する。そして、全気筒の推定空燃比α(#1)〜α(#6)の平均値を基準空燃比に設定して、各気筒毎に、推定空燃比α(#i)と基準空燃比との偏差が小さくなるように空燃比補正量(燃料噴射補正量)を算出し、各気筒の空燃比補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する“気筒別空燃比制御”を行う。   The ECU 40 executes a cylinder-by-cylinder air-fuel ratio control program shown in FIG. 2 to be described later. First, for example, using a cylinder-by-cylinder air-fuel ratio estimation model, the detected value of the air-fuel ratio sensor 37 (exhaust gas flowing through the exhaust collecting unit 36). The actual air / fuel ratio) is estimated based on the air / fuel ratio α (#i) of each cylinder. Here, (#i) is a cylinder number and means any one of (# 1) to (# 6). Then, the average value of the estimated air-fuel ratios α (# 1) to α (# 6) of all cylinders is set as the reference air-fuel ratio, and the estimated air-fuel ratio α (#i) and the reference air-fuel ratio are set for each cylinder. The air-fuel ratio correction amount (fuel injection correction amount) is calculated so that the deviation becomes small, and the fuel injection amount of each cylinder is corrected based on the air-fuel ratio correction amount of each cylinder, so that the air-fuel mixture supplied to each cylinder “Cylinder-by-cylinder air-fuel ratio control” is performed in which the air-fuel ratio is corrected for each cylinder so as to reduce the variation in air-fuel ratio among the cylinders.

更に、ECU40は、後述する図3及び図4の気筒別異常診断プログラムを実行することで、気筒別空燃比制御中に、各気筒毎に、第i気筒#i以外の気筒の推定空燃比の最小値αmin(#i) と最大値αmax(#i) を求めて、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) を算出する(i=1,2,…,6)。そして、各気筒毎に、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を判定する。   Further, the ECU 40 executes an abnormality diagnosis program for each cylinder shown in FIGS. 3 and 4 to be described later, so that the estimated air-fuel ratio of the cylinders other than the i-th cylinder #i is determined for each cylinder during the cylinder-by-cylinder air-fuel ratio control. Find the minimum value αmin (#i) and the maximum value αmax (#i) and exclude the minimum value αmin (#i) and the maximum value αmax (#i) from the estimated air-fuel ratio of cylinders other than the i-th cylinder #i The average value αave (#i) of the remaining estimated air-fuel ratio is calculated (i = 1, 2,..., 6). For each cylinder, the minimum value αmin (#i) and the maximum value αmax (#max) of the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the estimated air-fuel ratios of cylinders other than the i-th cylinder #i. Based on the deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio excluding i), the presence or absence of abnormality in the i-th cylinder #i is determined.

第i気筒#iの異常診断の際に、もし、第i気筒#i以外の気筒の中に異常気筒(例えば空燃比がリッチ又はリーン方向に大きくずれた気筒)が存在すると、その異常気筒の推定空燃比が、第i気筒#i以外の気筒の中で最大値又は最小値となる。従って、本実施例1のように、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を診断すれば、仮に、第i気筒#i以外の気筒の中に異常気筒が存在していても、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比から異常気筒の推定空燃比を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を精度良く診断することができる。
以下、ECU40が実行する図2乃至図4の各プログラムの処理内容を説明する。
In the abnormality diagnosis of the i-th cylinder #i, if there is an abnormal cylinder (for example, a cylinder in which the air-fuel ratio is rich or lean in the lean direction) among the cylinders other than the i-th cylinder #i, the abnormal cylinder The estimated air-fuel ratio becomes the maximum value or the minimum value among the cylinders other than the i-th cylinder #i. Therefore, as in the first embodiment, the minimum value αmin (#i) and the maximum value among the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the estimated air-fuel ratio of cylinders other than the i-th cylinder #i. If the presence or absence of abnormality in the i-th cylinder #i is diagnosed based on the deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio excluding αmax (#i), the i-th Even if an abnormal cylinder exists in cylinders other than cylinder #i, the abnormal cylinder is determined from the estimated air-fuel ratio α (#i) of i-th cylinder #i and the estimated air-fuel ratio of cylinders other than i-th cylinder #i. Based on the deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio excluding the estimated air-fuel ratio, it is possible to accurately diagnose whether or not the i-th cylinder #i is abnormal.
Hereinafter, the processing content of each program of FIG. 2 thru | or FIG. 4 which ECU40 performs is demonstrated.

[気筒別空燃比制御]
図2に示す気筒別空燃比制御プログラムは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動され、特許請求の範囲でいう気筒別空燃比制御手段としての役割を果たす。本プログラムが起動されると、まず、ステップ101で、気筒別空燃比制御の実行条件が成立しているか否かを判定する。この気筒別空燃比制御の実行条件としては、例えば次の条件(1) 〜(4) がある。
[Air-fuel ratio control by cylinder]
The cylinder-by-cylinder air-fuel ratio control program shown in FIG. 2 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33. As a role. When this program is started, first, in step 101, it is determined whether or not the execution condition for the cylinder-by-cylinder air-fuel ratio control is satisfied. As execution conditions for the cylinder-by-cylinder air-fuel ratio control, for example, there are the following conditions (1) to (4).

(1) 空燃比センサ37が活性状態であること
(2) 空燃比センサ37が異常(故障)と判定されていないこと
(3) エンジン11が暖機状態(例えば冷却水温が所定温度以上)であること
(4) エンジン運転領域(例えばエンジン回転速度と吸気管圧力)が空燃比推定精度を確保できる運転領域であること
これら4つの条件(1) 〜(4) を全て満たしたときに気筒別空燃比制御の実行条件が成立し、いずれか1つでも満たさない条件があれば、実行条件が不成立となる。実行条件が不成立の場合は、以降の処理を行うことなく、本プログラムを終了する。
(1) The air-fuel ratio sensor 37 is in an active state
(2) The air-fuel ratio sensor 37 is not determined to be abnormal (failure)
(3) The engine 11 is in a warm-up state (for example, the cooling water temperature is equal to or higher than a predetermined temperature).
(4) The engine operating range (for example, engine speed and intake pipe pressure) is an operating range that can ensure the air-fuel ratio estimation accuracy. When all of these four conditions (1) to (4) are satisfied, the air-fuel ratio for each cylinder If the control execution condition is satisfied and any one of the conditions is not satisfied, the execution condition is not satisfied. If the execution condition is not satisfied, the program is terminated without performing the subsequent processing.

一方、実行条件が成立している場合には、ステップ102に進み、空燃比センサ37の出力(空燃比検出値)を読み込み、次のステップ103で、例えば気筒別空燃比推定モデルを用いて今回の空燃比対象となる気筒の空燃比α(#i)を空燃比センサ37の検出値に基づいて推定する。このステップ103の処理が特許請求の範囲でいう気筒別空燃比検出手段としての役割を果たす。   On the other hand, if the execution condition is satisfied, the process proceeds to step 102, the output of the air-fuel ratio sensor 37 (air-fuel ratio detection value) is read, and in the next step 103, for example, this time using a cylinder-by-cylinder air-fuel ratio estimation model. The air-fuel ratio α (#i) of the cylinder that is the target of the air-fuel ratio is estimated based on the detected value of the air-fuel ratio sensor 37. The processing in step 103 serves as cylinder-by-cylinder air-fuel ratio detection means in the claims.

この後、ステップ104に進み、全気筒の推定空燃比α(#1)〜α(#6)の平均値を算出して、その平均値を基準空燃比に設定する。
この後、ステップ105に進み、各気筒の推定空燃比α(#i)と基準空燃比との偏差を算出して、その偏差が小さくなるように各気筒の空燃比補正量(燃料噴射補正量)を算出した後、ステップ106に進み、各気筒の空燃比補正量に基づいて各気筒の燃料噴射量を補正することで、各気筒に供給する混合気の空燃比を各気筒毎に補正して気筒間の空燃比ばらつきを少なくするように制御する。
Thereafter, the routine proceeds to step 104, where the average value of the estimated air-fuel ratios α (# 1) to α (# 6) of all cylinders is calculated, and the average value is set as the reference air-fuel ratio.
Thereafter, the routine proceeds to step 105, where the deviation between the estimated air-fuel ratio α (#i) of each cylinder and the reference air-fuel ratio is calculated, and the air-fuel ratio correction amount (fuel injection correction amount) of each cylinder is reduced so that the deviation becomes smaller. ) Is calculated, the process proceeds to step 106, and the air-fuel ratio of the air-fuel mixture supplied to each cylinder is corrected for each cylinder by correcting the fuel injection amount of each cylinder based on the air-fuel ratio correction amount of each cylinder. Thus, control is performed so as to reduce variations in the air-fuel ratio between the cylinders.

[気筒別異常診断]
図3及び図4に示す気筒別異常診断プログラムは、クランク角センサ33の出力パルスに同期して所定クランク角毎(例えば30℃A毎)に起動され、特許請求の範囲でいう気筒別異常診断手段としての役割を果たす。本プログラムが起動されると、まず、ステップ201で、気筒別異常診断の実行条件が成立しているか否かを判定する。この気筒別異常診断の実行条件としては、例えば次の条件(1) 〜(3) がある。
[Abnormal diagnosis by cylinder]
The cylinder-specific abnormality diagnosis program shown in FIG. 3 and FIG. 4 is started at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the output pulse of the crank angle sensor 33, and the cylinder-specific abnormality diagnosis referred to in the claims. Acts as a means. When this program is started, first, in step 201, it is determined whether or not an execution condition for abnormality diagnosis for each cylinder is satisfied. For example, the following conditions (1) to (3) are conditions for executing the cylinder-by-cylinder abnormality diagnosis.

(1) 気筒別空燃比制御中であること
(2) 失火有りと判定されていないこと
(3) 失火発生後所定期間が経過していること
これら3つの条件(1) 〜(3) を全て満たしたときに気筒別異常診断の実行条件が成立し、いずれか1つでも満たさない条件があれば、実行条件が不成立となる。気筒別異常診断の実行条件が不成立の場合には、ステップ202以降の気筒別異常診断に関する処理を行うことなく、本プログラムを終了する。
(1) Air-fuel ratio control for each cylinder is in progress
(2) Not determined to have misfire
(3) A predetermined period of time has elapsed after the misfire has occurred. When all of these three conditions (1) to (3) are satisfied, the condition for executing the abnormality diagnosis for each cylinder is satisfied, and any one of the conditions is not satisfied. If there is, the execution condition is not satisfied. If the execution condition of the cylinder-by-cylinder abnormality diagnosis is not satisfied, the program is terminated without performing the process related to the cylinder-by-cylinder abnormality diagnosis from step 202 onward.

気筒別空燃比制御中に失火が発生すると、各気筒の推定空燃比α(#i)の推定精度が低下するため、推定空燃比α(#i)に基づいた気筒別異常診断の診断精度が低下して、異常の有無を誤診断する可能性がある。そこで、気筒別異常診断の実行条件として、上記(2) 及び(3) の条件を設定することで、失火発生時及びその後所定期間(失火の影響で各気筒の推定空燃比の推定精度が低下する期間)が経過するまで気筒別異常診断を禁止する。この場合、ステップ201の処理が特許請求の範囲でいう気筒別異常診断禁止手段としての役割を果たす。   If misfire occurs during the air-fuel ratio control for each cylinder, the estimation accuracy of the estimated air-fuel ratio α (#i) of each cylinder decreases, so the diagnosis accuracy of the abnormality diagnosis for each cylinder based on the estimated air-fuel ratio α (#i) There is a possibility that it may be mistakenly diagnosed for abnormality. Therefore, by setting the conditions (2) and (3) above as conditions for executing the cylinder-by-cylinder abnormality diagnosis, the estimated accuracy of the estimated air-fuel ratio of each cylinder is reduced when a misfire occurs and for a predetermined period thereafter (because of misfire). The cylinder-by-cylinder abnormality diagnosis is prohibited until a period of time elapses. In this case, the process of step 201 serves as a cylinder-specific abnormality diagnosis prohibiting means as defined in the claims.

一方、上記ステップ201で、気筒別異常診断の実行条件が成立していると判定された場合には、ステップ202以降の気筒別異常診断に関する処理を次のようにして実行する。まず、ステップ202で、各気筒の推定空燃比α(#i)を読み込む。   On the other hand, when it is determined in step 201 that the execution condition for the cylinder-by-cylinder abnormality diagnosis is satisfied, the processing relating to the cylinder-by-cylinder abnormality diagnosis from step 202 is executed as follows. First, in step 202, the estimated air-fuel ratio α (#i) of each cylinder is read.

この後、ステップ203に進み、各気筒#1〜#6について、第i気筒#i以外の気筒の推定空燃比のうちの最小値αmin(#i) を求める。
αmin(#1) = min{α(#2),α(#3),α(#4),α(#5),α(#6)}
αmin(#2) = min{α(#1),α(#3),α(#4),α(#5),α(#6)}
αmin(#3) = min{α(#1),α(#2),α(#4),α(#5),α(#6)}
αmin(#4) = min{α(#1),α(#2),α(#3),α(#5),α(#6)}
αmin(#5) = min{α(#1),α(#2),α(#3),α(#4),α(#6)}
αmin(#6) = min{α(#1),α(#2),α(#3),α(#4),α(#5)}
Thereafter, the process proceeds to step 203, and the minimum value αmin (#i) of the estimated air-fuel ratios of the cylinders other than the i-th cylinder #i is obtained for each of the cylinders # 1 to # 6.
αmin (# 1) = min {α (# 2), α (# 3), α (# 4), α (# 5), α (# 6)}
αmin (# 2) = min {α (# 1), α (# 3), α (# 4), α (# 5), α (# 6)}
αmin (# 3) = min {α (# 1), α (# 2), α (# 4), α (# 5), α (# 6)}
αmin (# 4) = min {α (# 1), α (# 2), α (# 3), α (# 5), α (# 6)}
αmin (# 5) = min {α (# 1), α (# 2), α (# 3), α (# 4), α (# 6)}
αmin (# 6) = min {α (# 1), α (# 2), α (# 3), α (# 4), α (# 5)}

この後、ステップ204に進み、各気筒#1〜#6について、第i気筒#i以外の気筒の推定空燃比のうちの最大値αmax(#i) を求める。
αmax(#1) = max{α(#2),α(#3),α(#4),α(#5),α(#6)}
αmax(#2) = max{α(#1),α(#3),α(#4),α(#5),α(#6)}
αmax(#3) = max{α(#1),α(#2),α(#4),α(#5),α(#6)}
αmax(#4) = max{α(#1),α(#2),α(#3),α(#5),α(#6)}
αmax(#5) = max{α(#1),α(#2),α(#3),α(#4),α(#6)}
αmax(#6) = max{α(#1),α(#2),α(#3),α(#4),α(#5)}
Thereafter, the routine proceeds to step 204, where the maximum value αmax (#i) of the estimated air-fuel ratios of the cylinders other than the i-th cylinder #i is obtained for each of the cylinders # 1 to # 6.
αmax (# 1) = max {α (# 2), α (# 3), α (# 4), α (# 5), α (# 6)}
αmax (# 2) = max {α (# 1), α (# 3), α (# 4), α (# 5), α (# 6)}
αmax (# 3) = max {α (# 1), α (# 2), α (# 4), α (# 5), α (# 6)}
αmax (# 4) = max {α (# 1), α (# 2), α (# 3), α (# 5), α (# 6)}
αmax (# 5) = max {α (# 1), α (# 2), α (# 3), α (# 4), α (# 6)}
αmax (# 6) = max {α (# 1), α (# 2), α (# 3), α (# 4), α (# 5)}

この後、ステップ205に進み、各気筒#1〜#6について、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) を求める。   Thereafter, the process proceeds to step 205, and the remaining values excluding the minimum value αmin (#i) and the maximum value αmax (#i) among the estimated air-fuel ratios of the cylinders other than the i-th cylinder #i for each of the cylinders # 1 to # 6. The average value αave (#i) of the estimated air-fuel ratio is obtained.

αave(#1) =[{α(#2)+α(#3)+α(#4)+α(#5)+α(#6)}
−{αmin(#1) +αmax(#1) }]/3
αave(#2) =[{α(#1)+α(#3)+α(#4)+α(#5)+α(#6)}
−{αmin(#2) +αmax(#2) }]/3
αave(#3) =[{α(#1)+α(#2)+α(#4)+α(#5)+α(#6)}
−{αmin(#3) +αmax(#3) }]/3
αave(#4) =[{α(#1)+α(#2)+α(#3)+α(#5)+α(#6)}
−{αmin(#4) +αmax(#4) }]/3
αave(#5) =[{α(#1)+α(#2)+α(#3)+α(#4)+α(#6)}
−{αmin(#5) +αmax(#5) }]/3
αave(#6) =[{α(#1)+α(#2)+α(#3)+α(#4)+α(#5)}
−{αmin(#6) +αmax(#6) }]/3
αave (# 1) = [{α (# 2) + α (# 3) + α (# 4) + α (# 5) + α (# 6)}
− {Αmin (# 1) + αmax (# 1)}] / 3
αave (# 2) = [{α (# 1) + α (# 3) + α (# 4) + α (# 5) + α (# 6)}
− {Αmin (# 2) + αmax (# 2)}] / 3
αave (# 3) = [{α (# 1) + α (# 2) + α (# 4) + α (# 5) + α (# 6)}
− {Αmin (# 3) + αmax (# 3)}] / 3
αave (# 4) = [{α (# 1) + α (# 2) + α (# 3) + α (# 5) + α (# 6)}
− {Αmin (# 4) + αmax (# 4)}] / 3
αave (# 5) = [{α (# 1) + α (# 2) + α (# 3) + α (# 4) + α (# 6)}
− {Αmin (# 5) + αmax (# 5)}] / 3
αave (# 6) = [{α (# 1) + α (# 2) + α (# 3) + α (# 4) + α (# 5)}
− {Αmin (# 6) + αmax (# 6)}] / 3

この後、図4のステップ206に進み、各気筒#1〜#6について、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)を求める。
Δα(#i)=α(#i)−αave(#i)
Thereafter, the process proceeds to step 206 in FIG. 4, and for each cylinder # 1 to # 6, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the estimated air-fuel ratio of the cylinders other than the i-th cylinder #i A deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio excluding the minimum value αmin (#i) and the maximum value αmax (#i) is obtained.
Δα (#i) = α (#i) −αave (#i)

この後、ステップ207に進み、各気筒#1〜#6について、偏差Δα(#i)がリーン判定値以上であるか否かを判定し、偏差Δα(#i)がリーン判定値以上であると判定された場合には、リーン異常カウンタをカウントアップし(ステップ208)、偏差Δα(#i)がリーン判定値よりも小さいと判定された場合には、リーン正常カウンタをカウントアップする(ステップ209)。   Thereafter, the process proceeds to step 207, where it is determined whether or not the deviation Δα (#i) is equal to or greater than the lean determination value for each cylinder # 1 to # 6, and the deviation Δα (#i) is equal to or greater than the lean determination value. When it is determined that the lean abnormality counter is incremented (step 208), and when it is determined that the deviation Δα (#i) is smaller than the lean determination value, the lean normal counter is incremented (step 208). 209).

この後、ステップ210に進み、各気筒#1〜#6について、偏差Δα(#i)がリッチ判定値以下であるか否かを判定し、偏差Δα(#i)がリッチ判定値以下であると判定された場合には、リッチ異常カウンタをカウントアップし(ステップ211)、偏差Δα(#i)がリッチ判定値よりも大きいと判定された場合には、リッチ正常カウンタをカウントアップする(ステップ212)。   Thereafter, the routine proceeds to step 210, where it is determined whether or not the deviation Δα (#i) is equal to or less than the rich determination value for each of the cylinders # 1 to # 6, and the deviation Δα (#i) is equal to or less than the rich determination value. Is determined (step 211), and when it is determined that the deviation Δα (#i) is larger than the rich determination value, the rich normal counter is counted up (step 211). 212).

この後、ステップ213に進み、各気筒#1〜#6について、リーン異常カウンタのカウント値がリーン異常判定値を越えたか否かを判定し、いずれかの気筒のリーン異常カウンタのカウント値がリーン異常判定値を越えた場合には、ステップ214に進み、リーン異常カウンタのカウント値がリーン異常判定値を越えた気筒に対してリーン異常が有ると判定する。   Thereafter, the process proceeds to step 213, where it is determined whether or not the count value of the lean abnormality counter exceeds the lean abnormality determination value for each cylinder # 1 to # 6, and the count value of the lean abnormality counter of any cylinder is lean. When the abnormality determination value is exceeded, the routine proceeds to step 214, where it is determined that there is a lean abnormality for the cylinder whose count value of the lean abnormality counter exceeds the lean abnormality determination value.

この後、ステップ215に進み、各気筒#1〜#6について、リッチ異常カウンタのカウント値がリッチ異常判定値を越えたか否かを判定し、いずれかの気筒のリッチ異常カウンタのカウント値がリッチ異常判定値を越えた場合には、ステップ216に進み、リッチ異常カウンタのカウント値がリッチ異常判定値を越えた気筒に対してリッチ異常が有ると判定する。   Thereafter, the process proceeds to step 215, and for each cylinder # 1 to # 6, it is determined whether or not the count value of the rich abnormality counter has exceeded the rich abnormality determination value, and the count value of the rich abnormality counter of any cylinder is rich. When the abnormality determination value is exceeded, the routine proceeds to step 216, where it is determined that there is a rich abnormality for the cylinder whose count value of the rich abnormality counter exceeds the rich abnormality determination value.

尚、本プログラムの異常診断結果は、ECU40のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリに記憶される。   The abnormality diagnosis result of this program is stored in a rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 40.

以上説明した本実施例1では、各気筒毎に、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち最小値αmin(#i) 及び最大値αmax(#i) を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を診断するようにしたので、もし、第i気筒#i以外の気筒の中に異常気筒が存在していても、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比から異常気筒の推定空燃比を除外した残りの推定空燃比の平均値αave(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を精度良く診断することができる。これにより、異常気筒の推定空燃比の影響を受けずに、各気筒の異常の有無を精度良く診断することができる。   In the first embodiment described above, for each cylinder, the estimated value αmin (#i) of the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the estimated air-fuel ratio of cylinders other than the i-th cylinder #i. ) And the deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio excluding the maximum value αmax (#i), the presence / absence of abnormality in the i-th cylinder #i is diagnosed. Therefore, even if there is an abnormal cylinder other than the i-th cylinder #i, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the cylinders other than the i-th cylinder #i Existence of abnormality in the i-th cylinder #i is accurately diagnosed on the basis of the deviation Δα (#i) from the average value αave (#i) of the remaining estimated air-fuel ratio obtained by excluding the estimated air-fuel ratio of the abnormal cylinder from the estimated air-fuel ratio can do. As a result, it is possible to accurately diagnose whether there is an abnormality in each cylinder without being affected by the estimated air-fuel ratio of the abnormal cylinder.

また、本実施例1では、失火発生時及びその後所定期間が経過するまで気筒別異常診断を禁止するようにしたので、失火の影響で各気筒の推定空燃比α(#i)の推定精度が低下する期間に、推定空燃比α(#i)に基づいた気筒別異常診断を禁止して、異常の有無の誤診断を未然に防止することができる。   Further, in the first embodiment, the cylinder-by-cylinder abnormality diagnosis is prohibited at the time of misfire and until a predetermined period thereafter, so that the estimated accuracy of the estimated air-fuel ratio α (#i) of each cylinder is affected by the misfire. During the period of decrease, cylinder-by-cylinder abnormality diagnosis based on the estimated air-fuel ratio α (#i) can be prohibited to prevent erroneous diagnosis of the presence or absence of abnormality.

更に、本実施例1では、排気集合部36に設置された空燃比センサ37の検出値に基づいて各気筒の空燃比を推定するようにしたので、1個の空燃比センサ37で全気筒の空燃比を推定することができ、低コスト化の要求を満たすことができる。   Further, in the first embodiment, since the air-fuel ratio of each cylinder is estimated based on the detection value of the air-fuel ratio sensor 37 installed in the exhaust collecting portion 36, one air-fuel ratio sensor 37 is used for all the cylinders. The air-fuel ratio can be estimated, and the demand for cost reduction can be satisfied.

次に、図5及び図6を用いて本発明の実施例2を説明する。
本実施例2では、図5及び図6の気筒別異常診断プログラムを実行することで、各気筒毎に、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のメジアンαmed(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を判定する。これにより、もし、第i気筒#i以外の気筒の中に異常気筒が存在していても、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち異常気筒の推定空燃比(最大値又は最小値)以外の推定空燃比であるメジアンαmed(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を精度良く診断できるようにしている。
Next, Embodiment 2 of the present invention will be described with reference to FIGS.
In the second embodiment, by executing the cylinder-specific abnormality diagnosis program of FIG. 5 and FIG. 6, for each cylinder, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the i-th cylinder #i The presence or absence of abnormality in the i-th cylinder #i is determined based on the deviation Δα (#i) from the median αmed (#i) of the estimated air-fuel ratio of this cylinder. As a result, even if an abnormal cylinder exists among the cylinders other than the i-th cylinder #i, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the cylinders other than the i-th cylinder #i Based on the deviation Δα (#i) from the median αmed (#i), which is an estimated air-fuel ratio other than the estimated air-fuel ratio (maximum value or minimum value) of the abnormal cylinder among the estimated air-fuel ratios, The presence or absence can be accurately diagnosed.

図5及び図6に示す気筒別異常診断プログラムでは、まず、ステップ301で、気筒別異常診断の実行条件が成立しているか否かを判定し、実行条件が成立していると判定された場合には、ステップ302に進み、各気筒の推定空燃比α(#i)を読み込む。   In the cylinder-by-cylinder abnormality diagnosis program shown in FIGS. 5 and 6, first, at step 301, it is determined whether or not the execution condition of the cylinder-by-cylinder abnormality diagnosis is satisfied, and it is determined that the execution condition is satisfied. In step 302, the estimated air-fuel ratio α (#i) of each cylinder is read.

この後、ステップ303に進み、各気筒#1〜#6について、第i気筒#i以外の気筒の推定空燃比のメジアンαmed(#i) を求める。
αmed(#1) = med{α(#2),α(#3),α(#4),α(#5),α(#6)}
αmed(#2) = med{α(#1),α(#3),α(#4),α(#5),α(#6)}
αmed(#3) = med{α(#1),α(#2),α(#4),α(#5),α(#6)}
αmed(#4) = med{α(#1),α(#2),α(#3),α(#5),α(#6)}
αmed(#5) = med{α(#1),α(#2),α(#3),α(#4),α(#6)}
αmed(#6) = med{α(#1),α(#2),α(#3),α(#4),α(#5)}
Thereafter, the process proceeds to step 303, and the median αmed (#i) of the estimated air-fuel ratio of the cylinders other than the i-th cylinder #i is obtained for each of the cylinders # 1 to # 6.
αmed (# 1) = med {α (# 2), α (# 3), α (# 4), α (# 5), α (# 6)}
αmed (# 2) = med {α (# 1), α (# 3), α (# 4), α (# 5), α (# 6)}
αmed (# 3) = med {α (# 1), α (# 2), α (# 4), α (# 5), α (# 6)}
αmed (# 4) = med {α (# 1), α (# 2), α (# 3), α (# 5), α (# 6)}
αmed (# 5) = med {α (# 1), α (# 2), α (# 3), α (# 4), α (# 6)}
αmed (# 6) = med {α (# 1), α (# 2), α (# 3), α (# 4), α (# 5)}

この後、図6のステップ304に進み、各気筒#1〜#6について、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のメジアンαmed(#i) との偏差Δα(#i)を求める。
Δα(#i)=α(#i)−αmed(#i)
Thereafter, the process proceeds to step 304 in FIG. 6, and for each cylinder # 1 to # 6, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the median of the estimated air-fuel ratio of cylinders other than the i-th cylinder #i. Find the deviation Δα (#i) from αmed (#i).
Δα (#i) = α (#i) −αmed (#i)

この後、ステップ305に進み、各気筒#1〜#6について、偏差Δα(#i)がリーン判定値以上であるか否かを判定し、偏差Δα(#i)がリーン判定値以上であると判定された場合には、リーン異常カウンタをカウントアップし(ステップ306)、偏差Δα(#i)がリーン判定値よりも小さいと判定された場合には、リーン正常カウンタをカウントアップする(ステップ307)。   Thereafter, the process proceeds to step 305, where it is determined whether or not the deviation Δα (#i) is greater than or equal to the lean determination value for each cylinder # 1 to # 6, and the deviation Δα (#i) is greater than or equal to the lean determination value. When it is determined that the lean abnormality counter is counted up (step 306), when it is determined that the deviation Δα (#i) is smaller than the lean determination value, the lean normal counter is counted up (step 306). 307).

この後、ステップ308に進み、各気筒#1〜#6について、偏差Δα(#i)がリッチ判定値以下であるか否かを判定し、偏差Δα(#i)がリッチ判定値以下であると判定された場合には、リッチ異常カウンタをカウントアップし(ステップ309)、偏差Δα(#i)がリッチ判定値よりも大きいと判定された場合には、リッチ正常カウンタをカウントアップする(ステップ310)。   Thereafter, the process proceeds to step 308, where it is determined whether or not the deviation Δα (#i) is less than or equal to the rich determination value for each cylinder # 1 to # 6, and the deviation Δα (#i) is less than or equal to the rich determination value. Is determined (step 309), and when it is determined that the deviation Δα (#i) is larger than the rich determination value, the rich normal counter is counted up (step 309). 310).

この後、ステップ311に進み、各気筒#1〜#6について、リーン異常カウンタのカウント値がリーン異常判定値を越えたか否かを判定し、いずれかの気筒のリーン異常カウンタのカウント値がリーン異常判定値を越えた場合には、ステップ312に進み、リーン異常カウンタのカウント値がリーン異常判定値を越えた気筒に対してリーン異常が有ると判定する。   Thereafter, the process proceeds to step 311 to determine whether or not the count value of the lean abnormality counter has exceeded the lean abnormality determination value for each of the cylinders # 1 to # 6, and the count value of the lean abnormality counter of any cylinder is lean. If the abnormality determination value has been exceeded, the routine proceeds to step 312, where it is determined that there is a lean abnormality for the cylinder whose count value of the lean abnormality counter has exceeded the lean abnormality determination value.

この後、ステップ313に進み、各気筒#1〜#6について、リッチ異常カウンタのカウント値がリッチ異常判定値を越えたか否かを判定し、いずれかの気筒のリッチ異常カウンタのカウント値がリッチ異常判定値を越えた場合には、ステップ314に進み、リッチ異常カウンタのカウント値がリッチ異常判定値を越えた気筒に対してリッチ異常が有ると判定する。   Thereafter, the process proceeds to step 313, and for each cylinder # 1 to # 6, it is determined whether or not the count value of the rich abnormality counter exceeds the rich abnormality determination value, and the count value of the rich abnormality counter of any cylinder is rich. If the abnormality determination value has been exceeded, the routine proceeds to step 314, where it is determined that there is a rich abnormality for the cylinder whose count value of the rich abnormality counter has exceeded the rich abnormality determination value.

以上説明した本実施例2では、各気筒毎に、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のメジアンαmed(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を診断するようにしたので、もし、第i気筒#i以外の気筒の中に異常気筒が存在していても、第i気筒#iの推定空燃比α(#i)と、第i気筒#i以外の気筒の推定空燃比のうち異常気筒の推定空燃比(最大値又は最小値)以外の推定空燃比であるメジアンαmed(#i) との偏差Δα(#i)に基づいて第i気筒#iの異常の有無を精度良く診断することができ、異常気筒の推定空燃比の影響を受けずに、各気筒の異常の有無を精度良く診断することができる。   In the second embodiment described above, the estimated air-fuel ratio α (#i) of the i-th cylinder #i and the estimated air-fuel ratio median αmed (#i) of cylinders other than the i-th cylinder #i are determined for each cylinder. Since the presence or absence of abnormality of the i-th cylinder #i is diagnosed based on the deviation Δα (#i) of the engine, even if there is an abnormal cylinder among cylinders other than the i-th cylinder #i, The median that is the estimated air-fuel ratio other than the estimated air-fuel ratio (maximum value or minimum value) of the abnormal cylinder among the estimated air-fuel ratio α (#i) of i-cylinder #i and the estimated air-fuel ratio of cylinders other than i-th cylinder #i Based on the deviation Δα (#i) from αmed (#i), it is possible to accurately diagnose whether or not the i-th cylinder #i is abnormal, and without being affected by the estimated air-fuel ratio of the abnormal cylinder, The presence or absence of abnormality can be diagnosed with high accuracy.

尚、上記各実施例1,2では、エンジン11の各気筒の排気マニホールド35が集合する排気集合部36に設置された空燃比センサ37の出力に基づいて気筒別空燃比制御を実施するシステムに本発明を適用したが、例えばV型エンジンのように、気筒群毎に排気系が構成され、各排気系の排気集合部に設置された空燃比センサの出力に基づいて各気筒群毎に気筒別空燃比制御を実施するシステムに本発明を適用する場合、各気筒群毎に各気筒の推定空燃比に基づいて気筒別異常診断を実施するのではなく、エンジン全体を1つの系としてエンジンの各気筒の推定空燃比に基づいて気筒別異常診断を実施すれば良い。このようにすれば、異常気筒の影響をより確実に除外して気筒別異常診断をより精度良く実施することができる。   In the first and second embodiments, the cylinder air-fuel ratio control is performed based on the output of the air-fuel ratio sensor 37 installed in the exhaust collecting portion 36 where the exhaust manifold 35 of each cylinder of the engine 11 gathers. Although the present invention is applied, an exhaust system is configured for each cylinder group as in, for example, a V-type engine, and a cylinder is provided for each cylinder group based on an output of an air-fuel ratio sensor installed in an exhaust collection portion of each exhaust system. When the present invention is applied to a system that performs separate air-fuel ratio control, instead of performing cylinder-by-cylinder abnormality diagnosis based on the estimated air-fuel ratio of each cylinder for each cylinder group, the engine as a whole system is used. An abnormality diagnosis for each cylinder may be performed based on the estimated air-fuel ratio of each cylinder. In this way, it is possible to more accurately eliminate the influence of abnormal cylinders and perform the cylinder-specific abnormality diagnosis with higher accuracy.

また、本発明の気筒別異常診断を行う際に、所定気筒の推定空燃比と比較するパラメータとして、所定気筒以外の気筒の推定空燃比のうち最小値及び最大値を除外した残りの推定空燃比の平均値を用いる方法(上記実施例1で説明した方法)と、所定気筒以外の気筒の推定空燃比のメジアンを用いる方法(上記実施例2で説明した方法)のうちのいずれの方法を採用するかは、本発明を適用するエンジンの気筒数によって次のように選択することができる。   Further, when performing the cylinder-specific abnormality diagnosis according to the present invention, as a parameter to be compared with the estimated air-fuel ratio of the predetermined cylinder, the remaining estimated air-fuel ratio excluding the minimum value and the maximum value among the estimated air-fuel ratios of cylinders other than the predetermined cylinder Any one of a method using the average value (the method described in the first embodiment) and a method using the median of the estimated air-fuel ratio of cylinders other than the predetermined cylinder (the method described in the second embodiment) is adopted. It can be selected as follows according to the number of cylinders of the engine to which the present invention is applied.

(1) 4気筒エンジンの場合、メジアンを用いる方法を採用する。
(2) 5気筒エンジンの場合、平均値を用いる方法とメジアンを用いる方法のいずれの方法を採用しても良い。この場合、所定気筒以外の気筒数が4気筒になるため、所定気筒以外の気筒の推定空燃比のうち最小値及び最大値を除外した残りの推定空燃比の平均値と、所定気筒以外の気筒の推定空燃比のメジアンとが同じ値になる。
(3) 6気筒エンジンの場合、平均値を用いる方法とメジアンを用いる方法のいずれの方法を採用しても良い。
(4) 8気筒エンジンの場合、平均値を用いる方法とメジアンを用いる方法のいずれの方法を採用しても良い。
(5) 12気筒エンジンの場合、平均値を用いる方法とメジアンを用いる方法のいずれの方法を採用しても良い。
(1) In the case of a four-cylinder engine, a method using a median is adopted.
(2) In the case of a 5-cylinder engine, either a method using an average value or a method using a median may be adopted. In this case, since the number of cylinders other than the predetermined cylinder is four, the average value of the remaining estimated air-fuel ratios excluding the minimum and maximum values of the estimated air-fuel ratio of the cylinders other than the predetermined cylinder, and the cylinders other than the predetermined cylinder The estimated median of the air / fuel ratio becomes the same value.
(3) In the case of a 6-cylinder engine, either a method using an average value or a method using a median may be adopted.
(4) In the case of an 8-cylinder engine, either a method using an average value or a method using a median may be adopted.
(5) In the case of a 12-cylinder engine, either a method using an average value or a method using a median may be adopted.

尚、(3) 〜(5) の場合、つまり、6気筒以上のエンジン場合には、所定気筒以外の気筒の推定空燃比のうち最小値とその次に小さい値及び最大値とその次に大きい値の計4つの値を除外した残りの推定空燃比の平均値やメジアンを用いるようにしても良い。   In the case of (3) to (5), that is, in the case of an engine having 6 or more cylinders, the minimum value, the next smaller value, the maximum value, and the next largest value of the estimated air-fuel ratios of the cylinders other than the predetermined cylinder. An average value or median of the remaining estimated air-fuel ratios excluding a total of four values may be used.

また、上記各実施例1,2では、失火発生時及びその後所定期間が経過するまで気筒別異常診断を禁止するようにしたが、失火発生時及びその後所定期間が経過するまで気筒別空燃比制御を禁止するようにしても良い。このようにすれば、失火の影響で各気筒の推定空燃比の推定精度が低下する期間に、推定空燃比に基づいた気筒別空燃比制御を禁止して、気筒別空燃比制御精度低下による気筒間の空燃比ばらつきの悪化を未然に防止することができる。   Further, in each of the first and second embodiments, the cylinder-by-cylinder abnormality diagnosis is prohibited at the time of misfiring and until a predetermined period thereafter. However, the cylinder-by-cylinder air-fuel ratio control at the time of misfiring and after the predetermined period elapses. May be prohibited. In this way, the cylinder-by-cylinder air-fuel ratio control based on the estimated air-fuel ratio is prohibited during the period when the estimated accuracy of the estimated air-fuel ratio of each cylinder is lowered due to the misfire, and It is possible to prevent the deterioration of the air-fuel ratio variation in the meantime.

また、上記各実施例1,2では、各気筒の排出ガスが集合して流れる排気集合部36に設置された空燃比センサ37の検出値に基づいて各気筒の空燃比を推定するようにしたが、各気筒の排気マニホールドにそれぞれ空燃比センサを設置して、各気筒の排出ガスの空燃比を各気筒の空燃比センサによって直接検出するようにしても良い。また、各気筒の検出空燃比や推定空燃比の代用情報として、各気筒の空燃比補正量等を用いるようにしても良い。   Further, in each of the first and second embodiments, the air-fuel ratio of each cylinder is estimated based on the detection value of the air-fuel ratio sensor 37 installed in the exhaust collecting portion 36 where the exhaust gas of each cylinder collects and flows. However, an air-fuel ratio sensor may be installed in each cylinder's exhaust manifold, and the air-fuel ratio of the exhaust gas in each cylinder may be directly detected by the air-fuel ratio sensor in each cylinder. Further, the air-fuel ratio correction amount of each cylinder may be used as substitute information for the detected air-fuel ratio or the estimated air-fuel ratio of each cylinder.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 気筒別空燃比制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the air-fuel ratio control program classified by cylinder. 実施例1の気筒別異常診断プログラムの処理の流れを示すフローチャート(その1)である。It is a flowchart (the 1) which shows the flow of a process of the abnormality diagnosis program classified by cylinder of Example 1. 実施例1の気筒別異常診断プログラムの処理の流れを示すフローチャート(その2)である。6 is a flowchart (part 2) illustrating a flow of processing of the cylinder-by-cylinder abnormality diagnosis program according to the first embodiment. 実施例2の気筒別異常診断プログラムの処理の流れを示すフローチャート(その1)である。It is a flowchart (the 1) which shows the flow of a process of the abnormality diagnosis program classified by cylinder of Example 2. 実施例2の気筒別異常診断プログラムの処理の流れを示すフローチャート(その2)である。It is a flowchart (the 2) which shows the flow of a process of the abnormality diagnosis program classified by cylinder of Example 2.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、35…排気マニホールド、36…排気集合部、37…空燃比センサ、40…ECU(気筒別空燃比検出手段,気筒別空燃比制御手段,気筒別異常診断手段,気筒別異常診断禁止手段,気筒別空燃比制御禁止手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 35 ... Exhaust manifold, 36 ... Exhaust collecting part, 37 ... Air-fuel ratio sensor, 40 ... ECU (air-fuel ratio detection for each cylinder) Means, cylinder-specific air-fuel ratio control means, cylinder-specific abnormality diagnosis means, cylinder-specific abnormality diagnosis prohibition means, cylinder-specific air-fuel ratio control prohibition means)

Claims (5)

内燃機関の各気筒の空燃比を検出する気筒別空燃比検出手段と、前記気筒別空燃比検出手段で検出した各気筒の検出空燃比に基づいて気筒別に空燃比を制御する気筒別空燃比制御を行う気筒別空燃比制御手段とを備えた内燃機関の制御装置において、
前記気筒別空燃比制御中に、所定気筒の検出空燃比又はそれに相関する情報(以下「検出空燃比情報」という)を、その他の気筒の検出空燃比情報のうち最大値及び最小値を除外した残りの検出空燃比情報の平均値と比較して、前記所定気筒の異常の有無を診断する気筒別異常診断手段を備えていることを特徴とする内燃機関の制御装置。
Cylinder air-fuel ratio detection means for detecting the air-fuel ratio of each cylinder of the internal combustion engine, and cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio for each cylinder based on the detected air-fuel ratio of each cylinder detected by the cylinder-by-cylinder air-fuel ratio detection means In a control device for an internal combustion engine comprising a cylinder-by-cylinder air-fuel ratio control means for performing
During the air-fuel ratio control for each cylinder, the detected air-fuel ratio of a predetermined cylinder or information related thereto (hereinafter referred to as “detected air-fuel ratio information”) is excluded from the detected air-fuel ratio information of other cylinders. A control apparatus for an internal combustion engine, comprising: a cylinder-by-cylinder abnormality diagnosis means for diagnosing the presence / absence of an abnormality of the predetermined cylinder in comparison with an average value of the remaining detected air-fuel ratio information.
内燃機関の各気筒の空燃比を検出する気筒別空燃比検出手段と、前記気筒別空燃比検出手段で検出した各気筒の検出空燃比に基づいて気筒別に空燃比を制御する気筒別空燃比制御を行う気筒別空燃比制御手段とを備えた内燃機関の制御装置において、
前記気筒別空燃比制御中に、所定気筒の検出空燃比又はそれに相関する情報(以下「検出空燃比情報」という)を、その他の気筒の検出空燃比情報のメジアンと比較して、前記所定気筒の異常の有無を診断する気筒別異常診断手段を備えていることを特徴とする内燃機関の制御装置。
Cylinder air-fuel ratio detection means for detecting the air-fuel ratio of each cylinder of the internal combustion engine, and cylinder-by-cylinder air-fuel ratio control for controlling the air-fuel ratio for each cylinder based on the detected air-fuel ratio of each cylinder detected by the cylinder-by-cylinder air-fuel ratio detection means In a control device for an internal combustion engine comprising a cylinder-by-cylinder air-fuel ratio control means for performing
During the cylinder-by-cylinder air-fuel ratio control, the detected air-fuel ratio of the predetermined cylinder or information correlated therewith (hereinafter referred to as “detected air-fuel ratio information”) is compared with the median of the detected air-fuel ratio information of the other cylinders. A control device for an internal combustion engine, characterized by comprising cylinder-specific abnormality diagnosis means for diagnosing the presence or absence of the abnormality.
内燃機関の失火発生時及びその後所定期間が経過するまで前記気筒別異常診断手段による異常診断を禁止する気筒別異常診断禁止手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の制御装置。   3. The internal combustion engine according to claim 1, further comprising a cylinder-specific abnormality diagnosis prohibiting unit that prohibits abnormality diagnosis by the cylinder-specific abnormality diagnosis unit when a misfire occurs in the internal combustion engine and until a predetermined period thereafter. Engine control device. 内燃機関の失火発生時及びその後所定期間が経過するまで前記気筒別空燃比制御を禁止する気筒別空燃比制御禁止手段を備えていることを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   4. A cylinder-by-cylinder air-fuel ratio control prohibiting unit that prohibits the cylinder-by-cylinder air-fuel ratio control when a misfire occurs in an internal combustion engine and until a predetermined period thereafter elapses. Control device for internal combustion engine. 前記気筒別空燃比検出手段は、各気筒の排出ガスが集合して流れる排気集合部に設置された空燃比センサの検出値に基づいて各気筒の空燃比を推定することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の制御装置。   The cylinder-by-cylinder air-fuel ratio detecting means estimates the air-fuel ratio of each cylinder based on a detection value of an air-fuel ratio sensor installed in an exhaust gas collecting portion where exhaust gas of each cylinder collects and flows. The control apparatus for an internal combustion engine according to any one of 1 to 4.
JP2004330205A 2004-11-15 2004-11-15 Control device for internal combustion engine Pending JP2006138280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330205A JP2006138280A (en) 2004-11-15 2004-11-15 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330205A JP2006138280A (en) 2004-11-15 2004-11-15 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006138280A true JP2006138280A (en) 2006-06-01

Family

ID=36619261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330205A Pending JP2006138280A (en) 2004-11-15 2004-11-15 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006138280A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038785A (en) * 2006-08-08 2008-02-21 Denso Corp Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP2008064077A (en) * 2006-09-11 2008-03-21 Denso Corp Control device of internal combustion engine
JP2008144639A (en) * 2006-12-08 2008-06-26 Denso Corp Control device for internal combustion engine
JP2009209747A (en) * 2008-03-03 2009-09-17 Toyota Motor Corp Abnormality diagnostic device of air-fuel ratio sensor
US7603994B2 (en) 2007-06-14 2009-10-20 Denso Corporation Abnormality diagnosis device and control system for internal combustion engine
JP2009540181A (en) * 2006-07-21 2009-11-19 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for diagnosing non-uniform distribution of fuel-air mixture supplied to cylinder of internal combustion engine and diagnostic device for non-uniform distribution of fuel-air mixture
JP2010071136A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Internal combustion engine system control device
JP2012047128A (en) * 2010-08-27 2012-03-08 Keihin Corp Fuel injection control device and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540181A (en) * 2006-07-21 2009-11-19 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for diagnosing non-uniform distribution of fuel-air mixture supplied to cylinder of internal combustion engine and diagnostic device for non-uniform distribution of fuel-air mixture
US8103430B2 (en) 2006-07-21 2012-01-24 Continental Automotive Gmbh Method and device for the diagnosis of the cylinder-selective uneven distribution of a fuel-air mixture fed to the cylinders of an internal combustion engine
JP2008038785A (en) * 2006-08-08 2008-02-21 Denso Corp Cylinder-by-cylinder air-fuel ratio control device of internal combustion engine
JP4706590B2 (en) * 2006-08-08 2011-06-22 株式会社デンソー Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008064077A (en) * 2006-09-11 2008-03-21 Denso Corp Control device of internal combustion engine
JP2008144639A (en) * 2006-12-08 2008-06-26 Denso Corp Control device for internal combustion engine
US7603994B2 (en) 2007-06-14 2009-10-20 Denso Corporation Abnormality diagnosis device and control system for internal combustion engine
JP2009209747A (en) * 2008-03-03 2009-09-17 Toyota Motor Corp Abnormality diagnostic device of air-fuel ratio sensor
JP2010071136A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Internal combustion engine system control device
JP2012047128A (en) * 2010-08-27 2012-03-08 Keihin Corp Fuel injection control device and method

Similar Documents

Publication Publication Date Title
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP4748462B2 (en) Abnormality diagnosis device for internal combustion engine
JP4706590B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2005163696A (en) Misfire detection device of internal combustion engine
JP2008144639A (en) Control device for internal combustion engine
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2009121303A (en) Misfire detecting apparatus for internal combustion engine
JP2010106785A (en) Abnormality diagnostic device for emission gas recirculating system
JP2007315193A (en) Air-fuel ratio detecting device of internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2009221856A (en) Misfire diagnostic device for engine
JP2006138280A (en) Control device for internal combustion engine
JP2008128160A (en) Control device of internal combustion engine
JP2009024531A (en) Abnormality diagnosis device of cylinder-by-cylinder air-fuel ratio control system for internal combustion engine
JP4827022B2 (en) Misfire detection device for internal combustion engine
JP2011226363A (en) Abnormality diagnosis apparatus of internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
JP2009185740A (en) Abnormality diagnosing device of internal combustion engine
JP2007192139A (en) Control device for engine
JP5461373B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP2008128161A (en) Control device of internal combustion engine
JP4417000B2 (en) Abnormality diagnosis device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090402